
Study on Network Property Verification in Software

Defined Networking

September ２０２０

ZHANG YICONG

Study on Network Property Verification in Software

Defined Networking

Graduate School of Systems and Information Engineering

University of Tsukuba

September ２０２０

ZHANG YICONG

Abstract

Due to the network complexity, networks are unlikely to be bug-free. Automatic tool-

s will make network management easier for network administrators. Software-Defined

Networking (SDN) is an innovational network architecture which gives network adminis-

trators the ability to directly control the whole network by programming on a centralized

controller. In this study, we propose serval methods of fast verification for SDN net-

works. We implement our method and conduct experiments. The experimental results

show that the proposed method can efficiently and accurately detect serval network

properties, such as loops, black holes.

Contents

Abstract i

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Introduction . 1

1.2 Our Contribution . 3

1.3 Structure of Thesis . 3

2 Background 4

2.1 Softwared Defined Networking . 4

2.2 OpenFlow . 6

2.2.1 OpenFlow Switch . 6

2.2.2 OpenFlow Controller . 8

2.3 Apache Spark . 8

3 Related Works 11

3.0.1 Detecting Network Errors . 11

3.0.2 Attacks from SDN application . 13

4 Problem Statement 14

4.1 Loop-freedom and Nonexistence of Black Holes 14

4.2 Firewall and Bypass Threat in OpenFlow Networks 14

4.2.1 Firewall in OpenFlow Networks . 14

4.2.2 Packet Modification in OpenFlow 15

4.2.3 The Firewall Bypass Threat in OpenFlow Networks 17

4.2.4 System Model and Assumptions 19

5 A Novel Method against the Firewall Bypass Threat in OpenFlow
Networks 20

5.1 Violation Detection . 20

5.1.1 Flow path in OpenFlow networks 20

5.1.2 Forwarding Graph . 21

5.1.3 Firewall Deny Space and Firewall Policy Violation 23

5.2 Violation Resolution . 23

5.2.1 Initialization . 23

ii

Contents iii

5.2.2 Update the Forwarding Graph . 24

5.2.3 Update the Firewall Deny Space 25

5.3 Implementation . 25

5.3.1 Implementation Environment . 25

5.3.1.1 Mininet . 25

5.3.1.2 Floodlight . 26

5.3.2 Implementation . 27

5.4 Performance Evaluation . 28

5.5 Conclusion . 31

6 Atomic Predicates Based Data Plane Properties Verification in Soft-
ware Defined Networking Using Spark 32

6.1 Proposed Network Model . 33

6.1.1 Network Packet . 33

6.1.2 Forwarding Graph . 36

6.1.3 Atomic Predicates . 38

6.2 Proposed Data Plane Verification Scheme 40

6.2.1 Preprocessing . 41

6.2.2 Computing Atomic Predicates with Spark 43

6.2.3 Building Forwarding Graph . 44

6.2.4 Computing the Reachability . 45

6.2.5 Application Cases . 46

6.2.5.1 Firewall Model . 46

6.2.5.2 Problem Definition . 47

6.2.5.3 Verification with Reachability Tree 48

6.2.6 Dynamic Update . 49

6.3 Implementation and Performance Evaluation 50

6.4 Conclusion . 54

7 Atomic Predicate Based Network Property Verification for SDN Net-
works 56

7.1 Network Model and Problem Statement 56

7.1.1 Network Model . 56

7.1.2 Predicate . 57

7.2 Problem Statement . 58

7.2.1 Atomic Predicate . 59

7.2.2 AP tree . 60

7.2.3 Loop-freedom and Nonexistence of Black Holes 61

7.3 Proposed Method . 61

7.3.1 Preprocessing . 61

7.3.2 Computing Atomic Predicates . 62

7.3.3 AP Tree Construction . 63

7.3.4 Computing Packet Reachability . 64

7.3.5 Updating . 65

7.4 Implementation and Performance Evaluation 66

7.5 Conclusion . 69

iii

Contents iv

8 Conclusion 70

8.1 Conclusion . 70

Acknowledgements 71

Bibliography 72

List of Publications 76

iv

List of Figures

2.1 A high-level overview of the SDN architecture. 5

2.2 OpenFlow switch specification. 6

4.1 Inserting one flow entry into the switch’s flow table to bypass an SDN
firewall. 18

4.2 Inserting three flow entries into the three switches’s flow tables to bypass
an SDN firewall. 18

5.1 All flow paths form a directed graph. 21

5.2 Forwarding Graph of the network in Fig. 5.1. 22

5.3 Implementation frame of our method. 27

5.4 Flowchart of our method. 28

5.5 Example scenario for performance comparison. 29

5.6 Delay of evaluating a variety number of flow entries against firewall policies. 30

5.7 As more and more rule insert requests are evaluated, the delay are in-
creasing but still remaining in a acceptable range. 31

6.1 An example of BDD subgraphs representing a prefix match field 100x. . . 35

6.2 An example of the box model . 36

6.3 An example of forwarding graph. 37

6.4 An example of forwarding graph with atomic predicates. 40

6.5 Flowchart of preprocessing with Spark. 43

6.6 Flowchart of computing atomic predicates set with Spark. 44

6.7 An example of a reachability tree. 47

6.8 A topology example of the datasets. 51

6.9 Computation time (ms) of initialization. 52

6.10 Computation time (ms) of reachablity computation. 52

6.11 Computation time (ms) of computing atomic predicates. 52

6.12 Computation time (ms) of detecting firewall violation computing time. . . 54

7.1 (a) Three predicates. (b) The packet header space and five atomic pred-
icates. (c) A sample network including the three predicates. 58

7.2 A small network consists two switches. 62

7.3 Flow chart of preprocessing with Spark. 62

7.4 Flow chart of computing atomic predicates set with Spark. 63

7.5 AP Tree of predicates in Fig. 7.1 (b). (a) Original AP Tree. (b) Pruned
AP Tree. (c) Optimized AP Tree. 63

7.6 Computing reachability for packets specified by a4.(a) Normal path. (b)
Loop. (c) Black hole. 65

v

List of Figures vi

7.7 A topology example of the datasets. 67

7.8 Computation time (ms) of initialization. 67

7.9 Computation time (ms) of reachablity computation. 68

7.10 Computation time (ms) of computing atomic predicates. 68

vi

List of Tables

2.1 Components of a flow entry in a flow table. 7

4.1 Set-Field actions [1]. 17

5.1 Specifications of the environment we used. 25

5.2 Features comparison. 29

6.1 Experimental Datasets Information. 50

6.2 Storage overheads of reachability trees of all ports (bytes). 53

7.1 Experimental Datasets Information. 66

vii

Chapter 1

Introduction

In this Chapter, we first briefly introduce our research work. After the introduction, we

present our goal in our research and the structure of this thesis.

1.1 Introduction

As an innovational network architecture, Software-Defined Networking (SDN) provides

us many valuable advantages over the traditional network architecture, especially the

ability to easily manage the network. The basic concept of SDN is to build a network

operation system which enables network administrators to manage and control the whole

network traffic by programming on a controller software, without manually configuring

each device. As a result, SDN is suitable for nowadays large scale networks applications

and Internet of Things (IoT) development [2]. Implementing SDN data centers becomes

a new trend for network developing and researching [3].

Unlike the traditional network, implementing routing policies in switches and routers, S-

DN decouples data plane and control plane from switches and routers into the networks.

In an SDN network, the control plane consist of one or more logically centralized con-

troller, these controllers managing the network data plane by applying routing policies

to the switches. Routing policies can be defined by network administrators or automat-

ically created by the controller.

To communicate with and install rules into the switches, a communication interface

protocol between the controller and the switches is necessary. As the first standard

communications interface defined for SDN, OpenFlow [4] are still commonly used to im-

plement SDN. OpenFlow introduces the OpenFlow controller, the OpenFlow switch and

the OpenFlow protocol. The OpenFlow controller enables users to directly control the

1

flow forwarding by installing flow entries into the flow tables of the OpenFlow switches,

the OpenFlow switch is also able to ask the controller how to deal with a undefined data

flow, all these kinds of interactions are achieved by OpenFlow protocol defined messages.

Nowadays, data centers withstand failures using the principles of scale-out and redun-

dant design. The underlying assumption is that the system reacts correctly to failures

[5]. Common routing failures include routing loops and black-holes. Some errors only

become visible when a change is made. Meanwhile, network operators make mistakes

more than they thought. In a study of Internet services failures [6], operator error was

found to be the largest single cause of configuration errors.

To achieve a more reliable network, formal analysis methods and automated reachability

analysis tools are needed. This kind of network property verification is supposed to verify

network configuration and essential network properties (e.g., loop-free).

Recent work on network property verification focuses on graph based verification method.

With a graph-based network model, reachability analysis is transformed into graph prob-

lem. Building the model and computing reachability of the model are the core parts

of graph based verification method. By reachability, we mean that can a packet with

specific header values sent from port x reach port y. Network properties is verified by

checking reachability. VeriFlow [7] divides rules into equivalence classes (EC) and mod-

els the EC network as a graph to detect misconfigurations such as loops. NetPlumber[8]

maintains a dependency graph between flow rules based on Header Space Analysis (H-

SA) [9] which models packet as a point in a geometric space and networking box as a

switch transfer function.

To reduce the verification time, atomic predicate (AP) [10] is introduced to compress

Access Control Lists (ACLs) and forwarding rules to a small set of equivalence class-

es that can be specified efficiently. AP Classifier [11] provides a novel data structure

to improve efficiency classifying packets into atomic predicate to analyze packet flow

behavior.

In this study, we make our own contribution to model the SDN networks and formalize

the problem. Then we propose serval methods of fast verification for SDN networks.

We start with the firewall bypass threat. We implement our method and conduct ex-

periments. The result of experiments shows that our methods can compute reachability

effectively and efficiently in SDN networks.

2

1.2 Our Contribution

In this study, our goal is to design a network property verification method for SDN

networks in data center with better performance, e.g., fast analysis time, smaller storage

cost. To achieve the goal, we propose three methods of fast verification for SDN networks.

We also addressed the challenge of building a robust firewall for SDN networks by

analyzing the specification of packet modification behavior in OpenFlow, and its impact

to the traditional firewall deployed in SDN networks. We make our own contribution

to formalize and model the SDN network system and the firewall bypass threat, then

propose a method to accurately detect and prevent firewall bypass threat in SDN. Finally,

we implement our method and conduct experiments. The result of experiments shows

that our methods can compute reachability effectively and efficiently in SDN networks.

1.3 Structure of Thesis

This thesis is organized as follows.

• Chapter 1 provides an introduction to our research. In the end, we illustrate the

purpose of this thesis.

• Chapter 2 gives a brief, comprehensive introduction to preliminaries to our system.

• Chapter 3 discusses related works.

• Chapter 4 presents a detailed description and analysis of our problem.

• Chapter 5 presents our first proposed method.

• Chapter 6 presents our second proposed method.

• Chapter 7 presents our third proposed method.

• Chapter 8 concludes our work.

3

Chapter 2

Background

This chapter aims to put readers in the right context. First, we give a brief description

of SDN architecture and OpenFlow protocol, then we explain how switches handle data

flow by OpenFlow protocol. After that, we give an introduction to big data and Apache

Spark.

2.1 Softwared Defined Networking

The principal concept of SDN is to separate the control plane and data plane. There-

fore, the switches and routers are no longer to decide how to process the packets by

their routing protocols, but only acting as forwarding devices, the decisions are made

by a logically centralized controller. As a direct advantage, network administrators are

free from manually configuring each individual network device, now they can dynam-

ically manage and change the network traffic by a controller software located in their

computers or the server. Furthermore, SDN gives more flexibility to the administrators

in applying routing policies than traditional network by letting the controller access to

the information of the whole network, like the network topology, the state of the traffic

load, and the information of the switches and links. For example, the administrator can

easily adjust the traffic patterns to different types of flow via the controller.

A high-level overview of a basic SDN architecture is shown in Fig. 2.1, which comprise

three different layers. The SDN applications exist in the application layer, they are

programs that communicate their network requirements to the SDN controller and use

a abstracted view of the network provide by the controller to make their internal deci-

sions and other opeartions. Typical examples of SDN applications are load balancers

and network monitors. Other applications include security application, which is the

4

Figure 2.1: A high-level overview of the SDN architecture.

focus of this paper. The SDN controller exists in the controller layer, it is a logically

centralized entity and usually a software in real life. Besides collecting and analyzing

the information from the physical network devices to provide the abstract view for the

SDN application, the controller is responsible for receiving the requirements form the

applications about what they want to apply to the network . The controller trans-

lates the requirements to configuration commands for the network devices and apply

them. POX[12], Floodlight[13], OpenDayLight[14] and Ryu[15] are some popular open

source controllers. In the infrastructure layer, we use SDN switches to reference all

SDN network devices. The SDN switches communicate with the controller to perform

different control commands, by using communication protocols such like SoftRouter[16],

Forwarding and Control Element Separation (ForCES)[17], and OpenFlow.

5

Figure 2.2: OpenFlow switch specification.

2.2 OpenFlow

OpenFlow is the first standard communications protocol defined for SDN, and it still

is the most commonly used protocol at present. OpenFlow is introduce by the Open

Networking Foundation (ONF)[18], by regularly extending OpenFlow’s specification,

ONF still leads its development. Fig. 2.2 presents the three main components comprised

by the architecture of OpenFlow[19]: the data plane consists of OpenFlow swithes and at

least one OpenFlow controller exists in the control plane. The control plane is connected

with the switches by a secure channel using OpenFlow protocol. In the control plane, a

controller are able to manage the data plane by installing, deleting or modifying flow-

based rules in the switches. According to these rules, the switches decide how to process

incoming packets.

In the rest of this section we give an overview of the OpenFlow controller and the

OpenFlow switch based on the OpenFlow protocol specification version 1.0[1]. Note that

although we adopted this version of OpenFlow in our research, the result is not specific

to this version, the same conclusion can be reached with other versions of OpenFlow or

other SDN protocols.

2.2.1 OpenFlow Switch

As shown in Fig. 2.2, an OpenFlow switch consists of a flow table and a secure channel.

The flow table is in charge of storing rules and the secure channel connects the switch

6

to an external controller. An OpenFlow switch processes packets according to its flow

tables like a basic forwarding device. The content of flow table can be managed by the

controller through the secure channel.

In the flow table, the rules are implemented as entries. For each entry, there are three

components composed (see Table 2.1):

Header fields Counters Actions

Table 2.1: Components of a flow entry in a flow table.

• Header fields: information like source and destination ethernet addresses, TCP

ports, IP addresses, etc, to match against incoming packet headers.

• Counters: statistics about flows like number of matched packets, number of bytes,

number of errors, etc. Counters updates its data when packet headers matched

header fields. There are many counters supported in the documentation, but most

of them are optional.

• Actions:an instruction to tell the switch how to process an incoming packet with

matched headers with the header fields. Actions supports multiple network be-

haviours like dropping the packet, forwarding the packet to next port, or applying

some modifications to the packet. A set of non-conflict actions can be assigned

together.

When the controller install a entry to the switch, a timeout value is set to tell the switch

when the entry should be removed. There are two types of timeout assigned to each

entry, a hard timeout, which is the maximal duration of a rule, and a soft timeout, which

is the maximal interval between two packets matching the entry. The rule is removed

when timeout is exceeded, no matter which one is. Then entry can be set a infinite

timeout so it can be removed by the controller only .

The secure channel is a interface supported by the OpenFlow protocol to transmit mes-

sage between the switch and the controller, the formation of message is defined in the

OpenFlow protocol. In the OpenFlow protocol, there are three classes of message type

defined: controller-to-switch, asynchronous and symmetric. The controller-to-switch

message is initiated by the controller and sent to the switch, the controller use the

controller-to-switch message to detect features, configure, program the switch and re-

trieve information. Without any solicitation from the controller, OpenFlow switch initi-

ated asynchronous message to inform the controller about errors and events like packet

arrivals, state changes. Symmetric messages can be sent by the controller or the switch

without solicitation from other side, example for symmetric messages is tje echo message

7

exchanged between the switch and the controller that can be used to indicate the statics

of the connection like latency or liveness.

2.2.2 OpenFlow Controller

An OpenFlow controller is a software programmed to populate and manipulate the

flow tables in the switches. The controller also keeps translating information about the

network statics from the data plane to the services and application in the application

layer.

When a data packet arrives at a OpenFlow switch, the packet header will be parsed to

match against each entry in the flow table. If the packet header matched the header

fields of a entry, the switch first updates the counters of that entry, then processes the

packet according to the actions defined in the entry. Otherwise, if the packet header

does not match any entry in the flow table, a default action will be applied to this kind of

table-miss packet. If the switch is able to buffer the packet, it will encapsulate the packet

header in a Packet IN message and send it to the connected controller, otherwise the

Packet IN message will contain the full packet. The controller receives the Packet IN

message will make the decisions and so can install a specific entry in the requesting

switch, or directly command the switch by sending a Packet OUT message without

installing any entry. With this table-miss strategy, a controller can manage all network

data flows either in a proactive way and a reactive way.

This section is limited to the necessary background to ease the reading of this paper,

many other features provided by OpenFlow are not introduced here, but in following

Sections , additional information will be provided when needed.

2.3 Apache Spark

In recent years, due to the exponential growth and availability of huge amount of data

with all possible variety, big data becomes a very popular term even outside of automated

world [20]. Big data exhibits four main features: volume, velocity, variety, and value

[21]. Volume is the one of the most important features, which indicates that the scale

of collected data is extremely big. While the data volume is a big challenge, another

serious challenge is collecting and processing those data in a timely way. That’s what

velocity means. Variety indicates the variety of data formats and data types and a

variety of applications associated with, e.g., videos, images, multimedia, generated by

different application and stored in different file systems. Lastly, the goal is to explore

the potential value of the data to achieve better decision making.

8

To uncover the big data treasure, some kind of analysis tool is needed. A popular tool

is parallel computing. Parallel computing is a type of computation that divides large

problems into smaller ones, which can then be solved at the same time. Apache Spark

is one of the latest parallel computing programming framework.

Spark was developed at the University of California, Berkeley’s AMPLab, and later

donated to the Apache Software Foundation, which has maintained it since. Spark

provides an interface for programming entire clusters with implicit data parallelism and

fault tolerance. Comparing Spark to Apache’s older product Hadoop MapReduce [22],

Spark has improved over Hadoop by including the strengths of Hadoop but has made up

for its weaknesses. It therefore provides highly efficient batch processing of Hadoop and

furthermore the latency involved is also less. Also, iterative processing capabilities for

things like machine learning algorithms and graphical analysis are provided by Spark,

yet architecturally impossible for MapReduce. Spark has therefore fulfilled the need of

parallel execution requirements of analytics professionals and is an irreplaceable tool in

big data community [23].

Resilient distributed dataset (RDD) is the most important element to achieve Spark’s

function. RDD is a distributed data structure physically partitioned inside a cluster

across multiple machines, but logically considered as a centralized entity. Within a

cluster, inter machine data shuffling can be lowered by controlling how various RDDs

are co-partitioned. There is a partition-by operator which by redistributing the data in

the original RDD creates a new RDD across machines in the cluster. Fast access is the

obvious benefit when RDD is optimally cached in RAM. Currently in the analytics world

caching granularity is done at the RDD level. It is like all or none. Either the entire

RDD is cached or none of the RDD is cached. If sufficient memory is available in the

cluster Spark will try to cache the RDD. This is done based on the least recent use (LRU)

eviction algorithm. Expression of application logic as a sequence of transformations is

possible through an abstract data structure which RDD provides. This process can

happen regardless of the underlying distributed nature of data.

There are two types of operations for expressing application logic in Spark: transforma-

tions, which perform operations on an input RDD to produce one or more new RDDs,

and actions, which launch the series of transformations to return the final result RDD.

To compute the atomic predicate set, there are two operations we valued, map and

reduce. These two operations perfectly meet our needs.

Transformation map: A map is a transformation operation. Map operation applies

a function to each element of the original RDD and then returns the result as a new

RDD. In the Map, programmer can define his own application logic. The same logic

9

will be applied to all the elements of RDD. Transformation map takes one elements as

input, then process it according to a custom function and returns one result element at

a time. Thus, the original and transformed RDDs will typically have the same number

of elements.

Action reduce: A reduce is a action operation. Reduce aggregates the elements of a

RDD according to a custom function. It is a wide operation as it is shuffling data from

multiple partitions and reduces to a single value. The custom function should have two

arguments of the same data type and the return type of the function also must be same

as argument types.

10

Chapter 3

Related Works

SDN provide us with many valuable advantages over the traditional network architec-

ture, especially the ability to easily program the network. But like other new technolo-

gies, advantages that may also lead to new problems, including new configuration issues

and security vulnerabilities. Different users share one controller, or multiple controllers

operate in the same domain without effective coordination may create conflicting rules

which leading to black hole, loop or other configuration errors in SDN. Malicious attack-

ers or applications also may use this vulnerability to bypass security policies by installing

strategic entries to redirect traffic. This chapter describes potential configuration prob-

lems as well as security problems, and discusses the work that has been done to find and

resolve the problems.

3.0.1 Detecting Network Errors

For a large networks consisting of hundreds of switches, with multiple applications re-

quiring different traffics, the SDN controllers needs to install approximately 50,000 new

flows per second to meet those requirements[24], hence, a quick, efficient mechanism to

automatically detect and correct the errors as well as ensure security policies and fault

tolerance is very urgent. Recent work on network property verification for OpenFlow

network focuses on the following three aspects [25].

(1) Finite state machine based verification. Packet is treated as a finite state machine.

Verifying network property is equivalent to determine if there is an undesirable state in

the set of final states. FlowChecker [26] is the earliest work in this area, it uses binary

decision diagrams to detect intra-switch configuration errors within a single flow table.

To identify errors generated by SDN applications. Flover[27] uses modulo theories and

11

assertion sets to achieve a automatic flow policies verification method. When the con-

troller try to add a flow rule, Flover verifies the new rule against the non-bypass security

properties enforced within the network. Header Space Analysis (HSA) [9] models packet

as a point in a geometric space and networking box as a switch transfer function. Instead

of using an available verifier, it designs multiple algorithms to verify different network

properties.

(2) Boolean satisfiability based verification. Network property verification is transformed

into boolean satisfiability problem (SAT) on logic network. Anteater[28] analyzes net-

work configuration problems by using a static analysis approach for checking invariants.

It converts rules to Boolean expressions, translates network properties to instances of

SAT problems and analyzes network configuration problems by using a static analysis

approach for checking invariants.

(3) Graph based verification. The algorithm for computing reachability of the graph is

the core algorithm to verify network properties. VeriFlow [7] divides rules into equiva-

lence classes (EC) and models the EC network as a graph to detect misconfigurations

such as loops, unavailable paths. With the ability to intercept flow rules before they

are applied to the switches, VeriFlow is able to verify invariants in real-time. But the

number of ECs can be quite large when rules have multiple matching fields. It will slow

down verification speed. Another Graph based verification solution is NetPlumber[8].

NetPlumber maintains a dependency graph between flow rules to incrementally check

for compliance of state changes. It is developed based on Header Space Analysis, the au-

thor’s previous work. NetPlumber improves upon HSA by working incrementally with

more flexibility in checking complex policy queries so that it is fast enough to verify

every flow rule updating request in real time. But it takes long time when link up/down

event occurs.

The analysis shows that the first two techniques are generally slow compared with graph-

based ones. Furthermore, graph search techniques make graph based verification able

to verify network-wide invariants, and handles dynamic changes in real time. To reduce

the verification time, Libra [5] is the first to introduce MapReduce to realize parallel

verification, but it assumes that packets are forwarded based on destination IP prefix

and that headers are not modified. It is not suitable for OpenFlow network. Recently,

a new method has been introduced by [10], [29], called atomic predicates. Atomic

predicates have the following property: Each given predicate is equal to the disjunction

of a subset of atomic predicates and can be stored and represented as a set of integers

that identify the atomic predicates. The conjunction (disjunction) of two predicates can

be computed as the intersection (union) of two sets of integers. Thus, intersection and

union of packet sets can be computed very quickly. Based upon this idea, they developed

12

a formal analysis method that enables very fast computation of reachability. But they

didn’t mention about firewall bypass threat.

3.0.2 Attacks from SDN application

As described above, the SDN applications are able to program the network by asking

the SDN controller to do so. However, malicious SDN applications could produce some

unwanted traffics in the network due to the lack of trust between the controller and

applications, for example, traffics violated with the firewall policy, which makes it a

serious security concern.

In order to prevent such problem, FortNOX[30] introduced a security-enforcement kernel

based on the open-source NOX controller[31]. FortNOX implemented a digital signature

mechanism to constrain different users or applications, and offers a method to verify

conflicting flow rules before they reach the network. In this method, FortNOX first

converts all rules to alias reduced rules by adding source addresses, destination addresses

and every rewritten address caused by the rule’s action instruction into an alias set.

Then, these new rules can be easily checked against the firewall policy. However, this

rule conflict analysis algorithm is unable to accurately track network traffic flows and

only consider bypass threat in single flow policy.

In [32], the authors developed an algorithm to detect and resolve the conflict between

firewall policies and flow rules for the SDN firewall application. For this conflict de-

tection, the algorithm defined a firewall authorization space according to all firewall

policies, and uses HSA for modeling the network to create and maintains a shifted flow

graph. Once the conflict was detected, the algorithm blocks the violated flow path by

inserting deny rules for conflict caused by firewall policies update, or refusing the request

for conflict caused by new flow rule update request. Most recently, FlowGuard [33] pro-

posed a solution based on HSA to detect firewall policy violations in SDN with a more

refined conflict resolution. FlowGuard also use HSA to maintain its flow path spaces,

but unlike [32] that simply blocking the flow or rejecting the rule update, FlowGuard

offers five different conflict resolutions: flow rejecting, dependency breaking, update re-

jecting, flow removing and packet blocking. FlowGuard can select appropriate strategy

for different extent of the violation. However, since these two solutions both are working

in a reactive way, they have to assume there are no violation before they were deployed

to the system, they can not actively detect this potentially violation.

13

Chapter 4

Problem Statement

Since SDN allows network applications to operate with switches in the networks directly,

it faces a variety of security challenges.

4.1 Loop-freedom and Nonexistence of Black Holes

In our research, we focus on specific two essential network properties, loop-freedom and

nonexistence of black holes. In SDN network, a loop could happen when mistakenly

installed forwarding rules. If a packet is sent into a looped path, it can loop until its

time to live (TTL) value expired. On the other hand, a black hole could happen when

mistakenly deleted a forwarding rule. If a packet is forwarded to a switch with no match

forwarding rules, it will be dropped without informing the source.

4.2 Firewall and Bypass Threat in OpenFlow Networks

As a new network architecture, new configuration issues lead to new security problems.

One of these security problems is the firewall policy can be bypassed in SDN. In this

section, we discuss the problem of deploying a traditional firewall application in SDN,

then describe and analyze the firewall bypass threat.

4.2.1 Firewall in OpenFlow Networks

Firewall technology emerged in the late 1980s when the Internet was a fairly new tech-

nology in terms of its global use and connectivity [34]. A firewall is a network security

application that monitors and controls the incoming and outgoing network traffic based

14

on predetermined security rules [35]. Firewalls located on the gateway machine of a

network are called network-based firewalls, and those positioned on network nodes are

called host-based firewalls. The host-based firewall usually is a operating system service

or a software application configured by the host user, and only benefits the host itself.

On the contrary, the network-based firewall can secure the entire network by filtering

traveling data according to a set of data management policies.

In a OpenFlow network, the OpenFlow controller manages the data traffics in the entire

network by the routing policies it applied to switches. If an incoming packet is not de-

fined, the switch will send it to the controller and ask the controller to determine how to

deal with the packet. This behavior sounds like the OpenFlow controller is behaving like

a traditional network-based firewall. To use an OpenFlow controller as a firewall, most

modern OpenFlow controllers implement a built-in firewall application which behaves

like a traditional firewall, e.g. Floodlight, a popular open-source OpenFlow controller

developed in Java, has a Firewall module application. By inspecting Packet IN massages

sent from switches, the application can enforce access control list (ACL) rules. This kind

of firewall works in a reactive way.

4.2.2 Packet Modification in OpenFlow

OpenFlow defines a set field action type to provide more flexibly in programming the

network. Set field action is able to modify various values of the packet. The types

of modify action supported by OpenFlow are shown in Table 4.1, the usefulness of an

OpenFlow implementation is greatly increased by adopting these actions. Since The

set field actions are identified by the field types they modify, one entry can contain

multiple set field actions to set multiple field types, but for each field type, at most one

set field action can be set. This means the modification can be accomplished both in a

single switch or in respectively multiple switches.

Action Associated Da-

ta

Description

Set VLAN ID 12 bits If no VLAN is present, a

new header is added with the

specied VLAN ID and priority

of zero. If a VLAN header al-

ready exists, the VLAN ID is

replaced with the specied val-

ue.

15

Set VLAN priori-

ty

3 bits If no VLAN is present, a

new header is added with the

specied priority and a VLAN

ID of zero. If a VLAN header

already exists, the priority eld

is replaced with the specified

value.

Strip VLAN

header

- Strip VLAN header if present.

Modify Ethernet

source MAC ad-

dress

48 bits: Value

with which to

replace existing

source MAC

address

Replace the existing Ethernet

source MAC address with the

new value.

Modify Ethernet

destination MAC

address

48 bits: Value

with which to re-

place existing des-

tination MAC ad-

dress

Replace the existing Ether-

net destination MAC address

with the new value.

Modify IPv4

source address

32 bits: Value

with which to

replace exist-

ing IPv4 source

address

Replace the existing IP source

address with new value and

update the IP checksum (and

TCP/UDP checksum if appli-

cable). This action is only ap-

plicable to IPv4 packets.

Modify IPv4 des-

tination address

32 bits: Value

with which to

replace existing

IPv4 destination

address

Replace the existing IP desti-

nation address with new value

and update the IP checksum

(and TCP/UDP checksum if

applicable). This action is on-

ly applied to IPv4 packets.

Modify IPv4 ToS

bits

6 bits: Value with

which to replace

existing IPv4 ToS

eld

Replace the existing IP ToS

eld. This action is only ap-

plied to IPv4 packets.

16

Modify transport

source port

16 bits: Value

with which to

replace existing

TCP or UDP

source port

Replace the existing

TCP/UDP source port

with new value and update

the TCP/UDP checksum.

This action is only applicable

to TCP and UDP packets.

Modify transport

destination port

16 bits: Value

with which to

replace existing

TCP or UDP

destination port

Replace the existing

TCP/UDP destination port

with new value and update

the TCP/UDP checksum

This action is only applied to

TCP and UDP packets.

Table 4.1: Set-Field actions [1].

4.2.3 The Firewall Bypass Threat in OpenFlow Networks

A simple bypass example is shown in Fig. 4.1, an SDN network uses OpenFlow and

comprises one controller, one switch and four hosts. A firewall application locates in

the controller blocks part of traffic between host A and host C by containing a firewall

policy that every packet sent from host A to host C should be dropped. This firewall

policy can be easily bypassed by installing a flow table entry with modify actions. Every

packet sent from host A to host B will match the entry, then the switch will modify the

source IPv4 address and the destination IPv4 address of the packet, the original packet

will be manipulated as a packet sent form host D to host C and forwarded to host C.

Note that although the result of this entry bypassed the firewall, each action does not

directly against the firewall policy.

Meanwhile, the result of each entry may affect the packet matching in the next hop, this

dependency of rules makes the detection more difficult. Now, considering a complex

scenario in Fig. 4.2, which comprising three switches.Instead of installing one entry, we

install three entries respectively into the flow table of three switches. The first entry

modifies the source IP address of the packet sent from host A to host B to host D, then

forward the modified packet. So the modified packet will match the entry in the second

switch, this entry will modify the destination IP address of the packet to host C, then

forward to the next hop. The last entry just forwards the packet with host D as the

source address and host C as the destination address. Note that even the result of each

entry does not directly against the firewall policy. To detect the firewall policy violation

using the dependency of rules, the flow path needs to be accurately tracked.

17

Figure 4.1: Inserting one flow entry into the switch’s flow table to bypass an SDN
firewall.

Figure 4.2: Inserting three flow entries into the three switches’s flow tables to bypass
an SDN firewall.

18

In this kind of firewall bypass scenario, the real source address of the packet is the original

source address, and the real destination address is the last modified destination address,

and only the communication between the real source address and the real destination

address is forbidden by the firewall rules. Obviously, before modify the destination

address to the real destination address, the original source need to be modify first,

otherwise it will cause a directly conflict with the firewall rules.

Once the firewall policies are bypassed, serious problems could happen to the network.

Data leaking is the most direct consequence. For example, an SDN network defines two

traffics, one is defined for researchers doing their experiments, the other one is defined

for normal users regular use. A firewall is deployed to secure the network traffic from

overlapping. Attackers are able to bypass the firewall and steal data from experiments

traffic.

4.2.4 System Model and Assumptions

Before proceeding to the proposed detection scheme, it is worthwhile to make some

assumptions on our problem:

• The network is assumed to adopt software-defined networking and use OpenFlow

Switch Specification Version 1.0.0 to achieve it.

• Since we are focusing on firewall bypass threat, only a few of flow entry actions

are considered, and the header field of wildcard are not be cared. To simulate this

threat, as described before, we use the set fields actions which modify the source

and destination IPv4 address.

Note that although we adopt this version of OpenFlow in our research, the result is

not specific to this version, the same conclusion can be reached with other versions of

OpenFlow or other SDN frameworks.

19

Chapter 5

A Novel Method against the

Firewall Bypass Threat in

OpenFlow Networks

In this research, our goal is to design a firewall for SDN networks which can detect and

resolve the threat of using flow rules to bypass the firewall policies. To achieve the goal, we

analyze the specification of packet modification behavior in OpenFlow networks and its

impact to the traditional firewall deployed in OpenFlow networks. After we identify the

problem, we make our own contribution to formalize and model the OpenFlow networks

and the firewall bypass threat. We propose a method to accurately detect and prevent

firewall bypass threat in OpenFlow networks. Finally, we implement our method and

conduct experiments. The result of experiments shows that our method can accurately

detect bypass threats in OpenFlow networks. Comparing to previous research work, our

method has following two significant features, flow path tracking and active detection.

5.1 Violation Detection

5.1.1 Flow path in OpenFlow networks

In OpenFlow networks, we realize that the forwarding path of a data flow is decided by

entries installed in the flow tables of the OpenFlow switches. Although a packet can

match multiple flow table entries, the packet must match against each flow entry by

prioritization, means entries with higher priority will match before entries with lower

priority. Hence only the action of the flow entry with the highest priority will be applied.

Practically, two flow entries with the same match header fields cannot have the same

20

Figure 5.1: All flow paths form a directed graph.

highest priority thanks to the automatic overlapping checking mechanism: for a flow

entry insert request, the switch must first check is there any flow entries with the same

header fields and the same priority existed in its flow table. If a flow entry with the same

value has already existed in the flow table, the switch will refuse the insertion request of

the overlapped entry. Since flow entries are stored in order, we can locate a flow entry

by its switch’s id and its order in the flow table.

We use a rule to refer a flow table entry. A rule is an OpenFlow-like < match, action >

tuple, match represents the header fields of the entry for matching packets and the action

represents the actions that can be forward, drop, modify. Thus, we can describe a flow

path start form a host node a to a host node b by following (switch, rule) sequence:

a→ (s1, r1)→ ...→ (sn−1, rn−1)→ (sn, rn)→ b. (5.1)

As shown in Fig. 5.1 and Fig. 5.2, All flow paths form a directed graph, we call it

Forwarding Graph.

5.1.2 Forwarding Graph

For a formalization of the pervious, we define a Forwarding Graph FG = (V,A):

• There are two kinds of nodes: V = {VH , VE}.

– VH is a set of nodes which represent host devices in the network. These

nodes are called host nodes. Host nodes are identified by the addresses of

represented host devices.

21

Figure 5.2: Forwarding Graph of the network in Fig. 5.1.

– VR is a set of nodes which represent rules in the network. These nodes are

called rule nodes. A rule node is identified by the ID of the switch which the

represented rule located and its order in the flow table. The rule node records

the header fields of a rule as an ingress match tuple like (ingress source,

ingress destination), including the original source address and the original

destination address. The rule node also records an egress match tuple like

(egress source, egress destination) tuple, including the source address and

the destination address after the actions of the rule are applied to the packet.

The egress match tuple indicates the action of the rule, for forward action,

the egress match remains the same to the ingress match, for drop action, the

egress match is set to null.

• A is a set of ordered pairs of vertices, denoted as A = {(x, y) | x, y ∈ V }, each
pair means node x is linked to node y. Node x links to node y when satisfy these

constraints:

– If x is a host node and y is a rule node, x is included in ingress source of y.

– If x is a rule node and y is a host node, y is included in egress source of x.

– If x and y are both rule nodes, x’s ingress match tuple matches y’s egress

match tuple.

– There is a physical link between node x’s box and node y’s box.

In the Forwarding Graph, if there exists a path:

22

[a, v1, v2, v3, ..., b|a, b ∈ VH , v1, v2, v3, ... ∈ VR] (5.2)

we say b is reachable from a. To compute this reachability in the Forwarding Graph,

we modified the Dijkstra’s algorithm to only seek rule node when find a shortest path

between two host node. This algorithm can guarantee that the result of the reachability

computation is correct.

5.1.3 Firewall Deny Space and Firewall Policy Violation

For firewall rules, we introduce a Fire Deny Space: SD, to represent a collection of all

connections denied by the firewall rules. In a Firewall Deny Space: SD = {s1, s2, ..., sn}
we use a Firewall Deny Set : s = {Vs, Vd | Vs, Vd ∈ VH} to represent a single firewall rule

which indicates every packet sent form a ∈ Vs to b ∈ Vd is denied. Vs is a host nodes set

indicating the source of a packet and Vd is a host nodes set indicating the destination of

a packet. In a firewall the DENY rules are complementary to ALLOW rules, hence we

only care the DENY rules.

Now we can give a formal description of our problem:

• For each Firewall Deny Set s, if b ∈ Vd is reachable from a ∈ Vs, we can say that

there is a firewall policy violation existing in the network.

Obviously, the firewall policy violation is caused by the rules among the violated path.

5.2 Violation Resolution

5.2.1 Initialization

To identify the violation, we first obtain the topology of the network, flow tables of the

switched and firewall polices to build our Forwarding Graph and Firewall Deny Space

for the network. Once we finished the initialization, an active detection will be executed

to check potentially violation until there are no violation exists. If violations exist, the

violated rules will be removed. This is designed for better deployability. Our method

does not require the network to be secure before the implementation. Thus, users can

deploy the detection at any period of the network.

23

5.2.2 Update the Forwarding Graph

Adding rules: When a new rule is added, As shown in Algorithm 1, the Forwarding

Graph first creates a rule node for it, then finds all links to the new node and form

the new node. After finishing the update of the Forwarding Graph, the firewall policy

violation will be checked. If there is a violation, the insertion will be reject and the

update will be reversed.

Algorithm 1 Flow path track algorithm

Input: A Forwarding Graph, FG; A Firewall Deny Space, SD; A new rule node, swxry;

The topology of the network, Topo.

Output: A boolean variable, New Node Added

FG.AddNode(swxry, T opo);

New Node Added← TRUE;

while sd ∈ SD do

for a ∈ sd.Vs do

for b ∈ sd.Vd do

if (FG.has path(a, b) = TURE) then

New Node Added← FALSE;

FG.DeleteNode(swxry);

Break;

end if

end for

if New Node Added = FALSE then

Break;

end if

end for

end while

return New Node Added;

Deleting rules: Deleting a rule also may cause a firewall policy violation, hence, after

deleting the rule node and remove its all links, we check the reachability against the

Firewall Deny Space, if a violation is detected, the entire flow path will be removed.

24

5.2.3 Update the Firewall Deny Space

Adding Rules: When a new firewall rule is added, new violation may arises. Before

updating the Firewall Deny Space, the Forwarding Graph will be checked against the

new Firewall Deny Set, if violation detected, the entire flow path will be removed.

Deleting Rules: Obviously, deleting a firewall rule will not introduce any new firewall

policy violation, so we just delete the corresponding Firewall Deny Set from the Firewall

Deny Space.

5.3 Implementation

In this section, we present the detail of our implementation including the environmen-

t, and the implementation framework. Then we compare our method with other ap-

proaches of resolving firewall bypass threat in SDN and conduct evaluations to test the

performance of proposed method.

5.3.1 Implementation Environment

We implement our method and run experiment base on Ubuntu operating system version

14.04 and use Mininet [36] to implement the OpenFlow network virtually, the network is

controlled by Floodlight controller [13] , the system is hosted on an Intel Core 2 3.00GHz

E8400 CPU with 2.9GB RAM. Specifications of the environment we used are listed in

Table 5.1.

Software Version

Floodlight 0.91

Mininet 2.21

OpenFlow 1.0.0

Table 5.1: Specifications of the environment we used.

5.3.1.1 Mininet

Mininet is a fast, lightweight but powerful network emulator. Mininet is capable to

create a realistic virtual network running functional hosts and switches. Those host-

s are able to run customized programs. One of Mininet’s most powerful and useful

features is Mininet’s switches are programmable using the OpenFlow protocol. By de-

fault, Mininet runs Open vSwitch [37] [38], an open-source multilayer virtual switch

25

supporting multiple protocols. Open vSwitch requires an OpenFlow controller since

it runs in OpenFlow-only mode, which means all data flow can only be processed by

defined flow entries or the controller. Mininet comes with three controller classes to sup-

port three types of controllers: the built-in OpenFlow reference controller, NOX, and

Open vSwitchs ovs-controller. These controllers are out-of-date or have limited func-

tion. Fortunately, Mininet also provides the capability of interacting with user’s custom

OpenFlow controller.

5.3.1.2 Floodlight

We choose Floodlight as our controller because it has a very active community and

has a number of sample module applications, such as a leaning switch and a firewall.

Floodlight comes with a web based and Java based GUI and most of its functionality is

able to access through a REST API.

There are three module applications we valued:

Forwarding: Forwarding module is designed to automatically find the shortest path

for table-miss packets, adds the appropriate flow entries into related switches, and lets

the switch continue its forwarding. Forwarding module lets Floodlight able to work in

networks that contain both OpenFlow and non-OpenFlow switches. For us, Forwarding

makes the OpenFlow-only Open vSwitch act like a normal non-OpenFlow layer 2 switch.

By default, these flow entries added by Forwarding are assigned with very short timeout

and low priority, in order to do not influence user added flow entries and keep the network

not redundant.

Static Flow Pusher: Forwarding inserts flow entries in a reactive way, Static Flow

Pusher inserts in a proactive way. User can use Static Flow Pusher’s REST API to add

custom flow entries into specific switches. For example, we can use the following curl

command to insert a flow on a switch which ID is 1 that forwards packets sent from a

host with IP 10.0.0.1 to a host with IP 10.0.0.2. Serval set field actions are also provided

by Static Flow Pusher.

curl -d ’{"switch": "00:00:00:00:00:00:00:01", "name":"flow-mod-

1", "src-ip":"10.0.0.1", "dst-ip":"10.0.0.2",

"active":"true", "actions":"output=normal"}’ http://localhost:8

080/wm/staticflowentrypusher/json

Firewall: Firewall enforces ACL rules by monitoring Packet IN messages. ACL rules

here are set of conditions that allow or deny a traffic flow at its ingress switch. Firewall

26

Figure 5.3: Implementation frame of our method.

also exposes REST interface for users, for example, the following curl commands order

switch 1 to drop all packets sent from the host with IP 10.0.1.12 to the host with IP

10.0.3.22, which is the firewall policy described in pervious bypass scenarios.

curl -X POST -d ’"src-ip": "10.0.1.12/32", "dst-ip":"10.0.3.22/32"’

http://localhost:8080/wm/firewall/rules/json

5.3.2 Implementation

As shown in Fig. 5.3, our detection module is implemented in the Floodlight controller

as a class. The flowchart is shown in Fig. 5.4. The detection module will first obtain

the topology message from the controller, reads firewall rules from Firewall Module and

flow entries from Static Flow Pusher Module to initialise the Forwarding Graph, FG

and the Firewall Deny Space, SD. Once FG and SD are built, the violation will be

checked to finish initialization. After initialization, when the controller try to update

flow entries in the switches, or add new firewall rules, the module will be triggered and

run the violation check, decision will be give according to the result of detection.

27

Figure 5.4: Flowchart of our method.

5.4 Performance Evaluation

To test our method’s functionality, we simulate two scenarios described in Chapter 4.

We first build the same topologies and set the firewall rules to block IPv4 communication

between Host A and Host C, then we start a simple HTTP web server application in

Host C to reply packets sent from Host A. After the setup, we try to insert those bypass-

enable flow entries. The result showes our method is able to reject the insertion request

while the original Floodlight firewall allowed. Furthermore, we conduct the simulations

with those bypass-enable flow entries installed in the switches before the initialization of

our method. The threat is detected and the entries are removed after the initialization,

28

Figure 5.5: Example scenario for performance comparison.

thanks to the active detection mechanism. As shown in Table 5.2, our method has two

significant features comparing to previous works.

Flow Path Tracking Active Detection

FortNOX × ×
J Wang et al. ⃝ ×
FlowGuard ⃝ ×
Our method ⃝ ⃝

Table 5.2: Features comparison.

Considering a scenario shown in Fig. 5.5, suppose the firewall application blocks the

communication between host A and host C. There are three flow entries respectively

installed in the three switches, these entries are similar to pervious bypass-enable entries,

but in switch 3, a new entry will modify the destination IP address to the IP address

of host B for all packets sent form host D to host C. By alias rule reduction algorithm

introduced in FortNOX, since it simply transforming the rules’ match criterion to detect

bypass violations without tracking the flow path, a conflict will be detected. However

the final destination of packets sent from host A to host B is host B, the packets will

not arrive at host C, means the alias rule reduction algorithm detected a fake conflict.

Our method is tested in this scenario and still keeps it preciseness.

29

Figure 5.6: Delay of evaluating a variety number of flow entries against firewall
policies.

Since our method requires the controller to evaluate policy update requests before exe-

cuting them, the delay is unavoidable while achieving the security. We study the per-

formance in term of extra computational time while increasing the number of inserted

flow entries. The topology of the network remains the same to pervious scenario, which

consists of three switches and four hosts. We use the pingall command provided by

Mininet to generate the most of entries. This command goes through the host list and

attempts to ping every other host in the topology. Pingall is chosen since it triggers

Floodlight’s Forwarding module to automatically install flow entries. Pingall requires

that a new rule be written to the switch for both the request and reply of the majority of

pings. The only time a new rule is not written is if the rule already exists from a previous

ping, i.e. when host A is pinging host B while the flow rules from host B pinging host

A is still resident in the switch’s flow table. We changed the default timeout of entries

produced by Forwarding module so we can easily collect them. We also designed a great

deal of entries try to bypass the firewall policy. The overlapping check mechanism is

disabled so we can insert more entries than the network needed. This places a really

large load on our implement to validate each rule as well as keep an up to date view of

the switches’ flow tables.

For comparison, we implement the detection algorithm introduced by Juan Wang et al.

which is referred to as Wang’s algorithm in this thesis. Fig. 5.6 shows the performance of

our implement and their algorithm with a varying number of rule insertion requests. Fig.

5.7 illustrates the computational delay required to detect violation between candidate

rules and the firewall policy increasing during the detection procedure. As more and

more rule insert requests are evaluated, the delay is increasing but still remaining in

a acceptable range when comparing to others. These results show the performance

30

Figure 5.7: As more and more rule insert requests are evaluated, the delay are in-
creasing but still remaining in a acceptable range.

along with the increasing numbers of requests, the computing costs by our method are

increasing. Note, in our experiments we force our method to evaluate each incoming

flow entry against each firewall policy without any whitelisting rules, in practice, this

kind scenario could represent a worst case.

5.5 Conclusion

In this research, we address the challenge of building a robust OpenFlow firewall. We

introduce a new threat to the firewall in SDN, firewall bypass threat. This threat is

caused by violation between firewall rules and flow policies. To detect such violation, we

propose a novel detection method based on modeling the network to a directed graph, the

problem is transformed to the reachability computation problem. Then, we implement

our method in Floodlight and conduct experiments by Mininet. The experiments are

designed to evaluate the functionality and accuracy of the proposed detection method.

The results of experiments show that our method can accurately and actively detect and

resolve bypass threats in OpenFlow networks with acceptable overhand.

31

Chapter 6

Atomic Predicates Based Data

Plane Properties Verification in

Software Defined Networking

Using Spark

In this research, we propose a new method of fast verification by introducing atomic

predicates to deal with the time-consuming problem of existing techniques. Our method

starts with the full graph of switches, each with its own forwarding table. Our method

analyzes reachability for each ports by modeling the network to a directed graph, the

problem is transformed to the reachability computation problem. By adopting atomic

predicates, which replaces highly computation intensive operations on predicates by

those on sets of integers to speed up verification and reduce the cost of storage. In

addition, we propose a parallelized method to compute atomic predicates with Apache

Spark. Finally, we implement our method and conduct experiments. The result of

experiments shows that our method can compute reachability much faster and space

efficiency in OpenFlow networks comparing to our previous research work. Compared

to previous research work, our method has two significant features shown in below.

• Firewall bypass threat detection: Besides the two essential data plane properties,

loop-freedom and nonexistence of black holes, our method is able to detect the

firewall bypass threat which is rarely explored in existing data plane property

verification methods.

• Parallelized atomic predicates computation: We realize that the computation of

atomic predicates can be parallelized. We propose a method to preprocess rules

32

and compute atomic predicates with Apache Spark, which makes the computation

of atomic predicates faster and more scalable.

6.1 Proposed Network Model

The goal is to check packet reachability in the network: can a packet with specific header

value sent from host a reach host b. To do that. To achieve that, we need a network model

to describe packet activation in the packet-switched network. We proposed a network

model by representing packets with predicates, and describing network connections with

a directed graph.

6.1.1 Network Packet

A network packet is a formatted unit of data routed between a source and a destination

on a packet-switched network. Each packet consists of control information and user data.

Control information is used by network device to deliver the packet, for example: desti-

nation network addresses, error detection codes, and sequencing information. Typically,

control information is found in packet headers and trailers. Each packet has a header of

h bits. The header bits are partitioned into multiple fields. For an IPv4 packet header,

it contains fields such as TTL, protocol type, IP address. Notice that not all fields are

needed by a switch to determine the packet where to go. Thus, we only focus on those

reachability relevant fields, in particular, source IP address and destination IP address

in this paper. The value of each field is represented by a sequence of bit variables, for

example, in an IPv4 packet header, the destination IP address fields value is a sequence

of 32 bits 1 and 0. The set of all possible sequences represents the set of all packets,

namely, the packet space.

As we mentioned above, when a packet arrives at a OpenFlow switch, the packet header

will be check against each entry in the flow table. If the packet header matched the

header fields of a entry, the switch will process the packet according to the action defined

in the entry. In this paper, we focus on 3 actions, which are forwarding, rewriting and

dropping. Obviously, packets with identical header values will be processed identically,

those packets set we call it equivalence class. Formally, an equivalence class is defined

as follows.

Definition (Equivalence Class): Given a packet set P , if any p1, p2 ∈ P are treated

identically in the network, we call the set P a equivalence class. ♢

33

We use the value of packet header field to represent a set of packets, particular, we use IP

address fields values to represent the set of all packets which sharing the corresponding

values. For example, by destination IP address value 10.1.1.1/32, we represent all packets

sent to 10.1.1.1/32. Or, by source IP address value 10.0.0.2/32, we represent all packets

sent from 10.0.0.2/32. We abstract away the data portion of a packet because we assume

it does not affect packet forwarding. To represent sequences, we use predicates.

A predicate is a Boolean function which is evaluated to be true or false depending on

the values of its variables. We use predicates as indicator functions. For example, given

a set X and a subset A of X, we use following predicate to represent set A:

p(x|x ∈ X) =

{
true, if x ∈ A;

false, if x ̸∈ A.

The predicate is denoted p in the following contents. Note that if A = X, then p = true;

if A = ∅, then p = false.

Given a 4-bit sequences set X = {v1v2v3v4|vi = {1, 0}, i ∈ {1, 2, 3, 4}} and a subset

A = {1000, 1001}. We have predicate p1 representing subset A.

p1 =

{
true, if v1v2v3v4 ∈ A;

false, if v1v2v3v4 ̸∈ A.

A predicate also can be represented as a Boolean expression. For example, for predicate

p1, we have Boolean expression: p1 = v1∧¬v2∧¬v3. In the form of Boolean expressions,

predicates can conjunct or disjunct with each other. For example: given a predicate

p2 = v1 ∨ ¬v1, p1 ∧ p2 = (v1 ∧ ¬v2 ∧ ¬v3) ∧ (v1 ∨ ¬v1) = p1. The conjunction and

disjunction of predicates represent the intersection and union of the sets represented by

predicates.

Now, we give a definition of predicate in this paper: a predicate is a Boolean formu-

la where each variable represents one bit in IP address value sequences. A predicate

represents a set of packets for which the predicate evaluates to true.

A predicate that equals to true represents the set of all possible packets, namely the

packet space. A predicate that equals to false represents an empty set. The conjunction

of predicates represents the intersection of the corresponding packet sets.

Predicates are represented by binary decision diagrams (BDDs). BDD is a rooted,

directed, acyclic graph, which consists of several decision nodes and terminal nodes.

Conjunction and disjunction on predicates can be efficiently implemented by graph ma-

nipulation algorithms on BDDs [39], [40], [41].

34

Figure 6.1: An example of BDD subgraphs representing a prefix match field 100x.

Fig. 6.1 shows an simple example of BDD subgraphs representing predicate p1. The field

has 4 bits represented by variables v1, v2, v3, v4. A dotted edge denotes an assignment

to false and a solid edge denotes an assignment to true. Notice that different variables

orders may generate different BDD graphs with different numbers of nodes, thus we

order variables by the order of bits in the original sequence.

The IP addresses can be easily converted to predicates by preforming Algorithm 2. We

preprocess each IP address to a binary string, then we examine each bit of the string to

form a predicate. If the bit equals 1 or 0, the corresponding predicates’ variable will be

set to true or false respectively, otherwise the variable will be skipped. The predicate is

formed by logical conjunction of each variables.

35

Figure 6.2: An example of the box model

Algorithm 2 Converting IP addresses to predicates.

Input: A binary IP address string, IP str.

Output: A predicate, P .

P ← ∅; {P is a predicate.}
v ← ∅; {v is a predicates’ variables.}
for i← 1 to len(IP str) do

switch (IP str[i])

case 1:

P ← P ∧ v[i];

case 0:

P ← P ∧ ¬v[i];
case x:

Skip;

end switch

end for

With predicate, we can represent the packets sets. We use a box model to represent

a switch. Fig. 6.2 shows an example of a box with 2 input ports and 2 output ports.

F1, ..., F4 are predicates represented packets set for each port. T4 is a packet transformer

which can modify packet head information. To describe the transmission path of packet

flows, namely, flow paths, we construct a directed graph of all possible flow paths in the

network. We call it forwarding graph.

6.1.2 Forwarding Graph

We model a packet network as a directed graph of port nodes. Each port node is an

input port or an output port of a packets forwarding device, which is referred to as a

switch. Each switch has several input port nodes and output port nodes connected to

another switch’s port nodes. Inside of each switch, the input port node is connected to

36

Figure 6.3: An example of forwarding graph.

all output port nodes. Port nodes are identified by port number. Each port node has a

predicate representing the flow table.

We aggregate those predicates assigned to the same port into a forwarding predicate,

Fi where i denotes the port. For those rules with set action which can modify packet

header, we refer it as packet transformer Ti wherei denotes the specific port. Ti is

a function that maps a predicate to another predicate to represent the procedure of

modify an input packet set to an output packet set and send out from port i. Given a

packet transformer T and a predicate P specifying its input packet set, T (P) denotes

the transformed predicate specifying the output packet set.

For a formalization of the pervious, we define a Forwarding Graph FG = (V,A):

• V : a set of nodes which represents input ports and output ports of packet for-

warding devices (e.g. switches) in the network. Forwarding predicates and packet

transformers are stored in corresponding port nodes.

• A is a set of ordered pairs of nodes, denoted as A = {(x, y) | x, y ∈ V }. We call a

ordered pair a link, which means port x is physically connected to port y, or x,y

belong to the same switch.

Fig. 6.3 shows an example of forwarding graph. In this example, there are 2 switches,

each has 3 port nodes. switch 1 is connected to switch 2 by link (port2, port4). Given a

predicate P which specifies a set of packets, packets set sent out from port 5 is represented

by predicate P ∧ F3 ∧ F5.

With the forwarding graph and the predicates, we are able to compute the packets reach-

ability. However, conjunction and disjunction operations on predicates are computation-

intensive, in the worst case, the computation time is O(2n) [10], where n is the number

of variables in the predicates. To simplify the computation and speed up the verification,

we adopt the concept of atomic predicates [10].

37

6.1.3 Atomic Predicates

To speed up the computation of predicates, we want each predicate to be unique to avoid

overlaps, also keeping the total number of predicates minimum. This idea leads us to

atomic predicates. Atomic predicates are a set of predicates, which can use combination

of a small number of predicates to represent all predicates of other predicates set. Each

predicate is unique, and the total number of atomic predicates is the minimum. The

formal definition is shown in below.

Definition (Atomic Predicate): Given a set of predicates P = {p1, p2, ..., pn}, if a
set of predicates, represented as {a1, ..., am}, satisfies the following five properties, we

call predicates a1, ..., am the atomic predicate of P , and predicate set {a1, ..., am} the

atomic predicate set of P , denoted A(P):

(1) ∀i ∈ 1, ...,m, ai ̸= fasle;

(2) ∨mi=1ai = ture;

(3) if i ̸= j, ai ∧ aj = fasle;

(4) if p ∈ P, p ̸= fasle, then p = ∨i∈S(p)ai, where S(p) ⊆ {1, ...,m};

(5) m is the minimum number such that the set A satisfies the above four properties.

In the definition, property 1 ensures that no atomic predicate represents an empty set.

Property 2 ensures that the atomic predicates set can represent the set of all possible

variable sequences. Property 3 ensures that each atomic predicate is unique. Property

4 means that we can use combinations of atomic predicates to represent any predicates

of original predicates set which is not equal to false. Note that if p = true, then

S(p) = 1, ...,m; if p = false, then S(p) = ∅. Correspondingly, an atomic predicate also

can be represented in the form q1∧q2∧ ...∧qn, where qi ∈ {pi,¬pi}. Property 5 ensures

the atomic predicate set has minimum number of atomic predicates.

If each atomic predicate is identified by an integer i ∈ {1, ...,m} , predicate p corresponds
to a set of integers S(p) ⊂ {1, ...,m}. Thus, the conjunction and disjunction operations

of predicates are replaced by the intersection and union operations of sets of integers,

which are more efficient. Moreover, the set of atomic predicates is much smaller than

original predicates, which can help us reducing storage costs of predicates. For example,

given a predicates set P = {p1, ..., p5} and its atomic predicates set A(P) = {a1, ..., a4},
p1 = a1 and p2 = a2∨a3, we can use integer set S(p1) = {1}, S(p2) = {2, 3} to represent

predicate p1 and p2. Thus, p1 ∧ p2 can be computed by S(p1) ∩ S(p2).

38

We combine the atomic predicates with the forwarding graph introduced before. The

benefit of using atomic predicates is that we can use sets of integers to represent and

compute bit sequences, which are IP address sequences in this paper. Thus, the atomic

predicates are only related to how we represent IP address sequences. Fig. 6.4 shows an

example of forwarding graph with atomic predicates. Instead of using original predicate,

we use a integer set which identify the atomic predicates. In this example, given a predi-

cates set P , which has a set of atomic predicates, represented as A(P) = {a1, a2, a3, a4},
the integer identifier set is S(P) = {1, 2, 3, 4}. In the forwarding graph, the original

predicate P is replaced by a integer set {1, 2, 3, 4}. Each integer denotes a atomic predi-

cate pi, that means P = p1∨p2∨p3∨p4. Packets set sent out from port 5 is represented

by predicate p1.

To compute the atomic predicates set, we need to consider 2 situations, atomic predicates

set for one predicate, and atomic predicates set for multiple predicates. It is easy to

compute the atomic predicates set for only one predicate. Given a predicate p, according

to the definition, its atomic predicates set A({p}) is shown in below:

A({p}) =

{
{true}, ifP = falseortrue;

{P,¬P}, otherwise.
(6.1)

Given a single predicate p and its atomic predicate set A({p}) = {a1, ..., am}. If p =

false, according to property 5, we start from m = 1. According to properties 1, 2, we

have a1 = true which satisfies other properties. Since property 5 requires the minimum

m, A({p}) = {true}. Similarly, If p = true, then A({p}) = {true}. If p ̸= false and

p ̸= true, starting from m = 1, we have A({p}) = {p} according to property 4, which

does not satisfy other properties. If m = 2, we have a1 = p according to property

4 and a2 = ¬p according to properties 1, 2, which satisfies other properties. Hence

A = {p,¬p}.

As for atomic predicates set for multiple predicates, for example, predicate sets P1 and

P2, we first obtain their own atomic predicate sets A(P1) = {a1, ..., al} and A(P2) =

{b1, ..., bm}. Then we compute the atomic predicate set of P1 and P2 {c1, ..., cn} by

following formula.

{ci = aj ∧ bk|ci ̸= false, j ∈ {1, ...l}, k ∈ {1, ...,m}} (6.2)

Now, given a predicates set P = p1, ...pn, to compute its atomic predicates set A(P),

we first compute the atomic predicate set for each predicate in P . Then, we need to

keep computing the atomic predicate set of each two atomic predicate sets by performing

39

Figure 6.4: An example of forwarding graph with atomic predicates.

formula 6.2 until there is only one atomic predicate set left, which is the atomic predicates

set that we wanted A(P). Note that the computation is iterative in nature.

6.2 Proposed Data Plane Verification Scheme

As we mentioned before, the goal is to check packet reachability in the network. We

achieve that with proposed network model.

Our proposed method has 5 phases, preprocessing, computing atomic predicates, building

Forwarding Graph, computing packet reachability and updating. To improve verification

rate in large-scale network with a large number of rules, we use parallel computing in

preprocessing, computing atomic predicates phases.

Parallel computing is a type of computation that divides large problems into smaller

ones, which can then be solved at the same time. Apache Spark is one of the most

popular parallel computing programming frameworks. Spark provides an interface for

programming entire clusters with implicit data parallelism and fault tolerance. Spark al-

so provides the iterative processing capability for machine learning and graphical analysis

applications, which is architecturally impossible for MapReduce [22]. Spark has there-

fore fulfilled the need of parallel execution requirements of analytics professionals and is

an irreplaceable tool in big data community [23].

Resilient distributed dataset (RDD) is the most important element to achieve Spark’s

function. RDD is a distributed data structure physically partitioned inside a cluster

across multiple machines, but logically considered as a centralized entity.

There are two types of operations for expressing application logic in Spark: transforma-

tions, which perform operations on an input RDD to produce one or more new RDDs,

and actions, which launch the series of transformations to return the final result RDD.

For example, there are two operations we valued, map and reduce.

40

Transformation map: map is a transformation operation. Map operation applies a

function to each element of the original RDD and then returns the result as a new

RDD. In the Map, programmer can define his own application logic. The same logic

will be applied to all the elements of RDD. Transformation map takes one element as

input, then process it according to a custom function and returns one result element at

a time. Thus, the original and transformed RDDs will typically have the same number

of elements.

Action reduce: reduce is an action operation. Reduce aggregates the elements of an

RDD according to a custom function. It is a wide operation as it is shuffling data from

multiple partitions and reduces to a single value. The custom function should have two

arguments of the same data type and the return type of the function also must be same

as argument types.

6.2.1 Preprocessing

To convert a flow table into forwarding predicates and packet transformers, we convert

the rules in the flow table first. Then, we check each forwarding rule list for each port,

merge each rule into one forwarding predicate. We use Spark to convert rules into

predicates and merger them into one predicate for each output port. A flowchart of

converting a flow table with n rules into k predicates is shown in Fig. 6.5. The process

has two phases, Map Phase and Reduce Phase.

Map Phase: The flow table in a OpenFlow switch is a list of rules. In this paper, we

define a OpenFlow rule as r :< in port,M, act, pri, sw >. , where in port is incoming

switch port, M → {0, 1, x}l is matching field where l is the length of the match fields

and x is a wildcard bit. In our paper, M includes source and destination IP address;

pri is an integer field serving as a tie-breaker in matching; act includes three actions as

follows: a) fwd(out port) represents forwarding packets out from the specified port; b)

set(addr, out port) represents forwarding packets out of the port after converting their

headers information, in our scheme, M into addr; c) for the sake of consistency drop

represents forwarding packets to a particular port portD.

We record a rule by using a predicate rule:< P,P ′, Outport, pri >. P is the predicate

converted from header fields M . If the predicate is evaluated to be true with a 1-0

sequence x, that means packets with header value x match the rule. Each predicate is

represented by a BDD, which consists of n ≤ L decision nodes for each variable and 2

terminal nodes for true and fasle where L is the number of bits in an IP address. P ′

denotes the set(addr, outport) action which modifies the packet header, if P ′ ̸= true,

41

implying that the original matching fields P ′ should be modified to P ′, a predicate

converted from addr. If not, means the act is fwd(outport) or drop.

With Spark, we can accelerate the preprocessing phase. Once we read all rules into

an RDD, we use map to convert rules to predicates. The IP addresses can be easily

converted to predicates by preforming Algorithm 3. We preprocess each IP address to a

binary string, then we examine each bit of the string to form a predicate. If the bit equals

1 or 0, the corresponding predicates’ variable will be set to true or false respectively,

otherwise the variable will be skipped. The predicate is formed by logical conjunction

of each variables.

Algorithm 3 Converting IP addresses to predicates.

Input: A binary IP address string, IP str.

Output: A predicate, P .

1: P ← ∅; {P is a predicate.}
2: v ← ∅; {v is a predicates’ variables.}
3: for i← 1 to len(IP str) do

4: switch (IP str[i])

5: case 1:

6: P ← P ∧ v[i];

7: case 0:

8: P ← P ∧ ¬v[i];
9: case x:

10: Skip;

11: end switch

12: end for

Reduce Phase: As for a flow table, we use reduce to convert multiple predicates into

one predicate.

In an OpenFlow switch, a packet may match multiple rules, switch will choose the rule

with highest priority. Notice rules with longer match fields has higher priority. To

compute a forwarding predicate for each port, we first convert each rule’s header fields

M to a predicate stored by BDD. Then, we sort the rules in the flow table in descending

order of priority and use Algorithm 4 to compute the forwarding predicate for each port.

At the beginning, we set all forwarding predicates to false, which indicates no packet

is allowed to forward. Then we check each forwarding rule list for each port, merge

each rule into one forwarding predicate. As for those packet transformers, we record the

42

original predicates which represent the packets sets matched and the modified predicates

which represent the modified packets sets.

Algorithm 4 Converting a flow table to forwarding predicates.

Input: A sorted list of rules; A set of ports, 1, ..., n

Output: A set of forwarding predicate, F1, ..., Fn. and transformer T1, ..., Tn

1: for i← 1 to n do

2: Fi ← false;

3: end for

4: fwd← false

5: for i← 1 to m do

6: if P ′
i = true then

7: FOutporti ← FOutporti ∨ (Pi ∧ ¬fwd);
8: else

9: TOutporti ← TOutporti ∨ (Pi ∧ ¬fwd);
10: TOutporti(Pi)← P ′

i ;

11: end if

12: fwd← fwd ∨ Pi;

13: end for

Figure 6.5: Flowchart of preprocessing with Spark.

6.2.2 Computing Atomic Predicates with Spark

The algorithm is pretty straightforward. Given a predicates set P = {p1, ...pn}, to

compute its atomic predicates set A(P), first, we compute the atomic predicates set for

each predicate in P . Then, we compute the atomic predicates set of each two atomic

predicates sets until there is only one atomic predicates set left, which is A(P). A

flowchart of computing the atomic predicate set of k predicates is shown in Fig. 6.6

with two phases, Map Phase and Reduce Phase.

43

Figure 6.6: Flowchart of computing atomic predicates set with Spark.

Map Phase: The main task is to compute the atomic predicates set for each forwarding

predicates. We first transform all predicates to a base RDD that can be operated

on in parallel. The elements of the base RDD are predicates. Then we use map to

transform each predicate to its atomic predicates set by performing the formula 6.1. A

new RDD will be created. The elements of the new RDD are atomic predicates sets of

the predicates.

Reduce Phase: The outputs from the map phase are aggregated in reduce phase.

Action reduce computes formula 6.2 which takes two atomic predicates sets and returns

one in parallel. Reduce phase returns only the result of the reduce which is the atomic

predicates set of all predicates. Since the basic idea of atomic predicates is using sets

of integers to represent predicates, what we need to do is to compute atomic predicates

of all predicates presented in our network model. In our network model, a packet filter

is represented by one forwarding predicate and a packet transformation is represented

by two predicates, the original predicates and the modified predicates. There is no

need to change the algorithm of computing atomic predicates, we just need to compute

atomic predicates of all three types of predicates. Notice that the output predicate of

transformer T (P) also need to be computed, otherwise they may not be represented by

the current atomic predicates set.

6.2.3 Building Forwarding Graph

The goal here is to construct a directed forwarding graph of all possible flow paths in the

network. Nodes in this forwarding graph represent ports of switches and edges represent

the dependency of the ports. A node representing an input port will be connected to all

nodes which representing output ports in the same switch. For the node representing

an output port, it will be connected to nodes which representing other switch’s input

ports if it can send packets to by a data link. The packet sets that can go through a

44

port are represented by corresponding forwarding predicates and transformers. For the

sake of simplicity, in the following paper we refer to all these nodes as ports which they

represent for.

6.2.4 Computing the Reachability

We check the reachability by computing the reachability tree from each port with the

forwarding graph. A reachability tree is rooted at a source port and consists every flow

pathes from the source port. The path is represented by nodes which stores a port

identifier and the packet set that can reach to the port from the source port.

After converting all forwarding predicates to sets of integers, we can compute reachability

trees for verifying data plane properties. Computing the reachability tree from a source

port detects forwarding loops for all packets injected into the source port, if any. More

generally, reachability trees can be used to verify safety and progress properties specified

in a temporal logic: for example, verifying that all packets injected into the source port

traverse a specified sequence of required waypoints in the network. Note that loops and

black holes can be found in this process.

[H] Algorithm 5 Building Reachability Tree

Input: A start port, s; Integer sets representing Forwarding rules for each port, S(P1), ..., S(Pm);

Transformer predicates, T1, ..., Tm; The topology of the network, Topo.

Output: A Reachability Tree, Re Tree

1: Re Tree.AddNode(s, S(Ps));

2: visited(s)← TRUE;

3: DFS(s, S(Ps));

4: return Re Tree;

5: DFS(t, temp);

6: for v ∈ Topo.Next(t) do

7: if !visited(v) then

8: if ∃Tv then

9: temp← Tv(temp);

10: end if

11: ints← temp ∩ S(Pv)

12: if int ̸= ∅ then
13: Re Tree.AddNode(v, ints);

14: visited(v)← TRUE;

15: DFS(v, ints);

16: else

45

17: if v is an output port&&t is an input port then

18: Send Black hole detected message;

19: Break;

20: end if

21: end if

22: else

23: Send Loop detected message;

24: Break;

25: end if

26: end for

The reachability tree from a port s to all other ports in the network is computed by

performing a depth-first search (DFS) shown in Algorithm 5. During the DFS, when

a search branch visiting a port x, if one of the following 3 conditions happens: 1. the

integer set which represents packets that can reach port x is empty; 2. port x is an

output port and it has no links connected to any input port; 3. port x has been visited

before in the search. The search branch is terminated and will backtrack and continue

DFS until no more port node in the network can be reached. Notice that if condition 3

happens, it means we detect a loop. When DFS finishes, a reachability tree from port

s to all other ports in the network is created. Once we obtain the reachability tree, we

can check the packet reachability.

Fig. 6.7 shows the reachability tree of Fig. 6.4. Node port1 labeled by 1, 2, 3, 4 forwards

only packets in atomic predicates p1∨p2∨p3∨p4. port3 labeled by 1, 3, 4 transforms p1 to

p3 then forwards packets set represented by p1 ∨ p3 ∨ p4. Each node stores the reachable

ports and final set of integer for each port. Node also records wither the integers set is

transformed or not.

6.2.5 Application Cases

With the reachability tree, we can check packet reachability to verify 2 data plane

properties, loop-freedom, nonexistence of black holes. We also can detect the firewall

violation, firewall bypass threat with packet reachability.

6.2.5.1 Firewall Model

To detect firewall bypass threat, we need a model for firewall rules to work with our

proposed network model. For firewall rules, we also use predicates to present packet

46

Figure 6.7: An example of a reachability tree.

sets. A firewall rule list is a collection of all connections denied by the firewall rules. In

a firewall the DENY rules are complementary to ALLOW rules, hence we only care the

DENY rules. We define a firewall rule as < portsrc, portdst, predF >, which indicates

every packet with header values satisfied predicate predF sent form portsrc to portdst is

denied.

Considering the example shown in Fig. 4.2, we need to record both source address and

destination address in our predicates. We define predF = predsrc∧preddst where predsrc
and preddst are predicates indicate source address and destination address respectively.

If a address has h bits, we use variable set v1, v2, ...vh to represent each bit of source

address, and use another variable set vh+1, vh+2, ...vh+h for destination address. The

number of nodes in the BDD graph representing predF is ≤ 2 + 4h [10].

6.2.5.2 Problem Definition

With the firewall model, we can formally define those 2 data plane properties, loop-

freedom, nonexistence of black holes and the firewall violation, firewall bypass threat in

our proposed network model.

Loops: A loop in the graph is equivalent to at least one strongly connected component in

the directed graph. Two port nodes x and y belong to a strongly connected component,

if there is a path from x to y and a path from y to x.

Firewall bypass threat: Given a firewall rule: < portsrc, portdst, predF >, S(predF)

denote the integer set of atomic predicates representing predF . If there exist a predicate

47

p, S(p) ⊆ S(predF), and p can reach portdst from portsrc by transforming, the firewall

rule is bypassed.

Black holes; A set of packets that are dropped due to no forwarding entry. For a switch

node with output ports port1, ..., portn, let S(F1), ..., S(Fn) be the set of atomic predicate

identifiers for each output port, S(P) be the set of all atomic predicate identifiers. There

is a black hole in the switch if: S(p)− ∪ni=1S(Fi) ̸= ∅.

6.2.5.3 Verification with Reachability Tree

With the reachability tree indicating packet reachability, we can detect loops, black holes

to verify loop-freedom, nonexistence of black holes. Combining with the firewall model,

we also can detect firewall bypass threat.

Loop Detection: Loop detection is performed by computing the reachability tree for

every port. During the DFS, if a port has been visited before in the search, that means

there is a loop.

Black Hole Detection:Black Hole can be detected by calculating following set for each

switch: S(p) − ∪ni=1S(Fi). If the set is not empty, that means there is a black hole in

this switch.

Detect Firewall Bypass Threat: The detection can be processed with an existing

reachability tree when adding a new firewall rule or after the system initialization. Once

we create a reachability tree, we can check the reachability of each firewall rule to detect

the violation in case of new firewall rules are added. If violations exist, the administrator

will be informed. To identify the violation with an existing reachability tree of portsrc,

we use Algorithm 6. First, we check whether the reachability tree of portsrc contains

portdst. If portdst exist in the tree, which means portdst is reachable from portsrc, we will

check the reachability of the denied packet set predF . preddst will be conjuncted with

atomic predicates, if the conjunction is not empty, then we traverse the reachability tree

and track those atomic predicates, if they are transformed, then track the transformed

atomic predicates. Finally, if those atomic predicates can reach portdst from portsrc by

transforming, that means the firewall rule is bypassed.

[H] Algorithm 6 Identifing the violation with a existing reachability tree

Input: A Reachability Tree, Re Tree; A firewall rule including portsrc, portdst, predsrc

and preddst; Atomic Predicates of forwarding rules, AP1, ..., APn).

Output: Whether the violation exists or not

1: if portdst exists in Re Tree(portsrc) then

48

2: if x ∈ Re Tree(portsrc).portdst.value and APx ∧ preddst ̸= ∅ {value includes

atomic predicates identifier.} then
3: final← x;

4: end if

5: if APy ∧ predsrc ̸= ∅ then
6: start← y;

7: end if

8: for i ∈ Path(portsrc, portdst) {Path records the path also whether which atomic

predicates identifier transformed or not.} do
9: if i = portdst then

10: if start = final then

11: return V iolation exists.;

12: else

13: return No violation detected.;

14: end if

15: else

16: if start is transformed then

17: start← transformed start;

18: end if

19: end if

20: end for

21: end if

Once we finished the initialization, an active detection will be executed to check po-

tentially violation. This is designed for better deployability. Our method does not

require the network to be secure before the implementation. Thus, users can deploy the

detection at any period of the network.

6.2.6 Dynamic Update

An important requirement of network verification is to support dynamic changes to the

network in real time. Network changes like link and rule changes require addition and

deletion of predicates. We adopt the method presented in [10] to achieve rules updating

by updating predicates and the corresponding graphs accordingly. These methods are

also used for addition/deletion of predicates after a network link addition/deletion which

causes predicates changes. There are three events as follows.

Link update: When a link goes up or down, the set of predicates and the set of atom-

ic predicates are not changed. However, reachability trees from source ports may be

49

affected by a link update event. We check each reachability tree to locate the corre-

sponding nodes, then update the forwarding graph. A switch up event can be handled

as a multi-links up event and a switch down event can be handled as a links down event.

Forwarding rule update: When a new rule is added, or deleted, it may change one

or more predicates of some ports. Our method will check if a forwarding predicate or

packet transformer is changed by the rule update; if so, it computes a new predicate for

the port and updates the set of atomic predicates. If the set of atomic predicates remains

unchanged, the reachability tree will be updated. Otherwise, the reachability tree will

be completely recomputed. The updated predicates and reachability tree will remain

temporary before being checked against the firewall rule during building, if violation

detected, the update will be canceled and the administrator will be informed.

Firewall rule update:: When a new firewall rule is added, new violation may aris-

es. Before updating the firewall rule, the reachability tree will be checked against the

new firewall rule, if violation detected, the administrator will be informed. Obviously,

deleting a firewall rule will not introduce any new firewall policy violation.

6.3 Implementation and Performance Evaluation

We implement our method and run experiment based on Ubuntu Linux operation system

version 18.04, the system is hosted on an Intel Core i5-6500 3.20GHz CPU with 7.7GB

RAM.

Table 6.1: Experimental Datasets Information.

No. of hosts No. of rules

Dataset 1 4 20

Dataset 2 8 88

Dataset 3 16 368

Dataset 4 32 752

We run Spark in local mode. Spark has an advanced Directed Acyclic Graph (DAG)

execution engine that supports acyclic data flow and in-memory computing. It can run

programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.

In local mode, Spark spawns all the execution components - driver, executor, and master

in the same single Java Virtual Machine (JVM). The default parallelism is the number

of threads as specified in the master URL. We run Spark locally with as many worker

threads as logical cores on our machine, in our experiment, 4 threads. This is the only

mode where a driver is used for execution.

50

Figure 6.8: A topology example of the datasets.

We generate four datasets to evaluate the performance. Those datasets share the same

topology, shown in Fig. 6.8, two switch connected to each other and serval hosts. We use

a network simulator Mininet [36] and an open source OpenFlow controller Floodlight

[13] to generate the data. Mininet is a fast, lightweight but powerful network emula-

tor. Mininet is capable to create a realistic virtual network running functional hosts

and switches. Mininet also provides the capability of interacting with user’s custom

OpenFlow controller. We choose Floodlight as our controller because it has a number of

sample module applications, such as a leaning switch and a firewall. Floodlight comes

with a web based and Java based GUI and most of its functionality is able to access

through a REST API. Floodlight is able to automatically find the shortest path for

table-miss packets, adds the appropriate flow entries into related switches, and lets the

switch continue its forwarding.

Floodlight also has a firewall module which enforces ACL rules by monitoring Packet IN

messages. ACL rules here are set of conditions that allow or deny a traffic flow at its

ingress switch.

The detailed statistics are list in Table 6.1. In all of our experiments, we use our

reachability algorithms to compute reachability of each pair of ports and measure the

average time overhead of building the forwarding graph and computing reachability of

on pair of ports.

For efficiency comparison, we modify the detection method in our previous research [42]

which is a simplified HSA-based method designed to verify firewall bypass threat in SDN

networks. We choose it since it shares the similar proposes with the proposed method

which are packet reachablity verification and firewall bypass threat detection. To our

best knowledge, it is capable to represent similar HSA-based methods. The previous

research uses a graph-based network model also called as forwarding graph. In the

51

Figure 6.9: Computation time (ms) of initialization.

Figure 6.10: Computation time (ms) of reachablity computation.

Figure 6.11: Computation time (ms) of computing atomic predicates.

52

previous forwarding graph, each node represents a rule with a IP address bit sequence.

As we mentioned before, HSA-based methods suffer the same disadvantage that when

the number of rules increases, the number of nodes increases accordingly. It will result

in a huge graph which is difficult to achieve fast verification and update. In this paper,

we use ports instead of rules as nodes to build the graph model. Thus, the graph size

will remain relatively smaller comparing to the previous research. Meanwhile, since we

use predicates instead of bits sequences to represent rules, we can achieve faster rule

verification. Note, in our experiments, we force our method to evaluate each incoming

flow entry against each firewall policy without any whitelisting rules, in practice, this

kind scenario could represent a worst case. The results from this experiment are shown

in Fig. 6.11 and Fig. 6.10. It can be seen that proposed method is much faster than the

previous method whether in initialization or reachablity computation, especially when

dataset scale up. This is thanks to atomic predicates which compress the redundancy

of rules so the forwarding graph will have much less nodes than the previous method,

therefore, speed up the computation.

We compare the computation time of preprocessing and computing atomic predicates

with or without Spark. The results are shown in Fig. 6.11. Due to Spark’s own

system overhand, it does not outperform the original computation with small dataset,

but it is faster while dealing with bigger dataset. And note that, we run Spark in local

model. Within nowadays data center, where likely has Spark deployed in clusters due

to its popularity, the proposed method is able to achieve faster computation and better

scalability.

Table 6.2: Storage overheads of reachability trees of all ports (bytes).

Proposed Method Previous Method

Dataset 1 6400 5930

Dataset 2 7820 8875

Dataset 3 18323 325945

Dataset 4 32517 720986

We also compare the storage overhead of our proposed method and previous method. We

calculate the memory usage for storing reachability trees of all ports in proposed method

and the whole forwarding graph, which consists all ports’ reachability information, in

previous method. The results are presented in Table 6.2. It can be seen that proposed

method is more space efficient than previous method along with increasing rules in

datasets.

To test the firewall violation detection mechanism, we adopt the method used in [32].

Our goal is to measure the delay caused by detecting the firewall bypass threat. We

simulate the scenarios described in Chapter 4 by modifying the datasets we described

53

Figure 6.12: Computation time (ms) of detecting firewall violation computing time.

above. We add a set of candidate forwarding rules with transform operation to allow 2

hosts to connect to each other. Then we set a firewall rule to block the communication

between those 2 hosts. We check those candidate rules against the firewall rule to

simulate rule update events. The result is shown in Fig. 6.12. The simulation results

show that our method is able to detect the firewall bypass threats and reject those

update requests. Since the algorithm is similar to computing reachability, it is not hard

to tell that our method is faster than the previous method.

6.4 Conclusion

Network errors in data plane are very common in nowadays network. New security

challenges also come out with new technology. In this paper, we propose an atomic

predicates based data plane properties verification method to verify data plane proper-

ties for SDN using Spark. By modeling the network as a directed graph, the problem

of packet reachability verification is formulated to the graph reachability computation

problem. We adopt the concept of atomic predicates so that we can compute packet

reachability efficiently by compressing the redundancy of rules by representing a very

large set of packets by a unique predicate, which can be identified by a single integer.

This reduces the number of nodes in the forwarding graph and the computation time

of packet behavior. We also adopt the parallel process computational framework Spark

to accelerate the computation and achieve scalability. With the results of packet reach-

ability verification, we can detect loops, black holes to verify 2 data plane properties,

loop-freedom and nonexistence of black holes. Combining with the firewall model, we

also can detect a type of access control violation called firewall bypass threat.

54

Our experimental results demonstrate that proposed method is much faster and space

efficiency for computing reachability than our previous method. Compared to other data

plane properties verification methods, proposed method is not only capable of verifying

data plane properties including loop-freedom, nonexistence of black holes, but also can

detect firewall bypass threat. We also discussed the performance of computing atomic

predicates with Spark. Compared to the method without Spark, the method with Spark

shows its advantage in scalability with bigger datasets and clusters.

55

Chapter 7

Atomic Predicate Based Network

Property Verification for SDN

Networks

In this research, we address the challenge of designing a fast network property verification

tool for large scale SDN networks. We propose a novel detection method based on

modeling the network to a directed graph. The problem is formulated to the reachability

computation problem. We adopt the concept of atomic predicates and AP Tree so that

we can detect loops and black holes efficiently. We also adopt the parallel process

computational framework Spark to accelerate the computation and achieve scalability.

Our experimental results demonstrate the proposed method is much faster for computing

reachability than our previous method.

7.1 Network Model and Problem Statement

In this paper, we represent packets with atomic predicates, and describe network con-

nections with a directed graph.

7.1.1 Network Model

In SDN networks, a data packet is a formatted unit of data routed between a source

and a destination. Each packet has a header of h bits. The header bits are partitioned

into multiple fields. We only focus on those reachability relevant fields, in particular,

Internet Protocol (IP) address in this paper. The value of each field is represented by

56

a sequence of bit variables. When a packet arrives at a switch, the packet header will

be parsed to match against forwarding rules in the flow table which is a list of rules. If

the packet header matched the header fields of a rule, the switch will process the packet

according to the actions defined by the rule. Packets with identical header values will

be processed identically.

We use the value of packet header field to represent a set of packets, particular, we use IP

address fields values to represent the set of all packets which sharing the corresponding

values. For example, by destination IP version 4 address value 10.1.1.1/32, we represent

all packets sent to 10.1.1.1/32. We abstract away the data portion of a packet since

we assume that it does not affect packet forwarding. To represent sequences, we use

predicates.

7.1.2 Predicate

A predicate is a Boolean function which is evaluated to be true or false depending on

the values of its variables. We use predicates as indicator functions.

A predicate also can be represented as a Boolean expression. For example, for predicate

p1, we have Boolean expression: p1 = v1∧¬v2∧¬v3. In the form of Boolean expressions,

predicates can conjunct or disjunct with each other. For example: given a predicate

p2 = v1 ∨ ¬v1, p1 ∧ p2 = (v1 ∧ ¬v2 ∧ ¬v3) ∧ (v1 ∨ ¬v1) = p1. The conjunction and

disjunction of predicates represent the intersection and union of the sets represented by

predicates.

Now, we give a definition of predicate in this paper: a predicate is a Boolean formu-

la where each variable represents one bit in IP address value sequences. A predicate

represents a set of packets for which the predicate evaluates to true.

A predicate that equals to true represents the set of all possible packets, namely the

packet space. A predicate that equals to false represents an empty set. The conjunction

of predicates represents the intersection of the corresponding packet sets.

Predicates are implemented as binary decision diagrams (BDDs). BDD is a rooted,

directed, acyclic graph, which consists of several decision nodes and terminal nodes.

Conjunction and disjunction on predicates can be efficiently implemented by graph ma-

nipulation algorithms on BDDs [39], [40], [41].

IP addresses can be easily converted to predicates. We preprocess each IP address to a

binary string, then we examine each bit of the string to form a predicate. If the bit equals

1 or 0, the corresponding predicates’ variable will be set to true or false respectively,

57

otherwise the variable will be skipped. The predicate is formed by logical conjunction

of each variables.

We model an SDN network as a directed graph of switches. Each switch has serval input

ports and output ports connected to other switches or hosts. Switches are identified by

switch IDs. Each output port has a predicate representing the packets set that can

go through this port according to corresponding rules. Those predicates are called

forwarding predicates.

For a formalization of the pervious, we define a Forwarding Graph FG = (V,A):

• V : a set of nodes which represents switches and hosts in the network.

• A is a set of ordered pairs of nodes, denoted as A = {(x, y) | x, y ∈ V }. We call a

ordered pair a link, which means node x is physically connected to node y.

Figure 7.1: (a) Three predicates. (b) The packet header space and five atomic pred-
icates. (c) A sample network including the three predicates.

7.2 Problem Statement

Since SDN allows network applications to operate with switches in the networks directly,

it faces a variety of management challenges. In this paper, we focus on checking reach-

ability and verifying loop-freedom and nonexistence of black holes. The goal is to check

packet reachability in the network. In our network model, reachability means that can

58

a packet with specific header values sent from node x reach node y. If the packet can

reach node y through a certain path, we say node y is reachable from node x. Like the

other tools, the reachability check is the cornerstone of our method. As the result of

computing the reachability of a packet flow, we can obtain the whole transmission path

of the flow, which is used for network properties analysis.

The set of packets that can travel through a sequence of switches can be represented by

the conjunction of the forwarding predicates. For example, packet set arrived at h2 form

s1 in Fig. 7.1 can be computed and represented by p2∧p3. Since computing conjunction is

computation-intensive. To enhance the performance we use atomic predicate to simplify

the computation.

7.2.1 Atomic Predicate

The conjunction and disjunction of predicates are highly computation-intensive since

they operate on multidimensional sets. To simplify the computation and speed up the

verification, the concept of atomic predicate is introduced in [10]. The main idea is to

use combination of a small number of predicates to represent any predicate of another

predicates set. This kind small number of predicates are called as atomic predicates.

The set of all atomic predicates is called as atomic predicates set. Each atomic predicate

is unique, and the total number of atomic predicates is the minimum.

The formal definition is shown in below.

Definition (Atomic Predicate): Given a set of predicates P = {p1, p2, ..., pn}, if a
set of predicates, represented as {a1, ..., am}, satisfies the following five properties, we

call predicates a1, ..., am the atomic predicate of P , and predicate set {a1, ..., am} the

atomic predicate set of P , denoted A(P):

(1) ∀i ∈ 1, ...,m, ai ̸= fasle;

(2) ∨mi=1ai = ture;

(3) if i ̸= j, ai ∧ aj = fasle;

(4) if p ∈ P, p ̸= fasle, then p = ∨i∈S(p)ai, where S(p) ⊆ {1, ...,m};

(5) m is the minimum number such that the set A satisfies the above four properties.

If each atomic predicate is identified by an integer i ∈ {1, ...,m} , predicate a corresponds

to a set of integers S(P) ⊂ {1, ...,m}. Thus the conjunction and disjunction operations

of predicates are replaced by the intersection and union operations of sets of integers,

59

which are more efficient. Moreover, the set of atomic predicates is much smaller than

original predicates, which can reduce storage costs of predicates.

With proposed network model, forwarding graph and predicates, we can compute the

reachability of a packet with specific header values. As an illustration, Fig. 7.1(a) shows

three forwarding predicates p1 (triangle), p2 (square), and p3 (circle), each of which

represents a set of packets that are evaluated to true by a predicate. Each forwarding

predicate specifies a set of packets that can pass the corresponding rules. Fig. 7.1(b)

shows the three predicates in the packet space. All packets in this example are specified

by five atomic predicates, a1 to a5. Each predicate is equal to the disjunction of a

subset of atomic predicates. For example, p2 = a3 ∨ a4. According to the definition,

a1 ∨ a2 ∨ a3 ∨ a4 ∨ a5 = true. Atomic predicate also can be represented in the form

q1 ∧ q2 ∧ ... ∧ qn, where qi ∈ {pi,¬pi}. This form characterizes the behaviors of all

packets it evaluates to true by the atomic predicate. For example, a4 = ¬p1 ∧ p2 ∧ p3

represents the packet behavior along each port: all packets evaluated to true by a4 can

pass the flow table of p2 and p3 but cannot pass p1. We call it the packet behavior

expression.

Combine the packet behavior expression and forwarding graph, we can obtain the for-

warding path for a packet set. In the network shown in Fig. 7.1(c), Let p1 specify the

set of packets that can be forwarded at switch s1 to its output port to host h1, p2 specify

the set of packets that can be forwarded at switch s1 to its output port to switch s2,

and p3 specify the set of packets that can be forwarded at switch s2 to its output port

to host h2. A packet specified by a4 = ¬p1 ∧ p2 ∧ p3 is forwarded at s1 by the path

s1 > s2 > h2. A packet specified by a5 = ¬p1 ∧¬p2 ∧ p3 is forwarded to h2 if it is at s2,

but will be dropped if it is at s1.

7.2.2 AP tree

To efficiently obtain the packet behavior expression, we use Atomic Predicate (AP) tree.

The AP Tree is a data structure introduced in [11] to quickly classify a packet to an

atomic predicate.

An AP Tree is a binary tree which nodes are labeled by predicates. Starting from the

root, at each internal node, the input packet is evaluated by the predicate in the label. If

the result is true, the packet continues to be evaluated in the left subtree. Otherwise it

goes to the right sub-tree. An AP Tree with (k+1) levels is constructed from evaluating

each of the k predicates at each level of internal nodes. A leaf node is then labeled by

q1 ∧ q2 ∧ ... ∧ qk, qi ∈ {pi,¬pi}, which specifies the set of packets reaching the leaf. Fig.

7.5(a) shows the AP Tree of the three predicates in Fig. 7.1(b). Shaded nodes indicate

60

leaf labels that are false, in other words, representing empty set. By searching this AP

tree, we can quickly obtain the packet behavior expressions for atomic predicates.

7.2.3 Loop-freedom and Nonexistence of Black Holes

We verify specific two essential network properties, loop-freedom and nonexistence of

black holes. In SDN network, a loop could occur when mistakenly installing forwarding

rules. If a packet is sent into a looped path, it can loop until its time to live (TTL)

value expired. On the other hand, a black hole could happen when mistakenly deleting

a forwarding rule. If a packet is forwarded to a switch with no match forwarding rules,

it will be dropped without informing the source. With the network model, we define

loops, black holes as follow.

Loops: A loop in the graph is equivalent to at least one strongly connected component

in the directed graph. Two nodes x and y belong to a strongly connected component, if

there is a path from x to y and a path from y to x.

Black holes; A set of packets that are dropped due to no rule matches. For a switch

node connected to other switches, if a packet cannot be determined at it, we conduct

that there is a black hole in this switch.

7.3 Proposed Method

As we mentioned before, the goal is to check packet reachability in the network. We

achieve that with proposed network model.

Our proposed method has 5 phases, preprocessing, computing atomic predicates, AP Tree

construction, computing packet reachability and updating. To simplify the computation

and speed up the verification, we combine the concept of atomic predicates and Spark

into preprocessing, computing atomic predicates, AP Tree construction phases.

7.3.1 Preprocessing

To convert a flow table into forwarding predicates, we convert the rules in the flow table

first. Then, we check each forwarding rule list for each port, merge each rule into one

forwarding predicate.

With Spark, we can accelerate the whole preprocessing. Once we read all rules, we use

map to convert multiple rules to predicates parallely. As for a flow table, we use reduce

to convert multiple predicates into one predicate.

61

Figure 7.2: A small network consists two switches.

For example, Fig. 7.2 shows a small network consists two switches s1, s2, each has a

flow table with serval forwarding rules. We use Spark to convert rules into predicates

and merger them into one predicate for each output port. The flow chart is shown in

Fig. 7.3.

Figure 7.3: Flow chart of preprocessing with Spark.

7.3.2 Computing Atomic Predicates

Given a predicates set P = p1, ...pn, to compute its atomic predicates set A(P), first,

we compute the atomic predicates set for each predicate in P . Then, we compute the

atomic predicates set of each two atomic predicates sets until there is only one atomic

predicates set left, which is A(P).

To compute the atomic predicate set, we use map to generate the atomic predicate set

for each forwarding predicate and then use reduce to compute the final atomic predicate

set via performing the computation of two atomic predicate sets. The flow chart is

shown in Fig. 7.4.

62

Figure 7.4: Flow chart of computing atomic predicates set with Spark.

7.3.3 AP Tree Construction

To classify a packet to an atomic predicate and obtain the packet behavior expression,

we simply searches the AP Tree by evaluating the packet until the leaf labeled by the

atomic predicate is found.

Figure 7.5: AP Tree of predicates in Fig. 7.1 (b). (a) Original AP Tree. (b) Pruned
AP Tree. (c) Optimized AP Tree.

The depth of a leaf is defined to be the number of predicates evaluated to reach the leaf

[11]. In the worst case, for an AP tree with 2k atomic predicates, finding a leaf needs

to evaluate all k predicates. Reducing the average depth of leaves can reduce the query

time. Therefore construction optimization is important to AP tree performance.

63

AP Tree can be optimized by removing a sub-tree if all leaves in the subtree are labeled

by false since no packet can reach any of these three leaves. For example, in Fig. 7.5(a),

p1 ∧ p2 ∧ p3, p1 ∧ p2 ∧¬p3, and p1 ∧¬p2 ∧ p3 are all false according to the relationships in

Fig. 7.1(b), which specify empty sets of packets. After the ”empty” nodes are removed,

internal nodes with only one child will be removed since there are no need to check them.

Fig. 7.5(b) shows the pruned AP Tree has average depth (1+3+3+3+3)/5 = 2.6. The

average depth of the AP Tree also may be different if predicates are placed in a different

order. In Fig. 7.5(c), the predicates are placed at three levels in the order of p2, p3, p1,

resulting the average depths being 2.4. One effective ordering is placing predicates which

are equal to the disjunction of a subset of fewer number of atomic predicates at lower

levels. For example, in Fig. 7.5(c), p1 is placed at the lowest level since it is equal to a2.

Let R(p) denote the subset of atomic predicates whose disjunction is p. |R(p)| denotes
the cardinality of R(p). For example, since p1 = a2, R(p1) = {a2}, |R(p1)| = 1. For

p2 = a3 ∨ a4, we have R(p2) = {a3, a4}, |R(p2)| = 2. To reduce average leaf depth, the

AP Tree is constructed by placing all predicates onto the tree in descending order of

|R(pi)|, where |R(pi)| is counted for each predicate pi.

To reduce the average depth of leaves, once we obtained the atomic predicates set, we

compute the subset of atomic predicates |R(pi)| for each predicate pi. Then use Spark

to sort the predicates by |R(pi)| and construct the AP tree.

7.3.4 Computing Packet Reachability

To compute the packet reachability, the network information, switches information, and

the atomic predicates are needed.

Thanks to the packet behavior expression, for any forwarding predicate pi, we can easily

check whether the predicate evaluates to true or false for the packet. Recall that pi

represents a set of forwarding rules of an output port. Hence we can determine at any

switch whether the packet is dropped and which port it is forwarded to. Starting from

the ingress switch, we find the output port to which the packet is forwarded and then

determines the next-hop switch, until the packet stops. If the packet is a multicast

packet, it may be forwarded to multiple ports. We continue to find the forwarding ports

on the next-visited switches until the packet reaches the destination or is dropped. The

packet paths are thus obtained.

Fig. 7.6(a)shows an example for computing reachability for packets specified by atomic

predicate a4. Consider a packet which arrives at the switch s1 and it is classified to

atomic predicate a4 by searching the AP Tree. The representation, ¬p1 ∧ p2 ∧ p3, of a4

64

shows that the packet is forwarded to s2 because p1 is false and p2 is true for the packet.

Similarly at s2, the packet is forwarded to h2 because p3 is true for the packet.

Figure 7.6: Computing reachability for packets specified by a4.(a) Normal path. (b)
Loop. (c) Black hole.

Loop Detection: Loop detection is performed while computing the reachability. If the

next-hop switch has been visited before in the search we conduct there is a loop. For

example, Fig. 7.6(b) shows a loop between s1 and s2 for packet specified by a4.

Black Hole Detection: If the packet behavior cannot be determined at a none egress

switch, which still has output link to other switches, we conduct there is a black hole in

this switch. For example, Fig. 7.6(c) a black hole at s2 for packet specified by a4.

7.3.5 Updating

An important requirement of network verification is to support dynamic network changes,

including link and rule changes, both of which require addition and deletion of predicates.

We use the method presented in [10] to convert a rule insertion or deletion to predicate

change. If there is no predicate change after a rule update, AP Tree does not need to

be updated. Otherwise, the old predicate will be removed, and the updated predicate

will be added into the AP Tree. These methods are also used after addition/deletion of

a network link which requires addition/deletion of predicates.

Add a Predicate: When a new predicate p is added, for each leaf node representing

an atomic predicate a in the current AP Tree, we compute a ∧ p and a ∧ ¬p. If none

of them is false, two children are added to the leaf node, representing a ∧ p and a ∧ ¬p
respectively. If one and only one of the two conjunctions is false, the label of the leaf

65

node is replaced by the other conjunction. If both conjunctions are false, this leaf node

will be unchanged.

Delete a Predicate: To delete an existing predicate p from the AP Tree, we do not

remove all internal nodes labeled by p. This is because after the removal of a node,

merging the two sub-trees rooted at its children is very difficult. Instead, we still keep

p in the AP Tree, but mark it as deleted in the list of all predicates. A query packet

is still processed by the AP Tree to find its leaf node representing its atomic predicate.

It is still evaluated by the deleted predicates to determine which sub-tree to visit next.

However, when computing packet behaviors, all deleted predicates will be ignored.

7.4 Implementation and Performance Evaluation

We implement our proposed approach and run experiment based on Ubuntu Linux

operation system version 18.04, the system is hosted on an Intel Core i5-6500 3.20GHz

CPU with 7.7GB RAM.

We run Spark in local mode. Spark has an advanced DAG (Directed Acyclic Graph)

execution engine that supports acyclic data flow and in-memory computing. It can run

programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.

In local mode, Spark spawns all the execution components - driver, executor, and master

in the same single JVM. The default parallelism is the number of threads as specified

in the master URL. We run Spark locally with as many worker threads as logical cores

on our machine, in our experiment, 4 threads. This is the only mode where a driver is

used for execution.

Table 7.1: Experimental Datasets Information.

No. of hosts No. of rules

Dataset 1 4 20

Dataset 2 8 88

Dataset 3 16 368

Dataset 4 32 752

We generate four datasets to evaluate the performance. Those datasets share the same

topology, shown in Fig. 7.7, two switch connected to each other and serval hosts. We use

a network simulator Mininet [43] and an open source OpenFlow controller Floodlight

[13] to generate the data. Mininet is a fast, lightweight but powerful network emula-

tor. Mininet is capable to create a realistic virtual network running functional hosts

and switches. Mininet also provides the capability of interacting with user’s custom

OpenFlow controller. Floodlight high-performance, easy to use, open source OpenFlow

66

controller. Floodlight comes with a web based and Java based GUI and most of its func-

tionality is able to access through a REST API. Floodlight is able to automatically find

the shortest path for table-miss packets, adds the appropriate flow entries into related

switches, and lets the switch continue its forwarding.

The detailed statistics are listed in Table 7.1. In all of our experiments, we use our

reachability algorithms to compute reachability of each pair of ports and measure the

average time overhead of building the forwarding graph and computing reachability of

on pair of ports.

Figure 7.7: A topology example of the datasets.

For efficiency comparison, we choose our previous research denoted by APSpark [44].

APSpark is a similar method designed to verify firewall bypass threat in SDN networks.

We choose it since it shares the similar proposes with the proposed method which are

Figure 7.8: Computation time (ms) of initialization.

67

Figure 7.9: Computation time (ms) of reachablity computation.

Figure 7.10: Computation time (ms) of computing atomic predicates.

packet reachablity verification. It uses the similar network model and combines AP and

Spark to achieve fast verification, but it doesn’t adopt AP tree to organize the AP data.

The results from this experiment are shown in Fig. 7.8 and Fig. 7.9. It can be seen that

the proposed method is faster than APSpark method in the reachablity computation,

especially when dataset scales up thanks to AP tree structure, but requires more time

to initialize. Note that the initialization only need to be done at the first time when the

method is deployed.

We also compare the computation time of preprocessing rules and computing atomic

predicates with or without Spark, which is the basic AP tree method. The results are

shown in Fig. 7.10. Due to Spark’s own system overhand, it does not outperform

the original computation with small dataset, but it is faster while dealing with bigger

68

dataset. And note that, we run Spark in local model. Within nowadays data center,

where likely has Spark deployed in clusters due to its popularity, the proposed method

is able to achieve faster computation and better scalability.

7.5 Conclusion

Network errors caused by configuration of flow tables are very common in nowadays

network. Packet reachability verification tool is very valuable to detect those errors. In

this paper, we have addressed the challenge of designing a fast packet reachability veri-

fication tool for large scale SDN networks. We have proposed a novel detection method

based on modeling the network to a directed graph. The problem is formulated to the

graph computation problem. We have adopted the concept of atomic predicates and AP

tree so that we can verify reachability efficiently. We also adopt the parallel process com-

putational framework Spark to accelerate the computation and achieve scalability. Our

experimental results have demonstrated our proposed method is faster for computing

reachability than our previous method.

69

Chapter 8

Conclusion

8.1 Conclusion

Configuration errors of flow tables are very common in nowadays network. In this

study, we address the challenge of designing a fast network property verification tool for

large scale SDN network. We propose three detection methods based on modeling the

network to a directed graph. The problem is formulated to the reachability computation

problem. We adopt the concept of atomic predicates, the AP Tree and the parallel

process computational framework Spark so that we can detect several network properties

efficiently and achieve scalability. Our experimental results demonstrate our proposed

methods are effective and efficient.

70

Acknowledgements

First and foremost, I express my gratitude to my supervisors, Professor Jie Li and

Shigetomo Kimura for the time they have spent on discussing and guiding my research

during my master period. Their guidance is very precious not only for this thesis, but

also for my future work.

I am grateful to my instructors, Professor Keisuke Kameyama, Yongbing Zhang, Hiro-

take Abe and Noboru Kunihiro for their advices, and feedback.

Last but not least, I am very thankful to my laboratory mates, my friends and my

family, for their sincere support throughout my master study.

71

Bibliography

[1] Openflow switch specification 1.0.0. http://archive.openflow.org/documents/openflow-

spec-v1.0.0.pdf.

[2] Ilora Maity, Ayan Mondal, Sudip Misra, and Chittaranjan Mandal. Tensor-based

rule-space management system in sdn. IEEE Systems Journal, 2018.

[3] Peng Qin, Bin Dai, Benxiong Huang, and Guan Xu. Bandwidth-aware scheduling

with sdn in hadoop: A new trend for big data. IEEE Systems Journal, 11(4):

2337–2344, 2015.

[4] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling inno-

vation in campus networks. ACM SIGCOMM Computer Communication Review,

38(2):69–74, 2008.

[5] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda

Liu, Nick McKeown, and Amin Vahdat. Libra: Divide and conquer to verify for-

warding tables in huge networks. In Proceedings of the 11th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 14), volume 14, pages

87–99. USENIX Association, 2014.

[6] David Oppenheimer, Archana Ganapathi, and David A Patterson. Why do internet

services fail, and what can be done about it? In USENIX symposium on internet

technologies and systems, volume 67. Seattle, WA, 2003.

[7] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten

Godfrey. Veriflow: verifying network-wide invariants in real time. In in Proceedings

of the 10th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 13), pages 15–27. USENIX Association, 2013.

[8] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKeown,

and Scott Whyte. Real time network policy checking using header space analysis.

In Presented as part of the 10th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 13), pages 99–111. USENIX Association, 2013.

72

Bibliography

[9] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis:

Static checking for networks. In Proceedings of the 9th USENIX Conference on Net-

worked Systems Design and Implementation (NSDI 12), pages 113–126. USENIX

Association, 2012.

[10] Hongkun Yang and Simon S Lam. Real-time verification of network properties using

atomic predicates. IEEE/ACM Transactions on Networking, 24(2):887–900, 2016.

[11] Huazhe Wang, Chen Qian, Ye Yu, Hongkun Yang, Simon S Lam, Huazhe Wang,

Chen Qian, Ye Yu, Hongkun Yang, and Simon S Lam. Practical network-wide pack-

et behavior identification by ap classifier. IEEE/ACM Transactions on Networking

(TON), 25(5):2886–2899, 2017.

[12] James Mccauley. Pox: A python-based openflow controller, 2014.

[13] Project Floodlight. Floodlight openflow controller. Project Floodlight, 2013.

[14] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight: Towards

a model-driven sdn controller architecture. In 2014 IEEE 15th International Sym-

posium on, pages 1–6. IEEE, 2014.

[15] SDN Ryu. Ryu sdn framework, 2016.

[16] TV Lakshman, T Nandagopal, R Ramjee, K Sabnani, and T Woo. The softrouter

architecture. In Proceedings of the ACM SIGCOMM Workshop on Hot Topics in

Networking, volume 2004. Citeseer, 2004.

[17] Lily Yang, Ram Dantu, T Anderson, and Ram Gopal. Forwarding and control

element separation (forces) framework. Internet Engineering Task Force, 2004.

[18] Guru Parulkar. Open networking foundation,, 2011.

[19] Wolfgang Braun and Michael Menth. Software-defined networking using openflow:

Protocols, applications and architectural design choices. Future Internet, 6(2):302–

336, 2014.

[20] A Ghaffa and R Soomro. Big data analysis: Ap spark perspective. Global Journal

of Computer Science and Technology: Software & Data Engineering, 15(1), 2015.

[21] Ning Zhang, Peng Yang, Ju Ren, Dajiang Chen, Li Yu, and Xuemin Shen. Synergy

of big data and 5g wireless networks: opportunities, approaches, and challenges.

IEEE Wireless Communications, 25(1):12–18, 2018.

[22] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

73

Bibliography

[23] Weiwei Shi, Yongxin Zhu, Philip Yu, Jiawei Zhang, Tian Huang, Chang Wang, and

Yufeng Chen. Effective prediction of missing data on apache spark over multivari-

able time series. IEEE Transactions on Big Data, (1):1–1, 2017.

[24] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and Rob

Sherwood. On controller performance in software-defined networks. In Presented

as part of the 2nd USENIX Workshop on Hot Topics in Management of Internet,

Cloud, and Enterprise Networks and Services, 2012.

[25] Yi Liu, Cheng Lei, and Hongqi Zhang. Mr-verifier: Verifying open flow network

properties based on mapreduce. In 2015 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery, pages 546–553. IEEE, 2015.

[26] Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: Configuration analysis and verifica-

tion of federated openflow infrastructures. In Proceedings of the 3rd ACM workshop

on Assurable and usable security configuration, pages 37–44. ACM, 2010.

[27] Seuk Son, Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu.

Model checking invariant security properties in openflow. In Communications (IC-

C), 2013 IEEE International Conference on, pages 1974–1979. IEEE, 2013.

[28] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P Godfrey, and

Samuel Talmadge King. Debugging the data plane with anteater. ACM SIGCOMM

Computer Communication Review, 41(4):290–301, 2011.

[29] Hongkun Yang, Simon S Lam, Hongkun Yang, and Simon S Lam. Scalable verifi-

cation of networks with packet transformers using atomic predicates. IEEE/ACM

Transactions on Networking, 25(5):2900–2915, 2017.

[30] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson,

and Guofei Gu. A security enforcement kernel for openflow networks. In Proceedings

of the first workshop on Hot topics in software defined networks, pages 121–126.

ACM, 2012.

[31] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın Casa-

do, Nick McKeown, and Scott Shenker. Nox: towards an operat-

ing system for networks. SIGCOMM Comput. Commun. Rev., 38(3):105–

110, July 2008. ISSN 0146-4833. doi: 10.1145/1384609.1384625. URL

http://doi.acm.org/10.1145/1384609.1384625.

[32] Juan Wang, Yong Wang, Hongxin Hu, Qingxin Sun, He Shi, and Longjie Zeng. To-

wards a security-enhanced firewall application for openflow networks. In Cyberspace

Safety and Security, pages 92–103. Springer, 2013.

74

Bibliography

[33] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. Flowguard: building

robust firewalls for software-defined networks. In Proceedings of the third workshop

on Hot topics in software defined networking, pages 97–102. ACM, 2014.

[34] Allan Liska. Building an Intelligence-Led Security Program. Syngress, 2014.

[35] Noureddine Boudriga. Security of mobile communications. CRC Press, 2009.

[36] Mininet Team. Mininet: An instant virtual network on your laptop (or other pc).

Google Scholar, 2012.

[37] Ben Pfaff and Bruce Davie. The open vswitch database management protocol.

2013.

[38] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-

jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. The design

and implementation of open vswitch. In 12th {USENIX} Symposium on Networked

Systems Design and Implementation ({NSDI} 15), pages 117–130, 2015.

[39] Randal E Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 100(8):677–691, 1986.

[40] Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial prob-

lems. In Proceedings of the 30th international Design Automation Conference, pages

272–277. ACM, 1993.

[41] Richard Rudell. Dynamic variable ordering for ordered binary decision diagrams.

In Proceedings of the 1993 IEEE/ACM international conference on Computer-aided

design, pages 42–47. IEEE Computer Society Press, 1993.

[42] Yicong Zhang, Jie Li, Lin Chen, Yusheng Ji, and Feilong Tang. A novel method

against the firewall bypass threat in openflow networks. In Wireless Communica-

tions and Signal Processing (WCSP), 2017 9th International Conference on, pages

1–6. IEEE, 2017.

[43] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid pro-

totyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM

Workshop on Hot Topics in Networks, page 19. ACM, 2010.

[44] Yicong Zhang, Jie Li, Shigetomo Kimura, Wei Zhao, and Sajal K Das. Atomic

predicates based data plane properties verification in software defined networking

using spark. IEEE Journal on Selected Areas in Communications, 2020.

75

List of Publications

1. Yicong Zhang, Jie Li, Shigetomo Kimura, Wei Zhao, Sajal K. Das: ”Atomic

Predicates Based Data Plane Properties Verification in Software Defined Network-

ing Using Spark”, IEEE Journal on Selected Areas in Communications - Special

Issue on Network Softwarization & Enablers, 2020.

2. Yicong Zhang, Jie Li, Lin Chen, Yusheng Ji and Feilong Tang, ”A Novel Method

against the Firewall Bypass Threat in OpenFlow Networks,” Proceedings of 9th In-

ternational Conference on Wireless Communications and Signal Processing (WC-

SP), pp. 1-6, October 11-13, 2017, Nanjing, China.

76

