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It is shown that there is a strict condition for the propagators of higher-spin particles. We require the
consistency of the propagator when a particle propagates by means of self-energy-type interactions. We
require a kind of unitarity. Then this requirement turns out to be a strict condition in the case of higher-spin
particles. Its nontriviality is due to the fact that free fields of higher-spin particles contain redundant com-
ponents, which are suppressed by means of subsidiary conditions, not satisfied by the currents coupled with
the fields. The usual propagators do not satisfy our requirement, while those which have been introduced
in connection with the O(4) symmetry satisfy it. Also, a difficulty of the scalar-tensor theory of the graviton

is pointed out.

N a previous paper! we argued that the propagators
used usually for higher-spin particles are not correct.
The term which is proportional to (s—u?) is essential
when we discuss the 0(4) symmetry of the amplitudes at
zero invariant mass. In this paper we want to introduce
'a consistency condition for propagators and to clarify
the reason why the usual propagators of higher-spin
particles are not correct. Also, we discuss the propagator
of the graviton and point out a difficulty of the scalar-
tensor theory of the graviton.

It is well known??® that quantum field theories de-
scribing higher-spin particles, in general, are inconsis-
tent in the presence of interactions. We require here at
least the consistency of the propagator when a particle
propagates under self-energy-type interactions. We
formulate this requirement as follows:
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where d’, d, and 7 are the dressed propagator, the free
propagator, and the proper self-energy part, respectively.
Equation (1) is trivial in the case of spin-0 particles
and is used to determine the renormalized mass from
the bare mass. This equality is, however, a strict con-
dition, as shown below in the case of higher-spin
particles; hence we want to call Eq. (1) a consistency
condition for the propagators. This is nontrivial be-
cause of the following fact*: Free fields of higher-spin
particles contain redundant components that are sup-
pressed by means of subsidiary conditions, which the
currents coupled with the fields do not satisfy.

Then we will show how Eq. (1) acts as a consistency
condition, taking the case of the spin-2 massive particle
as an example. Before entering into the details, we
introduce the projection operators
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We can decompose the propagators and the self-energy
part in Eq. (1) by means of these projection operators.
Then Eq. (1) must be satisfied separately by the coeffici-
ents of the projection operators. The coefficients of P,
and P can easily be determined by means of Eq. (1)
while, in general, the coefficients of the Py’s do not
exist.® To satisfy Eq. (1) doaa, doas, and doss (coefficients
of Poza, Poav, and Poss of the propagators) must satisfy
the relation doas?= dosadoss. The requirement that the
propagator for a massive particle is free of zero-energy
poles permits only the case in which the coefficients of
Posay Poas, and Popp are zero.

Now the usual propagator can be decomposed by
means of the projection operators as
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while the propagator proposed in Ref. 1 can be de-
composed as
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}‘hus, Eq. (3) does not satisfy Eq. (1), while Eq. (4
oes.

The propagator (4) can not be derived directly from a
Lagrangian, but can be derived only by means of a
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limiting process.® From this fact we may suppose that a
consistent theory describing higher-spin particles can
be obtained only by a limiting process if one takes the
Lagrangian approach.

The case of massless particles must be discussed
separately, because terms such as 1/u? do not exist in
this case. Another important point in this case is the
fact that the current is conserved, which is the neces-
sary condition for Eq. (1) to hold.

After calculations similar to those in the case of
massive particles, we find two solutions of Eq. (1) in the
case of the spin-2 particle:
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Solution (5) corresponds to the propagator of the
linearized Einstein theory and contains only helicity-
(£2) states as intermediate states.

On the other hand, the propagator of the scalar-tensor
theory” of the graviton also contains the helicity-0
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state as an intermediate state and can be written, using
one parameter «, as
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where the limit of « determined by the deflection of light
near the sun is a«<<0.1. Hence solution (6) can be
rejected as the propagator of the graviton. No scalar-
tensor theory,® except Eq. (5), can satisfy Eq. (1). Thus,
the only solution which satisfies both Eq. (1) and the
experimental facts is solution (5).

We want to comment here that there is a gap between
propagators of massless particles and those of massive
particles in the case of higher-spin particles, and that
the propagator of massless particles does not correspond
to an irreducible representation of the O(4) symmetry.

A full account of the properties of propagators of
higher-spin particles, including self-energy parts, will
be published elsewhere.?
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The author presents a compact way of carrying out repeated factorizations on the dual amplitude. Pre-
scriptions are given for writing down the multiply-factorized tree amplitudes. As an application of the

prescriptions, the N-Reggeon amplitude is derived.

I. INTRODUCTION

IN this paper, we use the fact that the projective
transformation of cross ratio is invariant under
changing of the projective frames (duality) to generalize
the multiple-factorization technique developed in a
previous paper.! We find a neat and compact way of
carrying out the mutliple factorizations on the dual
amplitude. As a consequence of this, we obtain a set of
prescriptions which enables us to write down directly
the multiply-factorized tree amplitudes by simply
examining the corresponding tree diagrams. Applying
the prescriptions in a particular case, we obtain the
formula for the N-Reggeon amplitudes.

Tn Sec. II we explicitly carry out the third and the
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fourth factorizations and prove the factorization of the
quadruply-factorized tree into two triply-factorized
trees. We thus discuss the application of the quadruply-

F16. 1. Doubly-factorized tree. w; refers to the frame defined
by wy=o, w1=0, wy_1=1, and w;’ refers to a new frame wy’
=0, wi’= 0, wy’ =1 for the third factorization.



