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Quasiballistic electron transport in nanoscale semiconductor structures is investigated to clarify the
importance of scatterings under room-temperature operation as reflected in the velocity distribution
functions. The analyses are carried out forn+-n-n+ structures based on the semiclassical Boltzmann
transport equation(BTE). It is shown that the number of electrons with negative velocity grows
exponetially due to scatterings around the top of the electronic potential barrier in the channel region
and, thus, the scatterings cannot be neglected even in nanoscale device structures. This is closely
related to the mathematical structure of the BTE whose solution exhibits the boundary-layer
structure. ©2004 American Institute of Physics. [DOI: 10.1063/1.1812812]

The channel length in the state-of-the-art metal-oxide-
semiconductor field effect transistors(MOSFETs) now
reaches the order of tens of nanometers which is nearly com-
parable to or even smaller than a typical mean free path at
room temperature. Electron transport in such small transit
regions is, therefore, inherently nonstationary. Ballistic trans-
port may be considered to be the extreme case of such non-
stationary transport under strongly inhomogeneous struc-
tures. Hence, the interests of ballistic transport under such
small structures, whose possibility was, however, pointed out
more than two decades ago,1 have been revived recently as
“ballistic MOSFETs.”2–4 In ballsitic MOSFETs, the channel
electrons includinghot electrons backscattered from the
drain are assumed to cross the active region without scatter-
ing. The drain current is then evaluated by counting the
right- and left-moving electrons at the electronic potential
barrier formed near the source.5 We denote it hereafter as the
ballistic theory. Therefore, the shape of the electron distribu-
tion function at the potential barrier plays a crucial role in the
current evaluation. In the ballistic theory, the distribution
function is assumed to be the combination ofcold Maxwell
distributions at the source and drain because of completely
scattering-free channel.

In reality, the channel could never be scattering free even
under undoped channels because of defects and/or surface
roughness. In addition and probably more importantly, en-
ergy dissipation is inevitable in the analyses of irreversible
transport characteristics.6 Therefore, transport properties in
conventional devices have been customarily analyzed by
solving the kinetic equation such as the Boltzmann transport
equation(BTE). Recently, the effect of scatterings on ballis-
tic transport properties in nanoscale device structures has
been studied by numerically solving the nonequilibrium
Green’s function with a somewhat phenomenological scatter-
ing model.7,8 It has been pointed out that the scattering
greatly affects the current, although the details of how the
velocity distribution is different from that assumed in the
ballistic theory are not clarified. In fact, the significance of
scatterings in electron transport under small device structures
had been already recognized by Baranger and Wilkins long
before ballistic MOSFETs became the subject.9 They have

solved the BTE coupled self-consistently with the Poisson
equation forn+-n-n+ structures and found that the velocity
distribution function is greatly broadened due to scatterings.
The device size considered in their work was, however, too
large to expect the ballistic limit. Furthermore, the physical
origin of the broadening in the velocity distribution function
was not clearly resolved.

In the present letter, the velocity distribution function at
the top of the electronic potential barrier in the channel is
explicitly obtained by solving the BTE and directly com-
pared with that assumed in the ballistic theory. It is shown
that the velocity distribution function obtained from the BTE
always exhibits non-negligible electrons with negative veloc-
ity at the top of the electronic potential barrier and that the
assumption of the scattering-free channel is inappropriate
even in nanoscale semiconductor structures. It is pointed out
that this is closely related to the mathematical structure of
the BTE whose solution exhibits the boundary-layer struc-
ture.

In order to avoid the complications associated with the
geometry, the sample structure we consider is a one-
dimensionaln+-n-n+ diode, which consists of a lightly doped
thin slab (we denote it by channel) sandwiched with two
highly doped thick regions(we denote them by S and
D regions). Figure 1 shows the schematic diagram of an
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FIG. 1. Schematic diagram of ann+-n-n+ diode employed in this study and
a typical energy diagram for electrons under an applied voltageVa. The
position of the edges of highly doped(S and D) regions is denoted asxS and
xD, respectively. The position of the top of the potential barrier for electrons
is denoted byxb.
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n+-n-n+ diode and a typical energy diagram under an applied
voltageVa. We suppose that the donor densitiesNDsxd in the
S/D and channel regions are 1020 and 1018 cm3, respectively.
In addition, the electrons in the S/D regions are treated as
nondegenerate for the sake of simplicity. The length of the
highly doped regions is chosen long enough, compared with
the relaxation length, for the electron distribution function to
relax into the quasithermal equilibrium distribution.

Because the temperature is so high that the phase-
randomizing scattering is inevitable(as we shall demonstrate
in this study), the present analyses are based on the semiclas-
sical BTE. We have followed the approach taken by
Baranger and Wilkins9 with a few changes; We first solve the
Poisson equation and the drift-diffusion equation
self-consistently.10 The BTE is then solved under the electro-
static potentialVsxd obtained from the drift-diffuion calcula-
tions. The collision integral is treated with the relaxation
time approximation and, thus, the BTE under steady state is
given by

v
]fsx,vd

]x
+

e

m*

dVsxd
dx

]fsx,vd
]v

= −
fsx,vd − feqsx,vd

tsxd
, s1d

wherev is the velocity,m* (=0.322me,me: electron mass) is
the effective mass,e is the magnitude of electronic charge,
tsxd is the relaxation time, andfeqsx,vd is the local equilib-
rium distribution function given by the product of the elec-
tron densitynsxd f=edvfsx,vdg and the Maxwell distribution.
Notice that the relaxation timetsxd in Eq. (1) is introduced
as a function of positionx. In the present calculations, the
relaxation time for the channel region is extracted from a
typical mobility mn f=etsxd /m* g for bulk Si with ND

=1018 cm−3 at T=300 K that is about 270 cm2/V s11 and,
thus, assumed to be 50 fs. The relaxation time in highly
doped S/D regions where the short-range electron-electron
scattering is most effective in relaxing the nonequilibrium
electron distribution functions is assumed to be 18 fs, which
is equivalent tomn=100 cm2/V s.

The current in the ballistic limit is evaluated by the num-
ber of electrons passing through the top of the electronic
potential barriersx=xbd per unit time by assuming that the
electron distribution functions atx=xS and xD are given by
the cold Maxwellians. Therefore, how close the device is to
the ballistic limit may be measured by comparing the aver-
aged electron velocityvkin evaluated from the BTE with that
vball evaluated from the ballistic theory at the top of the po-
tential barriersx=xbd. Figure 2 shows the ratiovkin/vball as a
function of the channel lengthLc under the applied voltages
Va=0.1, 0.2, 0.3, and 0.4 V. For comparison, the exponential
dependence of the ratio[~exps−aLcd with a=constant] is
also plotted with a dashed line. Indeed, the ratio exponen-
tially approaches the limitsvkin/vball=1d, asLc shrinks. How-
ever, we would like to stress that in spite of the fact that the
ratio is close to the ballistic limit, the physics behind the
electron transport is rather different from the simple story
based on the ballistic theory, as we show below.

Figure 3 shows a typical result of the electron distribu-
tion function fsx,vd /nsxd at various positions in the
n+-n-n+ diodesLc=15 nmd as a function of velocity normal-
ized with the thermal velocityvth [=ÎkBT/m*, kB: the Bolt-
zmann constant,T s=300 Kd: the lattice temperature]. Since
the electron mean free path in the channel region is around
10 nm, the ballistic electrons dominate in the shape of the

distribution functions. The distribution function is, however,
deformed as soon as electrons pass over the potential barrier
sxb=53 nmd. In other words, the ballistic peak is not isolated
from the other velocity components and the distribution
function is greatly broadened. This broadening is due to scat-
terings, although the electron’s path is much smaller than the
mean free path. It is interesting to note that the distribution
functions in Fig. 3 turn out to be very similar in shape to
those of Fig. 3 in Ref. 9, although the size of the present
diode is smaller by a factor of 27.

Figure 4 is our main result and shows the velocity dis-
tribution functions obtained from the BTE at the top of the
electronic potential barriersx=xbd with various channel
lengthssLc=50, 30, 15 nmd. The equilibrium Maxwell dis-
tribution and the distribution function assumed in the ballis-
tic theory are also plotted with the dashed and dotted curves,
respectively. Notice that the distribution function under the
ballistic limit is given by the hemi-Maxwellian and, thus, the
number of electrons coming ballistically from the D(right)
region is negligible. On the other hand, the velocity distribu-

FIG. 2. Channel length dependence of the ratiovkin /vball under Va

=0.1, 0.2, 0.3, 0.4 V. The dashed line represents the exponential depen-
dence of the ratiof~exps−aLcdg. The relaxation times in the channel and
S/D regions are assumed to be 50 and 18 fs, respectively.

FIG. 3. Electron distribution functionsfsx,vd /nsxd at various positionssx
=50,53,55,60,65 nmd as a function of the normalized velocityv /vth. The
channel lengthLc s=xD−xSd is 15 nm andVa=0.2 V. The top of the potential
barrier is located atxb=53 nm.
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tion obtained from the BTE always exhibits non-negligible
electrons with negative velocity. Under the present frame-
work of the relaxation time approximation, the negative-
component velocity at the top of the potential barrier is gen-
erated from the electrons’ flow from the D(right) region.
Since the number of electrons coming ballistically from the
D region is negligible, these electrons result from scatterings
in the channel region. We have found that the electrons with
negative velocity are not negligible even when the relaxation
time in the channel is longer than 200 fs, which is much
longer than the transit time over the channel region. The
broadening observed in the distribution functions of Fig. 3
has also the same origin.

This finding is closely related to the mathematical struc-
ture of the BTE; changing the variables fromsx,vd to sx,«d
with «=m* v2/2−eVsxd s«ù0d, Eq. (1) is expressed as

±Î 2

m*
h« + eVsxdj

dfsx,«d
dx

= −
fsx,«d − feqsx,«d

tsxd
, s2d

where 1 (2) sign corresponds to the positive(negative)
component of electron velocity. Therefore, the BTE close to
the band edge around the top of the potential barrier becomes
singular and its solution exhibits the boundary-layer struc-
ture, in which the solution of the differential equation

changes very rapidly.12 The ballistic transport is just a solu-
tion in the outer region where the distribution function
changes slowly and, thus, it breaks down in the boundary
layer region. This could be physically interpreted as follows.
When electrons pass around the top of the potential barrier,
their velocities could be indefinitely small. As a result, elec-
trons spend longer time around the potential barrier and suf-
fer scatterings. These electrons are, therefore, agitated and
thermalized so the number of electrons with negative veloc-
ity grows exponentially. Notice that they are not just the
backscattered electrons injected from the S(left) region, but
rather they are the whole electrons with energy close to the
band edge residing around the top of the potential barrier.
This is why the velocity distribution obtained from the BTE
always shows non-negligible electrons with negative veloc-
ity. Full discussion on this point will be presented elsewhere
with mathematical details.13

In summary, we have investigated electron transport in
nanoscale semiconductor structures by employing the the
semiclassical BTE. The direct comparison of the velocity
distribution functions obtained from the BTE with those of
the ballistic theory has been made. It has been shown that the
ballistic electrons are indeed crucial, but the scattering in the
channel region cannot be neglected due to the boundary-
layer structure in the solution of the BTE.
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FIG. 4. Velocity distribution functions obtained from the BTE at the top of
the potential barriersx=xbd for Lc=50,30,15 nm underVa=0.2 V. The
dashed and dotted curves represent the equilibrium Maxwellian and the
distribution function under the ballistic limit, respectively.
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