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Multidimensional representation model of population differences
in restricted multivariate regression analysis, RPDMRA
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Introduction

This article presents the development of
“Restricted population Differences Multivar-
iate Regression Analysis” (RPDMRA) and its
algorithm. This method can operate on N-sets
of data from different populations or situations,
and provide not only a linear multivariate
regression equation, but also a multidimen-
sional spatial representation of population dif-
ferences under the assumption of the vector
model. Moreover this method is useful instru-
ment for longitudinal or time series research
because it can be also applied to the data
obtained at the different time points or occa-
sions. The data can be defined at nominal,
ordinal, interval or ratio levels of
measurement®, or can be mixture of two or
more levels. As will be explained, RPDMRA
model provides an optimal scale for each vari-
able within the restrictions as to the measure-
ment level and process. This scaling is optimal
in the sense that correlation is maximized.

This model is characterized as follows :

1) Squared loss funtion-the proposed model is
fitted to data in a sense of least square.

2) Alternating least squares technique-the
proposed model is fitted to data with the
alternating least squares technique.

3) Multidimensional spatial representation-
the proposed model can represent both
populations (groups, situatins, or occa-
sions) and predictive variables as vectors
in multidimensional space.

4 ) Time series data-the proposed method will
be able to apply the time series and longitu-

dinal data.

5) Level of measurement-the proposed model
will be able to accomodate ratio, interval,
ordinal and nominal data.

In the next section we will present a detailed
account of RPDMRA model, emphasizing the
characteristics of the model.

The Model

We use hold-face capital letters to represent
matrices(X) ; bold-face lower case letters for
vector (x) ; and regular lower case letters for
scalars(x). Note that all vectors are assumed to
be column vectors, with a row vector denoted
as transpose of a column vector (x’). We refer
to a specific column vector of a matrix as x;, a
specific element of a matrix as x;;.

Let:

i =1, -, I populations, occasions or condi-
tions,

j =1, -, n independent, predictive or
explanatory variables,

k =1, ---, m dependent, predicted'or crite-
rion variables,

s =1, -+, r dimensions in a vector model

contexts,

Y, —matrix of dependent, predicted or crite-
rion variables in the i-th population,
occasion or condition (N Xm), which is
measured at interval measurement
level, and is columnwisely normalized in
each group,

X, =matrix of independent, predictive or
explanatory variables in the i-th popu-



lation, occasion or condition(N Xn),
which is measured at interval measure-
ment level, and is columnwisely normal-
ized in each group,

W, =column vector of regression weights of
Y, on X; (nXm),

A, =matrix of stationary weight(nXr),

B, =matrix of population differences weight
of dimensions for the i-th population
(rxm),

E;, =matrix of error or residual of the i-th
population (N Xm)

Using the above definitions, we can formu-
late the RPDMRA model by matrix form ;

Y =XW+E
=XAB+E,
where
Y =, Y, Y,
X =3 B®X,
W =(W., W, -, W)’

A

Il

1
i§1 Ell® Als

A, =A for all i,
B = (B1’9 BZ,’ Ty Bl,) ’7
E = (El,’ Ez,v B El’) ’y

where the notation (X&) Y) refers to right
Kronecker product of matrices(X ®Y) =[xy
Y], and where E;; denotes a matrix with the
unit scalar in the (ij) position, and with zeros
elsewhere. This model is similar to POPREG®.
Additionally we impose some constraints, that
is,

AS’AS:IT’
BB/’ =1, for all i,
m=n=r.

Loss Function

In our case, as in many similar methods, we
define a squared loss function. We then search
for the best solution such that
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f(Asy B19 Ty B[) :tr[(Y_?)’ (Y_Yv)]

is minimal, where ¥ denotes Y estimated by the
model. As mention before, the minimization has
to be carried out under the constraints ;

AJA=L,
B:B,’=1, for all i,
m=n=r

Estimation

To minimize loss fuction, we utilize alternat-
ing least squares technique(ALS). The ALS.
approach is related to the works of Wold?, de
Leeuw? and Young®. As is implied by the name,
the essential feature of the ALS approach is
that in solving optimization problems with
more than one set of parameters, each set is
estimated in turn by applying least squares
procedures holding the other sets fixed. After
all sets have been estimated once, the procedure
is repeated until convergence. The algorithm is
convergent, since all phases minimize a loss
function.

In order to see how the ALS approach can be
applied in the present context, let us return
briefly to loss function :

f(As’ BI’ ) Bl)
1
=2 to[(Y,—XAB)’ (Yi—XAB)]

Clearly the sets of parameters are here A; and
B,. Minimizing f over A holding By, B,, -+, B,
fixed is equivalent to solving one least squares
problem and minimizing over B, with A fixed
is another. That we are in practice minimizing
f does not prevent the problem from being ALS
one.

We must choose A and B; to minimize f (A,
B,, -+, B)) subject to AJ’A;=1;, B;B,’=I, for all
i and m=n=r. We difine
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b= él tr[ (Y —X,AB)’ (Yi—X;AB) ]
'l"tr[(As,AsMIr) L]

+ _EI::I tr[ (BB —1,) L],

where L and L; are r Xr matrices of Lagrange
multipliers. The partial derivative of ¢ with
respect to By is relatively easy to obtain and
setting to zero, and solving for the value of B,
which minimizes ¢ for given A, results in the
following expression for B, :

B=V,W/,
where

AS,Xl’YiYI’XiAsVI = ViAh
Yi,X|X1,YiW1 :WiAiy

and where A; denotes the diagonal matrix
which elements are eigen values, and V; and W;
are the matrices which consist of the corre-
sponding eigen vectors. For 1=1, 2--+, I, mini-
mizing f over B; while A; is fixed is achieved
with this procedure.

On the other hand, the poblem minimizing f
as function of A subject to A’A;=1,, for fixed
Bi, can be solved as follow. The partial deriva-
tive of ¢ with respect to As is also easy to
obtain and setting to zero, and solving for the
matrix of As which minimizes ¢ for given By,
.-+, By, results in the following expression for A

A=VW’,

where
I 1
[ i{:l(Xi,YlBl’)] [ i2:l<Xl,YlBi,)],V:VAs
I 1 )
[2 (X YBOTLE (XY B)IW=Wa,

The ALS procedure presented here decreases
function f monotonously and the convergence to
a stationary point is guaranteed because each
problemis solved in the least sgares sence.
However it- can not be guaranteed that the

global minimum will be attained. Therefore, it
is suggested to run more than one analysis on
the same data set with different starting values.

Starting Values

If there are many parameters, like
RPDMRA, the number of iterations may be
excessive in ALS procedure, but can be consid-
erably decreased by the provision of good start-
ing values. We provide the starting values
which is obtained under some restrictions.

If we assume that the population differences
weight matrices B; are identical across all
populations, the model can be written as

Y =XA.B+E
=XW+E,

where

W=A.B,
X=X, X, -, X))

In this case, squared loss function is minimized
over W by choosing

W= &%) %Y.

Therefore in order to obtain starting valne of
A, we decompose matrix W as
W=A,B.

In other words, we factor W into principal
components. However the usual factoring equa-
tion are not appropriate, since this matrix is an
asymmetric. Therefore we utilize Singular-
Value-Decomposition (SVD) to determine the
initial A under the constraints that ;

ASA=T,
BB’ —=diagonal.

The cross products matrix in the present analy-
sis should always be computed between the
variables on the shorter side of the approximat-
ed matrix, summing -over the variables on the
longer side. In our case, however, matrix W is
square. So the starting value of A can be set up
as



As:Vr’

where

WWV.=V.I,
and where I'. and V, denote the diagonal
matrix which elements are the r largest eigen
values and matrix consisted of the correspond-
ing eigen vactors, respectively.

Identification

Before an attempt is made to estimate model
parameters of this kind, the identification prob-
lem must be examined. The identification prob-
lem depend on the specification of fixed, free
and constrained parameters. Under several
specifications, each As; and B; generates one
and only one W;, but it is well known that
different As and B, can generate the same W,.
It shold be noted that if As is replaced by AsT™*
and B; by TB,, where T is an arbitrary non-

singuler matrix of order rxr, then W; is un-

changed. Since T has r? independent elements,
this Suggesté that r? independent conditions
shold be imposed on As or B; to make these
uniquely defined. However, when equality con-
straints over groups are taken into account, all
the elements of the transformation matrix is
not independent of each other and therefore a
lesser number of conditions need to be imposed.
It is hard to give further specific rule in the
general case. In this method, A and B; should
be estimated without any constraints. If the
unrotated dimensions is interpretable, then
rotation is unnecessary. If not, some objective
rotation can be tried as in the case of factor
analysis.

Treatment of Missing Data

Missing data are allowed for in a manner
which does not destroy the ALS property of the
RPDMRA algorithm. If some observation is
missing, then computation of the starting values
is changed in a minor manner, that is, we simply
estimate the optimal scaling observation as
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being the mean of the nomissing obsevations.
Using these starting values, model parameters
are estimated. Nextly the missing data points
are reestimated in a regression fashon and then
a new cycle of the iteration is started. In fact
such procedures are standard within the ALS
approach.

Examination of Number of Dimensions

As discribed before; the number of dimen-
sions, r, were assumend to be equal to number
of independent and dependent variables, since it
is neccesary to insert the restriction for solving
the minimizing problem under the restriction
AJA.=I. and B;B/’=I.. However, in most
multivariate analysis without external criterion
like factor analysis, dimensional reduction is
essential problem. Therefore if the reduction in
number of dimension is necessary, analysis
under the perfect restrictions should be carried
out and then some of dimensions can be choose
as in the case of factor analysis.

In practice, user must obtain several solu-
tions in different number of dimensions and
choose between them on the basis of three
criteria : fit to the data, interpretability and
reproducibility. We will not discuss the details
of each of them as they are the same as in our
previous paper?.

Finally, we note that it can not be guaran-
teed the grobal minimum will be attained when
the number of dimensions was not assumed
equal to number of dependent and independent
variables, because least square estimates for
parameters are not obtaind with the procedure
discribed in this section.

Extension to Nonmetric Data

Finaly, we emphasize that RPDMRA model
can be easily extended to nonmetric data, i. e. ,
ordinal and nominal measurement of data.
Moreover we assume two types of measure-
ment process, i. e. , discrete and continuous. For
analysis designed for data having such a wide
variety of measurement, Fisher’s notion of opti-
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mal scaling® is useful. According to his nota-
tion, we wish to obtain the optimally scaled
data which fit the model as well as possible in
a least squares sence. In other words, we rescale
the data so that multiple correlation is maxim-
ized. The optimal scaling can be carried out
with ALSOS (Alternating Least Squares tech-
nique to Optimal Scaling) proposed by Young!®.

In order to handle nonmetric data, we impose
the concept of “measurement transformation”,

Yi* =gy, (Yy) (=1, -, I;i=1, -, m),
X =gx; Xy) (=1, -,1;j=1, -, n),

where gx;; and gy;; are so-called “measurement
transformations”, and are subject to restrains
by the measurement level and process of their
variables. The restrains were discussed in
Young®. As mentioned before, we determine
X * and Yy;* so that the loss function is minim-
zed. Thus we refer to X;;* and Y;* as optimally
scaled observations(data). According to this,
the model can be rewritten as ;

Y*=X*AB+E,

where
Y =(Y.*, Y.*, -, Y.*')’,
X'= 3 BE®XS

For the numerical data, the optimal scaling
phase is skipped. For the ordinal data, “Krus-
kal’s least squares monotonic regression”® can
be used. In this case, “the primary approach to
tie” is chosen for contiuous-ordinal - data,
whereas “the secondary approach to tie” is
chosen for discrete-ordinal data. For the dis-
crete-nominal data, optimally scaled data are
category means. Finally, for the continuouous-
nominal data we assume it to be pseudo-
continus-ordinal data to determine the optimal-
ly scaled data. We will not discuss the details of
each optimal scaling technique as they are the
same as in the de Leeuw’s? and Young’s paper®.

In the case where raw data are measured on
ordinaly scale, we simply assume that the raw

data are measured on interval scale and then
set up starting values by our method explained
in previous section. Using this starting values,
we can easily investigate whether our assump-
tion concerning measurement levels are correct
or not. On the other hand, we must assign
arbitrary values to the observation categories
when variable is assumed to be nominal.

A Computer Program

A program, RPDMRA, was developed for
computing the solution. It is written in single
precision of FORTRANT7 for all real variables.
The number of variables and dimensions can
range up 10, and the number of samples to be
used in each group can range up 100. Printed
output includes the title ; the job parameters ;
the stationary weight matirx A ; the popula-
tion differences weight matrices B, i=1, -, I) ;
the convergent process of loss function ; two-
dimensional scatterplot of A, ; two-dimensional
scatterplot of B;.
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