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We calculate the tension o of the interface between the confined and deconfined phases by the histo-
gram method in SU(3) lattice gauge theory for temporal extents of 4 and 6 using the recent high-statistics
data of the QCDPAX Collaboration. The results are o /T2 =0.0292(22) and 0.0218(33) for N,=4 and 6,
respectively. The ratio o /7> shows a scaling violation similar to that already observed for the latent
heat L. However, we find that the physically interesting dimensionless combinations (o*/L*T)!/? and

o T /L scale within the statistical errors.

PACS number(s): 12.38.Gc, 11.15.Ha, 68.10.Cr, 98.80.Cq

1. INTRODUCTION

At the transition temperature of a first-order phase
transition, a mixed state can exist where two different
bulk phases are separated by an interface. The free-
energy densities of the two bulk phases are equal and the
free energy of the mixed state is higher than either of the
pure phases by the amount F;, =0 A, where A is the area
of the interface and o is the interface tension. If the
high-temperature phase transition of QCD is of first or-
der, the interface tension between hadronic matter and
the quark-gluon plasma is an important parameter for the
formation of a quark-gluon plasma in heavy-ion collisions
and for the nucleation of hadronic matter in the early
Universe; in the latter case the inhomogeneities generated
during the phase transition could affect light-element nu-
cleosynthesis [1].

In recent years many methods have been introduced to
compute numerically the interface tension in lattice SU(3)
gauge theory. Because the measurement of the interface
tension generally requires an extensive computing effort,
so far only lattices with small temporal extents (values of
N,) have been used. Most of the work has been concen-
trated on the N,=2 system [2-4], some reaching N, =4
[5,6].

In this work we measure the interface tension in SU(3)
gauge theory with the histogram method introduced by
Binder [7]. It requires high-statistics histograms of an or-
der parameter at or near the phase transition point. We
analyze the Polyakov loop histograms obtained by the
QCDPAX Collaboration [8] with the recent high-
statistics simulations on N, =4 and N, =6 lattices.

The dynamics of the first-order phase transition is
largely governed by the latent heat L and the interface
tension o —the “driving” and “braking” forces of the
transition. It was already observed by the QCDPAX
Collaboration that the dimensionless quantity L /T2 does
not scale, when N, is increased from 4 to 6. As reported
below, we observe similar behavior for the interface ten-
sion o. This makes it very difficult to estimate the
continuum-limit values of both L and 0. However, when
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one studies physical processes occurring during the phase
transition, o and L appear in certain combinations. We
find that the scaling properties of these combinations are
much improved.

Let us briefly consider, as an example, the initial stage
of the first-order phase transition in the early Universe.
Let us assume that the system initially exists in the high-
temperature phase and is cooled below T, with a (con-
stant) rate C =—3T /dt. According to the classical nu-
cleation theory [9], near T the system spontaneously nu-
cleates small bubbles of the low-temperature phase. The
nucleation rate is [dtdVaTe *''dtdV, where
Fp= —LTVB +0 Ap is the free energy of the bubble of
volume ¥V and area Az, and T=(TC—T)/ T.. When
T<T,, Fz has a maximum when the radius is
R, =20 /(LT); a bubble with this radius is called a criti-
cal bubble. The free energy of the critical bubble is given
by F,=Fg(R,)=a*T T, where

a?=16wa®/3LT, . (1)

If a bubble larger than R, is nucleated, it starts to ex-
pand. Expanding bubbles emit shock waves which reheat
the supercooled matter back close to the transition tem-
perature, thus hindering the formation of new bubbles
close to the old ones. The shock waves propagate ap-
proximately with the sound velocity v,. New bubbles can
be nucleated only in the fraction of the volume unaffected
by the shock waves. This volume fraction is [1]

f@0=1= [ drsmd¢ —¢'PI[T(")] . )

The bubble nucleation is finished at the time ¢, when
S (2, )=0. After some algebra, the amount of supercool-
ing and the average distance between the nucleated bub-
bles turn out to be

T.—Ty=~ax '’T,, (3)
and

d=v,m'PeX tay 32T, 4)
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respectively, where y=41n(T2/C). For the QCD phase
transition in the early Universe [1], y=173, T,=150
MeV, and v2~l. The equations above give
T,—T,~0.076aT, and d ~3a m. The interface tension
and the latent heat appear only in the combination a in
this case.

In Sec. II, we describe the histogram method: we
briefly introduce the histogram method and apply it to
the SU(3) gauge theory. Then we consider finite-size
corrections to get the interface tension in the infinite-
volume limit. The results are given in Sec. III and the
conclusions are given in Sec. IV.

II. THE HISTOGRAM METHOD

A. The probability distribution

In this section we introduce the histogram method [7]
and apply it to the deconfinement phase transition of
SU(3) gauge theory. Let us consider SU(3) gauge theory
on a lattice of size ¥ XN,a, where ¥ =N, XN, XN,a’,
with a being the lattice spacing. On a Euclidean lattice,
the temperature is given by T=1/(N,a). Close to the
transition coupling B, (8=6/g?), the probability distri-
bution P () of a variable () that has a discontinuity at
the thermodynamical limit develops a double-peak struc-
ture. For example, the order parameter € can be the ab-
solute value of the Polyakov loop. The peaks correspond
to the pure phase configurations and between the peaks
the dominant contributions come from mixed-state
configurations where the phases are separated by inter-
faces. When the volume is increased, the peaks become
more pronounced. The suppression of the mixed
configurations is caused by the extra free energy of the in-
terfaces.

Because of the center Z (3) symmetry of SU(3), at high
temperatures there are three degenerate deconfined
phases. At T, all of these phases and the confined phase
are equally probable. This, in principle, gives rise to two
different types of interfaces: interfaces between the
confined phase and a deconfined phase and those between
the deconfined phases. However, earlier studies [2,3]
with N,=2 lattices have shown that at T, the
deconfined-deconfined interfaces are completely wet by
the confined phase: effectively a layer of confined phase
forms between two different deconfined phases, and
O deconfined-deconfined 20 confined-deconfined* Thus, the
deconfined-deconfined interfaces are strongly suppressed
(a deconfined-deconfined interface is equivalent to two
confined-deconfined interfaces). We also note that the
histograms of the Polyakov loop in the complex plane
show that the contribution from paths connecting direct-
ly deconfined phases is negligible at T, (see footnote 13 of
[8]), and the time history of the Polyakov loop indeed
shows that all phase flips among different deconfined
phases occur only via the confined phase. This means
that the two dominant phase configurations consist of the
confined phase and a deconfined phase. We therefore ig-
nore the effect of deconfined-deconfined interfaces in the
following.

With the labeling of directions such that N, and

N, =N,, the interfaces form preferentially in the (x-y)
plane. For definiteness, in what follows we assume that
the interfaces are oriented along the (x-y) plane; the
effects of the nonfavored orientations are discussed in
Sec. II B. Because of the periodic boundary conditions,
there are two interfaces with a total area 24 =2N,N,a 2,

We assume that, in large enough volumes, the distribu-
tions around the peaks are described by Gaussians:

c; expl —(Q—Q,)%/d?], 5

where i=1,2 labels the two peaks, and
d; <« V™12 c, V12 Here Q, and Q, are the values of
an extensive variable in the confined and the deconfined
phases, respectively. We assume that, for the time being,
Q is a real-valued variable. The complication which
arises in the case of a complex Polyakov loop will be dis-
cussed later. The probabilities for the system to reside in
the confined or deconfined phases are given by, respec-
tively, exp(—f,V/T) and exp(—f,V/T), except for a
common normalization factor. Here, f, and f, are the
free-energy densities of the confined and deconfined
phases, respectively, at the given B and N,: the free-
energy densities of both phases can be defined by a partial
partition function summed over a subset of configurations
which belong to each Gaussian distribution.

We assume that in the mixed state between the peaks
the two phases occupy two parts of the volumes, V; and
V,, separated by two interfaces. The probability for the
mixed phase is

P, (Q)=c,, exp[—(f V,+f,V,)/T—024/T], (6)

where o is the interface tension and ¥V, +V,=V. P, de-
pends on Q only through the relation

Q=(Q,V,+Q,V,)/V . (7)
Then, the whole probability distribution is given by
P(Q)=P,(Q)+P,(Q)+P,(Q), (8)
with
P(Q)=c; exp(—f;V/T)exp[ —(Q—Q;)*/d}]
i=12). 9

Equation (8) is our basic assumption on the distribution
of the variable. The coefficients ¢ in Egs. (6) and (9) de-
pend on the power of the volume V.

At the critical coupling B, in the infinite-volume limit,
the free-energy densities f, and f, are equal. On a finite
lattice, however, in general f; and f, are not equal.
When f, and f, are equal, the distance between the two
interfaces can vary without changing the total free ener-
gy: P, is a constant independent of (). Then P(Q) be-
comes a sum of two Gaussians and a constant. On the
other hand, when f, and f, are not equal, there is no flat
part connecting the two peaks.

Let us denote the two maxima of P({) by p,,,,; and
Pmax,2 and the minimum between the peaks by p,;,. Let
the minimum point be given by
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d -
dQP(Q) 0, (10)
equal to
Q=7,Q,+7,), (1

with y,+y,=1, which implies V,=y ,V,V,=y,V.
Then, the leading volume dependence, that is, the V;
dependence in the exponent, cancels in the quantity

Nt2 P min
- In , (12)
2NxNy (pmax,l )Yl(pmax,Z )7’2

which converges to the interface tension divided by T
when V— o

6=0/T}= lim & . (13)
Voo

oy=

Note that when p,,,, 1 =Pmax,2 =P max> the denominator in

the logarithm (pm,"l)y’(p,m,,‘,z)y2 reduces to p.,.. The
effect of the volume dependence of the coefficients ¢ will
be taken into account, when we consider finite-size
corrections in the next section.

Equation (13) gives the interface tension for each N,.
To get the continuum value we still have to take the limit
N, — o (a—0) while keeping T=T,.

When one applies the histogram method, one has to
make some decisions which, in principle, are irrelevant in
the infinite-volume limit, but can cause systematic
differences when working at finite volumes. Let us first
elaborate further on the choice of the variable we adopt
in the analysis. Previous studies of SU(3) gauge theory on
N, =2 lattices have used the action density [4] or the Po-
lyakov loop [3,6]; we chose the latter because only the
Polyakov loop gives a clear separation of phases for all
the cases we have investigated.

The Polyakov loop () is a complex-valued observable,
and near B, the distribution p({) develops four peaks,
corresponding to the confined phase at the origin and
three degenerate deconfined phases in the directions
exp(i2mwn /3), n =0,1,2. While, in principle, one could
apply Eq. (12) to a complex-valued order parameter, this
would require excessive statistical quality of the data.
We projected () to the real axis by either using the abso-
lute value (Q,,,) or by rotating it ({,,,), by multiplying it
with exp(i27n /3), to the sector —7/3 <argQ =7 /3 and
taking the real part.

The projection Q—Q,, or Q. causes a deformation
in the probability distribution near the origin. Let us as-
sume that, in a large enough volume, the original distri-
bution of the peak at the origin is given by
P(Q)=C exp(—|Q|?>/d?), where C<V and d <V~ 172,
The projection changes this to

P(Q,,)=Cd2m(Q,,/d)exp(— Q2 /d?), (14)
P(Q,,,)=Cd3Vmerf(V3Q,,/d)exp(— Q2 ,/d?) . (15)

rot

The maxima of these distributions are V2re %X Cd for
P(Q,, and 3.2354...XCd for P(Q,,), where
Cd < V12, in accord with Eq. (5). On the other hand,
the modifications in the other peaks away from the origin
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should be small and can be neglected.

Now let us consider what happens for &, in these
cases. After some algebra we find that the &'y, in this case
also is given by Eq. (12) with minimum point Eq. (11).

The second choice concerns the value of 8 used in the
analysis. Using the reweighting technique [10] we adjust-
ed B so that the peaks of the histograms for ., had
equal height. Alternatively, one may use 3 where the ra-
tio of the weights of the peaks is 4, corresponding to one

disordered and three ordered phases; for the two-
dimensional g-state Potts model, this method has been
shown to yield the correct infinite volume B, up to ex-
ponentially suppressed corrections [11]. However, we did
not apply this procedure here, because for the smallest
volumes available to us, the minimum point cannot be
clearly identified in order to apply Eq. (12). Further, as
discussed above, we can expect that Eq. (12) is stable with
respect to the changes in B. Indeed, we have checked
that the & ’s calculated at B, agree with those calculat-
ed at 3, within the statistical errors. The final values of
B, used in the analysis are listed in Table I. The actual
distributions of PBO(Qrot) are shown in Fig. 1, normalized

so that p_ ., =1.

Thirdly, we have to specify the way the heights are
measured from the histograms. Because of statistical
noise one should not just use the minima and maxima of
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FIG. 1. Probability distributions of the rotated Polyakov
loop, normalized to p.,,=1: (a) for N,=4 with two different
volumes; (b) for N, =6 with three different volumes.
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TABLE 1. Parameters of the runs and the results for &. B, is the value used in the actual simula-
tion, and B, is the reweighted value. & is calculated from Eq. (12), using both the rotated and the ab-
solute values of the Polyakov line histograms at B,. ¥, is measured from the Q. histogram at S,.

N, N,N,N, Iterations Beun Bo 8y (D) Ty (Qyps) Y1 (Qaps)
4 122X 24 910000 5.6915 5.69115 0.0282(28) 0.0241(27) 0.580(37)
4 24?X 36 712 000 5.6925 5.692 61 0.0308(17) 0.0300(16) 0.556(21)
6 20° 376 000 5.8922 5.89049 0.0146(34) 0.0123(28) 0.569(101)
6 243 480000 5.89 5.89197 0.0158(26) 0.0143(22) 0.547(62)
6 36°X 48 1112000 5.8936 5.894 02 0.0173(25) 0.0164(26) 0.597(42)

the histograms in the analysis. To suppress random fluc-
tuations we performed a third-order polynomial fit to the
histograms near the extrema and calculated the ex-
tremum values from the fits. The fit ranges were chosen
by consulting the shape of the histogram by eye; again,
the results remained virtually unchanged when different
ranges were used.

B. Finite-size corrections

In this section, we discuss various finite-size correc-
tions (FSC’s) to Eq. (13). Recently there has been a lot of
interest in the analysis of FSC’s to the interface tension
[12-14]; the analysis is particularly important here be-
cause of the different geometries of the available lattices.
The starting assumptions of the analysis are that the in-
terfaces are infinitely thin and that they do not interact
with each other. We take into account the following
three possible finite-size effects: Gaussian fluctuations of
the order parameter in the bulk phases, Gaussian
capillary-wave fluctuations of the interfaces, and the zero
mode of the translation of interfaces to the direction per-
pendicular to the interfaces. Altogether, the ansatz be-
comes

P min A

—2N.N,8/N? A A A
R 4151k,

3
= 2 Zbulkzzerozéwe (16)

Pmax =1

where i labels the direction perpendicular to the inter-
faces (of an area N ijaz). Here, p.,, stands for

(Pmax,1 )y‘(pmax,z ). In the ansatz (16), & is assumed to be
independent of N,, N,, and N, but does in general de-
pend on N, (if we are not in the scaling region).

The bulk fluctuation term arises from the Gaussian
fluctuations of the order parameter. The width of the
Gaussian is proportional to ¥ ~!/2, so that the normaliza-
tion is « V172, Because p,,,, is in the denominator in Eq.
(16),

Zou < 1/VN,N,N, .

The zero-mode contribution which arises from the
translations of the two interfaces to direction z, keeping
the relative distance [ fixed, is proportional to
N, (V' NN, )2, and the contribution from the infrared
divergent part of the capillary-wave fluctuation is propor-
tional to (1/1/N,N,)%. Together they give a factor

2
Zzero °:Nz ’

(17)

(18)

an extra power of N, originating from the measure:

dQ=(Q,—Q,)N, ldl

The capillary-wave fluctuation term excluding the in-
frared divergent term given by Bunk [13] and Caselle,
Gliozzi, and Vinti [14] is

172
Zcw(N,,N,) Ty [n(iN,/N 172, (19)
where 7 is the Dedekind eta function:
($)=e29/2 [ (1—e2mn?) . (20)
n=1
Note that Zy depends only on the ratio N, /N, of the
interface. Not so apparent is the fact that

Zcw(N,,N,)=Zcw(N,,N,). Because there are two in-
terfaces, the Z .y term is squared in Eq. (16).

When deriving Eqgs. (18) and (19), we have considered
the interfaces in the z direction only, while in Eq. (16) we
consider all interfaces including those in the x and y
directions.

In our lattices the shorter spatial lengths are equal:
N=N,=N,. Rewriting Eq. (16), we obtain the formula
for & defined by Eq. (12):

NZ
aV(N’szNt)=6—712[C+%h1Nz—%lnN

+1G(N,N,,8)], (21)
where c is a constant independent of N and N, and
2
_ N ch(N,Nz)
GINN,8)=In 142 = NN
X exp[ —2(N,—N)N& /N?]| . (22)

The term G appears because we have taken into account
the interfaces along (x,z) and (y,z) planes and the value
of it crucially depends on the geometric feature of the lat-
tice. For example, for cubic volumes G =1In3 and for
long cylinders G =0; when the lattice is long (N, >>N),
the effect of the planar interfaces in less advantageous
directions is exponentially suppressed. In our case, the
effect of G is significant only for the more cubical N, =6
lattices. Because the analytic value of ¢ is not so far
available, we perform a least-mean-squares fit of Eq. (21)
to the data with parameters & and c in both the N, cases.
Higher excitations, such as multiple-wall (4,6, ...
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walls) configurations or configurations containing a large
spherical droplet of one phase embedded in the other
phase, can also contribute to the probability density be-
tween the peaks. However, they have considerably larger
interface area and are correspondingly more suppressed.
Therefore, we neglect their effects as well as the interac-
tion between the two interfaces.

III. RESULTS

The parameters of the simulations are gathered in
Table 1. The simulations were performed with 8=p,,,.
This was reweighted to B, in order to obtain “equal
height” histograms for Q,, (Fig. 1). The values of &
[Eq. (12)] for Q. and Q,, as well as the values of y, for
Q.5 at By, are also presented in Table I. The error
analysis was performed with the jackknife method, with
bin sizes identical to those used in Ref. [8].

Let us first give the results of the interface tension in
the infinite-volume limit obtained for the rotated Po-
lyakov line:

0.0292(22) (N,=4),

0.0218(33) (N,=6). 23)

0. q=0/T>=
The values of the constant c in Eq. (21) are —1.307(43)
and —1.230(58) for N,=4 and 6, respectively. For
N,=6, the x* values are quite acceptable
(x*/Npr=0.31). This implies that our assumption for
FSC’s is reasonable.

The results obtained for the absolute value of the Po-
lyakov line are in remarkable agreement with the values
given in Eq. (23):

0.0295(21) (N,=4),

Gavs= 0.0218(33) (N,=6). 24)

(For N,=6, the difference can be seen only in the fourth
significant digit.) The values of the constant c¢ are
—1.267(41)(N,=4) and —1.206(53)(N,=6), and
X?/Npr=0.49 for N,=6. We can conclude that the re-
sults do not depend on the choice of Q,, or Q,, for the
order parameter. For definiteness, we use only the rotat-
ed values in the further analysis.

Let us look closer at the effects of the FSC’s and, in
particular, the function G. For N, =4, the linear fit to the
data gives & =0.0317(24) without FSC’s, 0.0301(24) with
FSC’s but with G =0, and 0.0292(24) with the full FSC
ansatz—the first two values agree with the last value
within the statistical errors. On the other hand, when
N,=6, the corresponding values are & =0.0185(39)
(without FSC’s), 0.0330(39) (G =0), and 0.0219(39) (full
FSC ansatz). In this case the function G cancels most of
the correction introduced by the other terms in Eq. (21).

The N,=4 value above is consistent with the value
6 =0.027(4) measured by Brower et al. [5] using a com-
pletely different method. Recently, Grossmann and
Laursen [6] performed a histogram-method analysis for
N,=4 and 2 lattices, using the histograms of the N, =4
lattices published in Refs. [8,15]. Their result [6]
0 =0.025(4) is consistent with our result. (Although the

value & =0.040(4) which originally appeared in [6] is
somewhat inconsistent with our value, they recalculated
it.) For N, =2, they obtained the value & =0.092(4).

The numbers above, which are listed in Table II indi-
cate that the ratio o /T2 does not exhibit scaling behavior
for N,=2-6, and not even for N,=4-6. This makes the
estimation of the continuum value of ¢ difficult.

A similar violation of scaling was also seen in the mea-
surement of the latent heat from the same data of the
QCDPAX Collaboration [8]. Because the pressure P is
continuous across the phase transition, the latent heat L
can be calculated from the discontinuity of (e —3P)/T*.
On a Euclidean lattice this is proportional to the discon-
tinuity in the average plaquette { U ):

A(e—3P)/T*=—172N}B(g)/g*A(Uy) , (25)

where B(g)= —adg /da is the renormalization-group beta
function. B(g) can be evaluated with one- (two-)loop per-
turbative analysis, or, since the violation of asymptotic
scaling at these B’s is well established, with nonperturba-
tive Monte Carlo renormalization-group (MCRG)
methods [16]. The quantity e —3P is preferred in lattice
calculations over directly measuring € or €+ P, because
the nonperturbative corrections to the latter quantities
are not known. For N,=2, we use the one-loop S func-
tion and the plaquette gap measured by Alves, Berg, and
Sanielevici [17], and for N,=4,6 we use the results of the
QCDPAX Collaboration [8], evaluated with the one-loop
B function and with the nonperturbative 8 function. The
values are collected in Table II.

From L and o we can now calculate the ratio
a*=16ma>/(3L*T), which is also shown in Table II. We
observe that, when N, =4-6, the scaling violations seem
to be absent in a, at least within the accuracy reached in
this work. This holds both for the one-loop and MCRG
corrected values. On the other hand, the N, =2 value is
completely off the mark when compared with the higher-
N, results.

Inserting the N, =6 value of aycrg into Egs. (3) and
(4), we find that the degree of supercooling at the
deconfinement phase transition in the early Universe and
the average distance between the nucleation centers (~
the scale of the inhomogeneities generated during the
transition) are given by

(T,—T,)/T,=5.6(1.4)X107*, (26)

TABLE II. The interface tension o, the latent heat
L =A(e—3P), and the scale factor a=[16mo>/(3L2T)]'/? for
different N,’s. L and a are evaluated with the one-loop and
MCRG B functions.

N, t o/ T’ Lone loop / T4 LMCRG / T Qone loop AMCRG

2 0.092(4) 2.48(5) 0.046(3)

4 0.0292(22) 4.062(85) 2.44(24) 0.0050(6) 0.0084(13)
6 0.0218(33) 2.395(63) 1.80(18) 0.0055(13) 0.0073(18)
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TABLE III. The ratio of 0T/L, evaluated with both the
one-loop and MCRG improved B functions.

N, (OT/L)one loop (O‘T/L)MCRG
2 0.037(2)
4 0.0072(6) 0.0120(15)
6 0.0091(14) 0.0121(22)
and
d =22(5) mm , (27)

respectively. Another interesting quantity is the ratio
o T /L, which is relevant when one calculates the hydro-
dynamical properties of the propagating phase-transition
front [18]. These values are shown in Table III. For
N,=4-6, the ratio oT/L also appears to be scaling
within the statistical errors.

IV. CONCLUSIONS

We have measured the interface tension o between the
confining and deconfining phases of SU(3) lattice gauge
theory by the histogram method using the data from the
high-statistics simulations on N, =4 and 6 lattices of the
QCDPAX Collaboration [8]. The main advantage of the
histogram method is that it offers a direct way to measure
numerically the interface tension from order-parameter
distributions. Hence, the results of ordinary finite-
temperature simulations near the transition point can be
used. We also made a careful analysis of finite-size
corrections to the interface tension in order to estimate
the infinite-volume values. We found our ansatz for
finite-size corrections is quite reasonable in the sense that

our data are well fitted to the formula with quite accept-
able x? values. :

The results, o/T>=0.0292(22) and 0.0218(33) for
N,=4 and 6, respectively, exhibit a scaling violation
qualitatively similar to that for the latent heat L [8].
Since both the latent heat L and the interface tension o
characterize the strength of the first-order transition, it
may not be surprising that we observe similar scaling
violations. Thus, it is plausible that when one takes a
suitable combination of L and o, scaling becomes much
better. Indeed, we observed that the physically relevant
combinations a?x<¢>T/L? and o /LT scale within the
statistical errors. Clearly, scaling for the dimensionless
combinations and the lack of scaling for L and o them-
selves are not satisfactory. However, we can use the
combinations that do scale to predict the continuum
physics.

Nevertheless, one has to be very cautious when apply-
ing these numbers to cosmology. We have neglected the
effect of quarks, which may change the character of the
transition completely. However, we believe that our re-
sults offer some intuition about the expected physical
scales relevant for the QCD phase transition.
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