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Scaling of Chiral Order Parameter in Two-Flavor QCD
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The finite temperature transition of QCD with two degenerate light quarks is studied on the lattice
with a renormalization group improved gauge action and the Wilson quark action. We have made
simulations on arg® X 4 lattice near the chiral transition point. It is shown that the chiral condensate,
which is the order parameter of chiral symmetry, satisfies remarkably a scaling relation with the
exponents of the three-dimensional4) Heisenberg model. This indicates that the chiral transition
in two-flavor QCD is of second order in the continuum limit. [S0031-9007(96)02164-3]

PACS numbers: 12.38.Gc, 11.30.Rd

Understanding the nature of the finite temperature tranto further approach toward the continuum limit. However,
sition in QCD with two degenerate light quarksr = 2)  our previous study on am8® X 24 lattice suggests that
is an important step toward the clarification of the transi-N, > 18 is required to have the chiral transition in the
tion in the real world. It is plausible from an argument scaling region [7]. It is difficult to perform simulations
based on an effective model [1] that, if the chiral transi- on such a large lattice even with a powerful computer
tion (transition in the chiral limit) is of second order, QCD of today. Therefore, we instead adopt a renormalization
with two flavors belongs to the same universality class agroup improved gauge action and the Wilson quark action.
the three-dimensionab(4) Heisenberg model. This uni-  Before going into the discussion of the present work, let
versality provides us with several useful scaling relationsus first describe the unexpected phenomena observed by
that can be confronted with numerical results. These scathe MILC collaboration with the standard gauge action.
ing relations were first tested on the lattice for staggered he transition is smooth for both heavy and light quarks,
quarks [2], where some evidence consistent with@i4)  while the transition is very sharp &t = 4 (even a first
scaling was reported. order transition atV; = 6) in the range of intermediate
In this paper, we study scaling behavior of the QCDquark masse6B = 5.0) [4]. This is completely different
transition with two degenerate light quarks on the latticefrom what is supposed to be realized in the continuum
using the Wilson formalism of fermions, and compare thdimit: As the quark mass increases from the chiral limit,
result with a conjectured scaling relation. The Wilson for-the transition becomes weaker, and it becomes strong
malism of fermions is the only known lattice formalism again only when the quark mass is heavy enough to
which possesses a local action for any number of flavorgecover the first order transition of the SU(3) gauge
Therefore, it is important to investigate the scaling behaviheory. They also observed a cusp in the behaviondf
ior with Wilson quarks and compare the results with thoseén terms of1/K with 8 fixed (n, is the screening pion
for staggered quarks for which the action is nonlocal formass and is the hopping parameter). Furthermore, at
two flavors. B = 5.3, the value of the quark mass,, defined through
We use a renormalization group improved gauge actioan axial-vector Ward identity [8,9], depends on the phase
[3] which is expected to be closer to the renormalizedof the system and shows unexpectetk dependence
trajectory compared with the standard one-plaguette gaugeith 8 fixed in the high temperature phase [4,10], which
action, and therefore is expected to show scaling behavids in sharp contrast with the case gf = 5.5, where it
on a coarse lattice. does not depend on the phase [11]. In the following, we
The continuum limit does not depend on the choice ofshow that these unexpected phenomena are removed by
the action if the action belongs to the same universalitymproving the lattice action.
class. However, the way of the approach to the continuum Now let us discuss the present work. The renormaliza-
limit does depend on the choice of the action. Whertion group improved gauge acticﬂjM we use is given by
one uses the standard one-plaguette gauge action and the 1
Wilson quark action for a study of QCD with two flavors Sff,M = _Z{COZ(I X 1loop) + ¢ Z(l X 2 Ioop)},
at finite temperatures, one encounters the existence of 8
severe lattice artifacts on lattices with the lattice size in (1)
the euclidean time directiotv, = 4 and6 [4—6]. Note with ¢; = —0.331 andcy = 1 — 8¢ [3]. Here the loops
the temperature on the lattice is givenBy= 1/aN,, with  in the sums are defined by the trace of the ordered product
a being the lattice spacing. A way out of these latticeof link variables, and each oriented loop appears once in
artifacts with the standard action is to increasen order  the sum.
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We mainly perform simulations foN, = 4 with spa- existence of the crossing point. Note that tke line
tial lattice size8® at 8 = 6/g> = 1.0-4.0 near the fi- is defined at zero temperature. Applying the “Bp-
nite temperature transition point. We use an antiperiodienethod” [6] (monitoring the number of iterations for the
boundary condition in the direction and periodic bound- quark matrix inversion along th&, line), we conclude
ary conditions otherwise. The configurations are updatethat the point@ = 1.3 belongs to the confining phase in
using the hybrid Monte Carlo method with the molecularthe chiral limit.
dynamics time step sizé7 = 0.01 (except for a simu- For the case of the standard gauge action, we pointed
lation point 8 = 1.5, K = 0.206 on the N, = 4 lattice  out that the simulation points where the strong transitions
where 67 = 0.002). We perform simulations of about mentioned earlier are observed on tke line [4] are
100-1300 trajectories after thermalization for each set ojust those where th&, line approaches toward th&.
parametersB and K. Errors are estimated by the jack- line after initially deviating from it due to the crossover
knife method. A preliminary report is given in Ref. [10]. phenomenon between weak and strong coupling regions

Our results for the phase diagram are shown in Fig. 1lof QCD, and that therefore it seems plausible that the
The chiral lineK, [6] is defined by the vanishing point strong transition is a result of lattice artifacts caused by
of the screening pion mass;, = 0, on an8* lattice  this unusual relation of th&, andk, lines [5,6,10].
(doubled in thez direction for the spectrum calculation).  Unlike for the case of the standard gauge action, the
From the values ofm, on the K. line, we estimate distance between th&, and K. lines shown in Fig. 1
a~' = 838(20), 889(31), 979(60), and 1108(33) MeV at  grows monotonically when we increagefrom the chiral
B =15, 1.7, 1.9, and 2.1, respectively. Although the transition pointB. ~ 1.4. In accordance with this, the
lattices are coarse, we expect scaling behavior of physicatansition becomes monotonically weaker witlas shown
guantities because of the improvement of the actionin Fig. 2(a) for the Polyakov loop. Thisisin sharp contrast
as mentioned earlier. The finite temperature transitionwith the case of the standard gauge action. Note that
crossover line; for N, = 4 is determined on th&* X 4  the change of the Polyakov loop at the finite temperature
lattice from the condition that”? = 0.10(2), where P transition/crossover is very smooth for a wide range of
is the Polyakov line expectation value. This condition8. The change ofiz2 is also smooth for larger values of
corresponds to the criterion that the crossover point i3, and it becomes sharper gsdecreases [cf. Fig. 2(b)].
identified as the peak position of the susceptibility of theThe straight line envelope @f2 in the high temperature
Polyakov loop, although our limited statistics sometimesphase(N, = 4) agrees withm?2 in the low temperature
make the peak of the susceptibility not so clear. We
also note that this is consistent with the criterion that

the crossover points are identified from rapid changes of -0.5 0 0.5 1 1.5 2
physical quantities (see Fig. 2). We identify the crossing 3 L ) 1s ‘ ' '
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Secs. 3 and 7 of Ref. [6] for discussion concerning the L NGB
0.24 y T T T
) N =2
r
-
02 r ) 4
L1
K I : ‘ w 1
) 2.0 S
0.16 | s .
- K-.-[N.=4] 1
i i d o | " : | J
0.12 1 1.4 1.8 22 2.6
B 0 I I I I p=15
-0.5 0 0.5 1 1.5 2
FIG. 1. Phase diagram fa¥; = 2 QCD with the renormal- I/K-1/K |

ization group improved gauge action, Eq. (1), and the Wilson
quark action. The lines are to guide the eyes. FIG. 2.

180

(a) The Polyakov loop and (b) the pion screening mass.
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phasgN; = 8), and corresponds to the partially conservedwhereZ is the renormalization coefficient. This definition
axial-vector current relatiom?. « m,. The smoothness of is consistent with the identification of the magnetization
physical observables strongly suggests that the transition is Ref. [1]. (¥W¥)y;, was shown to have a nonvanishing
a crossover aB > B. value in the chiral limit in the confining phase of
It should be noted that the value @of2 on the K.  quenched QCD [14]. For our purpose, it is enough to
line monotonically decreases to zero Bs— B + 0 use the tree valueZ = (2K)>. Our results of W W)y,
(cf. Fig. 3), suggesting that the chiral transition is con-for N, = 4 are shown in Fig. 5.
tinuous. We also find that:2 on the K, line shows a If the two-flavor QCD belongs to the same universality
similar monotonic decrease [10]. It might be emphasizealass as three-dimensioné@l(4) spin models, the chiral
that the value ofn, in the high temperature phase agreescondensate should satisfy the scaling relation (2) with the
well with that in the low temperature phase and does noidentification M = (VY W)qp, h = 2mga, andt = 8 —
show the strange behavior mentioned before for the cas@.,. We further expect that the scaling functif(x) itself
of the standard action (see Fig. 4). is a universal function [15] becaugéx) is determined by
These nice properties, which are in accordance witlthe universal singular structure of the free energy around
naive expectations, encourage us to begin a scaling studlge UV fixed point. We make a fit to the scaling function
with Wilson quarks. recently obtained for am)(4) model [15], by adjusting
From the universality argument, we expect that theB. and the scales for and &, with the exponents fixed
magnetizationM near the second order phase transitionto the O(4) values. Figure 6(a) shows our result with
point can be described by a single scaling function, x%/df = 0.61. The scaling ansatz works remarkably
well with the O(4) exponents. The resultings.; =
M/h'? = f(t/n"P%), () 1.35(1) is slightly smallgr than the value:1.4 olgtgained
where / is the external magnetic field and= [T — by linear extrapolations of th&; line in the( 8, K) space

T.(h = 0)]/T.(h = 0) is the reduced temperature. For (cf. Fig. 1), them? on K, (cf. Fig. 3), and also _th@’%
three-dimensionalo(4) models, the critical exponents oM Kr [10]. However, 1%%0(4) universality predicts [1]
in (2) are given by1/(88) =0.537(7) and 1/8 = thatBc(my) — Be = mg”", andmz ~ (Be = Be)” ON
0.2061(9) [12]. In QCD, h corresponds to the quark mass the K. and K; lines with y = 1.4, which implies that
andM corresponds to the chiral condensate. DeTar testeldiese lines should bend slightly near the chiral transition
this scaling for the case of two-flavor staggered quarkoint to give a smalleB.,. Therefore, we conclude that
[13] and reported that the data are consistent wit) B = 1.35(1) is consistent with the data.
andO(2) scaling. Qur data are limited to the region> O.and on the
For Wilson quarks, the naive definition ¢f#W) for  lattice of 8 X 4. We reserve the study in the case of
the chiral condensate is not adequate because the chighall quark masses witl closer toB.; which requires a
symmetry is explicitly broken due to the presence of théarger.lattllce, as well as that in the regior< 0, for future
Wilson term. A proper subtraction and a renormalizationinvestigations. _
are required to obtain the correct continuum limit. A Finally, we test the mean-field (MF) exponents
properly subtracted?'¥) can be defined via an axial- [1/88 =2/3,1/6 = 1/3] suggested in Ref. [16]. We
vector Ward identity [8], find that it is more difficult to arrange a wide range of
data on a universal curve by adjustify,. A fit with
(3) the minimumy?/df = 2.5 with the MF scaling function

<\i“l,>su = 2mgaZ <7T(x)77(0)>»
° ! g is obtained with 8. = 1.54(1). However, the data at

FIG. 3. m2 onKk..

FIG. 4. The same as Fig. 2 for twice the quark mass.
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FIG. 5. Subtracted chiral condensat&¥), as a function
of 2m,a.

B = 1.6 are completely off the fit. Furthermore, this
value of B, is in conflict with the fact that the data of
m2 on theK. line indicatesB., = 1.5 (cf. Fig. 3). Re-

stricting B¢, = 1.5, we obtain the fit shown in Fig. 6(b)
with y?/df = 3.3. In contrast with the case of the

O(4) exponents, the MF scaling function cannot well
reproduce ther/h'/B% dependence of the data at fixed

B, especially at smal3’s. As a result, all of the data

2.5 T T T
0(4) <W>s“b/h s
2t \\ N A
% NF_2, Nt_4
5} Be1.35
1 o 4
05+ \i\
O ! 1 ! (a)
MF <W>sub/hlls
2T N=2,N=4
i
151 s B.=15
oty
1 - e B=16 R
A B=17 \M\
= =18 -
05F v p=1o T
o B=2.0
0 1 1 1 (b)
0 0.5 1 1.5 2
t/hl/BB

FIG. 6. Best fits to the scaling function with (&)(4) and

are more scattered than the case of th@) exponents.
When we decreasB., less than 1.4, which seems natural
from other data (cf. Figs. 1 and 3)¥W¥).,/h'/? does
not fall on an approximate universal curve. Therefore,
we conclude that the data do not favor the MF scaling.

The success of this scaling test with é4) exponents
strongly suggests that the chiral transition is of second
order in the continuum limit. It also indicates that, with
the improved gauge action, the chiral violation due to the
Wilson term is sufficiently weaker than that introduced by
the nonvanishing.,, at least fonn,’s at 8’s studied here.

To strengthen the conclusion, a direct extraction of each
critical exponent would be desirable.
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