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The boson-fermion correspondence establishes an isomorphism between a bosonic Fock space and a
fermionic Fock space, a Heisenberg algebra acting on the bosonic Fock space VB = Z[x1, x2, . . . ] (a
ring of polynomials of infinite variables), and a Clifford algebra acts on the fermionic Fock space VF

(a free abelian group with a basis of semi-infinite monomials). The correspondence also provides maps
between the Heisenberg and Clifford algebras via vertex operators [I. B. Frenkel, J. Funct. Anal. 44,
259–327 (1981; Zbl 0479.17003)].
The author has already constructed a DG categorification of a Clifford algebra [Y. Tian, Int. Math.
Res. Not. 2015, No. 21, 10872–10928 (2015; Zbl 1344.18010)]. This paper aims to give an algebraic in-
terpretation of the geometric structure underlying the Clifford categorification. M. Khovanov [Fundam.
Math. 225, 169–210 (2014; Zbl 1304.18019)] constructed a k-linear additive categorification of the Heisen-
berg algebra, where k is a field of characteristic zero. The Heisenberg category acts on the category of⊕∞

n=0 k[S(n)]-modules, where S(n) is the n-th symmetric group. This paper provides a modification of of
Khovanov’s Heisenberg category, showing that it is the Heisenberg counterpart of the Clifford category
[Y. Tian, Int. Math. Res. Not. 2015, No. 21, 10872–10928 (2015; Zbl 1344.18010)] under a categorical
boson-fermion correspondence.
On the Heisenberg facet, a k-algebra B containing

⊕∞
n=0 k[S(n)] as a subalgebra is constructed with

generators of B not in
⊕∞

n=0 k[S(n)] being closely related to contact structures on (R × [0, 1]) × [0, 1].
The homotopy category B = Kom(B) of finite-dimensional projective B-modules admits a monoidal
structure given by the derived tensor product over B, there being two distinguished bimodules P and Q
which correspond to the induction and restriction functors of B. The Heisenberg category DH is defined
as a full triangulated monoidal subcategory of the derived category D(Be) which is generated by B, P
and Q.
On the Clifford facet, the construction in the author’s previous paper is generalized from F2 to k, a DG
k-algebra R =

⊕
k∈Z Rk being defined where all Rk’s are isomorphic to each other. A homotopy category

of certain DG R-modules categorifies the fermionic Fock space, there being a family of distinguished
DG R-bimodules T (i) for i ∈ Z which correspond to certain contact geometric objects. The Clifford
category CL is defined as a full triangulated monoidal subcategory of the derived category D(Re) which
is generated by R and T (i)’s.
The main results of the paper goes as follows.
• The DG algebra R0 is quasi-isomorphic to its cohomology algebra H(R0) with the trivial differ-
ential, which is derived Morita equivalent to a DG algebra H̃(R0) with the trivial differential and
concentrated in degree zero. It is shown that it is isomorphic to a quiver algebra F , and that the
algebras B and F are Morita equivalent. Certain categories of B-modules and R0-modules are
equivalent, which categorifies the isomorphism of the Fock spaces (Theorem 5.1).

• There are some B-bimodule homomorphisms and extensions between B, P and Q which do not
exist in Khovanov’s Heisenberg category. These extra morphisms enable one to construct an infinite
chain of adjoint pairs in DH containing the bimodules P and Q (Theorem 3.28).

• The bimodules T (i) for i ∈ Z form a chain of adjoint pairs in the Clifford category, their classes
ti = [T (i)] in the Grothendieck group generating a Clifford algebra Cl with the relation

titj + tjti = δ|i−j|,11

Using a variation of vertex operator construction, one can express the Heisenberg generators p, q
abiding by

qp− pq = 1
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in terms of the Clifford generators as

g(q) =
∑
i≤0

t2it2i−1 −
∑
i>0

t2i−1t2i

g(p) =
∑
i≤0

t2i+1t2i −
∑
i>0

t2i+1t2i

One constructs two objects Q, P in D(Re
0) lifting the expressions g(q), g(p). The chain

R0 ←→ H(R0)←→ H̃(R0) ∼= F ←→ B

induces an equivalence
G : D(Be)→ D(Re

0)

of categories. It is shown that G(Q) and G(P ) are isomorphic to Q and P , respectively (Theorem
5.3).

• One can consider two generating series

t(z) =
∑
i∈Z

t2i+1zi

t(z) =
∑
i∈Z

t2iz
−i

associated to Cl. The expresions t(z) |z=−1 and t(z) |z=−1 define two linear operators of the Fock
space, which are categorified to certain endofunctors of the Fock space categorification B (Theorem
6.5 and 6.9).

This review closes with comments on related works.
• Frenkel, Penkov and Serganova [Zbl 1355.17032] gave a categorification of the boson-fermion corre-
spondece via the representation theory of sl(∞).

• Based upon the previous work of S. Cautis and A. Licata [Duke Math. J. 161, No. 13, 2469–
2547 (2012; Zbl 1263.14020); “Vertex operators and 2-representations of quantum affine algebras”,
Preprint, arXiv:1112.6189], S. Cautis and J. Sussan [Commun. Math. Phys. 336, No. 2, 649–
669 (2015; Zbl 1327.17009)] constructed another categorical version of the correspondence whose
Heisenberg facet is Khovanov’s categoricfication.

• The algebra B has already appeared in work on the stability of representation of symmetric groups,
e.g., in [T. Church et al., Duke Math. J. 164, No. 9, 1833–1910 (2015; Zbl 1339.55004)].
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