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Using a conservative value of 1.3° for the upper
limit phase shift and a circulating flux of 152
Gem?, we evaluate from Eq. (10) the upper limit
for v, to be

7,<4.9% 10712,

Thus within expervimental uncervtainty, no meas-
uvable AB effect has been found for neutvons.
This conclusion suggests more than the mere ab-
sence of a dynamic charge on the neutron. More
generally, the experiment was capable of detect-
ing the existence of any nonstandard coupling to
the electromagnetic field resulting in an AB ef-
fect, even though the particle involved was un-
charged.
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The correlation length in the two-dimensional nonlinear O(3) o model is calculated
with contributions of instantons included. It is given by & =0.0125a expl27/f @)1f @)/
2m wheref (@) is the coupling constant defined in lattice regularization scheme and a
is the lattice spacing. This number remarkably coincides with the result of Monte
Carlo simulations by Shenker and Tobochnik.

PACS numbers: 11.10.Lm, 75.10.Hk

The O(3) nonlinear o model in two dimensions
bears many similarities with a non-Abelian gauge
model in four dimensions: Both possess asymp-
totic freedom, n-instanton solutions, and no in-
trinsic scale parameters. An O(3)-invariant reg-
ularization of the former gives the O(3) Heisen-
berg spin model, while a gauge-invariant regu-
larization of the latter gives a non-Abelian lat-
tice gauge model. In the O(3) Heisenberg model

no phase transition would occur at any finite tem-
perature. This corresponds to the fact that in
the lattice gauge theory a confining phase would
survive even when g «< 1. It is believed that these
kinds of low-temperature (weak coupling) behav-
ior are due to nonperturbative effects. Numeri-
cal calculations in the lattice-regularization
scheme include automatically all such effects.
Indeed, recent Monte Carlo simulations per-
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formed by Creutz® and Wilson® for a four-dimen-
sional (4d) non-Abelian lattice gauge model as
well as by Shenker and Tobochnik® for the two-
dimensional (2d) Heisenberg model confirm these
conjectures for low-temperature behavior. In
both cases a sharp crossover takes place from
strong to weak coupling. In the weak-coupling re-
gion the renormalization of the coupling constant
is consistent with the perturbative renormaliza-~
tion group.

Now the problems are whether it is in principle
possible to take account of these nonperturbative
effects by continuum theories and, if possible,
how they can be taken account of. The answer
will be that at least in the 2d nonlinear O(3) o
model, in the weak-coupling region, nonperturba-
tive effects can be exactly taken account of by in-
stanton configurations (not by instanton— anti-in-
stanton configurations).

The nonlinear O(3) o model is defined by the
Lagrangian

The partition function is given by
Z = [ Doexp(- [ Ld*). @)

When f << 1, we may apply the steepest-descent
method to evaluate the path integral. Solutions
of the equation of motion are known as instan-
tons.* It should be noted that instanton-anti-in-
stanton configurations are not exact solutions.
The contributions of instantons are evaluated in
very interesting papers by Fateev, Frolov, and
Schwarz,’ and Berg and Luscher,® including one-
loop quantum corrections around instantons.
Their results may be summarized as follows:

(1) Ultraviolet divergences of one-loop correc-
tions around the solutions are consistent with the
perturbative renormalization group. (2) The N-
instanton state is able to be described in terms
of 2N “particles” in 2d. Each of these particles
is a half of an instanton and will be called “half-
instanton” here. (3) The interaction between the
“half-instantons” is logarithmic. That is, the N-
instanton state is equivalent to the Coulomb gas

3
=—]1;-2"_, (8,0,)(8,0,); >y0.=1, (1) in 2d.
= The partition function they obtained is given by
Zocz; , S f 11 ¢%a,d%,exp(-2 3 Inla, = 4425 Ila, —a)| +2 5 Wb, -5))), @3)
( ) i,j=1 i,J i) i#j
where
[~ 20/F(u)] o
z ocu expl- .
H OXPL= Em/TTH z'=zA (8)
They concluded that the system is infrared finite
as the Coulomb system in 2d is infrared finite” and ,
and that the system generates a mass dynamical- a?=4r. )

ly.

Since in this Letter we would like to compare
the continuum theory and the lattice theory quan-
titatively, we have to be careful with any numer-
ical factor and dependence of the coupling con-
stant on regularization method. In the Pauli-
Villars regularization the fugacity z is given by®

zZ=U exp(—}%f—)->§e'1. (5)

The Coulomb system in 2d is equivalent to the
sine-Gordon system in 2d.” To rewrite Eq. (3)
in terms of the sine-Gordon field ¢, we use the
fact that the inversion of the 2d d’Alembertian is
given by '

Glr)=(2m) 'In( +1/A). (6)

Then we obtain®

Z o« [Dyexpl [(38,00,¢ +22’ cosag)d®*], (7)

Note that in this functional-integral approach
tadpole-type diagrams are included. To relate

-this approach to the operator formalism, we have

to sum up tadpole-type diagrams. Doing this we
obtain®

L=-38,08,0+22"N, (cosagp), (10)
where
2" =3e"n/N)z’ =5eVmz. (11)

Here N, denotes the normal-ordering operation
defined by the mass m. By adjusting as

22" =m*/a?, (12)
we obtain
m=4ne’z. (13)

As Coleman'® and Mandelstam' showed, the
sine-Gordon model in 2d is equivalent to the mas-
sive Thirring model in 2d, which is described by
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the Lagrangian

L =iy, 0,0 +MT) 5 Tyl 0. (14)
When a®=4r,

g=0 (15)
and

M=3e "m. (16)

Here y=0.577 215 665... is Euler’s constant.

Now the two-point function of the nonlinear O(3)
o model may be written in terms of the massive
Thirring field.® It turns out that the correlation
length is exactly given by the inverse of the mass
of the Thirring field, since the Thirring field is
free. Therefore we obtain

ey S0) 1

2 L (17)

£=

1_e
M 8¢
To compare with the result of Shenker and To-
bochnik,® we have to rewrite Eq. (17) in terms of
the coupling constant defined in lattice regular-
ization, f(a). The transformation factor was ob-
tained by Parisi.’* Thus we obtain

£=lexp(1-n/2)/320Zle @ L2 (1)
where « is the lattice spacing. The numerical co-
efficient is given by

C =exp(1-7/2)/322=0.0125. (19)

This number remarkably coincides with the nu-
merical value 0.01 obtained by Monte Carlo sim-
ulations.?

We turn to discussions of implications of our
results. Instantons give a full account of the cor-
relation length from deep in the weak-coupling
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region (f<« 1) up to the crossover point (f ~ 1/
1.3). This means that the following conjectures
may be misleading: (i) The dilute instanton pic-
ture will be relevant and (ii) instantons will be-
come important only when the coupling constant
becomes large up to around the crossover point.
We conjecture that in 4d non-Abelian gauge theo-
ries also, instantons play the same role as in
the 2d nonlinear o model. This view has been
taken by the present author in Refs. 9 and 13.

Note added.—The cluster property of the vacu-
um has been carefully analyzed. It has been con-
cluded that the vacuum of the 2d nonlinear O(3) o
model is twofold degenerage and that a new kind
of topological symmetry breaking occurs. The
details will be published elsewhere.
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