zbMATH"Open
 THE FIRST RESOURCE FOR MATHEMATICS

Tian, Yin
Towards a categorical boson-fermion correspondence. (English) Zbl 07184840
Adv. Math. 365, Article ID 107034, 66 p. (2020).
The boson-fermion correspondence establishes an isomorphism between a bosonic Fock space and a fermionic Fock space, a Heisenberg algebra acting on the bosonic Fock space $V_{B}=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ (a ring of polynomials of infinite variables), and a Clifford algebra acts on the fermionic Fock space V_{F} (a free abelian group with a basis of semi-infinite monomials). The correspondence also provides maps between the Heisenberg and Clifford algebras via vertex operators [I. B. Frenkel, J. Funct. Anal. 44, 259-327 (1981; Zbl 0479.17003)].
The author has already constructed a DG categorification of a Clifford algebra [Y. Tian, Int. Math. Res. Not. 2015, No. 21, 10872-10928 (2015; Zbl 1344.18010)]. This paper aims to give an algebraic interpretation of the geometric structure underlying the Clifford categorification. M. Khovanov [Fundam. Math. 225, 169-210 (2014; Zbl 1304.18019)] constructed a k-linear additive categorification of the Heisenberg algebra, where \mathbf{k} is a field of characteristic zero. The Heisenberg category acts on the category of $\bigoplus_{n=0}^{\infty} \mathbf{k}[S(n)]$-modules, where $S(n)$ is the n-th symmetric group. This paper provides a modification of of Khovanov's Heisenberg category, showing that it is the Heisenberg counterpart of the Clifford category [Y. Tian, Int. Math. Res. Not. 2015, No. 21, 10872-10928 (2015; Zbl 1344.18010)] under a categorical boson-fermion correspondence.
On the Heisenberg facet, a k-algebra B containing $\bigoplus_{n=0}^{\infty} \mathbf{k}[S(n)]$ as a subalgebra is constructed with generators of B not in $\bigoplus_{n=0}^{\infty} \mathbf{k}[S(n)]$ being closely related to contact structures on $(\mathbb{R} \times[0,1]) \times[0,1]$. The homotopy category $\mathcal{B}=\operatorname{Kom}(B)$ of finite-dimensional projective B-modules admits a monoidal structure given by the derived tensor product over B, there being two distinguished bimodules P and Q which correspond to the induction and restriction functors of B. The Heisenberg category $\mathcal{D} \mathcal{H}$ is defined as a full triangulated monoidal subcategory of the derived category $D\left(B^{e}\right)$ which is generated by B, P and Q.
On the Clifford facet, the construction in the author's previous paper is generalized from \mathbb{F}_{2} to \mathbf{k}, a DG k-algebra $R=\bigoplus_{k \in \mathbb{Z}} R_{k}$ being defined where all R_{k} 's are isomorphic to each other. A homotopy category of certain DG R-modules categorifies the fermionic Fock space, there being a family of distinguished DG R-bimodules $T(i)$ for $i \in \mathbb{Z}$ which correspond to certain contact geometric objects. The Clifford category $\mathcal{C} \mathcal{L}$ is defined as a full triangulated monoidal subcategory of the derived category $D\left(R^{e}\right)$ which is generated by R and $T(i)$'s.
The main results of the paper goes as follows.

- The DG algebra R_{0} is quasi-isomorphic to its cohomology algebra $H\left(R_{0}\right)$ with the trivial differential, which is derived Morita equivalent to a DG algebra $\widetilde{H}\left(R_{0}\right)$ with the trivial differential and concentrated in degree zero. It is shown that it is isomorphic to a quiver algebra F, and that the algebras B and F are Morita equivalent. Certain categories of B-modules and R_{0}-modules are equivalent, which categorifies the isomorphism of the Fock spaces (Theorem 5.1).
- There are some B-bimodule homomorphisms and extensions between B, P and Q which do not exist in Khovanov's Heisenberg category. These extra morphisms enable one to construct an infinite chain of adjoint pairs in $\mathcal{D H}$ containing the bimodules P and Q (Theorem 3.28).
- The bimodules $T(i)$ for $i \in \mathbb{Z}$ form a chain of adjoint pairs in the Clifford category, their classes $t_{i}=[T(i)]$ in the Grothendieck group generating a Clifford algebra $C l$ with the relation

$$
t_{i} t_{j}+t_{j} t_{i}=\delta_{|i-j|, 1} 1
$$

Using a variation of vertex operator construction, one can express the Heisenberg generators p, q abiding by

$$
q p-p q=1
$$

in terms of the Clifford generators as

$$
\begin{aligned}
& g(q)=\sum_{i \leq 0} t_{2 i} t_{2 i-1}-\sum_{i>0} t_{2 i-1} t_{2 i} \\
& g(p)=\sum_{i \leq 0} t_{2 i+1} t_{2 i}-\sum_{i>0} t_{2 i+1} t_{2 i}
\end{aligned}
$$

One constructs two objects \bar{Q}, \bar{P} in $D\left(R_{0}^{e}\right)$ lifting the expressions $g(q), g(p)$. The chain

$$
R_{0} \longleftrightarrow H\left(R_{0}\right) \longleftrightarrow \widetilde{H}\left(R_{0}\right) \cong F \longleftrightarrow B
$$

induces an equivalence

$$
\mathcal{G}: D\left(B^{e}\right) \rightarrow D\left(R_{0}^{e}\right)
$$

of categories. It is shown that $\mathcal{G}(Q)$ and $\mathcal{G}(P)$ are isomorphic to \bar{Q} and \bar{P}, respectively (Theorem 5.3).

- One can consider two generating series

$$
\begin{aligned}
\bar{t}(z) & =\sum_{i \in \mathbb{Z}} t_{2 i+1} z^{i} \\
t(z) & =\sum_{i \in \mathbb{Z}} t_{2 i} z^{-i}
\end{aligned}
$$

associated to $C l$. The expresions $\left.\bar{t}(z)\right|_{z=-1}$ and $\left.t(z)\right|_{z=-1}$ define two linear operators of the Fock space, which are categorified to certain endofunctors of the Fock space categorification \mathcal{B} (Theorem 6.5 and 6.9).

This review closes with comments on related works.

- Frenkel, Penkov and Serganova [Zbl 1355.17032] gave a categorification of the boson-fermion correspondece via the representation theory of $\mathfrak{s l}(\infty)$.
- Based upon the previous work of S. Cautis and A. Licata [Duke Math. J. 161, No. 13, 24692547 (2012; Zbl 1263.14020); "Vertex operators and 2-representations of quantum affine algebras", Preprint, arXiv:1112.6189], S. Cautis and J. Sussan [Commun. Math. Phys. 336, No. 2, 649669 (2015; Zbl 1327.17009)] constructed another categorical version of the correspondence whose Heisenberg facet is Khovanov's categoricfication.
- The algebra B has already appeared in work on the stability of representation of symmetric groups, e.g., in [T. Church et al., Duke Math. J. 164, No. 9, 1833-1910 (2015; Zbl 1339.55004)].

Reviewer: Hirokazu Nishimura (Tsukuba)

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
16G20 Representations of quivers and partially ordered sets
16D20 Bimodules in associative algebras

Keywords:

categorification; boson-fermion correspondence; Clifford algebra; Heisenberg algebra
Full Text: DOI

References:

[1] Assem, I.; Simson, D.; Skowronski, A., Elements of the Representation Theory of Associative Algebras, Vol. 1, London Mathematical Society Student Texts, vol. 65 (2006), Cambridge University Press: Cambridge University Press Cambridge • Zbl 1092.16001
[2] Bernstein, J.; Lunts, V., Equivariant Sheaves and Functors, Lecture Notes in Math., vol. 1578 (1994), Springer • Zbl 0808.14038
[3] Cautis, S.; Licata, A., Vertex operators and 2-representations of quantum affine algebras (2011), preprint
[4] Cautis, S.; Licata, A., Heisenberg categorification and Hilbert schemes, Duke Math. J., 161, 13, 2469-2547 (2012) • Zbl
1263.14020
[5] Cautis, S.; Sussan, J., On a categorical Boson-Fermion correspondence, Commun. Math. Phys., 336, 2, 649-669 (2014) • Zbl 1327.17009
[6] Church, T.; Ellenberg, J.; Farb, B., FI-modules and stability for representations of symmetric groups, Duke Math. J., 164, 9, 1833-1910 (2015) • Zbl 1339.55004
[7] Frenkel, I., Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Funct. Anal., 44, 259-327 (1981) • Zbl 0479.17003
[8] Frenkel, I.; Penkov, I.; Serganova, V., A categorification of the boson-fermion correspondence via representation theory of $\backslash(\backslash$ mathfrak $\{\mathrm{sl}\}(\backslash$ infty $) \backslash)$, Commun. Math. Phys., 341, 3, 1-21 (2014)
[9] Honda, K.; Tian, Y., Contact categories of disks (2016), preprint
[10] Kac, V. G., Infinite-Dimensional Lie Algebras (1990), Cambridge University Press: Cambridge University Press Cambridge • Zbl 0716.17022
[11] Keller, B., On differential graded categories, (International Congress of Mathematicians, Vol. II (2006), Eur. Math. Soc.: Eur. Math. Soc. Zürich), 151-190 • Zbl 1140.18008
[12] Keller, B., Calabi-Yau triangulated categories, (Skowroski, A., Trends in Representation Theory of Algebras (Zurich) (2008), European Mathematical Society), 467-489 • Zbl 1202.16014
[13] Khovanov, M., Heisenberg algebra and a graphical calculus, Fundam. Math., 225, 169-210 (2014) • Zbl 1304.18019
[14] M. Khovanov, Private communication, circa, 2014.
[15] Lipshitz, R.; Ozsváth, P.; Thurston, D., Bordered Heegaard Floer homology: invariance and pairing (2008), preprint
[16] Tian, Y., A diagrammatic categorification of a Clifford algebra, Int. Math. Res. Not., 21, 10872-10928 (2015) • Zbl 1344.18010
[17] Vershik, A.; Okounkov, A., A new approach to the representation theory of the symmetric groups, Sel. Math. New Ser., 2, 4, 581-605 (1996) • Zbl 0959.20014

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.

