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制約条件付き多変量回帰分析における母集団差異の多次元表現モデル

稲　垣 敦・松浦義行

M皿1tidimensiom1representation　mode1of　popu1ation　differen㏄s

　　in　restricted　mu1tivariate　regression　ana1ysis，RPDMRA

Ats11shi　INAGAKI　and　Yoshiyuki　MATSUURA

　本研究では，制約条件付き母集団差多変量回帰分析，RPDMRA（RestrictedPopulationDifferencesMu1tivariate

Regression　Ana1ysis）のモデルと，このモデルをデータに適合するための交互最小二乗アルゴリズムを提案する。

この手法のモデルは，

Y二XW＋E
　＝XAB＋E

で表され，

A呂’A。＝I。，

BiBi’＝Ir　for　a11i，

m＝n＝r，

である。但し，

Y　＝（Y1’，Y2’，…，Yl，），，

　　　1
X＝ΣEii⑧Xi，
　　i＝1

W＝（Wl，，W2’，…，WI’）’，

　　　I
A＝ΣEll⑧Ai，
　　i＝1

Al＝As　for　a1l　i，

B　＝（B1’，B。’，…　BI’）’，

E＝（El’，E2，，…EI，），，

である。上式でYlとXiは第i母集団の従属変数行列（N×m）と独立変数行列（N×n），A。は各母集団に共通な定

常ウェイト行列（n×r），Blは母集団固有の母集団差ウェイト行列（r×m），Eiは第i母集団における誤差行列（N×

m）である。しかし，このモデルの適用においては，各母集団からの標本が用いられるので，A、とBlはその推定量

となる。以上の点からわかるように，RPDMRAは，POPREG（POPu1ation　differencesREGression　ana1sis；Inagaki，

1991）の従属変数を多変量化し，従属・独立変数と次元数の等化条件を加え，A、とBiの正規直交条件を挿入した場

合に相当する。したがって，異なったグループや母集団からの標本というような複数組のデータに対応しており，そ

の母集団差異を表現できるだけでなく，空間的に表現することにより，各母集団の特徴や差異の理解を助ける。また，

データ解析のモデルとしては，複数の時間や異なる条件からのデータにも適用可能であり，縦断的研究，及び多変量

時系列データの分析に応用可能であると考えられる。さらに，ALSOS（A1temating　Least　Squares　approach　to

Optima1Sca1ing；Young，1981）を利用することによ一り，比率・間隔尺度で測定されたデータのみならず，順序・
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Introduction 

This article presents the development of 

"Restricted population Differences Multivar-

iate Regression Analysis" (RPDMRA) and its 

algorithm. This method can operate on N-sets 

of data from different populations or situations, 

and provide not only a linear multivariate 

regressioTl equation, but also a multidimen-

sional spatial representation of population dif-

ferences under the assumption of the Vector 

model. Moreover this method is useful instru-

ment for longitudinal or time series research 

because it can be also applied to the data 

dbtained at the different time points of occa-

sions. The data can be defined at nominal, 

ordinal, interval or ratio levels of 
measurement6), or can be mixture of two or 

more levels. As will be explained, RPD. MRA 

model provides an optimal scale for each vari-

able within the restrictions as to the measure-

ment level and process. This scaling is optimal 

in the sense that correlation is maximized. 

This model is characterized as follows : 

l ) Squared loss funtion-the proposed model is 

fitted to data in a sense of least square. 

2 ) Alternati~ng least squares technique-the 

proposed model is fitted to data with the 

alternating least squares technique. 

3 ) ' Multidimensional spatial representation-

the proposed model can represent both 

populations (groups, situatins, or occa-

sions) and predictive variables as vectors 

in multidimensional space. 

4 ) Time series data-the proposed method will 

be able to apply the time series and longitu-

dinal data. 

5 ) Level of measurement-the proposed model 

will be able to accomodate ratio, interval, 

ordinal and nominal data. 

In the next section we will present a detailed 

account of RPDMRA model, emphasizing the 

characteristics of the model. 

The Model 
We use bold-face capital letters to represent 

matrices(X) ; bold-face lower case letters for 

vector (x) ; and regular lower case letters for 

scalars (x) . Note that all vectors are assumed to 

be column vectors, with a row vector denoted 

as transpose of a column vector (x') . We refer 

to a specific column vector of a matrix as xj , a 

specific element of a matrix as xlj' 

Let : 

I populations, occasions or condi-i =1, ･･･, 

tions, 

n independent, predictive or j =1, ･･･, 

explanatory variables, 

k =1, ･･･, m dependent, predicted or crite-

rion variables, 

"', r dimensions in a vector model = 1, s
 

contexts, 

Y1 = matrix of dependent, predicted or crite-

rion variables in the i-th population, 

occasion or condition(N Xm), which is 

measured at interval measurement 
level, and is columnwisely normalized in 

each group, 

Xi = matrix of independent, predictive or 

explanatory variables in the i-th popu-
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latiori, occasion or condition(NXn) , 

which is measured at interval measure-

ment level, and is columnwisely normal-

ized in each group, 

Wi = column v6ctor of regression weights of 

Yi on Xi (nxm), 

A* = matrix of stationary weight (n X r) , 

Bl =matrix of population differences weight 

of dimensions for the i-th population 

(r x m) , 

Ei =matrix of error or residual of the i-th 

population (NXm) 

Using the above definitions, we can formu-

late the RPDMRA model by matrix form ; 

Y =XW+E 
= XAB + E, 

where 

Y =(Yl', Y2" "" YI')" 

X = ~ E,i~)X,, 
i =1 

W = (W1', W2', ' WI')', 

A = ~ EliRAi, 
i =1 

Al =A~ for all i, 

B =(Bl'. B2 , "'. BI')" 

E =(El', E2', "" E1')', 

where the notation (XRY) refers to right 

Kronecker product of matrices(X ~) Y) = [x i
 
j
 

Y], and where Eij denotes a matrix with the 

unit scalar in the (ij)position, and with zeros 

elsewhere. This model is similar to POPREG4) 

Additionally w. e impose some constraints, that 
i
s
,
 

A* 'A* = I*, 

BiBi'=1* for all i, 

m=n=r. 

Loss Function 

In our case, as in many similar methods, we 

define a squared loss function. We then search 

for the best solution such that 

f(A~, Bl, ･･･, BI) =tr[(Y-Y)' (Y-Y)] 

is minimal, where Y denotes Y estimated by the 

model. As mention before, the minimization has 

to be carried out tmder the constraints ; 

A*'A~ = Ir' 

BIBi'=1* for all i, 

m=n=r 

Estilnation 

To minimize loss fuction, we utilize alternat-

ing least squares technique (ALS). The ALS 

approach is related to the works of Wold7), de 

Leeuwl) and Young8). As is implied by the name, 

the essential feature of the ALS approach is 

that in solving optimization problems with 

'more than one set of parameters, each set is 

estimated in turn by applying least squares 

procedures holding the other sets fixed. After 

all sets have been estimated once, the procedure 

is repeated until convergence. The algorithm is 

convergent, since all phases minimize a loss 

f unction. 

In order to see how the ALS approach can be 

applied in the present corltext, Iet us return 

briefly to loss function : 

f(A*, B1, ･･･, B ) 

= ~ tr[(Yi-XiA.Bi)' (Yi-XiA.Bi)] 
i =1 

Clearly the sets of parameter~ are here A* and 

Bl' Minimizing f over A* holding B1. B2, "', BI 

fixed is equivalent to solving one least squares 

problem and minimizing over Bi With A* fixed 

is another. That we are in practice minimizing 

f does not prevent the problem from being ALS 

one. 

We must choose A and Bi to minimize f (A*, 

B1, ･･ ･, BI) subject to A~'A~ = I*, BiBi' = I* for all 

i and m=n=r. We difine 
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ip = j~1 tr[ (Yi -XiA.B1) ' (Yi -XiA~Bi) l 

+ tr [ (A.'A. - I.) L] 

+ ~ tr[(BiBi'-1*)Li], 
i =1 

where L and Li are r x r matrices of Lagrange 

multipliers. The partial derivative of ip with 

respect to Bi is relatively easy to obtain and 

setting to zero, and solving for the value of Bl 

which minimizes ip for given A*, results in the 

following expression for Bi 

Bi=ViWi , 

where 

A~'Xi 'YiYi 'XiA~Vi = V i Ai , 

Yi'XiXi'YiWi=WiAi. 

and where Ai denotes the diagonal matrix 

which elements are eigen values, and Vi and Wi 

are the matrices which consist of the corre-

sponding eigen vectors. For 1=1, 2･･･, I, mini-

mizing f over Bi While A* is fixed is achieved 

with this procedure. 

On the other hand, the poblem minimizing f 

as function of A* subject to A~'A* =1*, for fixed 

Bi, can be solved as follow. The partial deriva-

tive of c with respect to A* is also easy to 

obtain and setting to zero, and solving for the 

matrix of A~ which minimizes c for given Bi, 

･, Bi, results in the following expression for A~ 

A~ = VW' , 

where 

[ ~ (Xi'YiBi')] [ ~ (Xi'YIBi')]'V=VA 

i =1 i =1 
L ~ (Xi'YiBi')]'[ ~ (Xi'YiBi')]W=WA 

i =1 i =1 
The ALS procedure presented here decreases 

function f monotonously and the convergence to 

a stationary point is guaranteed because each 

problemis solved in the least sqares sence. 

However it･ can not be guaranteed that the 

global minimum will be attained. Therefore, it 

is suggested to run more than one analysis on 

the same data set with different starting values. 

Starting Values 

If there are many parameters, Iike 
RPDMRA, the number of iterations may be 
excessive in ALS procedure, but can be consid-

erably decreased by the provision of good start-

ing values. We provide the starting values 

which is obtained under some restrictions. 

If we assume that the population differences 

weight matrices Bi are identical across all 

populations, the model can be written as 

Y = XA.B + E 

= XW + E, 

where 

W = A~B, 

X= (XI . X2 , "', Xl')'. 

In this case, squared loss function is minimized 

over W by choosing 

W= (X'X) -1X'Y. 

Therefore in order to obtain starting valne of 

A~, we decompose matrix W as 

W = A.B. 

In other words, we factor W into principal 

components. However the usual factoring equa-

tion are not appropriate, since this matrix is an 

asymmetric. Therefore we utilize Singular-

Value-Decomposition (SVD) to determine the 

initial A* under the constraints that ; 

A* 'A* = I*, 

BB' = diagonal. 

The cross products matrix in the present analy-

sis should always be computed between the 

variables on the shorter side of the approximat-

ed matrix, summing over the variables on the 

10nger side. In our case, however, matrix W is 

square. So the starting value of A~ can be set up 

as 



- 217 -

A~ = V*, 

where 

~~r'V* = V*r*, 

and where r* and V* denote the diagonal 

matrix which elements are the r largest eigen 

values and matrix consisted of the correspond-

ing eigen vactors, respectively. 

ldentif ication 

Before an attempt is made to estimate model 

parameters of this kind, the identification prob-

lem must be examined. The identification prob-

lem depend on the specification of fixed, free 

and constrained parameters. Under several 

specifications, each A* and Bi generates one 

and only one Wi, but it is well known that 

different A* and Bi can generate the same Wl. 

It shold be noted that if A* is replaced by A*T-1 

and Bl by TBi, where T is an arbitrary non-

singuler matrix of order rxr, then Wi is un-

changed. Since T has r2 independent elements, 

this suggests that r2 ipdependent conditions 

shold be imposed on A* or Bl to make these 

uniquely defined. However, when equality con-

straints over groups are taken into account, all 

the elements of the transformation matrix is 

not independent of each other and therefore a 

lesser number of conditions need tQ be imposed. 

It is hard to give further specific rule in the 

general case. In this method, A* and Bl should 

be estimated without any constraints. If the 

unrotated dimensions is interprietable, then 

rotation is unnecessary. If not, some objective 

rotation can be tried as in the case of factor 

analysis. 

Treatment of Missing Data 

Missing data are allowed for in a manner 

which does not destroy the ALS property of the 

RPDMRA algorithm. If some observation is 

missing, then computation of the starting values 

is changed in a minor manner, that is, we simply 

estimate the optimal scaling observation as 

being the mean of the nomissing obsevations. 

Using these starting values, model parameters 

are estimated. Nextly the missing data points 

are reestimated in a regression fashon and then 

a new cycle of the iteration is started. In fact 

such procedures are standard within the ALS 

a p proach. 

Examination of Number of Dimensions 

As discribed before; the number of dimen-

sions, r, were assumend to be equal to number 

of independent and dependent variables, since it 

is neccesary to insert the restriction for solving 

the minimizing problem under the restriction 

A*'A*=1* and BIBi'=1*. However, in most 
multivariate analysis without external criterion 

like factor analysis, dimensional reduction is 

essential problem. Therefore if the reduction in 

number of dimension is necessary, analysis 

under the perfect restrictions should be carried 

out and then some of dimensions can be choose 

as in the case of factor analysis. 

In practice, user must obtain several solu-

tions in different number of dimensions and 

choose between them on the basis of three 

criteria : fit to the data, interpretability and 

reproducibility. We will not discuss the details 

of each of them as they are the same as in our 

previous paper4) 

Finally, we note that it can not be guaran-

teed the grobal minimum will be attained when 

the number of dimensions was not assumed 

equal to number of dependent and independent 

variables, because least square estimates for 

parameters are not obtaind with the procedure 

discribed in this section. 

Extension to Nonmetric Data 

Finaly, we emphasize that RPDMRA model 

can be easily extended to nonmetric data, i. e. , 

ordinal and nominal measurement of data. 

Moreover we assume two types of measure-
ment process, i. e. , discrete and continuous. For 

analysis designed for data having such a wide 

variety of measurelnent, Fisher's notion of opti-
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mal scaling3) is useful. According to his nota-

tion, we wish to obtain the optimally scaled 

data which fit the model as well as possible in 

a least squares sence. In other words, we rescale 

the data so that multiple correlation is maxim-

ized. The optimal scaling can be carried out 

with ALSOS (Alternating Least Squares tech-

nique to Optimal Scaling) proposed by Younglo) 

In order to handle nonmetric data, we impose 

the concept of "measurement transformation", 

Yij*-gy,,(Yi,) (i=1 ･ , ･ m), , ･･ , I ; j= . 1 ･, 

Xij ･ , n), 
=gxi (Xij) (i=1, ･･･, I;i= , -1 -

where gxij and gyij are so-called "measurement 

transformatrons" and are subject to restrains 

by the measurement level and process of their 

variables. The restrains were discussed in 

Young9). As mentioned before, we determine 

Xij * and Yij * so that the loss function is minim-

zed. Thus we refer to Xij * and Yij * as optimally 

scaled observations(data). According to this, 

the model can be rewritten as ; 

Y* = X*AB + E, 

where 

Y*= (Yl*'. Y.*', ･･･. Y1*')', 

X*~ .~ EiiRXi*. 

For the numencal data, the optimal scaling 

phase is skipped. For the ordinal data, "Krus-

kal's least squares monotonic regression"5) can 

be used. In this case, "the pnmary approach to 

tie" rs chosen for contiuous-ordinal data, 

whereas "the secondary approach to tie" is 

chosen for discrete-ordinal data. For the dis-

crete-nominal data, optimally scaled data are 

category me~ns. Finally, for the continuouous-

nominal data we assume it to be pseudo-
continus-ordinal data to determine the optimal-

ly scaled data. We will not discuss the details of 

each optimal scaling technique as they are the 

same as in the de Leeuw's2) and Young's paper9) 

In the case where raw data are measured on 

ordinaly scale, we simply assume that the raw 

data are measured on interval scale and then 

set up starting values by our method explained 

in previous section. Using this starting values, 

we can easily investigate whether our assump-

tion concerning measurement levels are correct 

or not. On the other hand, we must assign 

arbitrary values to the observation categories 

when variable is assumed to be nominal. 

A Computer Progralu 

A program, RPDMRA, was developed for 
computing the solution. It is written in single 

precision of FORTRAN77 for all real variables. 

The number of variables and dimensions can 

range up 10, and the number of samples to be 

used in each group can range up 100. Printed 

output includes the title ; the job parameters ; 

the stationary weight matirx A* ; the popula-

tion differences weight matrices Bi (i= 1, ･･･, D ; 

the convergent process of loss function ; two-

dimensional scatterplot of A~ ; two-dimensional 

scatterplot of Bl. 

1) 

2) 

3) 

4) 

5) 

6) 

7) 
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