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同時多変量回帰主成分分析

稲垣　　敦・松浦義行

Simu1tamo㎜s　M㎜1tivariate　Regression

Pr言mci脾1Component　Ana1ysis，SMRPCA

Ats皿shi　INAGAKI　and　Yoshiyuki　MATSUURA

　本研究では，同時多変量回帰主成分分析，SMRPCA（Simu1taneo．s　Multiva．iate　Reg．ession　principa1

Component　Ana1ysis）のモデルとこれをカノニカルデータに拡張したモデル及びこれらのモデルをデータ

に適合するための交互最小二乗ア’ルゴリズムを提案する。SMRPCAのモデルは，

　Y＝XAB＋E
　　＝XW＋E

　　＝FB＋・E
で表される。ここで

　F’F＝NIt，

　BiBi1＝It，

である。但し，

　Y＝（Yユ’Y2’…Y1’）’，

＿　　　I

X＝ΣEii⑳Xi，
　　i＝1

＿　　　I

F；ΣEii⑭Fi，
　　｛＝1

F＝（Fユ’F。’・・FI’）’，

A＝II⑭A，
B＝（Bユ’B。’…BI’）’，

E＝（町E。’…町）’，

　　　l
　N＝ΣNi，
　　　i＝・1

　n＝m＝t
である。上式で，YiとXiは第i母集団の従属変数行列（Ni×m）と坤立変数行列（Ni×n），A、は各母集

団に共通な成分得点係数行数（。×r），Biは各母集団における回帰係数行列（rXm），叫は第i母集団に

おける残差行列（Ni×n）である。しかし，実際には，各母集団からの標本が用いられるので，A、とBi

はその推定量となる。このモデルでは，従属変数群の一次関数からなる直交成分（潜在因子）を仮定して

これを抽出し，この成分に母集団ごとに異なった回帰係数を与えて従属（基準）変数群を説明しようとす

るモデルである。したがって，回帰係数や成分得点をプロットすることにより母集団差異を空間的に表現

でき，各母集団の特徴や差異の理解を助ける。また，データ解析のモデルとしては，複数の時点や異なる

条件におけるデータにも適用可能なので，縦断的研究や多変量時系列データが得られる実験データの分析
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iC;~j~1T~r~~~~) ~). l~ ~ eC, ALSOS (Alternating Least Squares approach to Optimal Scaling ; Young et al. 

1981) ~~~1j;FI~r~)~ ~eCJ; ~, ~t ･ * ~ ~~FF~I)~:~;~~t~7~ll~!tLf*-'~T'- ~ a)~~t~~ ~~, Jll~..F~ ･ ~~i~~~~~AC~{~, ' =*. 
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~i~'~~b~~,L~~~~"~~~~f~~~~~1jJfITT~"i~Z~)~)~~;c~tL;~ ~~)~T)~~~'~T'-~~Ci~j~1t~)eCl~, ~~A~~~~~~~/J~ ~ 

~~ (Alternating Least Square technique) ~1;~v*~). ~a)7)V:~ T) ;~:~}~ ~A~ (~~~~) f~1~'~~~f~~:~;~c 7~~ 

'jJ ~:~t~~_~~/J.e JI~~:~H~~)~ ~~ ~ ~~)~~, dZ~~U~~~~*~~/j~eC~1J~t~) ~ I~~~~t~~V*a)~. V* < O~>0)~X,~t~ 

4~~~!: ~t ;~I V > ~ ~"~~~ ~~~~~~ ;~ i~･~f~~z~) ~ . 
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Introduction 

Investigating the relationships between vari-

ables is a favorite research activity of social 

scientist. They often want to explore the struc-

ture of a large body of data. To understand this 

organization, the data have to be condensed in one 

way or another, and the raw data have to be com-

bined to form summary measures which are more 

easily comprehended. Among the most popular 

methods to achieve such condensation and sam-

marization are principal component analysis. 

Standard principal component analysis is applied 

when observations are available for many vari-

ables, and it is desired to condense these variables 

t_o a smaller amount of independent latent vari-

ables or components. In many research designs, 

observations on variables have been made under a 

few conditions, or at various points in time, or 

from some populations, etc. In such cases, the data 

can be classified by three kinds of modes, e.g., 

subjects, variables and conditions. Three-mode 

factor analysis by Tucker (6) has been developed 

to summarize and condense three-mode data. 

This article presents the development of 

"slmultaneous Multrvarlate Regression Principal 

Component Analysis (SMRPCA)". This model 

can operate on N-sets of data from different 

populations, different time points or different con-

ditions, and can represent the differences using 

multidimensional vector space. Moreover, this 

method can determine the orthogonal components 

so as to the variance of dependent (or qriterion) 

variables accounted for by the components under-

lying independent variables is maximized. This ' 

model is characterized as follows : 

1 ) Principal components--the proposed method 

can determine components which can account 

for the most variance of dependent variables. 

2 ) Multidimensional spatial representation--the 

proposed model can represent both popula-

tions (conditions or time points) and predic-

tive variables as vectors in multidimensional 

space. 

3 ) Time series data--the proposed methods will 

be able to apply the multivariate time series 

data. 

4 ) Level of measurement--the proposed model 

can be applied to data which was ineasured at 

ratio, interval, ordinal, nominal level, and 

mixture of two or more measurement levels. 

5 ) Alternating least squares technique--the 

proposed model is fitted to data using alter-

nating least squares technique. 

In the next section, we will present a detailed 

account of PRDMRA model, focussing on the 

mathematical formulation. 

The Model 

We use bold-face capital letters to represent 

matrices (X) ; bold-face lower case letters for 

vector (x) ; and regular lower case letters for 

scalars (x). Note that all vectors are assumed to 

be column vectors, so a row vector is denoted as 

transpose of a column vector (x'). We refer to a 
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specific column vector of a matrix as xj, and a 

specific element of a matrix as xij. For conven 

ience, the notation used in this paper is presented 

as follows : 

1
 i, = , ･", I populations, conditions, or time 

points, 

j, = 1, ･･･ , n independent variables, 

k, = 1, ･･･ , m dependent variables, 

s, = 1, ･･･ , t components in a principal compo-

nent analysis context, 

Ni= number of samples from i-th population, 

N = total number of samples (= ~Ni), 

Yi=matrix of dependent variable of i-th 
population, condition, or time point (Nj X 

m), which is measured at more than inter-

val measurement level, and is columnwise-

ly standardized across populations, 

Xi= matrix of independent ya. riables of i-th 

population, condition, or time point (Ni X 

n), which is measured at more than inter-

val measurement level, and is columnwise-

ly standardized across populations, 

Fj=matrix of principal component scores of 

i-th population, condition or time point (Nj 

X n) , which is columnwisely stand 

ardized across populations, 

A = matrix of component score coefficients (n. 

Xt), 

Bi= matrix of regression weight of Fi (tXm), 

Ei= matrix of residual of i-th population (NiX 

m). 

Using the above definitions, we can represent 

SMRPCA model by matrix form ; 

Y =XAB +E, 
= XW + E, 

= FB + E, 

where 

Y = (Yl Y2 Y ')' 

~ = ~ Eii~)Xi, 

~ = ~1 Eii~)Fj, 

A = IIRA, 

B = (B1'B2' "' BI')' 

E = (El'E2' "' EI')" 

where the notation (X ~) Y) refers to right 

Kronecker product of matrices, (X~)Y) = [xijY], 

and where Eij denotes a matrix with the unit sca-

lar in the (i,j) position, and with zeros 

elsewhere. Additionally, the equality constraints 

are imposed on the model, 

F'F = NI~, 

BiBj' = It, 

n=m=t 
where 

F = (Fl'F2' "' F ')' 

N = .~;I~ Nj, 

These constraints are required to solve the mini-

mization problem which will be presented in the 

next section. 

Estimation 

As in many multivariate analyses, we define a 

squared loss function, 

f(A. B) = IIY -tll 2 

~; Il Y - ti ll 2 

where ll ' Il denotes an Euclidean norm, and Y 

and Yj denote the estimated Y and Yj, 
respectively. We then search for the best solu-

tion such that f (A. B) is minimal. As men-

tioned before, the minimization has to be carried 

out with the constraints, 

F'F = NI*, 

BjBj' = It, 

n=m t 
To solve the problem, Iet us rewrite the loss func-

tion as follows ; 

f(A, B) = Il Y - ~AB 11 2. 

=.1~ 11 Yi - XiABi ll 2. 

We have to choose A i~nd Bi (i=1,2, ･･･ , I) so as 

to minimize f (A. B) subdect to F'F = Nl., 

BjBi' = It, and n = m = t. Therefore we defme 
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~ = .~1 [ (Yj -XiABi )'(Yj -XiABi) l 

+ trL(F'F-NI.)L] +~l [tr(BiBi'-It)Li] 

where L and Lj (i=1,2, ･･･ , I) are tXt matrices 

of Lagrange multipliers. 

To minimize loss function, we use' alternating 

least squares ( ALS ) technique. The ALS 
approach is related to the works of Wold (7), de 

Leeuw et al. (2) and Young (8). As i.s implied 

by the name, the essential feature of the ALS 

approach is that in solving optimization problems 

with more than one set of parameters, each set is 

estiinated in turn by applying least squares proce-

dures holding the other sets fixed. Aft~r all ~ets 

have been estimated once, the procedure is repe-

ated until convergence is obtained. The algo-

rithm is convergent since all phases ininiinize a 

loss function. In other to s~e how the ALS 

approach can be applied in this tontext, Iet us te-

turn briefly to loss function, 

f (A, B) = Il Y -XAB Il 2. 

Clearly the sets of parameters ~re here A (or A) 

and B. Minimizing f over A holding B fixed is 

one least squares problem, and minimizing f over 

and BI fixed Bj_1, Bi+1,"', Bi with A. B1, ･･･, 

is the other. In practice, we have to use ALS 

approach to minimize f. From above explanation, 

readers could deduce a rough outline of the 

algorithm. First we choose an arbitrary A(o), 

second compute a new B(1) using A(o), third com-

pute A(1) using B(1), and iterate this cycle until 

convergence. 

For i=1, ･･･ , I, minimizing function f over Bj 

･･'. Bland A while matrix B "' B･ __ 1, , * 1,"'Bj+1, 

is fixed is achieved as follows. Taking the par-

tial derivative of ~ wi,th respect to Bj, and set-

ting the partial derivat.ive to zero gives the equa-

tion to be solved for Bj. Solving for the value of 

Bj gives 

Bi = ViWj', 

where 

A'Xi'YjYj'XjAVi = Vi Ai, 

Yi'XiAA'Xi'YiWi = Wj Ai, 

On the other hand, minimizing f over A while Bj 

zire fixed can be done by differetiating ~ partially 

with respect to A and setting the result eojual to 

zero. This yields : ' 

A = R~1( :~ Xi'YiBi') 

[ ( ~ BiYi'Xi)R~1(:~1Xi'YiBi')]~1/2 

where R is a correlation matrix, 

R = N~1:I~ Xi'Xi. 

The ALS procedure ptesented here decreases 

function f monoton:ously and the convergence to a 

stationary point is guaranteed because each prob-

lem is solved in the least sqtiares sense: 

The point at which the ALS process is initi-

ated maj be chosen in 'several ways. The nearer 

the starting point is to the solution, the smaller is 

the expected number of iterations required to 

reach the solutiori. The starting point su:ggested 

here is a gerteral solution of standard principal 

coinponent analtsis. The first step in obtaining 

starting values, A(o), is to compute 'dorrelation 

inatrix, R. Second, we eigen-decompose R, 

RPt = P tAt, 

where rt ahd At are diagonal matrix' which ele-

ments are 'the t largest eigen values of R , arid the 

matrix consisted of corresponding eigenvectors, 

respectively. We then have 

A(o) = rt~Lt~1/2 

as a starting point for A. However, the starting 

point can not be guaranteed that the global mini-

mum will be attained. Thereford, it is suggested 

to run more than one analysis on the same data 

set with different starting values. 

Up to this point, the discussion of SMRPCA 

has proceeded as if the number of diiuensions, t, 

was equal to number of variables. In practice, 

however, dimensional condensation is essential fe-

ature of most multivariate analyses. A simple 

way to solve the problem is as follows. First, 

user must obtain '*everal solutions in different 



dimensionalities which is smaller than number of 

variables, and second choose between them on the 

basis of three criteria : fit to the data, interpreta-

bility, and reproducibility. We will not discuss 

the details of each of them as they are the same as 

in our previous papers (4, 5). However, to de-

crease function f monotonously and to give the 

best solution which minimizes f can not be guaran-

teed using the procedure presented here since this 

procedure do not meet the requirement of 

SMRPCA. 

ldentification of Parameters 

The problem of identificability is to specify 

what restrictions on the model are required to de-

termine the parameters, uniquely. This problem 

can be solved by specification of fixed, free ~nd 

constrained parameters. As well known, each A 

and Bj generates one and only one Wi, but differ-

ent A and Bj can generate the same Wi--namely, 

if A is replaced by AT~1 and Bi by TBi, where T 

is an arbitrary non-singular matrix of order tXt, 

then Wi is unchanged. Since T has t2 indepen-

dent elements, this suggests that t2 independent 

conditions should be imposed on A or Bi to make 

these uniquely defined. However. It is hard to 

give a specific rule in the general case. In this 

method, therefore, no restrictions are imposed to 

specify the model parameters. If the unrotated 

components are interpretable, then rotation is 

unnecessary. If not, an objective rotation can be 

tried so that structure matrix, 

S = N~1.1_~ X'iFj, 

is simple as in the context of factor analysis. 

Treatment of Missing Data 

Up to now, we have assumed that the data 

were in a perfect form for data analysis. In prac-

tice, this assumption is often fals.e. However, 

missing data is allowed for in a manner which 

does not destroy the ALS property of the 

SMRPCA algorithm. We can choose scores which 

minimize the loss function f. If some observation 
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is missing, then computation of the s.tarting values 

is changed in a minor manner, that is, we simply 

estimate the scores as being the mean of the 

nomissing obsevations. Using these starting 

values, model parameters are estimated.+ Next, 

the missing data points are reestimated in a re-

gression fashion, and then a new cycle of the 

iteration is started. 

Moreover, we can consider a practical 

alternative, which is to insert average of observed 

scores into missing responses. This approach is 

most popular one in multivariate statistical 

analysis. However, this approach simply ignores 

missing responses, and only the information of 

observed responses is used in optimization. This 

is conservative approach, compared with the first 

one, in the sense that it does not attempt to ex-

tract information from relationships between 

variables. Therefore, the approach would be 

suitable if all independent variables are relatively 

homogeneous in the statistical sense. 

Treatuent of Nonmetric Data 

In this section, we ptesent that SMRPCA can 

be easily extended to nenmetric data, i. e., ordinal 

and nominal measurement of data. Moreover, we 

assume two types of measurement process, i. e., 

discrete and continuous. For analysis designed 

for data having such a wide variety of measure-

ment, Fisher's notion of optimal scaling (3) is 

useful. According to his notation, we wish to 

obtain the optimally scaled data which fit the mod-

el as well as possible in a least squares sense. In 

other words, we rescale the data so that loss func-

tion is minimized. The optimal scaling can be 

carried out with ALSOS (Alternating Least 

Squares technique to Optimal Scaking) proposed 

by Young et al. (9). Thereforeh we simply im-

pose "optimal scaling phase" bofore "model para-

meter estimation phase" mentioned earlier. We 

will not discuss the details of each optimal scaling 

technique as they are the same as in the de 

Leeuw's (1) and Young's paper (9). 
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Extension　to　Camnical　model

　　Final1y，we　present　extention　of　SMRPCA　to

canonica1data．　In　this　case，the　mode1is　changed

as　fol1ows：

　YAYBY＝XAxBx＋E，
that　is，

　YWY＝XWx＋E，
Or

　EYBY＝FXBX＋E，
where，

＿　　　1

X＝ΣEii⑭Xi，
　　i＝ユ

一　　　1

Y＝ΣEii⑭Yi，
　　i＝1

　山　　　　I
　FX＝ΣEii⑭FXi，
　　　　i＝1

　＿　　　　　I

　FY＝ΣEii⑭FYi，
　　　　i空1

　Ax＝I1⑭Ax

　AY＝I1⑭AY
B。＝（B。。’遇。。’一B．1’）’，

B。＝（B．1’B。。’…B．1’）’，

週＝（E。’E。’…町）’．

As　in　the　case　of　SMRPCA，the　equa1ity　con－

straints，that　is，

　Fx’亙x＝N亙、，

　FYTY；NI、，

　B．iBxi’＝It，

　B．i逓Yi’・・It，

　n＝m＝t，

are　required　to　so1ve　the　minimization　problem．

The　loss　fmction　to　be　minimize　is　difined　as　fo1－

1OWS：

　　　　　　　　　　　　I　g（Ax，AY，皿x，BY）＝ΣllエAYBYi－XiAxBxi　l12．

　　　　　　　　　　　i＝1

Acarefu1readerwil1detectthataprob1emof
minimizing　g　can　be　so1ved　in　the　way　simi1ar　to

SMRPCA．We　use　ALS　procedure，which　con－

sists　of　four　phases　for　estimating　Ax，AY，Bx，

and　BY．　Computation　of　each　estimation　phase　is

summarized　as　fo11ows：

Ax：Rxx■1（ΣXi’YiAYBYiBxi’）
　　　　　　　i＝1

　I　　　　　　　　　　　　　　　　　　　王
［（Σ丑xiBYi’AY’Yi’Xi）Rxx－1（ΣXi’YiAYBYiBxi’）］一1／2，

　i＝1　　　　　　　　　　　　　　　1口1

　　　　　　　　I　AY＝RYY－1（ΣYi’XiAxBxiBYi’）
　　　　　　　　i＝1

［（圭BY，Bx〃X！Y、）RYY一・（圭Y！X，AXBX，BYi・）1一…，

　i＝王　　　　　　　　　　　　　　　i＝1

　Bxi＝VxiWxi’，

　BYi＝VYiWYi’，

where

　Ax’Xi’YiAYBYiBYi’AY二Yi’XiAxyxi＝Vxi△xi，

　BYilAYi’Yi’XiAxAx’Xi’YiAYBYiWxi＝Wxi△xi，

　AY’Yi’XiAxBxiBxi’Ax’Xi’YiAYVYi＝VYi△Yi，

　Bx’Axi’Xi’YiAYAY’Yi’XiAxBxiWYi＝WYi△Yi，

　　　　　　IRxx＝N－1Σ（Xi’Xi），

　　　　　i＝ユ

　　　　　　IRYY：N■1Σ（Yi’Yi），

　　　　　i＝・1

and　where

IΣXi’i＝0，
i＝1

1
ΣYi’1＝0，’
i＝1

　　　　　　　IVec［Diag（N－1ΣXi’Xi）］＝1，

　　　　　　　i＝1

　　　　　　　王Vec［Diag（N－1ΣYi’Yi）］＝1，

　　　　　　　i＝1
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