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The formation of the category C
[
S−1]

of fractions with respect to a sufficiently well-behaved class S of
morphisms in C, which is a fundamental device in homotopy theory, was first given in [P. Gabriel and M.
Zisman, Calculus of fractions and homotopy theory. Berlin-Heidelberg-New York: Springer-Verlag (1967;
Zbl 0186.56802)] . The construction is characterized by its localizing functor

C → C
[
S−1]

which is universal with respect to the property of turning morphisms in S into isomorphisms. The question
of the size of the “homs” of C

[
S−1]

is highly delicate.
This paper aims, assuming that S contain all isomorphisms, is closed under composition, and is stable un-
der pullbacks in C, to take a stepwise approach to the formation of C

[
S−1]

, considering separately the two
processes of transforming every morphism in S into a retraction and into a section before amalgamating
them to obtain the category of fractions.
A synopsis of the paper consisting of ten sections goes as follows. §2 is concerned with span categories
Span(C, S) and their quotients. §3 forms the S-retractable span category Retr(C, S) of C, while §4 forms
the S-sectional span category Sect(C, S) of C. §5 shows how to amalgamate the two constructions to
obtain the category C

[
S−1]

, performing and characterizing these constructions strictly at the ordinary
category level. The 2-categorical structure of Span(C, S) [J. Bénabou, Lect. Notes Math. 47, 1–77 (1967;
Zbl 1375.18001); C. Hermida, Adv. Math. 151, No. 2, 164–225 (2000; Zbl 0960.18004)] is alluded to in
§10, where it is indicated how the constructions of Retr(C, S) and Sect(C, S) are naturally motivated.
§6 elaborates on how to obtain the S-partial map category Par(C, S) as a quotient category of Sect(C, S),
which is a restriction category. Under a fairly mild additional hypothesis on S holding in particular under
the weak left cancellation condition (s, s · t ∈ S =⇒ t ∈ S), Par(C, S) is a localization of Sect(C, S) making
Retr(C, S) = C

[
S−1]

its quotient category.§8 presents the construction of the S-partial map range category
RaPar(C, S), completing the quotient construction in the paper and yielding the commutative diagram

C → Span(C, S) → Sect(C, S) → Par(C, S)
↓ ↓

Retr(C, S) → C
[
S−1]

Extending a key result in [J. R. B. Cockett and S. Lack, Theor. Comput. Sci. 270, No. 1–2, 223–259
(2002; Zbl 0988.18003)] , §7 provides a setting which presents

(C, S) 7−→ Par(C, S)

as the left adjoint to the formation of the category Total (X ) for every split restriction category X .
Extending one of the principal results in [J. R. B. Cockett et al., Theory Appl. Categ. 26, 412–452 (2012;
Zbl 1252.18003)] , §9 provides a setting which presents

(C, S) 7−→ RaPar(C, S)

as the left adjoint to the formation of the category Total (X ) for every split range category X .
To conclude this review, I will become an adversary, giving some complaints on the paper.
• The authors give their earlier version of the paper [arXiv:1903.00081] as the eighth item in Ref-
erences, but the title is wrong.

Abandoning monomorphisms:partial maps, fractions, factorizations =⇒ Fraction, restriction, and range categories from non-monic classes of morphisms
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• In §1,
See Sections 3 and 2, respectively =⇒ See Sections 4 and 3, respectively

In Section 4 =⇒ In Section 5
That is why, in Section 5 =⇒ That is why, in Section 6

This paper is written by three authors in collaboration, two living in Iran and the other living in Canada.
It comes to my mind that everyone’s business is no-one’s business.

Reviewer: Hirokazu Nishimura (Tsukuba)
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