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Nowadays, large, diverse sets of information grow at ever-increasing rates. To
protect data in private storage devices from tampering by adversaries becomes more
and more challenging. Algebraic manipulation detection (AMD) codes were first in-
troduced by Cramer et al. [27] to prevent a special type of tampering called algebraic
manipulation. They used AMD codes to convert linear secret sharing schemes into
robust secret sharing schemes and build robust fuzzy extractors. Generally speaking,
an AMD code consists of a probabilistic encoding map and a determined decoding
function, where the encoding map encodes a source into a message such that any
tampering will be detected, except with a small error probability. For AMD codes,
we consider the attack model such that an adversary may manipulate the valid mes-
sage without having reading access by adding some offset noise of his choice. The
attack model is divided into two sub-models by distinguishing two different settings:
the adversary has full knowledge of the source (the strong attack model) and the
adversary has no knowledge about the source (the weak attack model).

This dissertation is devoted to study AMD codes for both strong/weak attack
models and related structures such as external difference families and highly non-
linear functions.

For AMD codes under weak attack model, we first define a new type of weight-
ed external difference families which are proved equivalent with weak AMD codes.
Based on this combinatorial characterization of weak AMD codes: (1) We improve
the known lower bound, i.e., the R-bound by Paterson and Stinson [81] on the max-
imum probability of successful tampering for the adversary’s all possible strategies;
(2) We derive a necessary condition for the R-bound to be achieved; (3) We deter-
mine the exact combinatorial structure for a weak AMD code with the minimum
possible probability of successful tampering, when the R-bound is not achievable.
In this way, some weak AMD codes which have not been identified to be R-optimal
previously now can be identified to be in fact optimal. Secondly, we exhibit several
explicit constructions of optimal weighted external difference families to generate
AMD codes under weak attack model. At last, we also build a relationship between
highly nonlinear functions and systematic weak AMD codes. By choosing special
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highly nonlinear functions such as perfect nonlinear functions, a few infinite class-
es of new R-optimal systematic weak AMD codes and new systematic weak AMD
codes with asymptotically optimal tag size are constructed.

For AMD codes under strong attack model, we also establish a relationship
between highly nonlinear functions and systematic strong AMD codes. On one
hand, by choosing some special highly nonlinear functions, a few infinite classes of
new systematic strong AMD codes with minimum possible probability of successful
tampering are constructed. On the other hand, from a subclass of AMD codes with
more strict assumptions, highly nonlinear functions can also be generated, where
their nonlinearities are determined by the parameters of the corresponding AMD
codes. Especially, we prove that the well-known construction for AMD codes in
[27, Theorem 2] can also be explained by highly nonlinear functions. In addition, a
combinatorial construction of G-optimal AMD codes is introduced for strong attack
model.

Finally, we make a conclusion on this dissertation and list some open problems
related to the topics discussed in this dissertation.
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Chapter 1

Introduction

Nowadays, large, diverse sets of information grow at ever-increasing rates. To pro-
tect data in private storage devices from tampering by adversaries becomes more
and more challenging. Traditionally, since the devices are private, cryptographic
security notions make assumptions that adversaries only have /black-box0access
(without reading the message) to an attacked storage system. This is to say that
an adversary may modify the information by adding some offset message without
reading access to the original data. In [27], algebraic manipulation detection (AMD)
codes were introduced to encode the source data in a way to make sure that when-
ever an adversary tampers with the original data the system may detect the attack
except with a small given error probability. More specifically, an AMD code can
solve the following problem.

• Encoding of the source: A private device encodes a source message x into an
element E(x) of a given finite group G;

• Decoding of the message: With E(x) the original source x should be deter-
ministically decoded;

• Adversary’s ability: An adversary is capable to modify E(x) to E(x) + ∆

without reading E(x);

• The goal: Whenever an adversary tampers with the original data the system
may detect the attack except with a small error probability ρ.

AMD codes are an abstraction of several known methods for cheating detec-
tion in linear secret sharing schemes [12, 75–77, 80, 89]. Following the ideas of [42],
Cramer et al. [27] also showed AMD codes can be used to design robust fuzzy ex-
tractors. Several other applications of AMD codes were found subsequently. For
example, to unconditionally secure multiparty computation with dishonest majori-
ty [7], anonymous quantum communication [6], non-malleable codes [43], codes for
computation simple channels [52], public key encryption against related key attacks
[94], and secure memories [50,67,93]. Hereafter, we briefly describe the two original
applications of AMD codes in [27].



1.1 Application scenarios for AMD codes: robust secret
sharing schemes

One explicit application of AMD codes is to convert a linear secret sharing scheme
into a robust secret sharing scheme. Usually, for a secret sharing scheme§we request
the secret be shared among different users in such a way that if an authorized subset
of users pool their shares, then they can decode the original secret, while if an unau-
thorized subset of users pool their shares, then they can determine nothing about
the original secret. More specifically, we need a pair of functions (Share,Recover),
such that the function Share maps the secret s into a set of shares S = Share(s)

and

• any authorized subset S̃ ⊆ S can reconstruct the original secret, i.e.,

Recover(S̃) = s;

• any unauthorized set of shares give absolutely no information about the orig-
inal secret.

However, the system may suffer from tampering by some adversaries. We also
require the system to notice the adversaries whenever there is any share being tam-
pered. That is, we need the so-called robust secret sharing scheme [12], a pair of
functions (Share,Recover), such that the function Share maps the secret s into a
set of shares S = Share(s) and

• any authorized subset S̃ ⊆ S can reconstruct the original secret, i.e.,

Recover(S̃) = s;

• any unauthorized set of shares gives absolutely no information about the o-
riginal secret;

• whenever the system tries to recover the original secret with authorized set of
shares that suffers from tampering, the system should be able to detect this
except with a small error probability ρ, i.e., Pr(Recover(S̃+∆) 6∈ {s,⊥} ≤ ρ),
where S̃+∆ denotes shares being tampered with and ⊥ denotes invalid secret.

In [27], AMD codes are included to convert a linear secret sharing scheme, i.e.,
Share(s + ∆) = Share(s) + Share(∆) into a robust secret sharing scheme. The
main idea is that, before sharing the secret s, the system encodes the secret s using
an AMD code and then shares the encoded message E(s) using the linear secret
sharing scheme. We use the well-known Shamir threshold scheme [86] to explain the
main idea. In this case, we first encode the secret s1 into E(s1) as in Fig. 1.1.
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s2

s1

Encoding

E(s1)

E(s2)

Figure 1.1: Encoding the secret via an AMD code

Secondly, the system uses a linear secret sharing scheme, for example the Shamir
threshold scheme, to share the encoded message E(s1) into v shares as in Fig. 1.2.
More specifically, the system randomly chooses t − 1 coefficients {a1, a2 . . . , at−1}
from a finite field Fq and defines a polynomial f(x) = E(s1) +

∑
1≤i≤t−1 aix

i. The
v different shares for E(s1) are (xi, f(xi)) for 1 ≤ i ≤ v, where xi ∈ Fq \ {0} for
1 ≤ i ≤ v are v fixed evaluation points. By polynomial interpolation, if the system
gets t shares it is capable to recover E(s1), otherwise it can not get any information
for E(s1) [86].

However, if there is an adversary who modifies his share (xt, f(xt)) into (xt, f
′(xt))

then the system meets a problem for recovering the encoding message E(s1) and thus
the original secret s1 by accessing say (xi, f(xi)) for 1 ≤ i ≤ t. As in Fig. 1.3, the
information recovered from the t shares (x1, f(x1)), (x2, f(x2)), · · · , (xt−1, f(xt−1)),

(xt, f
′(xt)) may be not E(s1).

Since the Shamir threshold scheme is a linear secret sharing scheme, we have

Recover(Share(E(s1)) + ∆) =Recover(Share(E(s1))) +Recover(∆)

=E(s1) +Recover(∆).

Now, we have two cases. One is that E(s1) + Recover(∆) = E(s2) for some valid
secret s2. Then the system can not detect the tampering by the adversary, since
the system will regard E(s2) as the encoded message of the valid secret s2 and then
decode it into the secret s2. Of course if this case happens, then the adversary
wins, i.e., the original secret is tampered from s1 to s2 and the system has no
knowledge about the tampering. The other case is that the system can not decode
E(s1) + Recover(∆) into a valid secret, or it can decode E(s1) + Recover(∆) into
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f(x) = at−1X
t−1 + · · ·+ a2x

2 + a1x + E(s1), ai, E(s1) ∈ Fq
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(x2, f(x2) )

(xv, f(xv) )

(xt, f(xt) )

x1 x2 xvxt

· · ·

· · ·

E(s1)

E(s2)

Figure 1.2: Encoding the secret via an AMD code
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s1

Encoding

f(x) = at−1X
t−1 + · · ·+ a2x

2 + a1x + E(s1), ai, E(s1) ∈ Fq

(x1, f(x1) )

(x2, f(x2) )

(xv, f(xv) )

(xt, f(xt) )

(xt, f ′(xt) )

x1 x2 xvxt

· · ·

· · ·

E(s1)

E(s2)

Figure 1.3: Encoding the secret via an AMD code
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f(x) = at−1X
t−1 + · · ·+ a2x

2 + a1x + E(s1), ai, E(s1) ∈ Fq

(x1, f(x1) )

(x2, f(x2) )

(xv, f(xv) )

(xt, f(xt) )

(xt, f ′(xt) )

x1 x2 xvxt

· · ·

· · ·

E(s1)

E(s2)

Figure 1.4: Encoding the secret via an AMD code

the original secret s1, i.e.,

Dec(E(s1) +Recover(∆)) ∈ {s1,⊥}.

For this case, the system either can recover the correct secret or can detect the
tampering as described in Fig. 1.4.

Note that we apply an AMD code to encode s1. By the property of an AMD
code, we have

Pr(Dec(E(s1) +Recover(∆)) 6∈ {s1,⊥}) ≤ ρ, for any Recover(∆) ∈ Fq (1.1)

which means that the system can detect the tampering except for a given small
error probability ρ. Thus, with the help of an AMD code, we can convert a linear
secret sharing scheme into a robust secret sharing scheme referring to Fig. 1.5. From
this viewpoint, it is important and interesting to further analyze AMD codes and
construct new AMD codes.

1.2 Application scenarios for AMD codes: robust fuzzy
extractors

Another application for AMD codes is to construct robust fuzzy extractors. General-
ly speaking, a fuzzy extractor extracts a uniformly random key R from a non-uniform
some secret w (e.g. biometric data) in such a way that the key R can be recovered
from any w′ close to w in some appropriate metric space, say when d(w,w′) ≤ t for a
small given positive integer t. In this dissertation, we consider the case w and w′ in
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AMD code

Encoder
Dealer

Linear Secret

Sharing Scheme

Share

Share(E(s))

Share(E(s)) + ∆

= Share(E(s) + ∆1)

Linear Secret

Sharing Scheme

Recover

AMD code

Decoder

s

⊥

s′

Pr ≤ ρ

results

s E(s) Share(E(s))

tampering

Share(E(s) + ∆1)E(s) + ∆1tampering detected

successful tampering

Figure 1.5: Robust secret sharing scheme based on an AMD code

some Hamming space and d denotes the Hamming distance. One of the well-known
scenario has been considered for fuzzy extractors are the following key recovering
problem:

• A user utilizes his biometric data w to generate a random key R together with
some public string P , which is stored on a (possibly untrusted) server. The
key R is used to encrypt some data for long-term storage.

• At a later point in time, the user obtains a refreshed biometric scan w′ along
with the value P from the server. Applying these information enables the user
to recover R. In this way, the user may decrypt the original data.

However, this system may suffer some adversaries who can modify the informa-
tion P stored on the public server. Robustness for fuzzy extractors requires that if
the adversary modifies P into P̃ , then with high probability the user will detect this
tampering of P and reject the refreshed biometric along with P̃ .

In [27], Cramer et al. introduced a method to generate a robust fuzzy extractor
based on an AMD code and a known fuzzy extractor. In what follows, we simply
explain the main idea of this construction. To this end, we begin with a special
fuzzy extractor which contains three functions (SS,Rec,Ext):

• SS: From any biometric data w the function SS computes w into a public
string P , i.e., SS(w) = P ;
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• Ext: From any biometric data w the function Ext extracts a uniformly random
key R, i.e., Ext(w) = R;

• Rec: For any biometric data w′ at a later point in time, the function Rec is
capable to recover the key R = Ext(w) by using w′ and P , if the distance
between w and w′ is bounded by a fixed threshold t, i.e., if d(w,w′) ≤ t then

Rec(w′, P ) = w,

and then can recover the key R with the help of Ext.

Cramer et al. also assumed that the fuzzy extractor has a kind of linearity such
that, for the case d(w,w′) ≤ t, (1) ∆̃ = Rec(w′, P̃ ) − Rec(w,P ) is determined by
∆ = w′−w, P̃ and P , i.e., ∆̃ can be determined by a deterministic function h only
related with ∆, P , and P̃ , say ∆̃ = h(∆, P, P̃ ), and (2) the extractor Ext satisfies
the property that for any biometric data a, b,

Ext(a− b) = Ext(a)− Ext(b).

Let E(x) be the probabilistic encoding map of an AMD code with form E(x) =

(x, y, f(x, y)), where f(x, y) is a map from S × G1 to G2 and y ∈R G1, where S
denotes the source space, G1 and G2 are two groups. Now construct the new fuzzy
extractor as

• Step 1: Divide the original key into two parts: from any biometric data w the
function Ext extracts a key R, i.e., Ext(w) = R = (Ra, Rout);

• Step 2: Encode the public string by the AMD code: for any biometric data w
the function SS computes a public string P and let σ = f(P,Ra);

• Step 3: The new fuzzy extractor is given by (SS∗, Rec∗, Ext∗) with Ext∗(w) =

R∗ = Rout, SS∗(w) = P ∗ = (P, σ), and Rec∗(w,P ∗ = (P, σ)) = Rec(w,P ) as
explained in Fig. 1.6.

It is easy to check that for w′ with d(w,w′) ≤ t, we have Rec∗(w′, P ∗) =

Rec(w′, P ) = w, and then system can recover the key Rout by Ext∗. Consider
the case that there exists an adversary who tampers with the public message from
P ∗ to P̃ ∗ = (P + ∆1, σ + ∆2). Now the system runs the Rec∗ to get

w̃ = Rec∗(w′, P̃ ∗) =Rec∗(w,P ∗) +Rec∗(w′, P̃ ∗)−Rec∗(w,P ∗)
=Rec(w,P ) +Rec(w′, P + ∆1)−Rec(w,P )

=w + h(w′ − w,P + ∆1, P )

=w + ∆̃,

(1.2)
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input

output

σ

Ra

Rout

w

w

Figure 1.6: New fuzzy extractor based on an AMD code

where the fourth equality holds by the linearity of Rec and ∆̃ , h(w′−w,P+∆1, P ).
Finally, the authenticity of w̃ may be verified by checking whether the following holds

σ + ∆2 =f(P + ∆1, Exta(w̃)) = f(P + ∆1, Exta(w + ∆̃)),

where Ext(w̃) = (R̃a, R̃out) , (Exta(w̃), Extout(w̃)). By the linearity of the Ext we
have

σ + ∆2 =f(P + ∆1, Exta(w + ∆̃))

=f(P + ∆1, Exta(w) + Exta(∆̃))

=f(P + ∆1, Exta(w) + ∆3)

=f(P + ∆1, Ra + ∆3),

where ∆3 , Exta(∆̃). Note that this is also the security condition for the AMD
code with probabilistic encoding map E(x) = (x, y, f(x, y)) to detect a tampering
as in Fig. 1.7. The robustness of the new fuzzy extractor is determined by the
ability of AMD code to detect a tampering. Thus, again the AMD code is the key
point to construct a robust fuzzy extractor.

1.3 Known results for AMD codes

Based on the important applications introduced above, in the past decades, AMD
codes have received much attention in the literature.

The progress is mainly twofold. For the first part, basic relationships among
parameters of AMD codes are considered, i.e., to derive theoretic bounds for AMD

8



P∗ + ∆ = (P + ∆1, σ + ∆2)

(adversary)
P∗ = (P, σ)

d(w,w′) ≤ t?w′

Rec Ext

Decoding
AMD cdoe

Reject

R∗out

w̃ = w + ∆̃

R̃a = Ra + ∆3

Now′

P + ∆1

σ + ∆2

P + ∆1

⊥

reasonable
message

Yes w′

Figure 1.7: Decrypt process when there is an adversary.

codes. In [27], Cramer et al. built a lower bound for the minimum tag size of AMD
codes, where the tag size denotes the difference between the length of the source
and its corresponding encoding message. In [28, 29, 93], the well-known Singleton
bound in coding theory was applied to show lower bounds for the minimum tag
length of systematic AMD codes. In [23], Chen et al. established a lower bound
on the minimum probability of successful tampering for adversaries for systematic
AMD codes in terms of the nonlinearity of functions. Later in [81], Paterson and
Stinson analyzed the case that the random choosing tampering is the best strategy
for the adversaries, and then derived a lower bound on the minimum probability of
successful tampering for adversaries that is the so-called R-bound for AMD codes.
Another basic problem considered in [81] was when guessing the source message
is the best strategy for the adversaries. For this case, Paterson and Stinson also
provided a lower bound on the minimum probability of successful tampering for
adversaries, that is, the G-bound.

For the second part, constructions of AMD codes are the focus. In this scenario,
Cramer et al. [27] first introduced a construction of AMD codes with nearly optimal
tag size based on polynomial evaluations. They also showed a construction for AMD
codes via authentication codes. In [60] and [29], linear codes such as Reed-Muller
codes and BCH codes were included to generate AMD codes with small tag size,
respectively.

For constructions of AMD codes, the other method is via combinatorial method,
which generates AMD codes by carefully designing the underlying combinatorial
structures, i.e., the structure of image sets of the probabilistic encoding map E.
In [28], Cramer et al. first introduced a kind of differential structures to construct
AMD codes. The differential structure from caps in projective space were also
used in [28] to construct AMD codes. In [81], various types of generalized external
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difference families (say, strong external difference families) were included by Paterson
and Stinson to characterize optimal AMD codes for different merits of optimality,
respectively. In [55], under the weak attack model assumption, a combinatorial
characterization was given for AMD codes via weighted external difference families.

In addition, in the literature, there are many papers focus on external difference
families which correspond to AMD codes as showed in [81]. For this part the reader
may for examples refer to [4, 54,57,66,68,81,95,96].

Arrangement of this dissertation

In this paper we mainly focus on AMD codes for both strong and weak attack
models. It is, however, somehow wider in scope and includes some constructions of
external difference families related to the constructions about AMD codes.

In Chapter 2, we recall some necessary mathematical notation and concepts that
will be used in this dissertation.

Chapter 3 contains a discussion about external difference families and their re-
lationships to AMD codes. A new type of weighted external difference families is
defined in this chapter. Some constructions of external difference families are also
presented in this chapter.

In Chapter 4, the focus is AMD codes under the weak attack model (weak
AMD codes). In this chapter both external difference families and highly nonlinear
functions are included as tools to construct weak AMD codes. As results, a few
infinite classes of new optimal weak AMD codes and new systematic weak AMD
codes with asymptotically optimal tag size are constructed.

Chapter 5 contains the results about AMD codes under the strong attack model
(strong AMD codes). In this chapter, we establish a relationship between highly
nonlinear functions and systematic strong AMD coeds. On one hand, by choos-
ing some special highly nonlinear functions, a few infinite classes of new systematic
strong AMD codes with minimum possible probability of successful tampering are
constructed. On the other hand, from a subclass of AMD codes with more strict
assumptions, highly nonlinear functions can also be generated, where their nonlin-
earities are determined by the parameters of the corresponding AMD codes. Espe-
cially, we prove that the well-known construction for AMD codes in [27, Theorem
2] can also be explained by highly nonlinear functions. In addition, a combinatorial
construction of G-optimal AMD codes is introduced for strong attack model.

Conclusions and open problems for further research are included in Chapter 6.
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Chapter 2

Preliminary

In this chapter, we recall some mathematical notation and concepts that will be
used in this dissertation.

2.1 Groups and finite fields

In this section, we recall some necessary algebraic conceptions and related results.

Definition 2.1.1. A group is a set G together with a binary operation ∗ such that

• Associative: for any a, b, c ∈ G

a ∗ (b ∗ c) = (a ∗ b) ∗ c;

• Identity: there is an identity e ∈ G with a ∗ e = e ∗ a = a;

• Inverse: for any a ∈ G, there exists an inverse element a−1 ∈ G with

a ∗ a−1 = a−1 ∗ a = e.

If the operation ∗ is also commutative, i.e.,

a ∗ b = b ∗ a for a, b ∈ G,

then the group (G, ∗) is an Abelian group.

For simplicity, we use G to denote (G, ∗) and ab to denote a ∗ b if the operation
∗ is clear and without ambiguity.

Definition 2.1.2. A group G is said to be cyclic if there exists an element a ∈ G
such that for any b ∈ G there exists an integer m

b = am , aa . . . a︸ ︷︷ ︸
m

.

In this case, we also denote G as 〈a〉. And such an element a is named as a generator
of G. Furthermore, if the set G is finite, then we call it as finite group. For a finite
group, the number of elements is called its order denoted as |G|.



Example 2.1.3. Let G = {1, 2, 3, 4, 5, 6} and a ∗ b = ab (mod 7), then it is easy to
check that G is a cyclic group with order 6 and 3 is a generator with

3 = 31, 2 = 32, 6 = 33, 4 = 34, 5 = 35, 1 = 36.

Definition 2.1.4. For a group (G, ∗), if H ⊆ G and (H, ∗) also forms a group, then
(H, ∗) is a subgroup of (G, ∗). For an element a ∈ G, the subgroup H = 〈a〉 is said
to be a subgroup generated by a, and the order of (〈a〉, ∗) is said to be the order of
the element a ∈ G.

Besides groups, we also need the basic conception of rings in algebra.

Definition 2.1.5. A ring (R,+, ∗) is a set R together with two binary operations
+ and ∗ satisfying

• (R,+) forms an Abelian group;

• The operation ∗ is associative, i.e.,

a ∗ (b ∗ c) = (a ∗ b) ∗ c, for a, b, c ∈ R;

• Distributive laws: for any a, b, c ∈ R,

a ∗ (b+ c) = a ∗ b+ a ∗ c

and
(b+ c) ∗ a = b ∗ a+ c ∗ a.

Usually, in a ring we use 0 to denote the identity of the Abelian group (R,+).

Definition 2.1.6. A ring (R,+, ∗) is said to have identity if there exists e ∈ R such
that a ∗ e = e ∗ a = a for any a ∈ R. (The identity of a ring is usually denoted as
1.)

A ring (R,+, ∗) is said to commutative if for any a, b ∈ R we have a ∗ b = b ∗ a.
A ring (R,+, ∗) forms an integral domain if for a, b ∈ R, a ∗ b = 0 implies a = 0

or b = 0.
A ring (R,+, ∗) is said to be a division ring if (R \ {0}, ∗) forms a group.

Definition 2.1.7. A ring (F,+, ∗) is said to be a field if it is a division ring and
also commutative.

Remark 2.1.8. A finite integral domain forms a finite field.

For a finite field the following results and definitions are frequently used in this
thesis.
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Lemma 2.1.9. Let Fq be a finite field with q elements. Then

• A finite field Fq exists if and only if q is a prime power, i.e., there exists a
prime p and a positive integer t with q = pt.

• For a prime p, a positive integer t, and a finite field Fpt ,

pa ,
∑

1≤i≤p
a = 0 for any a ∈ Fpt (2.1)

and p is the smallest positive integer that (2.1) holds.

• For positive integers m and t, if m | t, then there exists a finite field Fqm with
Fqm ⊆ Fqt .

• The group (F∗q , Fq \ {0}, ∗) is cyclic.

Definition 2.1.10. A generator of the cyclic group F∗q is said to be a primitive
element of the finite field Fq.

Definition 2.1.11. For positive integers m | t, and a prime p, define the trace
function from Fpt to Fpm as

Trp
t

pm(x) =
∑

0≤i≤ t
m
−1

xp
im

for x ∈ Fqt . (2.2)

2.2 Secret sharing schemes

In cryptography, one important problem is to distribute a secret among a group of
users, each of whom is allocated with a share of the secret. Generally speaking, a
secret sharing scheme encodes a source information (or secret) into a set of shares
S satisfying

• any authorized set of S can reconstruct the source information;

• any unauthorized set of shares gives absolutely no information about the source
information.

Formally, a threshold secret sharing scheme (or threshold scheme) can be defined
as follows.

Definition 2.2.1. Suppose there is a secret s. A (t, k)-threshold secret sharing
scheme is a set S of k elements called shares, and a threshold t ≤ k such that

• any t-subset of S can reconstruct the secret s;

• any subset of S with less than t shares gives absolutely no information about
s.

13



As an example we simply introduce the Shamir threshold scheme [86]. The basic
idea of the Shamir threshold scheme is to evaluate a polynomial with degree less
than or equal to t− 1 into k values. As a result any t evaluation points are capable
to recover the original polynomial.

Example 2.2.2. ((t, k)-Shamir threshold scheme) Let q be a prime power and k

and t be two positive integers, t ≤ k. The secret s ∈ Fq is chosen by a special user
called the dealer. When the dealer wants to share the secret s among k users, he
gives each user some partial information called share.

Initialization Phase:

1 The dealer chooses k distinct, non-zero elements of Fq, denoted as αi for 1 ≤
i ≤ k. For 1 ≤ i ≤ k, the dealer gives the value αi to user Ui. The values αi
for 1 ≤ i ≤ k are public.

Share Distribution:

2 Suppose the dealer wants to share a secret S ∈ Fq. The dealer secretly chooses,
independent at random, t− 1 elements of Fq, which are denoted as e1, e2, · · · ,
et−1.

3 For 1 ≤ i ≤ k, compute βi = f(αi), where

f(x) = S +
∑

1≤i≤t−1

eix
i.

4 For 1 ≤ i ≤ k, the dealer gives the share βi to Ui.

Reconstruct Phase:

5 Any group of t users can compute the f(x) by using the interpolation formula

S =
∑

1≤j≤t
βij

∏
1≤τ 6=j≤t

αiτ∏
1≤τ 6=j≤t

(αiτ − αij )
.

Suppose we define

bj =

∏
1≤τ 6=j≤t

αiτ∏
1≤τ 6=j≤t

(αiτ − αij )
, for 1 ≤ j ≤ t.

Note that the bjs can be precomputed, if desired, and their values are not secret.
Then we have

S =
∑

1≤j≤t
bjβij .

Hence the secret S is a linear combination of the shares. Such a secret sharing
scheme is call linear.
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2.3 Algebraic manipulation detection codes

In this section, we recall necessary definitions and notation related with algebraic
manipulation detection codes.

Let S be the source space, i.e., the set of plaintext messages with size m, and
G be the encoded message space. A probabilistic encoding function E maps s ∈ S
to some g ∈ G. Let As ⊆ G denote the set of valid encodings of s ∈ S, where
As ∩As′ = ∅ is required for any s 6= s′ so that any message g ∈ As can be correctly
decoded as Dec(g) = s. Denote A , {As : s ∈ S}.

Definition 2.3.1 ([81]). For given (S,G,A, E), let

• The value ∆ ∈ G∗ , G \ {0} be chosen according to the adversary’s strategy
σ;

• The source message s ∈ S be chosen uniformly at random by the encoder, i.e.,
we assume equiprobable sources;

• The message s be encoded into g ∈ As using the encoding function E and
there exists a deterministic decoding function Dec : G → S ∪ {⊥} such that
Dec(E(s)) = s with probability 1 for any s ∈ S;

• The adversary wins (a successful tampering) if and only if g + ∆ ∈ As′ with
s′ 6= s.

The probability of successful tampering is denoted by ρσ for strategy σ of the adver-
sary. The code (S,G,A, E) is called an (n,m,K, ρ) algebraic manipulation detection
code (or an (n,m,K, ρ)-AMD code for short) where K = {|As| : s ∈ S} is a multi-
set and ρ denotes the maximum probability of successful tampering for all possible
strategies, i.e.,

ρ = max
σ

ρσ.

Especially, if E encodes s to an element of As uniformly, i.e., Pr(E(s) = g) = 1
|As|

for any s ∈ S and g ∈ As, then we use (S,G,A, Eu) to distinguish this kind of AMD
codes.

Throughout this thesis, we fix the following notation for AMD codes.

• An (n,m,K, ρ)-AMD code is said to have equiprobable sources if Pr(s) = 1
m

for any s ∈ S.

• An (n,m,K, ρ)-AMD code is said to be equiprobable encoding if Pr(E(s) =

g) = 1
|As| for any s ∈ S and g ∈ As.

• An (n,m,K, ρ)-AMD code is said to be uniform if |As| is constant for any
s ∈ S.

15



• A uniform (n,m,K, ρ)-AMD code with |As| = t for s ∈ S is said to be t-regular
if it has equiprobable sources and equiprobable encoding.

Remark 2.3.2. Generally speaking, the distribution K = (a1, a2, · · · , am) is an es-
sential parameter for an AMD code. However, for the convenience of discussion, the
notation (n,m, a, ρ)-AMD code is used to denote an (n,m,K = (a1, a2 · · · , am), ρ)-
AMD code with a =

∑
1≤i≤m ai, when K is unknown or regarded as a variable.

Definition 2.3.3. An (n,m,K, ρ)-AMD code is said to be a strong (n,m,K, ρ)

algebraic manipulation detection (AMD) code if for any s ∈ S, ∆ ∈ G \ {0}, the
probability of Dec(E(s) + ∆) 6∈ {s,⊥} is at most ρ, i.e.,

Pr(Dec(E(s) + ∆) 6∈ {s,⊥}) ≤ ρ < 1.

Definition 2.3.4. An (n,m,K, ρ)-AMD code is called a weak (n,m,K, ρ)-AMD
code if for any ∆ ∈ G \ {0} and any random s ∈R S rather than an arbitrary one,
the probability∑

s∈S
Pr(s)

∑
g∈As

Pr(E(s) = g) Pr(Dec(g + ∆)) 6∈ {s,⊥}) ≤ ρ < 1.

The following special AMD codes are used in robust fuzzy extractors.

Definition 2.3.5. An AMD code is called systematic if S = G1 is an Abelian group,
G is an Abelian group G1 ×G2 ×B, and the encoding has the form

E : G1 → G1 ×G2 ×B with E(s) = (s, x, f(s, x)) (2.3)

for some function f : G1 ×G2 → B and x ∈R G2.

For a systematic AMD code, the decoding function is naturally given by

Dec(s, x, t) =

s, if t = f(s, x),

⊥, otherwise.
(2.4)

For a systematic AMD code, if Pr(E(s) = (s, x, f(s, x)) 6= 0 for any s ∈ G1 and
x ∈R G2, then it is |A2|-uniform. Thus, an equiprobable encoding systematic AMD
code with equiprobable sources is |G2|-regular.

Definition 2.3.6 ([27]). The tag size of an (n,m, a, ρ)-AMD code is defined as

$ = log |G| − log |S| = log n− logm.

For the convenience of theoretic analysis, for any u, k ∈ N, define effective tag
size as

$∗(k, u) = min{log |G|} − u, (2.5)
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where the minimum is over all (|G|, |S|, a, ρ)-AMD codes such that |S| ≥ 2u and
ρ ≤ 2−k. We point out that in this definition, the group G and the size distribution
K can be different in this family of codes with |S| ≥ 2u and ρ ≤ 2−k, and are left
unspecified. In [27], Cramer et al. derived a lower bound for $∗(k, u) as follows.

Lemma 2.3.7 ([27]). For any u, k ∈ N, the effective tag size is lower bounded by

$∗(k, u) ≥ 2k − 2−u+1 ≥ 2k − 1

for strong AMD codes, and

$∗(k, u) ≥ k − 2−u+1 ≥ k − 1

for weak AMD codes, respectively.

2.4 Highly nonlinear functions

In this section, we recall some necessary definitions about the nonlinearity of func-
tions.

Let (A,+) and (B,+) be two Abelian groups with order n and m, respectively.
Let f be a function from A to B. One way to measure the nonlinearity of a function
f from A to B is to use the derivatives Da(f(x)) = f(x+a)−f(x) for a ∈ A, which
is closely related to the differential cryptanalysis of stream ciphers [5, 74].

Definition 2.4.1 ([74]). The nonlinearity Nf of a function f from A to B is defined
as

Nf , max
a∈A\{0}

max
b∈B

Pr (Da(f(x)) = b)

= max
a∈A\{0}

max
b∈B

|{x ∈ A : Da(f(x)) = b}|
|A|

,
(2.6)

where Pr(Da(f(x)) = b) denotes the probability of the occurrence of the event
Da(f(x)) = b.

Remark 2.4.2. The Hamming distance between two functions f and g from A to
B is defined to be d(f, g) = |{x ∈ A : f(x) 6= g(x)}|. A function f is linear if
and only if f(x + y) = f(x) + f(y) for all x, y ∈ A. A function g is affine if and
only if g = f + b, where f is linear and b is a constant. An alternative method
of measuring the nonlinearity of a function f : A → B is given by the minimum
Hamming distance between f and all possible affine functions from A to B [78]. This
measure of nonlinearity is closely related to linear cryptanalysis of stream ciphers
[69]. For the relationship between these two definitions of nonlinearity, the reader is
referred to [16,26], for instances. In this paper, the former definition of nonlinearity
is used.
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It is easy to check (see, for example, [16]) that Nf = 1 if f is a linear function
from A to B, and Nf ≥ 1

|B| for any function f from A to B. The smaller the value
of Nf , the higher the corresponding nonlinearity of f .

Definition 2.4.3 ([74]). A function f from A to B is said to have perfect nonlin-
earity if Nf = 1

|B| . In this case, the function f is a perfect nonlinear function (PN
function) if it has nonlinearity 1

|B| .

It is well-known that PN functions from Fq to Fq only exist over finite fields with
odd characteristic, since for a function f(x) from F2m to F2m , the fact that θ ∈ F2m

is a root of f(x + a) − f(x) = b for b ∈ Fq and a 6= 0 ∈ Fq always implies the fact
that θ + a is also a root. That is, for this case, the possible minimum nonlinearity
is 2
|B| .

Definition 2.4.4. A function f(x) is said to be an almost perfect nonlinear (APN)

permutation, if it is a permutation over F2m with nonlinearity 2
|B| = 21−m.

2.5 Error correcting codes

In this section we recap some necessary preliminaries about error correcting codes.

Definition 2.5.1. Let n and q be positive integers and Q be a finite set with cardi-
nality q. A q-ary code of length n is a set of vectors C ⊆ Qn, denoted (n, q) code.
The vector C ∈ C is called a codeword. The code rate of C is given by

r =
logq |C|
n

,

where the cardinality of C, i.e., |C| is called the code size.

Definition 2.5.2. The Hamming distance between two codewords U = (u1, u2, . . . , un)

and V = (v1, v2 . . . , vn) is

d(U, V ) = |{1 ≤ i ≤ n : ui 6= vi}|.

Definition 2.5.3. The Hamming weight of a codeword C = (c1, c2, . . . , cn) ∈ Qn is

Wt(C) = d(C,0) = |{1 ≤ i ≤ n : ci 6= 0}|,

where 0 = (0, 0, . . . , 0).

If Q = Fq and the code C forms a k-dimensional linear subspace of Fnq , then this
code is a linear code denoted as [n, k]q linear code. More specifically,

Definition 2.5.4. Let H ∈ F(n−k)×n
q be an (n−k)×n matrix with rank n−k. The

set C of all the vectors with length n such that Hc> = 0 is called a linear (n, k) code
also denoted as [n, k]q code for short. The matrix H is called the party-check matrix
of C. If H has form (A, In−k), then C is called a systematic code.
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Theorem 2.5.5. (Singleton Bound) If C is an [n, k, d]q linear code, then

n ≥ k + d− 1.

Definition 2.5.6. An [n, k, d]q linear code C is said to be maximum distance sepa-
rable (MDS) code, if it achieves the Singleton Bound in Theorem 2.5.5 with equality,
i.e., d = n− k + 1.

Example 2.5.7. (Generalized Reed-Solomon (GRS) code) Let θ = {θi : 1 ≤ i ≤ n}
be an n-subset of Fq, where we assume q ≥ n, then the well-known generalized Reed-
Solomon (GRS) code with parameters [n, k, n− k + 1]q can be defined as

GRSk(θ, α)

, {(α1f(θ1), α2f(θ2), . . . , αnf(θn)) : f(x) ∈ Fq[x]with deg(f(x)) < k} ,
(2.7)

where α = (α1, α2, . . . , αn) ∈ (F∗q)n. Especially, if (α1, α2, . . . , αn) = 1 = (1, 1, . . . , 1)

then the code GRSk(θ,1) is named as Reed-Solomon (RS) code denoted as RSk(α).

2.6 Difference systems of sets and comma-free codes

In this section, we recall some necessary background and definitions for difference
systems of sets and comma-free codes.

Difference systems of sets (DSSs) are a special class of combinatorial struc-
tures which can be used to obtain comma-free codes for synchronization over er-
roneous channels. Because of this application and their own theoretical interest in
combinatorics, DSSs have received much attention during these two decades (see
[22,37,62,90], and the references therein).

Consider the process of transmitting data over a channel, where the data being
sent is a stream of symbols from an alphabet F of size l, say, F = {0, 1, . . . , l −
1}. The data stream consists of consecutive messages, each being a sequence of v
consecutive symbols

· · ·x0 · · ·xv−1︸ ︷︷ ︸ y0 · · · yv−1︸ ︷︷ ︸ · · · .
The synchronization problem that arises at the receiver is the task of correctly
partitioning the data stream into messages of length v, as opposed to incorrectly
conceiving a sequence of v symbols that is the concatenation of the end of one
message with the beginning of another message as a single message, for example,

· · ·xi · · ·xv−1y0 · · · yi−1︸ ︷︷ ︸ · · · .
One way to solve the synchronization problem is to utilize comma-free codes. Let
C be a subset of F v. The elements in C are called codewords as usual. A code C is
termed a comma-free code if the concatenation

Ti(x, y) = xi · · ·xv−1y0 · · · yi−1
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of any two (not necessarily distinct) codewords x = (x0, . . . , xv−1) and y = (y0, . . . , yv−1)

is never a codeword in C. Further, the comma-free index ρ = ρ(C) [51] of a code
C ⊆ F v is defined as

ρ = min{d(z, Ti(x, y)) : x, y, z ∈ C and i = 1, 2, . . . , v − 1},

where d(x, y) is the Hamming distance between x, y ∈ F v. The comma-free index
ρ(C) allows one to distinguish a codeword from an overlap of two codewords (and
hence provides for synchronization of codewords) even in case that up to b(ρ(C) −
1)/2c errors have occurred in the given codeword [51].

It turns out [61] that codes with prescribed comma-free index can be constructed
by using difference systems of sets, a type of combinatorial structures. Let S =

{S0, S1, . . . , Sl−1} be a collection of l disjoint subsets of Zv and τi = |Si| for each
0 ≤ i ≤ l − 1.

Definition 2.6.1. S is said to be a (v, (τ0, τ1, . . . , τl−1), ρ) difference system of sets
(DSS) if the multiset

{a− b (mod v) : a ∈ Si, b ∈ Sj , i 6= j, 0 ≤ i, j ≤ l − 1} (2.8)

contains every element x ∈ Zv \ {0} at least ρ times. A DSS is perfect if every
element x ∈ Zv \ {0} is contained exactly ρ times in the multiset of (2.8), and is
regular if all subsets Si’s are of the same size, i.e., τ0 = τ1 = · · · = τl−1.

In fact, the comma-free code C(S) corresponding to the DSS S = {Si : 0 ≤ i ≤
l − 1} is given as

C(S) =

(c0, c1, . . . , cv−1) : ci = j for i ∈ Sj and ci = ∗, for i 6∈
⋃

0≤i≤l−1

Si

 .

Note that information symbols of the comma-free code C(S) are in the places where
ci = ∗. Thus, the redundancy of C(S) is

∑
0≤i≤l−1

τi.

Definition 2.6.2. The code rate of the comma-free code from a (v, (τ0, τ1, . . . , τl−1), ρ)

DSS (also called the code rate of the DSS) is given as

1−

∑
0≤i≤l−1

τi

v
. (2.9)

From a practical view of point, comma-free codes with high code rate are pre-
ferred [45, 61]. It is very desirable that the redundancy

∑
0≤i≤l−1

τi is as small as

possible. We denote by rl(v, ρ) the minimum redundancy of all DSSs with parame-
ters (v, (τ0, τ1, . . . , τl−1), ρ).
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Levenshtein [61] proved the following bound on rl(v, ρ):

rl(v, ρ) ≥
√
lρ(v − 1)

l − 1
,

with equality if and only if the DSS is perfect and regular. From the above Leven-
shtein bound, Wang [90] derived a sharper bound.

Lemma 2.6.3 ([90]). For a DSS with parameters (v, (τ0, τ1, . . . , τl−1), ρ),

rl(v, ρ) ≥

⌈√
ρ(v − 1) +

⌈
ρ(v − 1)

l − 1

⌉⌉
. (2.10)

A (v, (τ0, τ1, . . . , τl−1), ρ) DSS is said to be optimal if its redundancy is equal to
rl(v, ρ), i.e.,

∑
0≤i≤l−1

τi = rl(v, ρ).
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Chapter 3

External Difference Families

In this chapter, we introduce some definitions and constructions of external dif-
ference families, which will be the main tool to construct algebraic manipulation
detection codes for both weak and strong models. We begin with definitions of
some special kinds of external difference families.

3.1 External difference families: definitions

In this section, we recall some notation and definitions about external difference
families. First of all, we describe some necessary notation.

• For a multi-set B and a positive integer k, let k � B denote the multi-set,
where each element of B repeated k times.

• For a subset B ⊆ G, D(B) denotes the multi-set {a− b ∈ G : a, b ∈ B, a 6= b}.

• For subsets B1, B2 ⊆ G, D(B1, B2) denotes the multi-set {a − b ∈ G : a ∈
B1, b ∈ B2}.

Definition 3.1.1 ([26]). Let G be an addictive Abelian group of order n. Let B =

{Bi : 1 ≤ i ≤ m} be a family of subsets of G. Then B is called a difference
family (DF) if each nonzero element of G appears exactly λ times in the multi-set⋃

1≤i≤mD(Bi), i.e., ⋃
1≤i≤m

D(Bi) = λ� (G \ {0}).

Let K = (|B1|, |B2|, . . . , |Bm|). One briefly says that B is an (n,K, λ)-DF.

Example 3.1.2. Let n = 7 and k = 3, then the set {{2, 4, 1}, {6, 5, 3}} is a differ-
ence family with parameter (7, (3, 3), 2) over (Z7,+).

Definition 3.1.3. When m = 1, the set B1 is also called an (n, k = |B1|, λ) differ-
ence set, or briefly an (n, k, λ)-DS.

Example 3.1.4. Let n = 7 and k = 3, then the set {2, 4, 1} is a difference set with
parameter (7, 3, 1) over (Z7,+).



Definition 3.1.5. Let G be an addictive group of order n. A k elements subset
B of G is said to be an (n, k, λ, µ) partial difference set (PDS), if D(B) contains
each non-identity elements of B exactly λ times and non-identity elements of G \B
exactly µ times.

If B forms a partition of G, then B is called a partitioned difference family (PDF)
[37] and denoted as an (n,K, λ)-PDF. In the literature, PDFs are proved to be useful
in frequency-hopping sequence design and coding theory.

The parameters of some known PDFs over cyclic groups are listed in Tables
3.1-3.3.

Fact 3.1.6 ([37]). Let S = {S1, S2, . . . , Sl} be a partition of Zv, where |Si| = τi, 1 ≤
i ≤ l. Then S is a (v, (τ1, τ2, . . . , τl), λ)-PDF if and only if S is a (v, (τ1, τ2, . . . , τl), v−
λ) perfect DSS.

Thus, every PDF in Tables 3.1-3.3 corresponds to a perfect DSS given by Defi-
nition 2.6.1.

Perfect DSSs are also known as external difference families, which were first
defined to construct authentication codes and secret sharing schemes. More specif-
ically, an external difference family can be defined as:

Definition 3.1.7 ([77]). Let B = {Bi : 1 ≤ i ≤ m} be a family of disjoint subsets
of G. Then B forms an external difference family (EDF) if each nonzero element of
G appears exactly λ times in the union of multi-sets D(Bi, Bj) for 1 ≤ i 6= j ≤ m,
i.e., ⋃

1≤i 6=j≤m
D(Bi, Bj) = λ� (G\{0}).

We briefly denote B as an (n,m,K, λ)-EDF, where K = (|B1|, |B2|, . . . , |Bm|). An
EDF is regular if |B1| = |B2| = · · · = |Bm| = k, denoted as an (n,m, k, λ)-EDF.

Example 3.1.8. Let n = 7, m = 3, and G = (Z7,+), then it is easy to check that

B1 = {{0}, {3, 6, 5}, {2, 4, 1}}

and
B2 = {{3, 6, 5}, {2, 4, 1}}

is a (7, 3, (1, 3, 3), 5)-EDF and a (7, 2, 3, 2)-EDF, respectively.

A DSS considers the external differences of a set system which contain nonzero
elements at least λ times. A perfect DSS is exactly an external difference family.
Thus, each PDF in Tables 3.1-3.3 corresponds to an EDF.

In [62], to construct algebraic manipulation detection codes, Paterson and Stin-
son considered the opposite case of DSSs, that is, the external differences of a set
system contain nonzero elements at most λ times.

24



Table 3.1: Some known PDFs over cyclic groups with parameters (v,W, λ)

Parameters Constraints Ref.(
tp, (t1, (t+ 1)

t(p−1)
t+1 ), 2

)
p ≡ 1 (mod 2(t+ 1)), and t = 2, 4 [9]

((2e− 1)v, W, e− 1)

W = ((e− 1)1, e
(2e−1)v−e+1

e )

v = pm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

e|(pt − 1) for 1 ≤ t ≤ r
2e− 1 is a prime

[9]

(
sv, (21, 3

sv−2
3 ), 2

)
,

v = pm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

3|(pt − 1) for 1 ≤ t ≤ r,
s ∈ {2, 8, 11, 17, 23, 29, 35, 41}

[9]

(
sv, (41, 5

sv−4
5 ), 4

) v = pm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

10|(pt − 1) for 1 ≤ t ≤ r
s ∈ {4, 19, 29, 39}

[9]

(
sv, (51, 6

sv−5
6 ), 5

) v = pm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

6|(pt − 1) for 1 ≤ t ≤ r
s ∈ {11, 23, 29, 41}

[9]

(
5v, (51, 6

5v−5
6 ), 5

) v = pm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

12|(pt − 1) for 1 ≤ t ≤ r
[9]

(
41v, (61, 7

41v−6
7 ), 6

) v = pm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

14|(pt − 1) for 1 ≤ t ≤ r
[9]

(
6v, (61, 7

6v−6
7 ), 6

) v = pm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

28|(pt − 1) for 1 ≤ t ≤ r
[9]

(
sv, (71, 8

sv−7
8 ), 7

) v = pm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

8|(pt − 1) for 1 ≤ t ≤ r
s ∈ {7, 31, 47, 71, 79, 103}

[9]

(
v, (11, e

v−1
e ), e− 1

) v = pm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

and e|(pt − 1) for 1 ≤ t ≤ r

[13][47]
[65][82]

Herein p, pi’s and qi’s are primes; t, e, s, r and m are positive integers; q is a
prime power;

We use W∗(l) to denote the case where |W| = l but the distribution of W is
not clear;

For PDFs over noncyclic groups, the reader is referred to, for example, Table 1
in [65].
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Table 3.2: Some known PDFs over cyclic groups with parameters (v,W, λ)

Parameters Constraints Ref.(
v, (11, (e− 1)

v−1
e−1 ), e− 2

) v = epm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

e(e− 1)|(pt − 1) for 1 ≤ t ≤ r
[14]

(p2, ((2p− 1)1, (p− 1)
p2−2p+1

p−1 ), p) p is an odd prime [?](
qt−1
m , W∗(q), q

t−1−1
m

)
m|(q − 1), and gcd(m, t) = 1 [?][37]

(q2 + 1, W∗(q), q + 1) q = 2t, t ≥ 1 [?]
(q − 1, (( qd − 1)1, qd

d−1
), q−dd ) d|q [38](

2m − 1, (11,m
2m−2

m ), m− 1
)

m is a prime [39](
2m − 1, (11, (2m)

2m−2
2m ), 2m− 1

)
m is an odd prime [39]

(
(e+ 1)v, (11, e

(e+1)v−1
e ), e− 1

) v = pm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

e|(pt − 1) for 1 ≤ t ≤ r
[65]

(
(v, W, p+3

8

)
W = (p+11

8

8p(v−1)
p+11 , 2

p−1
4 , p−1

4

1
, p+3

4

1
)

v = ppm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,
p+11

8 |(pt − 1)

gcd(p, pt) = 1, for 1 ≤ t ≤ r,
p = 25 + 4s2 or p = 49 + s2

[65]

(
(v, W, 2e2 + 1

)
W = ((2e2 + 2)

pv−p

2e2+2 , 23s2 , (s2)1, (s2 + 1)1)

v = ppm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,

(2e2 + 2)|(pt − 1)

gcd(p, pt) = 1, for 1 ≤ t ≤ r,
p = 1 + 8s2 = 9 + 64e2

[65]

(
(v, ( 3p+1

8

8p(v−1)
3p+1 , p−1

4

1
, p+3

4

1
, p−1

2

1
), 3p−7

8

) v = ppm1
1 pm2

2 . . . pmr
r

2 < p1 < p2 < · · · < pr,
3p+1

8 |(pt − 1)

gcd(p, pt) = 1, for 1 ≤ t ≤ r,
p = 4 + s2

[65]

(
(v, ( 3p+5

8

8p(v−1)
3p+5 , p−1

4

2
, p+1

2

1
), 3p−3

8

) v = ppm1
1 pm2

2 . . . pmr
r ,

2 < p1 < p2 < · · · < pr,
3p+5

8 |(pt − 1)

gcd(p, pt) = 1, for 1 ≤ t ≤ r,
p = 9 + 4s2

[65]

(
p, (2

p−1
4 , p−1

4

1
, p+3

4

1
), p+3

8

)
p = 4t2 +m2, and m = 5, 7 [92]

Herein p, pi’s and qi’s are primes; t, e, s, r andm are positive integers; q is a prime power;

We use W∗(l) to denote the case where |W| = l but the distribution of W is not clear;

For PDFs over noncyclic groups, the reader is referred to, for example, Table 1 in [65].
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Table 3.3: Some known PDFs over cyclic groups with parameters (v,W, λ)

Parameters Constraints Ref.(
p, (p−1

4

1
, p+3

4

1
, p−1

2

1
), 3p−7

8

)
p = 4 +m2, and m ≡ 1 (mod 4) [92](

p, (23t2 , (t2)1, (t2 + 1)1), 2m + 1
)

p = 8t2 + 1 = 64m2 + 9 [92](
p, (p−1

4

2
, p+1

2

1
), 3p−3

8

)
p = 4t2 + 9 [92](

p, (11, t
p−1
t ), t− 1

)
p ≡ 1 (mod t), and t = 3, 4 [99](

p, W, t
2+m

2

)
W = (2t

2+m−1, (t2 +m− 1)1, (t2 +m)1)
p = 4t2 +m2, and m = 1, 3 [99]

(
p, (fm, (mf + 1)1), (m+1)f

2

) p = ef + 1,

p ≡ 3 (mod 4), e = 2m
[99]

(
p, (62t, (12n+ 1)1), 6t+ 3

) p = 24t+ 1 (mod 4)

(−3)6t 6≡ 1 (mod p)
[99]

(qr − 1, W∗(qs), qr−s − 1) 1 ≤ s ≤ r [101](
t q

r−1
m , W∗(qs), t q

r−s−1
m

) m|(q − 1), gcd(m, r) = 1,

1 ≤ t ≤ m, 1 ≤ s ≤ r
[101]

Herein p, pi’s and qi’s are primes; t, e, s, r and m are positive integers; q is a prime
power;

We use W∗(l) to denote the case where |W| = l but the distribution of W is not
clear;

For PDFs over noncyclic groups, the reader is referred to, for example, Table 1 in [65].
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Definition 3.1.9 ([81]). Let B = {Bi : 1 ≤ i ≤ m} be a family of disjoint subsets of
G. Then B is a bounded external difference family (BEDF) if each nonzero element
of G appears at most λ times in the union of multi-sets D(Bi, Bj) for 1 ≤ i 6= j ≤ m,
i.e., ⋃

1≤i 6=j≤m
D(Bi, Bj) ⊆ λ� (G\{0}).

We briefly denote B as an (n,m,K, λ)-BEDF, where K = (|B1|, |B2|, . . . , |Bm|).

Example 3.1.10. Let n = 13, m = 2, and G = (Z13,+), then

B1 = {{1}, {2, 6, 8, 10, 12}}

is a (13, 2, (1, 5), 1)-BEDF and

B2 = {{2, 4}, {11, 12}}

is a (13, 2, (2, 2), 1)-BEDF.

It is easy to check that EDFs are a special case of BEDFs according to Definitions
3.1.7 and 3.1.9.

Fact 3.1.11. If B is an (n,m,K, λ)-EDF over group G, then B is also an (n,m,K, λ)-
BEDF over group G.

To construct AMD codes, in [81], the following generalizations of EDFs were also
introduced by distinguishing the differences D(Bi, Bj) and D(Bj , Bi).

Definition 3.1.12 ([81]). Let B = {Bi : 1 ≤ i ≤ m} be a family of disjoint subsets
of G. B is called an (n,m; k1, k2, . . . , km; λ1, λ2, . . . , λm)-generalized strong external
difference family (GSEDF) if for any given 1 ≤ i ≤ m, each nonzero element of G
appears exactly λi times in the union of multi-sets D(Bi, Bj) for 1 ≤ j 6= i ≤ m,
i.e., ⋃

{j:1≤j≤m, j 6=i}

D(Bi, Bj) = λi � (G\{0}), (3.1)

where ki = |Bi| for 1 ≤ i ≤ m. Furthermore, if k = k1 = k2 = · · · = km and
λ = λ1 = λ2 = · · · = λm, then it is named as a strong external difference family,
also denoted as an (n,m, k, λ)-SEDF for short.

Herein, we include the first SEDF with m ≥ 5 found in [57,95] as an example.

Example 3.1.13 ([57, 95]). Let n = 243, m = 11, and G = (F35 ,+), then there
exists a (243, 11, 22, 20)-SEDF.

By Definitions 3.1.7 and 3.1.12, we know that SEDFs are a special case of EDFs.
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Fact 3.1.14. If B is an (n,m; k1, k2, . . . , km; λ1, λ2, . . . , λm)-GSEDF then B is an
(n,m, (k1, k2, . . . , km),

∑
1≤i≤m λi)-EDF. Particularly, if B is an (n,m, k, λ)-SEDF

then B is an (n,m, k,mλ)-EDF.

Known results of SEDFs are summarized in the following lemma.

Theorem 3.1.15 ([4, 54,57,81]). An (n,m, k, λ)-SEDF over a group G exists if:

I (n,m, k, λ) = (k2 + 1, 2, k, 1) with G = (Zk2+1,+) [81];

II (n,m, k, λ) = (n, 2, n−1
2 , n−1

4 ) and n ≡ 1 (mod 4), when partial different set
over G with parameters (n, n−1

2 , n−5
4 , n−1

4 ) exists [54];

III (n,m, k, λ) = (p, 2, p−1
4 , p−1

16 ), when t is an integer, p = 16t2 + 1 is a prime,
and G = (Zp,+) [4];

IV (n,m, k, λ) = (p, 2, p−1
6 , p−1

36 ), when t is an integer, p = 108t2 + 1 is a prime,
and G = (Zp,+) [4];

V (n,m, k, λ) = (243, 11, 22, 20) with G = (Z5
3,+) [81].

Remark 3.1.16. For SEDFs, there are also some papers focusing on the nonexis-
tence. For this part, refer to [4, 54,57] for examples.

In [81], GSEDFs are further generalized as follows.

Definition 3.1.17 ([81]). Let B = {Bi : 1 ≤ i ≤ m} be a family of disjoint subsets
of G. Then B forms an (n,m; k1, k2, . . . , km; λ1, λ2, . . . , λm)-bounded generalized
strong external difference family (BGSEDF) if for any given 1 ≤ i ≤ m, each
nonzero element of G appears at most λi times in the union of multi-sets D(Bi, Bj)

for 1 ≤ j 6= i ≤ m, i.e., ⋃
{j:1≤j≤m, j 6=i}

D(Bi, Bj) ⊆ λi � (G\{0}), (3.2)

where ki = |Bi| for 1 ≤ i ≤ m.

Definition 3.1.18 ([81]). Let B = {Bi : 1 ≤ i ≤ m} be a family of disjoint subset-
s of G. Then B is an (n,m; c1, c2, . . . , cl;w1, w2, . . . , wl;λ1, λ2, . . . , λl)-partitioned
external difference family (PEDF) if for any given 1 ≤ t ≤ l,⋃

{i : |Bi|=wt}

⋃
{j:1≤j≤m, j 6=i}

D(Bi, Bj) = λt � (G\{0}), (3.3)

where ct = |{i : |Bi| = wt, 1 ≤ i ≤ m}| for 1 ≤ t ≤ l.

Example 3.1.19. Let n = 5, m = 2, and G = (Z5,+), then B = {{0}, {1}, {2, 4}}
is a (5, 2; 2, 1; 1, 2; 1, 1)-PEDF.

29



According to Definitions 3.1.12 and 3.1.18, GSEDFs are a special case of PEDFs.

Fact 3.1.20. If B is an (n,m; k1, k2, . . . , km;λ1, λ2, . . . , λm)-GSEDF, then it is also
an (n,m; 1, 1, . . . , 1; k1, k2, . . . , km;λ1, λ2, . . . , λm)-PEDF.

To finish this section, we summarize the relationship among the above mentioned
difference families in Fig. 3.1.

SEDF

GSEDF

BGSEDF PEDF

EDF

(perfect DSS)

BEDF

DS

DF

PDF

De
f.
3.1

.12

De
f.
3.1
.17

Fact
3.1.20

Fact 3.1.14

D
ef.

3.1.3

partitionedcyclic

Fact
3.1.11

Figure 3.1: Summary of the relationship among DS, DF , PDF , EDF , PEDF ,
BEDF , SEDF , GSDEF and BGSEDF .

3.2 A direct construction of PDFs

In this section, we shall introduce a direct construction of PDFs based on the Chinese
Remainder Theorem [31] and a kind of cyclotomy.

For a positive integer v with v > 1, let Z∗v denote the set of invertible elements
in Zv, i.e., Z∗v = {0 ≤ i ≤ v−1 : gcd(i, n) = 1}, and let ϕ(v) be the Euler’s totient
function, i.e.,

ϕ(v) = |Z∗v| = |{0 ≤ i ≤ v − 1 : gcd(i, n) = 1}|.

It is well known that (Z∗v, ·) is a group with order ϕ(v), where the multiplication is
given by Zv, i.e, ab = ab (mod v), for a, b ∈ Z∗v. For a ∈ Z∗v, define the order of a
in the group (Z∗v, ·), i.e., the smallest integer t > 0 such that

at ≡ 1 (mod v)

to be the multiplicative order of a modulo v. For a positive integer v with v > 1, an
element a ∈ Z∗v is called a primitive root modulo v if the multiplicative order of a
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modulo v is ϕ(v). It is well known that if there is a primitive root modulo v, then v
can only equal 2, 4, pt, or 2pt, where p is an odd prime and t is a positive integer [3].
Furthermore, for any odd prime p, there exists at least one primitive root g modulo
p which is also a primitive root modulo pt for all t ≥ 1 [3].

According to the unique factorization theorem, a positive integer n has the fol-
lowing unique decomposition

n = pm1
1 pm2

2 · · · p
mk
k , (3.4)

where p1 < p2 < · · · < pk are primes and m1,m2, . . . ,mk are positive integers. The
cardinality of the multiplicative group Z∗n is equal to

ϕ(n) =
k∏
i=1

pmi−1
i (pi − 1).

From now on, we always suppose that n is an odd integer with pi ≡ 1 (mod 8)

for each 1 ≤ i ≤ k, where pi is given in (3.4). Then we know that gcd(n, 7) = 1 and
8 is a common factor of p1 − 1, p2 − 1, . . . , pk − 1. Write pi = 8fi + 1 for k positive
integers fi with 1 ≤ i ≤ k. For i = 1, 2, . . . , k, let gi be a primitive root modulo pti
for all t ≥ 1, i.e., the multiplicative order of gi modulo pti is ϕ

(
pti
)

= pt−1
i (pi−1) for

t ≥ 1. Since p1, p2, . . . , pk are distinct primes, by the Chinese Remainder Theorem
[31], there exists a unique α ∈ Zn such that

α ≡ gfip
mi−1
i

i (mod pmii ) for all 1 ≤ i ≤ k.

It is easy to check that the multiplicative order of α modulo n is 8, i.e., Gn = {αi :

i ∈ Z8} is a subgroup of Z∗n with order 8. Therefore, there are N = ϕ(n)/8 elements
a0 = 1, a1, . . . , aN−1 ∈ Z∗n such that

D
(n)
i = aiGn = {aiαj : 0 ≤ j ≤ 7}, 0 ≤ i ≤ N − 1,

are exactly all the cosets of Gn in Z∗n, i.e.,

Z∗n =
⋃

0≤i≤N−1

D
(n)
i (3.5)

and

D
(n)
i

⋂
D

(n)
j = ∅, for any 0 ≤ i 6= j ≤ N − 1.

We remark here that the discussion above is still valid for any factor n1 > 1 of n.
Define a collection of subsets of Z7 × Z∗n as

Bn = {Bi,j : i ∈ {0, 1, 2, 3}, 0 ≤ j ≤ N − 1}, (3.6)
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where for each i ∈ {0, 1, 2, 3} and 0 ≤ j ≤ N − 1,

Bi,j =
{

(1, ajα
i), (1, ajα

4+i), (2, ajα
1+i), (2, ajα

5+i),

(0, ajα
2+i), (0, ajα

6+i), (4, ajα
3+i), (4, ajα

7+i)
}
.

(3.7)

The following results will be needed in the sequel.

Lemma 3.2.1. The sets in Bn form a partition of {0, 1, 2, 4} × Z∗n.

Proof. The conclusion follows directly from (3.5), (3.6), and (3.7).

Lemma 3.2.2. With the notation as above,⋃
B∈Bn

D(B) = 4� (Z7 × Z∗n).

Proof. Note that α4 ≡ −1 (mod n) since the multiplicative order of α modulo n is
8. Thus, for given i ∈ {0, 1, 2, 3} and 0 ≤ j ≤ N − 1, Bi,j can be rewritten as

Bi,j =
{

(1, ajα
i), (1,−ajαi), (2, ajαi+1), (2,−ajαi+1),

(0, ajα
i+2), (0,−ajαi+2), (4, ajα

i+3), (4,−ajαi+3)
}
.

This means that for T = {0, 1, 2, 3},⋃
i∈T

D(Bi,j)

=

(
{0} ×

⋃
i∈T
±2ajα

i{1, α, α2, α3}

)
⋃(

{±1} ×
⋃
i∈T
±ajαi{α− 1, α+ 1, α2 − 1, α2 + 1}

)
⋃(

{±2} ×
⋃
i∈T
±ajαi{α− α2, α+ α2, α3 − α, α3 + α}

)
⋃(

{±3} ×
⋃
i∈T
±ajαi{α2 − α3, α2 + α3, α3 − 1, α3 + 1}

)

=
(

4�
(
{0} × 2D

(n)
j

))⋃ ⋃
i∈{1,2}
β∈A

(
{±i} × βD(n)

j

)
⋃ ⋃

β∈{α−1,α+1}

(
2� {±3} × βD(n)

j

) ,

(3.8)

where A = {α−1, α+ 1, α2−1, α2 + 1}, and the last equality holds by the fact that
αr
⋃
i∈T
{±ajαi} = αrD

(n)
j = D

(n)
j for any positive integer r. Therefore, by (3.5) and
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(3.8),

⋃
B∈Bn

D(B) =
⋃

0≤j≤N−1

(4�
(
{0} × 2D

(n)
j

))⋃ ⋃
i∈{1,2}
β∈A

(
{±i} × βD(n)

j

)
⋃ ⋃

β∈{α−1,α+1}

(
2� {±3} × βD(n)

j

)
= (4� ({0} × Z∗n))

⋃ ⋃
i∈{1,2}
β∈A

({±i} × βZ∗n)


⋃

2�

 ⋃
β∈{α−1,α+1}

({±3} × βZ∗n)


=4� (Z7 × Z∗n) ,

where the last equality follows from the fact that 2 ∈ Z∗n, and

A = {α− 1, α+ 1, α2 − 1, α2 + 1} ⊂ Z∗n

since the order of α ∈ Z∗n is 8. This completes the proof of this lemma.

Again, we remark that the discussion above is also valid for any factor n1 > 1

of n.
Note that

Zn \ {0} =
⋃

1<n1, n1|n

n

n1
Z∗n1

. (3.9)

Let

Ψ(7,n) =

{(
1,
n

n1

)
B : 1 < n1, n1 | n, and B ∈ Bn1

}
⋃
{0, 1, 2, 3, 4} × {0}

⋃
{(3, 1), (5, 1)}

⋃
{(3, 2), (6, 2)},

(3.10)

where (1, nn1
)B = {(i, nn1

a) : (i, a) ∈ B} is a subset of Z7 × Zn.

Lemma 3.2.3. With notation as above, we have⋃
B∈Ψ(7,n)

B = {0, 1, 2, 4} × Zn
⋃
{(3, 0), (3, 1), (5, 1), (3, 2), (6, 2)} (3.11)

and ⋃
B∈Ψ(7,n)

D(B) = 4� (Z7 × Zn \ {(0, 0)}).
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Proof. By Lemma 3.2.1, we can derive (3.11) directly from (3.10). For
⋃

B∈Ψ(7,n)

D(B),

Lemma 3.2.2 implies that⋃
B∈Ψ(7,n)

D(B)

=

 ⋃
1<n1,n1|n

4�

((
1,
n

n1

)
Z7 × Z∗n1

)⋃D({0, 1, 2, 3, 4} × {0})

⋃
D({(3, 1), (5, 1)})

⋃
D({(3, 2), (6, 2)})

=4� (Z7 × (Zn\{0}))
⋃
D({0, 1, 2, 3, 4} × {0})⋃

D({(3, 1), (5, 1)})
⋃
D({(3, 2), (6, 2)})

=4� (Z7 × Zn\{(0, 0)}),

where the last two equalities follow from (3.9) and

D({0, 1, 2, 3, 4} × {0})
⋃
D({(3, 1), (5, 1)})

⋃
D({(3, 2), (6, 2)})

=4� ((Z7\{0})× {0}),

respectively.

Based on (3.11), a partition of Z7 × Zn is given by

Ψ∗(7,n) = Ψ(7,n)

⋃
{{(a, b)} : (a, b) ∈ Z7 ×Zn, (a, b) 6∈ B for anyB ∈ Ψ(7,n)}. (3.12)

According to the discussion above, it is easy to verify that |Ψ(7,n)| = (n− 1)/2 + 3

and |Ψ∗(7,n)| = |Ψ(7,n)|+ 3n− 5 = (7n− 5)/2.

Theorem 3.2.4. Ψ∗(7,n) is a (7n, (13n−5, 22, 51, 8(n−1)/2), 4)-PDF over Z7n, where
n = pm1

1 pm2
2 · · · p

mk
k , 2 < p1 < p2 < · · · < pk are primes with pi ≡ 1 (mod 8) for

each 1 ≤ i ≤ k, and m1,m2, . . . ,mk are positive integers.

Proof. According to (3.12) and Lemma 3.2.3,⋃
B∈Ψ∗

(7,n)

D(B) =
⋃

B∈Ψ(7,n)

D(B) = 4� (Z7 × Zn \ {(0, 0)}).

Therefore, the desired conclusion follows from the fact for B ∈ Ψ∗(7,n),

|B| =


1, 3n− 5 times,

2, 2 times,

5, 1 time,

8, n−1
2 times.
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Remark 3.2.5. In [13, 14, 39], PDFs were respectively generated by cosets of sub-
groups for Z∗n and F∗

p
m1
1
× F∗

p
m2
2
× · · · × F∗

p
mk
k

as well. However, the constructions in

[13,14] can produce PDFs only in the case (λ+ 1)|6 if n = 7pm1
1 pm2

2 · · · p
mk
k , and the

construction in [39] can generate PDFs over cyclic groups only in the case mi = 1

for 1 ≤ i ≤ k and (λ + 1)|6 if n = 7pm1
1 pm2

2 · · · p
mk
k . Thus, our construction can

yield PDFs with new parameters in contrast to those constructions.

Example 3.2.6. Let n = 17. By our construction, we can obtain a (119, (146, 22, 51,

88))-PDF over Z119 as

{{1, 9, 98, 32, 50, 93, 21, 53}, {71, 44, 56, 11, 99, 58, 63, 74},
{86, 77, 81, 15, 16, 42, 4, 36}, {37, 112, 39, 113, 65, 7, 46, 57},
{35, 60, 64, 100, 84, 25, 106, 2}, {105, 95, 22, 79, 14, 109, 29, 23},
{18, 43, 30, 49, 67, 8, 72, 70}, {88, 78, 107, 28, 116, 92, 114, 91},
{52, 103}, {87, 104}, {0, 85, 51, 17, 102},
{3}, {5}, {6}, {10}, {12}, {13}, {19}, {20}, {24}, {26}, {27}, {31},
{33}, {34}, {38}, {40}, {41}, {45}, {47}, {48}, {54}, {55}, {59}, {61},
{62}, {66}, {68}, {69}, {73}, {75}, {76}, {80}, {82}, {83}, {89}, {90},
{94}, {96}, {97}, {101}, {108}, {110}, {111}, {115}, {117}, {118}}.

3.3 DSSs from PDFs

In this section, we shall introduce a new construction of DSSs from PDFs based
on the following construction of optimal and perfect DSSs from PDFs developed by
Ding [37] (refer to Fact 3.1.6).

The construction in Fact 3.1.6 is generic in the sense that it works for any
PDF over a cyclic group. Based on this generic construction, several classes of
optimal DSSs were obtained via PDFs in the literature (see [13, 14, 37, 39, 100, 101],
for example). Similarly, PDFs proposed in Section 3.2 also generate optimal DSSs
under this framework.

However, all those previous DSSs constructed from PDFs are of partitioned-type
(i.e., Zv = ∪l−1

i=0Si and then
∑

0≤i≤l−1 τi = v), thus they can only lead to comma-
free codes of zero code rate. Then a natural question one would ask is whether the
construction in Fact 3.1.6 can be modified to obtain DSSs leading to comma-free
codes with positive code rate. In the following, we shall answer this problem in the
affirmative.

Theorem 3.3.1. Let S ′ = {Si : 0 ≤ i ≤ l − 1} be a (v, l, λ)-PDF over Zv,

S = {Si : i ∈ I}

and
T =

⋃
i 6∈I

Si, (3.13)
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where I , {i : 0 ≤ i ≤ l − 1, |Si| > 1} = {ij : 1 ≤ j ≤ |I|}. If each element of
Zv \ {0} appears at least r times in the multiset D(T ), i.e., r � (Zv \ {0}) ⊆ D(T ),
then S is a (v, (|Si1 |, |Si2 |, · · · , |Si|I| |), v + r − λ − 2(l − |I|)) DSS with code rate
|T |
v = l−|I|

v .

Proof. It is clear that S is nonempty since v > l. Recall that S ′ = {Si : 0 ≤ i ≤
l − 1}. Then S ⊆ S ′ and |Si| = 1 for any Si ∈ S ′ \ S. Since S′ is a (v, l, λ)-PDF
over Zv, we have ⋃

Si∈S
D(Si) =

⋃
Si∈S′

D(Si) = λ� (Zv \ {0}). (3.14)

Since S ′ is a partition of Zv, we have

D(Zv) = v � (Zv \ {0})

=

 ⋃
Si,Sj∈S′
Si 6=Sj

D(Si, Sj)

⋃
 ⋃
Si∈S′

D(Si)



=

 ⋃
Si,Sj∈S′
Si 6=Sj

D(Si, Sj)

⋃
 ⋃
Si∈S

D(Si)

 .

This, together with (3.14), leads to⋃
Si,Sj∈S′
Si 6=Sj

D(Si, Sj) = (v − λ)� (Zv \ {0}). (3.15)

On the other hand, we have

⋃
Si,Sj∈S′
Si 6=Sj

D(Si, Sj) =

 ⋃
Si,Sj∈S′\S
Si 6=Sj

D(Si, Sj)

⋃
 ⋃

Si∈S′\S
Sj∈S

D(Si, Sj) ∪D(Sj , Si)


⋃ ⋃

Si,Sj∈S
Si 6=Sj

D(Si, Sj)

 .

(3.16)

Recall that T =
⋃

Si∈S′\S
Si and |Si| = 1 for Si ∈ S ′ \ S, i.e.,

D(T ) =
⋃

Si,Sj∈S′\S
Si 6=Sj

D(Si, Sj).
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Thus, by (3.16), ⋃
Si,Sj∈S′
Si 6=Sj

D(Si, Sj)

⋃D(T ) =

 ⋃
Si∈S′\S

Sj∈S′,Sj 6=Si

D(Si, Sj) ∪D(Sj , Si)


⋃ ⋃

Si,Sj∈S
Si 6=Sj

D(Si, Sj)



= 2|S ′ \ S|� (Zv \ {0})
⋃ ⋃

Si,Sj∈S
Si 6=Sj

D(Si, Sj)

 ,

where the last identity holds since⋃
Sj∈S′
Sj 6=Si

D(Si, Sj) =
⋃
Sj∈S′
Sj 6=Si

D(Sj , Si) = Zv \ {0}

for each Si ∈ S ′ \ S.
Combining (3.15), (3.16) with the fact that r� (Zv \ {0}) ⊆ D(T ), we arrive at

(v + r − λ− 2|S ′ \ S|)� (Zv \ {0}) ⊆
⋃

Si,Sj∈S
Si 6=Sj

D(Si, Sj),

which implies that S is a (v, (|Si1 , |Si2 |, · · · , |Si|I| |), v+r−λ−2(l−|I|)) DSS, where

I = {i1, i2, · · · , i|I|}. By Definition 2.6.2, the code rate of the DSS S is |T |v = l−|I|
v ,

which completes the proof.

Remark 3.3.2. For the modified construction of DSSs in Theorem 3.3.1, we have
the following comments.

1) It becomes the original construction of Ding in [37] if τi 6= 1 for each 0 ≤ i ≤
l − 1.

2) It generates DSSs leading to comma-free codes with positive code rate provided
that |I| < l.

3) The resultant DSSs can be optimal in many cases (e.g., Theorem 3.3.3).

Theorem 3.3.3. With the notation in Theorem 3.3.1, the DSS S is optimal with
respect to the bound in Lemma 2.6.3, if |I| > 1 and

(|I| − 1)(λ− 1)v + ((l − |I|)2 + 1− λ)(|I| − 1)

<(v − λ− 2(l − |I|))(v − 1).
(3.17)
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Proof. Set x = l − |I| and note that |I| > 1. It is easy to check that (3.17) holds if
and only if

(v − x− 1)2 < (v − λ− 2x)(v − 1) +
(v − λ− 2x)(v − 1)

|I| − 1

≤ (v − λ− 2x)(v − 1) +

⌈
(v − λ− 2x)(v − 1)

|I| − 1

⌉
.

That is,

v − x− 1 <

⌈√
(v − λ− 2x)(v − 1) +

⌈
(v − λ− 2x)(v − 1)

|I| − 1

⌉⌉
.

This, together with (2.10), leads to

v − x =

⌈√
(v − λ− 2x)(v − 1) +

⌈
(v − λ− 2x)(v − 1)

|I| − 1

⌉⌉
,

since r ≥ 0 and rl(v, ρ) ≤
∑
Si∈S
|Si| = v − x. Therefore, S is optimal with respect to

the bound in Lemma 2.6.3.

As will be shown in the next subsection, the condition given by inequality (3.17)
enables us to obtain infinite families of optimal DSSs, although it looks quite com-
plex.

3.3.1 Some optimal DSSs with relatively high code rate

Now we focus on DSSs leading to comma-free codes with relatively high code rate
based on the modified construction. To this end, we need PDFs with a large number
of i such that |Si| = 1 for 0 ≤ i ≤ l− 1. Unfortunately, most of the known PDFs do
not satisfy this property. In what follows, we are going to analyze DSSs generated
by known PDFs constructed in Theorem 3.2.4, Section 3.2.

At first, we employ the PDFs generated by Theorem 3.2.4 to yield DSSs. Before
that, we need some properties about those PDFs.

Lemma 3.3.4. For the PDFs generated by Theorem 3.2.4, we have

T =
⋃

B∈Ψ∗
(7,n)
\Ψ(7,n)

B = {3, 5, 6} × Zn \ {(3, 0), (3, 1), (5, 1), (3, 2), (6, 2)}

and
(n− 4)� (Z7 × Zn \ {(0, 0)}) ⊂ D(T ),

where Ψ(7,n) and Ψ∗(7,n) are defined by (3.10) and (3.12), respectively.
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Proof. Firstly, by (3.11), (3.12) and (3.13),

T =
⋃

B∈Ψ∗7,n\Ψ7,n

B = (Z7 × Zn) \

 ⋃
B∈Ψ7,n

B


={3, 5, 6} × Zn \ {(3, 0), (3, 1), (5, 1), (3, 2), (6, 2)}.

On one hand, the fact D({3, 5, 6}) = Z7 \ {0} means that

D({3, 5, 6} × Zn)

=

 ⋃
i∈{3,5,6}

D({i} × Zn)

⋃
 ⋃

i,j∈{3,5,6}
i 6=j

D({i} × Zn, {j} × Zn)


=3n� ({0} × (Zn\{0}))

⋃
n� ((Z7 \ {0})× Zn).

(3.18)

Note that for any given i ∈ Zn, the multisets

Λ3 ={±((3, i)− (a, b)) : (a, b) 6= (3, i), (a, b) ∈ {3, 5, 6} × Zn}

=2� ({0} × (Zn \ {0}))
⋃

({2, 5, 3, 4} × Zn),
(3.19)

Λ5 ={±((5, i)− (a, b)) : (a, b) 6= (5, i), (a, b) ∈ {3, 5, 6} × Zn}

=2� ({0} × (Zn \ {0}))
⋃

({2, 5, 1, 6} × Zn),
(3.20)

Λ6 ={±((6, i)− (a, b)) : (a, b) 6= (6, i), (a, b) ∈ {3, 5, 6} × Zn}

=2� ({0} × (Zn \ {0}))
⋃

({1, 6, 3, 4} × Zn).
(3.21)

On the other hand,

D({3, 5, 6} × Zn) ⊂ D(T )
⋃

3� Λ3

⋃
Λ5

⋃
Λ6.

Thus, according to (3.18)-(3.21), we can conclude that

3n� ({0} × (Zn \ {0}))
⋃
n� ((Z7 \ {0})× Zn)

⊂D(T )
⋃

10� ({0} × (Zn \ {0}))
⋃

2� ((Z7 \ {0})× Zn)⋃
2� ({2, 5, 3, 4} × Zn)

⊂D(T )
⋃

10� ({0} × (Zn \ {0}))
⋃

4� ((Z7 \ {0})× Zn),

which means
(n− 4)� (Z7 × Zn \ {(0, 0)}) ⊂ D(T ),

where we use the fact n ≥ 17 to make sure 3n− 10 > n− 4.

Based on Theorem 3.2.4, Theorem 3.3.1, and Lemma 3.3.4, we obtain the fol-
lowing result.
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Corollary 3.3.5. If n = pm1
1 pm2

2 · · · p
mk
k , 8|(pi− 1), and pi’s are prime factors of n

for 1 ≤ i ≤ k, then there exists a (7n, (22, 51, 8(n−1)/2), 2n + 2) DSS with code rate
(3n− 5)/(7n).

Remark 3.3.6. In [45], the authors pointed out that the optimal or asymptotically
optimal DSSs that can yield comma-free codes with code rate higher than a half are
quite rare (refer to Table II [45] for the detailed parameters). Herein, the comma-free
codes constructed from the DSSs in Corollary 3.3.5 have code rate 3n−5

7n . Although
these DSSs in Corollary 3.3.5 are not optimal with respect to the bound in Lemma
2.6.3, they perform quite well in the sense that

lim
n→+∞


∑

B∈Ψ(7,n)

|B|

rl(v, ρ)


2

≤ lim
n→+∞


∑

B∈Ψ(7,n)

|B|⌈√
ρ(v − 1) +

⌈
ρ(v−1)
l−1

⌉⌉


2

=
8

7
,

where v = 7n, ρ = 2n+ 2, l = (n− 1)/2 + 3, and
∑

B∈Ψ(7,n)

|B| = 4n+ 5.

Example 3.3.7. Based on the PDF in Example 3.2.6 and Theorem 3.3.1, a (119, (22,

51, 88), 36) DSS with code rate 46
119 can be given as

S = {S0 = {1, 9, 98, 32, 50, 93, 21, 53}, S1 = {71, 44, 56, 11, 99, 58, 63, 74},
S2 = {86, 77, 81, 15, 16, 42, 4, 36}, S3 = {37, 112, 39, 113, 65, 7, 46, 57},
S4 = {35, 60, 64, 100, 84, 25, 106, 2}, S5 = {105, 95, 22, 79, 14, 109, 29, 23},
S6 = {18, 43, 30, 49, 67, 8, 72, 70}, S7 = {88, 78, 107, 28, 116, 92, 114, 91},
S8 = {52, 103}, S9 = {87, 104}, S10 = {0, 85, 51, 17, 102}}.

According to Theorems 3.3.1 and 3.3.3, one can obtain the following optimal
DSSs from known PDFs.

Definition 3.3.8. Let D = (di,j)0≤i≤k−1,0≤j≤m−1 be a k ×m matrix with entries
from Zm. If every element of Zm occurs exactly once among the differences di1,j −
di2,j, 0 ≤ j ≤ m− 1 for any 0 ≤ i1 6= i2 ≤ k− 1, then D is called an (m, k, 1) cyclic
difference matrix, or (m, k, 1) CDM for short.

Theorem 3.3.9 ([9]). Let m = pm1
1 pm2

2 · · · p
mt
t , where p1, p2, · · · , pt are t distinct

primes. Let λ be a nonnegative integer with (λ+ 1)|(pi − 1) for each 1 ≤ i ≤ t.

1) There exists an (nm, (1(n−w−1)m+1, wm, (λ + 1)(m−1)/(λ+1)), λ)-PDF, if there
exists an (n,w, λ) cyclic different set with 2 ≤ w < min1≤i≤t pi;

2) There exists an (nm, (1n−w, w1, (λ+ 1)n(m−1)/(λ+1)), λ)-PDF, if there exist an
(n, λ+ 2, 1)-CDM and an (n,w, λ) cyclic different set with w ≥ 2.
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Corollary 3.3.10. Letm = pm1
1 pm2

2 · · · p
mt
t , where p1, p2, . . . , pt are t distinct primes.

Let λ be a nonnegative integer with (λ+ 1)|(pi − 1) for each 1 ≤ i ≤ t. Then there
exists an (nm,W = (w1, (λ + 1)n(m−1)/(λ+1)), nm − 2(n − w) − λ) DSS with code
rate n−w

nm , if there exist an (n, λ + 2, 1) CDM and an (n,w, λ) cyclic different set
with w ≥ 2. Furthermore, the DSS is optimal with respect to the bound in Lemma
2.6.3 when

2n2m2 + am+ b > 0, (3.22)

where a = n(−n2 − nλ − 3n + 2wn − w2 + 2w + 2wλ − λ2 − λ − 2) and b =

n3 − 2wn2 + w2n+ λn+ 3n+ λ2 + λ− 2wλ− 2w.

Remark 3.3.11. Let δ = a2 − 8n2b. If δ < 0, then the inequality (3.22) holds for
any m, which means that the DSS in Corollary 3.3.10 is optimal in this case. If
δ > 0, the inequality (3.22) holds for any m > −a+

√
a2−8n2b

4n2 , which implies that we
can take a large enough m to guarantee that the DSS in Corollary 3.3.10 is optimal.

Example 3.3.12. Let n = 4,m = 7, and S1 = {{0, 3, 5, 6}, {1}, {2}, {4}}. It is
easy to check that S1 is a (7, (13, 4), 2)-PDF and {2, 4, 1} is a (7, 3, 1)-DS over Z7.
Note that a (7, 4, 1) CDM can be given as

D =


0 0 0 0 0 0 0

0 1 2 3 4 5 6

0 2 4 6 1 3 5

0 3 6 2 5 1 4

 .

By Theorem 3.3.9, there exists a (28, (13, 37, 41), 20)-PDF:

{{4}, {8}, {16}, {25, 22, 19}, {1, 2, 3}, {5, 10, 15}, {9, 18, 27}, {13, 26, 11},
{17, 6, 23}, {21, 14, 7}, {0, 12, 20, 24}}.

From S1, S2 and D, by Theorem 3.3.1, we obtain the following (28, (37, 41), 20) DSS:

S = {{25, 22, 19}, {1, 2, 3}, {5, 10, 15}, {9, 18, 27}, {13, 26, 11},
{17, 6, 23}, {21, 14, 7}, {0, 12, 20, 24}}.

It is easy to check that

rl(v, ρ) =

⌈√
ρ(v − 1) +

⌈
ρ(v − 1)

l − 1

⌉⌉
=
⌈√

618
⌉

= 25.

Therefore, S is optimal with respect to the bound in (2.10), which is consistent with
the result in Corollary 3.3.10.
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3.4 Weighted external difference families

In this section, we further generalize external difference families to weighted external
difference families.

Definition 3.4.1. Let B = {Bi : 1 ≤ i ≤ m} be a family of disjoint subsets of G.
Let K = (k1, k2, . . . , km) with ki = |Bi| for 1 ≤ i ≤ m and k̃ = lcm(k1, k2, . . . , km).
Define B̃ = {B̃i : Bi ∈ B} as the standard weighted multi-sets of B, where

B̃i ,
k̃

|Bi|
�Bi =

k̃

ki
�Bi.

Then B is called an (n,m,K, a, λ)-bounded standard weighted external difference
family (BSWEDF) if λ is the smallest positive integer such that⋃

1≤i 6=j≤m
D(Bi, B̃j) ⊆ λ� (G\{0}),

where a =
∑

1≤i≤m ki. Furthermore, if B satisfies⋃
1≤i 6=j≤m

D(Bi, B̃j) = λ� (G\{0}),

then it is named as a standard weighted external difference family, also denoted as
an (n,m,K, a, λ)-SWEDF for short.

For BSWEDFs and SWEDFs, we have the following facts on their parameters.

Lemma 3.4.2. Let B be an (n,m,K, a, λ)-BSWEDF. Then we have

λ ≥

⌈
k̃a(m− 1)

n− 1

⌉
. (3.23)

Specially, if B is an (n,m,K, a, λ)-SWEDF, then (n− 1) | (k̃a(m− 1)) and

λ =
k̃a(m− 1)

n− 1
. (3.24)

Proof. Let B = {Bi : 1 ≤ i ≤ m}. The fact⋃
1≤i 6=j≤m

D(Bi, B̃j) =
⋃

1≤i 6=j≤m

⋃
b∈Bi

D({b}, B̃j)

means that ∣∣∣∣∣∣
⋃

1≤i 6=j≤m
D(Bi, B̃j)

∣∣∣∣∣∣ =
∑

1≤i≤m

∑
1≤j≤m
j 6=i

∑
b∈Bi

|D({b}, B̃j)|

=
∑

1≤i≤m

∑
1≤j≤m
j 6=i

∑
b∈Bi

k̃

=k̃a(m− 1).

(3.25)
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Thus, we have λ ≥ d k̃a(m−1)
n−1 e.

Similarly, for the case of SWEDFs, by Definition 3.4.1 and (3.25), we have λ(n−
1) = k̃a(m− 1), i.e., λ = k̃a(m−1)

n−1 , which also means (n− 1) | (k̃a(m− 1)).

Definition 3.4.3. An (n,m,K, a, λ)-BSWEDF is said to be optimal if λ takes the
smallest possible value for given n, m, and K.

Specially, an (n,m,K, a, λ)-SWEDF is optimal if λ achieves the lower bound
given by (3.24) with equality, i.e., λ = k̃a(m−1)

n−1 .

3.5 Constructions of bounded standard weighted exter-
nal difference families

In this section, we are going to consider constructions for BSWEDFs and SWEDFs.

3.5.1 From external difference families to bounded standard weight-
ed external difference families

We begin with the relationship among EDFs, SEDFs, PEDFs, SWEDFs, and B-
SWEDFs.

In general, an EDF is not necessarily an SWEDF. However, in the following
cases, an EDF is always an SWEDF. First of all, we consider the regular case.

Lemma 3.5.1. A regular (n,m, k, λ)-EDF forms an (n,m,K = (k, k, . . . , k), a =

mk, λ)-SWEDF.

The lemma follows directly from the definitions of EDF and SWEDF.
For the case of GSEDFs we have the following result.

Lemma 3.5.2. If {Bi : 1 ≤ i ≤ m} is an (n,m; k1, k2, . . . , km;λ1, λ2, . . . , λm)-
GSEDF, then {Bi : 1 ≤ i ≤ m} is an (n,m, (k1, k2, . . . , km), a, λ)-SWEDF, where
λ =

∑
1≤i≤m

λik̃
ki

.

Proof. Let {Bi : 1 ≤ i ≤ m} be an (n,m; k1, k2, . . . , km;λ1, λ2, . . . , λm)-GSEDF,
by (3.1), ⋃

{j:1≤j≤m, j 6=i}

D(Bi, Bj) = λi � (G\{0}),

which means ⋃
{j:1≤j≤m, j 6=i}

D(Bj , B̃i) =
λik̃

ki
� (G\{0}).
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Thus, we have

⋃
1≤i≤m

⋃
{j:1≤j≤m, j 6=i}

D(Bj , B̃i) =

 ∑
1≤i≤m

λi
k̃

ki

� (G\{0})

=λ� (G\{0}),

i.e., {Bi : 1 ≤ i ≤ m} is an (n,m, (k1, k2, . . . , km), a, λ)-SWEDF with λ =
∑

1≤i≤m
λik̃
ki

.

Similarly, the relationship between PEDFs and SWEDFs can be given by the
following lemma.

Lemma 3.5.3. If {Bi : 1 ≤ i ≤ m} is an (n,m; c1, c2, . . . , cl;w1, w2, . . . , wl;λ1, λ2,

. . . , λl)-PEDF, then {Bi : 1 ≤ i ≤ m} is an (n,m,K = (|B1|, |B2|, . . . , |Bm|), a, λ)-
SWEDF, where k̃ = lcm(w1, w2, . . . , wl) and λ =

∑
1≤t≤l

λtk̃
wt

.

Proof. Since {Bi : 1 ≤ i ≤ m} is an (n,m; c1, c2, . . . , cl;w1, w2, . . . , wl;λ1, λ2, . . . , λl)-
PEDF, by (3.3), ⋃

{i : |Bi|=wt}

⋃
{j:1≤j≤m, j 6=i}

D(Bi, Bj) = λt � (G\{0})

for 1 ≤ t ≤ l. By Definition 3.1.18, |Bi| ∈ {wj : 1 ≤ j ≤ l} for 1 ≤ i ≤
m. Thus, for K = (|B1|, |B2|, . . . , |Bm|), we have k̃ = lcm(|B1|, |B2|, . . . , |Bm|) =

lcm(w1, w2, . . . , wl). Thus, we have

⋃
1≤t≤l

⋃
{i : |Bi|=wt}

⋃
{j:1≤j≤m, j 6=i}

D(Bj , B̃i) =

∑
1≤t≤l

λt
k̃

wt

� (G\{0})

=λ� (G\{0}),

i.e., {Bi : 1 ≤ i ≤ m} is an (n,m,K = (|B1|, |B2|, . . . , |Bm|), a, λ)-SWEDF, where
λ =

∑
1≤t≤l

λtk̃
wt

.

In what follows, we recall an example of SWEDF which is not an EDF, or an
GSEDF, or a PEDF.

Example 3.5.4 ([81]). Let G = (Z10,+) and B = {B1 = {0}, B2 = {5}, B3 =

{2, 3}, B4 = {6, 4}}. Then B̃1 = {0, 0}, B̃2 = {5, 5}, B̃3 = {2, 3}, B̃4 = {6, 4}. It is
easy to check ⋃

1≤i≤4

⋃
1≤j≤4,
j 6=i

D(Bi, B̃j) = 4� (G\{0}),

⋃
1≤i≤4

⋃
1≤j≤4,
j 6=i

D(Bi, Bj) 6= λ� (G\{0}),
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⋃
2≤j≤4

D(B1, Bj) = {5, 8, 7, 4, 6} 6= λ� (G\{0}),

and ⋃
3≤i≤4

⋃
1≤j≤4,
j 6=i

D(Bi, Bj) 6= λ� (G\{0}),

for any positive integer λ. Thus, B is an SWEDF which does not form an EDF, or
a GSEDF, or a PEDF.

Similarly, a BEDF is not necessarily a BSWEDF in general and we have the
following relationship between regular BEDFs and BSWEDFs.

Lemma 3.5.5. The regular (n, k, λ)-BEDF forms an (n,m,K = (k, k, . . . , k), a =

mk, λ1)-BSWEDF, where λ1 ≤ λ.

Lemma 3.5.6. If B = {Bi : 1 ≤ i ≤ m} is an (n,m; k1, k2, . . . , km;λ1, λ2, . . . , λm)-
BGSEDF, then B is an (n,m, (k1, k2, . . . , km), a =

∑
1≤i≤m ki, λ)-BSWEDF, where

λ ≤
∑

1≤i≤m
λik̃
ki

.

Proof. Since B = {Bi : 1 ≤ i ≤ m} is an (n,m; k1, k2, . . . , km;λ1, λ2, . . . , λm)-
BGSEDF, by (3.2), ⋃

1≤j≤m,
j 6=i

D(Bi, Bj) ⊆ λi � (G\{0}),

which means ⋃
1≤j≤m,
j 6=i

D(Bj , B̃i) ⊆ λi
k̃

ki
� (G\{0}). (3.26)

Let λ be the smallest positive integer such that⋃
1≤i≤m

⋃
1≤j≤m,
j 6=i

D(Bj , B̃i) ⊆ λ� (G\{0}).

Thus, by (3.26), we have λ ≤
∑

1≤i≤m
λik̃
ki

, i.e., B is an (n,m, (k1, k2, . . . , km), a =∑
1≤i≤m ki, λ)-BSWEDF.

In Fig. 3.2, there is the relationship among various external difference families.

3.5.2 Explicit constructions of optimal BSWEDFs

In what follows, we consider explicit constructions of optimal BSWEDFs. Recall
the following well-known construction of difference families. Let q = 4k + 1 be a
prime power. Let α be a primitive element of Fq,

D2
i = {αi+2j : 0 ≤ j ≤ 2k − 1}, for i = 0, 1 (3.27)

45



SWEDF

Regular EDF PEDF GSEDF

BSWEDF

Regular BEDF

BGSEDF

Lemma 3.5.2

Lem
m
a
3.5.3Le

mm
a 3
.5.
1

D
ef.

3.4.1

Lemma 3.5.6

D
ef.

3.1.17

Le
m
m
a
3.
5.
5

Figure 3.2: Summary of the relationship among regular EDF , PEDF , regular
BEDF , SWEDF , GSEDF , BGSEDF , and, BSWEDF .
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and
D4
i = {αi+4j : 0 ≤ j ≤ k − 1}, for 0 ≤ i ≤ 3. (3.28)

It is well-known that {D2
0, D

2
1} is a (q, 2k, 2k− 1)-DF over the additive group of Fq.

Construction 3.5.7. Let S = {S1, S2, S3} be the family of disjoint subsets of Z2×Fq
defined as

S1 = {(0, 0), (1, 0)}, S2 = {0} ×D4
0 ∪ {1} ×D4

2,

and
S3 = {0} ×D4

1 ∪ {0} ×D4
3.

Theorem 3.5.8. Let S = {S1, S2, S3} be the family defined in Construction 3.5.7.
If k is odd, then S is an optimal (n = 2q,m = 3, (2, 2k, 2k), a = 4k+ 2, λ = 2k+ 1)-
BSWEDF.

Before the proof we list a well-known result about D2
0 and D2

1.

Lemma 3.5.9. If k is odd, then the family {D2
0, D

2
1} satisfies

D
(
D2

0, D
2
1

)
∪D

(
D2

1, D
2
0

)
= 2k � (Fq\{0})

and

D
(
D4

0, D
4
1

)
∪D

(
D4

0, D
4
3

)
∪D

(
D4

1, D
4
0

)
∪D

(
D4

3, D
4
0

)
=k � (Fq\{0}).

Proof. By (3.27) and (3.28), we have

D2
0 = D4

0 ∪D4
2 = D4

0 ∪ (−D4
0)

and
D2

1 = D4
1 ∪D4

3 = D4
1 ∪ (−D4

1),

where α2k = −1. The fact {D2
0, D

2
1} is a (q, 2k, 2k − 1)-PDF means that

D
(
D2

0, D
2
1

)
∪D

(
D2

1, D
2
0

)
= 2k � (Fq\{0}).

The preceding equality can be rewritten as

2k � (Fq\{0})
=D

(
D2

0, D
2
1

)
∪D

(
D2

1, D
2
0

)
=D

(
D4

0 ∪ (−D4
0), D4

1 ∪D4
3

)
∪D

(
D4

1 ∪D4
3, D

4
0 ∪ (−D4

0)
)

=2�
(
D
(
D4

0, D
4
1

)
∪D

(
D4

0, D
4
3

)
∪D

(
D4

1, D
4
0

)
∪D

(
D4

3, D
4
0

))
,
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where for the last equality we use the facts

D(−D4
0, D

4
1 ∪D4

3) =D(−(D4
1 ∪D4

3), D4
0)

=D(D4
3 ∪D4

1, D
4
0)

and

D
(
D4

1 ∪D4
3,−D4

0

)
=D

(
D4

0,−(D4
1 ∪D4

3)
)

=D
(
D4

0, D
4
3 ∪D4

1

)
.

This completes the proof.

Proof of Theorem 3.5.8: By Definition 3.4.1, in this case, k̃ = lcm(2k, 2) = 2k,
S̃1 = k � {(0, 0), (1, 0)}, S̃2 = S2, and S̃3 = S3. Thus, D(S2, S̃3) = D(S2, S3) and
D(S3, S̃2) = D(S3, S2). Recall that S2 = {0} ×D4

0 ∪ {1} × (−D4
0), which implies

D(S2, S̃3) ∪D(S3, S̃2)

=D({0} ×D4
0 ∪ {1} × (−D4

0), {0} ×D4
1 ∪ {0} ×D4

3)

∪D({0} ×D4
1 ∪ {0} ×D4

3, {0} ×D4
0 ∪ {1} × (−D4

0))

=
⋃
i=0,1

{i} ×
(
D
(
D4

0, D
4
1

)
∪D

(
D4

0, D
4
3

)
∪D

(
D4

1, D
4
0

)
∪D

(
D4

3, D
4
0

))
=k � (Z2 × (Fq\{0})) ,

(3.29)

where we use the fact D4
1 = −D4

3 and the last equality holds by Lemma 3.5.9. By
the fact

⋃
0≤i≤3D

4
i = Fq\{0}, we have

D(S1, S̃2) ∪D(S2, S̃1)

={0} ×D4
2 ∪ {1} ×D4

0 ∪ {1} ×D4
2 ∪ {0} ×D4

0

∪ k �
(
{0} ×D4

2 ∪ {1} ×D4
0 ∪ {1} ×D4

2 ∪ {0} ×D4
0

)
=(k + 1)�

(
Z2 ×D2

0

)
,

and

D(S1, S̃3) ∪D(S3, S̃1)

={0} ×D2
1 ∪ {1} ×D2

1 ∪ k �
(
{0} ×D2

1 ∪ {1} ×D2
1

)
=(k + 1)�

(
Z2 ×D2

1

)
,

where we use the facts D2
i = D4

i ∪D4
i+2 and D4

i = −D4
i+2 for i = 0, 1. The above

two equalities imply that⋃
i=2,3

(
D(S1, S̃i) ∪D(Si, S̃1)

)
= (k + 1)� (Z2 × (Fq\{0})) . (3.30)
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Therefore, by (3.29) and (3.30),⋃
1≤i 6=j≤3

D(Si, S̃j) =(2k + 1)� (Z2 × (Fq\{0}))

⊆(2k + 1)� ((Z2 × Fq)\{(0, 0)}) ,

i.e., S = {S1, S2, S3} is an (n = 2q,m = 3, (2, 2k, 2k), a = 4k + 2, λ = 2k + 1)-
BSWEDF. By Lemma 3.4.2, we have

λ ≥

⌈
k̃a(m− 1)

n− 1

⌉
=

⌈
2k(4k + 2)2

2q − 1

⌉
=

⌈
2k(8k + 1) + 6k

8k + 1

⌉
=2k + 1.

Thus, S is an optimal (n = 2q,m = 3, (2, 2k, 2k), a = 4k+ 2, λ = 2k+ 1)-BSWEDF.

It is easily seen from the proof of Theorem 3.5.8 that the above BSWEDFs are
not EDFs, or GSEDFs, or PEDFs.

Example 3.5.10. Let n = 2q = 26. By Construction 3.5.7, the family of sets
S = {S1, S2, S3} over Z26 can be listed as

S1 = {0, 13}, S2 = {14, 16, 22, 17, 25, 23}, and

S3 = {2, 6, 18, 8, 24, 20}.

It is easy to check that ⋃
1≤i 6=j≤3

D(Si, S̃j) = 7� (Z26\{0, 13}),

which means that S is an optimal (26, 3, (2, 6, 6), 14, 7)-BSWEDF.

Let n1 = 2k+1 and {{0}, E1, E2} be an (n1, k, k−1)-PDF over an Abelian group
G of order n1. Such kinds of PDFs exist, for example, when n1 is a prime power,
and E1 = D2

0, E2 = D2
1. Based on {{0}, E1, E2} we can construct a BSWEDF as

follows.

Construction 3.5.11. Let W = {W1,W2,W3} be the family of disjoint subsets of
Z2 ×G, defined as W1 = {(1, 0)}, W2 = {0} × E1, and W3 = {0} × E2.

Theorem 3.5.12. The familyW = {W1,W2,W3} generated by Construction 3.5.11
is an optimal (n = 2n1, 3, (1, k, k), 2k + 1, k + 1)-BSWEDF.

Proof. The fact that {{0}, E1, E2} is an (n1 = 2k + 1, k, k − 1)-PDF over G means
that D(E1, E2) ∪D(E2, E1) = k � (G\{0}). Thus, we have

D(W2, W̃3) ∪D(W3, W̃2) =D(W2,W3) ∪D(W3,W2)

=k � ({0} × (G\{0})),
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where we apply the fact k̃ = lcm(1, k, k) = k = |W2| = |W3|. Note that

D(W1, W̃2) ∪D(W1, W̃3) ∪D(W3, W̃1) ∪D(W2, W̃1)

={1} × (−E1) ∪ {1} × (−E2) ∪D({0} × E1, k � {(1, 0)})
∪D({0} × E2, k � {(1, 0)})

=(k + 1)� ({1} × (G\{0})).

Based on the above two equalities,⋃
1≤i 6=j≤3

D(Wi, W̃j) ⊆ (k + 1)� ((Z2 ×G)\{(0, 0)}),

i.e., W is an (n = 2n1,m = 3, (1, k, k), a = 2k + 1, λ = k + 1)-BSWEDF.
By Lemma 3.4.2, we have

λ ≥

⌈
k̃a(m− 1)

n− 1

⌉
=

⌈
k(2k + 1)2

2n1 − 1

⌉
=

⌈
k(4k + 1) + k

4k + 1

⌉
=k + 1.

Thus, W is an optimal (2n1 = 4k + 2, 3, (1, k, k), 2k + 1, k + 1)-BSWEDF.

It is easily seen from the proof of Theorem 3.5.12 that the above BSWEDFs are
not EDFs, or GSEDFs, or PEDFs.

Example 3.5.13. Let n = 2n1 = 22. By Construction 3.5.11, the family of sets
W = {W1,W2,W3} over Z22 can be listed as

W1 = {11}, W2 = {12, 4, 16, 20, 14}, and

W3 = {2, 8, 10, 18, 6}.

It is easy to check that ⋃
1≤i 6=j≤3

D(Wi, W̃j) ⊆ 6� (Z22\{0}),

which means that W is an optimal (22, 3, (1, 5, 5), 11, 6)-BSWEDF.

Construction 3.5.14. Let q = 4k+1 be a prime power and let U = {U1, U2, U3, U4}
be the family of disjoint subsets of Z3 × Fq, defined as U1 = {(1, 0)}, U2 = {(2, 0)},
U3 = {0} ×D2

0, and U4 = {0} ×D2
1.

Theorem 3.5.15. The family U = {U1, U2, U3, U4} in Construction 3.5.14 is an
optimal (3q = 12k + 3, 4, (1, 1, 2k, 2k), 4k + 2, 2k + 1)-BSWEDF.
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Proof. Note that k̃ = lcm(1, 1, 2k, 2k) = 2k, which implies Ũ3 = U3 and Ũ4 = U4.
Lemma 3.5.9 shows that D(D2

0, D
2
1) ∪D(D2

1, D
2
0) = 2k � (Fq\{0}). Thus, we have

D(U3, Ũ4) ∪D(U4, Ũ3) =D(U3, U4) ∪D(U3, U4)

=2k � ({0} × (Fq\{0})).

Recall that

D(U1, Ũ3) ∪D(U1, Ũ4) ∪D(U3, Ũ1) ∪D(U4, Ũ1)

=({1} ×D2
0) ∪ ({1} ×D2

1) ∪D({0} ×D2
0, 2k � {(1, 0)})

∪D({0} ×D2
1, 2k � {(1, 0)})

=({1} × (Fq\{0})) ∪ 2k � ({2} × (Fq\{0}))

and

D(U2, Ũ3) ∪D(U2, Ũ4) ∪D(U3, Ũ2) ∪D(U4, Ũ2)

={2} ×D2
0 ∪ {2} ×D2

1 ∪D({0} ×D2
0, 2k � {(2, 0)})

∪D({0} ×D2
1, 2k � {(2, 0)})

=({2} × (Fq\{0})) ∪ 2k � ({1} × (Fq\{0})).

For the differences between U1 and U2, we have

D(U1, Ũ2) ∪D(U2, Ũ1) = 2k � {(1, 0), (2, 0)}.

Therefore, the above four equalities mean that⋃
1≤i 6=j≤4

D(Ui, Ũj)

=(2k � {(1, 0), (2, 0)}) ∪ (2k � {0} × (Fq\{0}))
∪ ((2k + 1)� {1, 2} × (Fq\{0}))
⊆(2k + 1)� ((Z3 × Fq)\{(0, 0)}),

i.e., U is an (n = 3q,m = 4, (1, 1, 2k, 2k), a = 4k + 2, λ = 2k + 1)-BSWEDF.
By Lemma 3.4.2, we have

λ ≥

⌈
k̃a(m− 1)

n− 1

⌉
=

⌈
2k(4k + 2)3

3q − 1

⌉
=

⌈
2k(12k + 2) + 8k

12k + 2

⌉
=2k + 1.

Thus, U is an optimal (3q, 4, (1, 1, 2k, 2k), 4k + 2, 2k + 1)-BSWEDF.

It is easily seen from the proof of Theorem 3.5.15 that the above BSWEDFs are
not EDFs, or GSEDFs, or PEDFs.
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Table 3.4: Some known PDFs with parameters (n,W = (k
n−k+1

k , (k−1)1), k−1)

Parameters Constraints Ref.

(
2v, (3

2v−2
3 , 21), 2

)
,

v = pm1
1 pm2

2 . . . pmrr ,

2 < p1 < p2 < · · · < pr,

and 3|(pt − 1) for 1 ≤ t ≤ r
[9]

(
sv, ((s+ 1)

sv−s
s+1 , s1), s

) v = pm1
1 pm2

2 . . . pmrr ,

2 < p1 < p2 < · · · < pr,

2(s+ 1)|(pt − 1) for 1 ≤ t ≤ r, s = 4, 5

[9]

(
6v, (7

6v−6
7 , 61), 6

) v = pm1
1 pm2

2 . . . pmrr ,

2 < p1 < p2 < · · · < pr,

28|(pt − 1) for 1 ≤ t ≤ r
[9]

(
7v, (8

7v−7
8 , 71), 7

) v = pm1
1 pm2

2 . . . pmrr ,

2 < p1 < p2 < · · · < pr,

8|(pt − 1) for 1 ≤ t ≤ r, v 6∈ {17, 89}
[9]

(q − 1, ( qd
d−1, ( qd − 1)1), q−dd ) d|q, gcd( qd − 1, (q − 1)/( qd − 1)) = 1 [36]

Herein pi’s are primes. t, s, r and m are positive integers. q is a prime power.

Example 3.5.16. Let n = 3q = 39. By Construction 3.5.14, the family of sets
U = {U1, U2, U3, U4} over Z39 can be listed as

U1 = {13}, U2 = {26}, U3 = {27, 30, 3, 12, 9, 36}, and

U4 = {15, 21, 6, 24, 18, 33}.

It is easy to check that ⋃
1≤i 6=j≤4

D(Ui, Ũj) ⊆ 7� (Z39\{0}),

which means that U is an optimal (39, 4, (1, 1, 6, 6), 14, 7)-BSWEDF.

3.5.3 A construction of cyclic SWEDFs

In this subsection, we are going to construct cyclic SWEDFs, which are not regular
EDFs, or GSEDFs, or PEDFs. A cyclic SWEDF means an SWEDF over a cyclic
additive group.

A well-studied kind of PDFs R = {R1, R2, . . . , Rl} are those with parameters
(n = (k− 1)(tk+ 1), (k, . . . , k, k− 1), k− 1) over Zn = Zk−1×Ztk+1 where gcd(k−
1, tk + 1) = 1, Rl = Zk−1 × {0}, |Rl| = k − 1 and l = t(k − 1) + 1. In Table 3.4, we
list such PDFs which can be applied in the following construction.
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Construction 3.5.17. Let V = {V1, V2, . . . , Vt(k−1)+k−2} be the family of disjoint
subsets of Zn, defined as

Vi = Ri for 1 ≤ i ≤ t(k − 1)

and
Vt(k−1)+j = {(j, 0)} for 1 ≤ j ≤ k − 2.

Theorem 3.5.18. Let V be the family in Construction 3.5.17. Then V is a cyclic
(n, t(k − 1) + k − 2,K = (k, . . . , k, 1, 1, . . . , 1), n− 1, (t+ 1)k2 − (t+ 3)k)-SWEDF,
where the element 1 appears k − 2 times and the element k appears t(k − 1) times
in K.

Proof. Since R is an (n = (k − 1)(tk + 1), (k, . . . , k, k − 1), k − 1)-PDF, we can
conclude that⋃

1≤i 6=j≤l
D(Ri, Rj) = (n− k + 1)� ((Zk−1 × Ztk+1)\{(0, 0)}).

Recall that Rl = Zk−1 × {0}, which means⋃
1≤i≤l−1

(D(Ri, Rl) ∪D(Rl, Ri)) = (2k − 2)� (Zk−1 × (Ztk+1\{0})).

Thus, by Construction 3.5.17, we have⋃
1≤i 6=j≤l−1

D(Vi, Ṽj)

=
⋃

1≤i 6=j≤l−1

D(Vi, Vj)

=
⋃

1≤i 6=j≤l−1

D(Ri, Rj)

=

 ⋃
1≤i 6=j≤l

D(Ri, Rj)

 \
 ⋃

1≤i≤l−1

(D(Ri, Rl) ∪D(Rl, Ri))


= ((n− k + 1)� ((Zk−1\{0})× {0}))
∪ ((n− 3k + 3)� (Zk−1 × (Ztk+1\{0}))) ,

(3.31)

where we use the fact k̃ = k.
Note that for any 1 ≤ j ≤ k − 2,⋃

1≤i≤l−1

(D(Vi, Ṽl−1+j) ∪D(Vl−1+j , Ṽi))

=
⋃

1≤i≤l−1

(D(Ri, k � {(j, 0)}) ∪D({(j, 0)}, Ri))

=(k + 1)� (Zk−1 × (Ztk+1\{0})).
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Thus, we have ⋃
1≤j≤k−2

⋃
1≤i≤l−1

(D(Vi, Ṽl−1+j) ∪D(Vl−1+j , Ṽi))

=((k + 1)(k − 2))� (Zk−1 × (Ztk+1\{0})).
(3.32)

For the last part of external differences, we have⋃
1≤i 6=j≤k−2

D(Vl−1+i, Ṽl−1+j) =
⋃

1≤i 6=j≤k−2

D({(i, 0)}, k � {(j, 0)})

=k �

 ⋃
1≤i 6=j≤k−2

D({(i, 0)}, {(j, 0)})


=k(k − 3)� ((Zk−1\{0})× {0}).

(3.33)

Combining (3.31), (3.32), and (3.33),⋃
1≤i 6=j≤l+k−3

D(Vi, Ṽj)

=

 ⋃
1≤i 6=j≤l−1

D(Vi, Ṽj)

 ∪
 ⋃

1≤i 6=j≤k−2

D(Vl−1+i, Ṽl−1+j)


∪

 ⋃
1≤j≤k−2

⋃
1≤i≤l−1

(D(Vi, Ṽl−1+j) ∪D(Vl−1+j , Ṽi))


= ((n− k + 1 + k(k − 3))� (Zk−1\{0})× {0})
∪ ((n− 3k + 3 + (k + 1)(k − 2))� (Zk−1 × (Ztk+1\{0})))

=((t+ 1)k2 − tk − 3k)� ((Zk−1 × Ztk+1)\{(0, 0)}),

where n = (k − 1)(tk + 1).
Therefore, V is a cyclic (n, t(k − 1) + k − 2, (k, k, . . . , k, 1, 1, . . . , 1), n − 1, (t +

1)k2 − (t + 3)k)-SWEDF, where the element 1 occurs k − 2 times in K and the
element k appears t(k − 1) times in K. This completes the proof.

In [55], Huczynska and Paterson introduced some constructions of SWEDFs with
the so-called bimodal property.

Definition 3.5.19 ([55]). Let G be a finite Abelian group and B be a collection
B1, B2, . . . , Bm of disjoint subsets of G with sizes k1, k2, . . . , km, respectively. We
say that B has the bimodal property if for each δ ∈ G\{0} we have Ni(δ) ∈ {0, ki}
for 1 ≤ i ≤ m, where

Ni(δ) ,

∣∣∣∣∣∣
(bi, bj) : bi ∈ Bi, bj ∈

⋃
1≤t6=i≤m

Bt, and bj − bi = δ


∣∣∣∣∣∣ .
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Remark 3.5.20. The SWEDF generated by Construction 3.5.17 does not have the
bimodal property. Let V be the SWEDF generated by Construction 3.5.17. For any
v ∈ Vi with |Vi| = k, we have 0 ∈ D(Vi, {v}) and |D(Vi, {v})| = |Vi| = k. However,
by Construction 3.5.17, 0 is not an element of Vj for 1 ≤ j ≤ l + k − 3. Thus, the
number of solutions for a − b = v for a ∈ Vi and b ∈ Vj for 1 ≤ j ≤ l + k − 3 and
j 6= i is at most k − 1, since

⋃
1≤j≤l+k−3 Vj = Zn\{0}, i.e., Ni(v) ≤ k − 1. Next,

we show that there exists Vi with |Vi| = k satisfying Ni(v) 6= 0. If a − b 6= v for
all a ∈ Vi and b ∈ Vj for 1 ≤ j ≤ l + k − 3 and j 6= i, then a ∈ Vi means that
(a+ 〈v〉)\{0} ∈ Vi. This is to say that Vi is the union of some cosets of 〈v〉 besides
the element 0 and k = τ |〈v〉| − 1 for some integer τ ≥ 1. This is impossible since
there are elements v with |〈v〉| > k + 1 in Zn\{0}. Thus, the SWEDF generated by
Construction 3.5.17 is not bimodal. For more details about SWEDFs with bimodal
property the reader may refer to [55,56].

Remark 3.5.21. The only known SWEDFs without the bimodal property have pa-
rameters (k1k2 + 1,m = 2, (k1, k2), a = k1 + k2, λ = 2), where k1 > 2 and k2 > 2

are integers. Thus, compared with the constructions in [55], Theorem 3.5.18 can
generate new SWEDFs without bimodal property. Our construction also present the
first class of SWEDFs without bimodal with m > 2.

Example 3.5.22. Let G = (Z15,+) and

R = {R1 = {6, 9, 2, 8}, R2 = {11, 14, 7, 13}, R3 = {1, 4, 12, 3}, R4 = {0, 5, 10}}.

It is easy to check that R is a PDF with parameters (15, (4, 4, 4, 3), 3). By Construc-
tion 3.5.17, we generate a family of subsets of Z15 as

V = {V1 = {6, 9, 2, 8}, V2 = {11, 14, 7, 13}, V3 = {1, 4, 12, 3},
V4 = {5}, V5 = {10}}.

It is easy to check that ⋃
1≤i 6=j≤5

D(Vi, Ṽj) = 16� (Z15\{0}),

i.e., V is a (15, 5, (4, 4, 4, 1, 1), 14, 16)-SWEDF. Note that N3(6) = 3 6∈ {0, 4}, which
means the SWEDF does not have the bimodal property by Definition 3.5.19.
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Chapter 4

Weak Algebraic Manipulation
Detection Codes

In this chapter, we study weak algebraic manipulation detection (AMD) codes,
i.e., under the assumption that the adversary has no knowledge about the source.
We investigate the relationships between weak AMD codes and external difference
families, and between systematic weak AMD codes and highly nonlinear functions.
By means of these characterizations, we construct infinite families of weak AMD
codes and systematic weak AMD codes, respectively.

4.1 Known weak AMD codes

In this section, we recall some known results about AMD codes under the weak
model, i.e., weak AMD codes.

4.1.1 G-optimal weak AMD codes

We begin with the concept of G-optimal weak AMD codes.

Theorem 4.1.1 ([81]). For any weak (n,m,K = (a1, a2, · · · , am), ρ)-AMD code,
the parameters satisfy that

ρ ≥ 1

a
, (4.1)

where a =
∑

1≤i≤m ai.

Definition 4.1.2. A weak (n,m,K, ρ)-AMD code is said to be G-optimal if it
achieves the bound in (4.1) with equality, where "G" means that guessing the most
likely encoding message is an optimal strategy for the adversary.

Theorem 4.1.3 ([81]). A G-optimal weak (n,m,K = (k, k, · · · , k), ρ = 1
a)-AMD

code is equivalent with an (n,m, k, 1)-BEDF, where a = km.

Remark 4.1.4. Generally speaking, for G-optimal weak AMD codes, we still do not
have enough explicit constructions. This problem is still widely open.



4.1.2 R-optimal weak AMD codes

In this subsection, we recall known results for R-optimal weak AMD codes. We
begin with the formal definition of R-optimal weak AMD codes.

Theorem 4.1.5 ([81]). For any weak (n,m,K = (a1, a2, · · · , am), ρ)-AMD code,
the probability ρ satisfies

ρ ≥ a(m− 1)

m(n− 1)
,

where a =
∑

1≤i≤m ai.

Definition 4.1.6 ([81]). A weak AMD code that meets the bound of Theorem 4.1.5
with equality is said to be R-optimal with respect to the bound in Theorem 4.1.5,
where "R" is used to indicate that random choosing ∆ is an optimal strategy for
adversaries.

In [55], Huczynska and Paterson characterized R-optimal weak AMD codes
(S,G,A, Eu) by reciprocally-weighted external difference families, which can be de-
fined as follows.

Definition 4.1.7 ([55]). Let B = {Bi : 1 ≤ i ≤ m} be a family of disjoint subsets of
G. Let K = (k1, k2, · · · , km) with ki = |Bi| for 1 ≤ i ≤ m. Then B is said to be an
(n,m, (k1, k2, · · · , km), d) reciprocally-weighted external difference family (RWEDF)
if

d =
∑

1≤i≤m

Ni(α)

ki
for each δ ∈ G\{0},

where

Ni(α) ,

∣∣∣∣∣∣
(bi, bj) : bi ∈ Bi, bj ∈

⋃
1≤t6=i≤m

Bt, and bi − bj = α


∣∣∣∣∣∣ .

Theorem 4.1.8 ([55]). A weak (n,m,K = (a1, a2, · · · , am), ρ)-AMD code (S,G,A, Eu)

is R-optimal with respect to the bound in Theorem 4.1.5 if and only if there exists
an (n,m,K, d)-RWEDF, where a =

∑
1≤i≤m ai, ρ = a(m−1)

m(n−1) , and d = a(m−1)
n−1 .

Remark 4.1.9. RWEDFs with m = 2 were investigated in [55]. However, not much
is known for RWEDFs with m ≥ 3. Explicit constructions of RWEDFs with m ≥ 3

are still open.

4.1.3 A lower bound on systematic weak AMD codes

Chen et al. [23] established a lower bound on the smallest possible cheating proba-
bility ρ for systematic weak AMD codes in terms of nonlinearity of functions.
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Lemma 4.1.10 ([23]). For any systematic weak AMD code (G1, G = G1 × G2 ×
B, {(s, x, f(s, x)) : s ∈ G1}, E) with parameters (|G|, |G1|, (|G2|, |G2|, · · · , |G2|), ρ),
we have

ρ ≥
|G1||G2| − 1−Nf (|G1| − 1)|B|

(|G1| − 1)|G2||B|
,

where Nf is the nonlinearity of f : G1 ×G2 → B.

4.2 Between weak AMD codes and weighted external
difference families

In this section, we further consider the relationship between weak AMD codes and
weighted external difference families.

For ∆ ∈ G\{0}, let ρ∆ denote the probability that the adversary wins by mod-
ifying g ∈ As into g + ∆ ∈ As′ for some s′ 6= s. Thus, we have ρ = max{ρ∆ : ∆ ∈
G\{0}}.

Theorem 4.2.1. There exists a weak (n,m,K, ρ)-AMD code (S,G,A, Eu) if and
only if there exists an (n,m,K, a, λ)-BSWEDF, where |G| = n, a =

∑
1≤i≤m |Asi |,

K = (|As1 |, |As2 |, · · · , |Asm |), si ∈ S, and ρ = λ

k̃m
.

Proof. If (S,G,A, Eu) is a weak (n,m,K, ρ)-AMD code, then for any ∆ ∈ G\{0},
we have

ρ∆ ≤ ρ =
λ

k̃m
,

that is,

λ

k̃m
≥ ρ∆ =

∑
s∈S

Pr(s)
∑
g∈As

Pr(Eu(s) = g)

 ∑
s′ 6=s,s′∈S

Pr(g + ∆ ∈ As′)


=
∑
s∈S

1

m

∑
g∈As

1

|As|

 ∑
s′ 6=s,s′∈S

Pr(g + ∆ ∈ As′)


=
∑
s∈S

1

m

1

|As|

 ∑
s′ 6=s,s′∈S

∑
g∈As

Pr(g + ∆ ∈ As′)

 ,

(4.2)

where the second equality holds by the fact that Eu encodes s to elements of As
with uniform probability. Note that for given ∆, s, g ∈ As and s′ 6= s,

Pr(g + ∆ ∈ As′) =

1, ∆ ∈ D(As′ , {g}),

0, ∆ 6∈ D(As′ , {g}).
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Thus, inequality (4.2) implies that

λ

m
≥ k̃ρ∆ =

∑
s∈S

1

m

k̃

|As|

 ∑
s′ 6=s,s′∈S

∑
g∈As

Pr(g + ∆ ∈ As′)


=
∑
s∈S

1

m

k̃

|As|

 ∑
s′ 6=s,s′∈S

# (∆, D(As′ , As))


=
∑
s∈S

1

m

 ∑
s′ 6=s,s′∈S

k̃

|As|
# (∆, D(As′ , As))


=
∑
s∈S

1

m

 ∑
s′ 6=s,s′∈S

#
(

∆, D(As′ , Ãs)
)

=
1

m
#

∆,
⋃

s,s′∈S,
s′ 6=s

D(As′ , Ãs)

 ,

(4.3)

where #(∆, B) denotes the number of times that ∆ appears in the multi-set B. This
means that any ∆ ∈ G\{0} appears at most λ times in the multi-set

⋃
s,s′∈S,
s′ 6=s

D(As′ , Ãs),

i.e.,

⋃
s,s′∈S,
s′ 6=s

D(As′ , Ãs) ⊆ λ� (G\{0}).

Note that ρ = max{ρ∆ : ∆ ∈ G\{0}} means there exists at least one ∆ ∈ G\{0}
such that the equality in inequality (4.3) holds. Then {As : s ∈ S} forms an
(n,m, (|As1 |, |As2 |, · · · , |Asm |), a, λ)-BSWEDF by Definition 3.4.1.

Conversely, suppose that there exists an (n,m,K, a, λ)-BSWEDF B = {Bi : 1 ≤
i ≤ m} over G. Let S = {si : 1 ≤ i ≤ m} and Asi = Bi for 1 ≤ i ≤ m. Then we
can define a weak AMD code, where Eu(si) = g ∈ Bi with equiprobability. For any
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∆ ∈ G\{0}, similarly as (4.2), we have

ρ∆ =
∑
s∈S

1

m

1

|As|

 ∑
s′ 6=s,s′∈S

∑
g∈As

Pr(g + ∆ ∈ As′)


=
∑

1≤i≤m

1

m

1

|Bi|

 ∑
1≤j≤m
j 6=i

#(∆, D(Bj , Bi))


=
∑

1≤i≤m

1

mk̃

 ∑
1≤j≤m
j 6=i

#(∆, D(Bj , B̃i))


=

1

mk̃

 ∑
1≤j 6=i≤m

#(∆, D(Bj , B̃i))


≤ λ

mk̃
,

where the last inequality holds by the fact that B is an (n,m,K, a, λ)-BSWEDF.
According to Definition 3.4.1, the equality is achieved for at least one ∆ ∈ G\{0}
in the preceding inequality. Thus, the weak (n,m,K, ρ)-AMD code defined based
on the BSWEDF B satisfies

ρ = max{ρ∆ : ∆ ∈ G\{0}} =
λ

k̃m
,

which completes the proof.

When we consider the optimality of BSWEDF, the size-distribution K = (k1, k2,

. . . , km) is given. However, the R-optimality of weak AMD only relates with a =∑
1≤i≤m ki as defined in [81] but disregards the exact size-distribution K of A.

This is to say that the optimality of AMD codes try to find out minimum ρ for
given parameters n, m, and a. According to Theorem 4.2.1, there may exist several
BSWEDFs with different K which correspond to weak AMD codes with exactly
the same parameter a. Thus, although the BSWEDF gives a characterization of
the weak AMD code, in general, the optimal BSWEDF for a given K does not
necessarily corresponds to an R-optimal weak AMD code for a given a.

Definition 4.2.2. For given n, m and a, an (n,m,K, a, λ)-BSWEDF is said to be
strongly optimal if λ

k̃m
= ρ(n,m,a), where

ρ(n,m,a) = min
K′

 λ′

k̃′m
: ∃ (n,m,K ′, a, λ′)-BSWEDF s.t.

∑
1≤i≤m

k′i = a

 . (4.4)

By Theorem 4.2.1 and Lemma 3.4.2, we have
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Corollary 4.2.3. For any weak (n,m, a, ρ)-AMD code (S,G,A, Eu), we have

ρ ≥ ρ(n,m,a) ≥ min
K


⌈
k̃a(m− 1)

n− 1

⌉
1

mk̃
:
∑

1≤i≤m
ki = a

 ,

where |Ai| = ki for any Ai ∈ A.

Proof. Let (S,G,A, Eu) be a weak (n,m, a, ρ)-AMD code. By Theorem 4.2.1, there
exists an (n,m,K, a, λ)-BSWEDF with λ = ρmk̃. Then by Lemma 3.4.2 and (4.4),

ρ =
λ

mk̃
≥ ρ(n,m,a) ≥ min

K


⌈
k̃a(m− 1)

n− 1

⌉
1

mk̃
:
∑

1≤i≤m
ki = a

 .

Especially, for the t-regular AMD codes we have

Corollary 4.2.4. For any t-regular weak (n,m, tm, ρ)-AMD code, we have

ρ ≥
⌈
t2m(m− 1)

n− 1

⌉
1

tm
. (4.5)

Definition 4.2.5. A weak AMD code (resp. t-regular AMD code) with ρ = ρ(n,m,a)

is said to be optimal with respect to the bound in Corollary 4.2.3 (resp. Corollary
4.2.4).

When (n− 1) | (k̃a(m− 1)), the bound in Corollary 4.2.3 is exactly the same as
the one given in Theorem 4.1.5. However, when (n− 1) - (k̃a(m− 1)), our bound in
Corollary 4.2.3 can improve the known one in Theorem 4.1.5. The following is an
easy example.

Corollary 4.2.6. For any weak (n,m, a, ρ)-AMD code (S,G,A, Eu), if n − 1 is a
prime and a < n− 1, then we have

ρ ≥ min
K


⌈
k̃a(m− 1)

n− 1

⌉
1

mk̃
:
∑

1≤i≤m
ki = a

 >
a(m− 1)

m(n− 1)
.

Proof. The corollary follows from the facts that ki ≤ a < n − 1 for 1 ≤ i ≤ m,
m ≤ a < n− 1, and n− 1 is a prime. In this case, (n− 1) - (k̃a(m− 1)).

A more concrete example is listed below.

Example 4.2.7. Let n = 10, m = 3, and a = 5. Let B = {{5}, {2}, {0, 4, 6}}
be a family of disjoint subsets of Z10, which corresponding to a weak (10, 3, 5, ρ)-
AMD code, where ρ = 1

3 ·
1
1 · 1 + 1

3 ·
1
1 · 0 + 1

3 ·
1
3 · 1 = 4

9 . According to Theorem
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4.1.5 and Definition 4.1.6, this is not an R-optimal weak AMD code. However,
R-optimality should mean that random choosing ∆ is an optimal strategy for the
adversary. Clearly, according to Corollary 4.2.3, the parameter ρ cannot be smaller
then

min
K


⌈
k̃5(3− 1)

10− 1

⌉
1

3k̃
:
∑

1≤i≤3

ki = 5


= min

{⌈
lcm(1, 1, 3) · 5 · 2

9

⌉
1

3 lcm(1, 1, 3)
,

⌈
lcm(1, 2, 2) · 5 · 2

9

⌉
1

3 lcm(1, 2, 2)

}
= min

{
4

9
,
1

2

}
=

4

9
.

Therefore, this example should be an optimal weak (10, 3, 5, ρ)-AMD code. This
trouble is due to the fact that the known bound in Theorem 4.1.5 is not always tight.

Relationships between optimal weak AMD codes and optimal BSWEDFs are
described below.

Theorem 4.2.8. Let n and m be positive integers. There exists a G-optimal weak
(n,m, a, ρ)-AMD code (S,G,A, Eu) if and only if its corresponding BSWEDF with
parameters (n,m,K, a, λ = mk̃

a ) is optimal, where S = {si : 1 ≤ i ≤ m}, A = {Asi :

1 ≤ i ≤ m}, ki = |Asi | for 1 ≤ i ≤ m, K = (k1, k2, . . . , km), and a =
∑

1≤i≤m ki.

Proof. If there exists aG-optimal weak (n,m, a, ρ)-AMD code (S,G,A, Eu), i.e., ρ =
1
a , then by Theorem 4.2.1, there exists a BSWEDF with parameters (n,m,K, a, λ =
mk̃
a ). Now by Theorem 4.2.1 the optimality of weak (n,m, a, ρ = 1

a)-AMD code
enhances that ρn,m,K = 1

a , otherwise there will exist a weak (n,m, a, ρ < 1
a)-AMD

code, which contradicts Theorem 4.1.1.
If we have an optimal BSWEDF with parameters (n,m,K, a, λ = mk̃

a ), then by
Theorem 4.2.1, the corresponding weak AMD code has parameters (n,m, a, ρ = 1

a),
which is G-optimal by Theorem 4.1.1.

Theorem 4.2.9. Let n and m be positive integers.

(I) For given K = (k1, k2, . . . , km), let ρ(n,m,K) denote the the smallest possi-
ble ρ for weak (n,m,K, ρ)-AMD codes. Then a weak (n,m,K, ρ)-AMD code
(S,G,A, Eu) has the smallest ρ, i.e., ρ = ρ(n,m,K) if and only if its corre-
sponding BSWEDF with parameters (n,m,K, a, λ = mk̃ρ) is optimal, where
S = {si : 1 ≤ i ≤ m}, A = {Asi : 1 ≤ i ≤ m}, ki = |Asi | for 1 ≤ i ≤ m,
K = (k1, k2, . . . , km), and a =

∑
1≤i≤m ki.

(II) For given a, there exists an R-optimal weak (n,m, a, ρ)-AMD code (S,G,A, Eu)

with respect to the bound in Corollary 4.2.3 if and only if there exists a strongly
optimal (n,m,K, a, λ)-BSWEDF, where |G| = n, a =

∑
s∈S |As|, ρ = ρ(n,m,a),

and λ = ρ(n,m,a)k̃m.
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(III) There exists an R-optimal weak (n,m, a, ρ)-AMD code (S,G,A, Eu) with re-
spect to the bound in Lemma 4.1.5 if and only if there exists an (n,m,K, a, λ)-
SWEDF, where ρ = a(m−1)

m(n−1) , and λ = k̃a(m−1)
n−1 .

Proof. By Theorem 4.2.1, for given n, m, K (or a, resp.), a weak AMD code with
the smallest ρ is equivalent to a BSWEDF with the smallest λ, i.e., an optimal (or
strongly optimal, resp.) BSWEDF. The third part of the result follows directly from
Theorem 4.2.1 and Lemma 3.4.2.

Example 4.2.10. Let n = 10, m = 3, and a = 5. Let

B(1) = {B(1)
1 = {5}, B(1)

2 = {4, 6}, B(1)
3 = {2, 8}}

and
B(2) = {B(2)

1 = {5}, B(2)
2 = {2}, B(2)

3 = {0, 4, 6}}

be two families of disjoint subsets of Z10. It is easy to verify that⋃
1≤i≤3

D
(
B

(1)
i , B̃

(1)
j

)
⊆ 3� (Z10\{0})

and ⋃
1≤i≤3

D
(
B

(2)
i , B̃

(2)
j

)
⊆ 4� (Z10\{0}).

According to Lemma 3.4.2, B(1) is an optimal (10, 3, (1, 2, 2), 5, 3)-BSWEDF and
B(2) is an optimal (10, 3, (1, 1, 3), 5, 4)-BSWEDF. By Corollary 4.2.3,

ρ(10,3,5) ≥ min
K


⌈
k̃5(3− 1)

10− 1

⌉
1

3k̃
:
∑

1≤i≤3

ki = 5

 =
4

9
.

Thus, by Definition 4.2.2, B(2) is in fact not only an optimal, but a strongly optimal
BSWEDF. By Corollary 4.2.9. (II), we can obtain a corresponding R-optimal weak
AMD code with respect to the bound in Corollary 4.2.3 from B(2).

Although the weak (n,m, a, ρ(n,m,K) = λ

k̃m
)-AMD code (S,G,A, Eu) based on

an optimal (n,m,K, a, λ)-BSWEDF may sometimes not correspond to an optimal
weak AMD code with parameters (n,m, a, ρ(n,m,a)), the difference ρ(n,m,K)−ρ(n,m,a)

is not big.

Lemma 4.2.11. Let a =
∑

A∈A |A| =
∑

1≤i≤m ki. Let (S,G,A, Eu) be the weak
(n,m, a, ρ = λ

k̃m
)-AMD code based on an optimal (n,m,K, a, λ)-BSWEDF with λ =

d k̃a(m−1)
n−1 e, and let (S,G,A′, Eu) be the R-optimal weak (n,m, a, ρ(n,m,a))-AMD code

with respect to the bound in Corollary 4.2.3. Then we have

0 ≤ ρ(n,m,K) − ρ(n,m,a) ≤
1

mk̃
.

64



SWEDF
(RWEDF [55])

BSWEDF

O-BSWEDF

SO-BSWEDF

OW-AMD-code
(Theorem 4.1.5)

W-AMD-code

W-AMD-code
with ρ(n,m,K)

OW-AMD-code
(Corollary 4.2.3)

Cor. 4.2.9 (III)
(Th. 2 [55])

Cor. 4.2.9 (II)

Cor. 4.2.9 (I)

Th. 4.2.1

Figure 4.1: The relationships between AMD codes and BSWEDFs

Proof. The lemma follows directly from the fact that

0 ≤ρ(n,m,K) − ρ(n,m,a)

=

⌈
k̃a(m− 1)

n− 1

⌉
1

mk̃
− ρ(n,m,a)

≤

⌈
k̃a(m− 1)

n− 1

⌉
1

mk̃
− a(m− 1)

m(n− 1)
≤ 1

mk̃
.

In [55], Huczynska and Paterson characterized R-optimal AMD codes by R-

WEDFs by using Ni(α). Clearly, Ni(α) = #

(
α,
⋃

1≤j≤m
j 6=i

D(Bi, Bj)

)
for 1 ≤ i ≤ m,

and by Theorem 4.1.8 and Corollary 4.2.9 or Definitions 3.4.1 and 4.1.7, we know
that an (n,m,K, a, d)-RWEDF is essentially the same as an (n,m,K, a, λ)-SWEDF,
where d = λ

k̃
.

Therefore, Theorem 4.2.1 and Corollary 4.2.9 provide more combinatorial char-
acterizations for various weak AMD codes (S,G,A, Eu). These results can be viewed
as a generalization of Theorem 4.1.8.

In Figure 4.1, we summarize the relationships between weak AMD codes and
BSWEDFs, where SO-BSWEDF, O-BSWEDF, and OW-AMD-code denote strongly
optimal BSWEDF, optimal BSWEDF, and optimal weak AMD-code, respectively.

4.2.1 Weak algebraic manipulation detection codes from BSWEDF-
s

By Theorem 4.2.9, BSWEDFs correspond to AMD codes. Thus, according to The-
orem 4.2.9 (I) and Theorem 3.5.8, we directly have the following corollary.
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Corollary 4.2.12. If k is odd and 4k+1 is a prime power, then there exists a weak
(8k + 2, 3, (2, 2k, 2k), 2k+1

6k )-AMD code.

Example 4.2.13. Let n = 2q = 26. By Construction 3.5.7, the family of sets
A = {A1, A2, A3} over Z26 can be listed as

A1 = {0, 13}, A2 = {14, 16, 22, 17, 25, 23}, and

A3 = {2, 6, 18, 8, 24, 20}.

It is easy to check that ⋃
1≤i 6=j≤3

D(Ai, Ãj) = 7� (Z26\{0, 13}),

which means that A is an optimal (26, 3, (2, 6, 6), 14, 7)-BSWEDF. Define the en-
coding map Eu from S = {s1, s2, s3} to Z26 as

Eu(si) = x ∈R Ai,

where x ∈R Ai for 1 ≤ i ≤ 3 means that x is chosen from Ai uniformly at random.
Then it is easy to check that (S,Z26,A, Eu) is a weak AMD code with parameters
(26, 3, (2, 6, 6), 7

18).

Similarly, by Theorem 4.2.9 (I) and Theorem 3.5.12, we have

Corollary 4.2.14. If there exists an (n1, k, k−1)-PDF with n1 = 2k+1, then there
exists a weak (n = 4k + 2,m = 3, (1, k, k), ρ = k+1

3k )-AMD code.

Example 4.2.15. Let n = 2n1 = 22. By Construction 3.5.11, the family of sets
W = {W1,W2,W3} over Z22 can be listed as

W1 = {11}, W2 = {12, 4, 16, 20, 14}, and W3 = {2, 8, 10, 18, 6}.

It is easy to check that ⋃
1≤i 6=j≤3

D(Wi, W̃j) ⊆ 6� (Z22\{0}),

which means that W is an optimal (22, 3, (1, 5, 5), 11, 6)-BSWEDF. Define the en-
coding map Eu from S = {s1, s2, s3} to Z22 as

Eu(si) = x ∈R Wi,

where x ∈R Wi for 1 ≤ i ≤ 3 means that x is chosen from Wi uniformly at random.
Then it is easy to check that (S,Z22,W, Eu) is a weak AMD code with parameters
(22, 3, (1, 5, 5), 2

5).
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From Theorem 4.2.9 (I) and Theorem 3.5.15, we have

Corollary 4.2.16. If 4k + 1 is a prime power, then there exists a weak (12k +

3, 4, (1, 1, 2k, 2k), 2k+1
8k )-AMD code.

Example 4.2.17. Let n = 3q = 39. By Construction 3.5.14, the family of sets
U = {U1, U2, U3, U4} over Z39 can be listed as

U1 = {13}, U2 = {26}, U3 = {27, 30, 3, 12, 9, 36}, and

U4 = {15, 21, 6, 24, 18, 33}.

It is easy to check that ⋃
1≤i 6=j≤4

D(Ui, Ũj) ⊆ 7� (Z39\{0}),

which means that U is an optimal (39, 4, (1, 1, 6, 6), 14, 7)-BSWEDF. Define the en-
coding map Eu from S = {s1, s2, s3, s4} to Z39 as

Eu(si) = x ∈R Ui,

where x ∈R Ui for 1 ≤ i ≤ 4 means that x is chosen from Ui uniformly at random.
Then it is easy to check that (S,Z39,U , Eu) is a weak AMD code with parameters
(39, 4, (1, 1, 6, 6), 7

24).

Directly from Theorem 4.2.9 (III) and Theorem 3.5.18, we have

Corollary 4.2.18. Let gcd(k − 1, tk + 1) = 1. If there exists a cyclic ((k − 1)(tk +

1), (k, · · · , k, k−1), k−1)-PDF over Zk−1×Ztk+1 where one of the blocks is of form
Zk−1×{0}, then there exists an R-optimal weak ((k−1)(tk+1),K = (k, k, · · · , k, 1,
· · · , 1), (k − 1)(tk + 1) − 1, t(k−1)+k−3

t(k−1)+k−2)-AMD code, where 1 appears k − 2 times in
K.

By Remark 3.5.20, the AMD codes generated by Corollary 4.2.18 based on
SWEDFs (or RWEDFs) without bimodal property. However, the only known R-
WEDFs without the bimodal property have parameters (k1k2 + 1,m = 2, a =

k1 + k2, λ = 2), where k1 > 2 and k2 > 2 are integers. Thus, compared with
the constructions in [55], Corollary 4.2.18 can generate new R-optimal weak AMD
codes with flexible parameters based on SWEDFs without bimodal property.

Example 4.2.19. Let G = (Z15,+) and

R = {R1 = {6, 9, 2, 8}, R2 = {11, 14, 7, 13}, R3 = {1, 4, 12, 3}, R4 = {0, 5, 10}}.
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It is easy to check that R is a PDF with parameters (15, (4, 4, 4, 3), 3). By Construc-
tion 3.5.17, we generate a family of subsets of Z15 as

V ={V1 = {6, 9, 2, 8}, V2 = {11, 14, 7, 13}, V3 = {1, 4, 12, 3},
V4 = {5}, V5 = {10}}.

It is easy to check that ⋃
1≤i 6=j≤5

D(Vi, Ṽj) = 16� (Z15\{0}),

i.e., V is a (15, 5, (4, 4, 4, 1, 1), 14, 16)-SWEDF (or (15, 5, (4, 4, 4, 1, 1), 14, 4)-RWEDF).
Note that N3(6) = 3 6∈ {0, 4}, which means the SWEDF does not have the bimodal
property by Definition 3.5.19. Define the encoding map from S = {s1, s2, s3, s4, s5}
to Z15 as

Eu(si) = x ∈R Vi,

where x ∈R Vi 1 ≤ i ≤ 5 means that x is chosen from Vi uniformly at random.
Then it is easy to check that (S,Z15,V, Eu) is an R-optimal weak AMD code with
parameters (15, 5, (4, 4, 4, 1, 1), 4

5).

4.3 Weak algebraic manipulation detection codes from
highly nonlinear functions

In this section, we propose a construction for systematic weak AMD codes via
highly nonlinear functions, which was implicitly described in [23]. Perfect nonlinear
functions were used [20] to analyse deterministic systematic weak AMD codes, that
is, their encoding map is a deterministic one such that Ef : A1 → G = A1 × B as
Ef (S1) = (S1, f(S1)). Here we give a systematic investigation on systematic weak
AMD codes via the partial nonlinearity of the function f as follows.

Construction 4.3.1. Let f be a map from A = A1 × A2 to B and let S = A1 be
a subgroup of A. Define a probabilistic encoding map Ef : A1 → G = A × B =

A1 ×A2 ×B as
Ef (S1) = (S1, S2, f(S1, S2)), (4.6)

where S2 ∈R A2.

By the probabilistic encoding map Ef and the corresponding deterministic de-
coding function given by (2.4), we can define a systematic AMD code (Ef ,Dec)

from A1 to G = A× B = A1 × A2 × B. Note that a possible successful tampering
should satisfy ∆ ∈ (A1 \ {0}) × A2 × B. However, for the nonlinearity, we should
consider all possible ∆ ∈ A1 × A2 × B \ {(0, 0, 0)}. Thus, to the convenience of
analysis, we introduce the partial nonlinearity of a function, which only considers
the case ∆ ∈ (A1 \ {0})×A2 ×B.
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Definition 4.3.2. The partial nonlinearity Ψf (A1) of a function f from A = A1×A2

to B is defined as

Ψf (A1) , max
a1∈A1\{0}

max
a2∈A2

max
b∈B

Pr
(
D(a1,a2)(f(x)) = b

)
= max
a1∈A1\{0}

max
a2∈A2

max
b∈B

|{x ∈ A : D(a1,a2)(f(x)) = b}|
|A|

,
(4.7)

where A1 is a subgroup of A,

Da(f(x)) = f(x+ a)− f(x) for a ∈ A

and Pr
(
D(a1,a2)(f(x)) = b

)
denotes the probability of the occurrence of the event

D(a1,a2)(f(x)) = b.

Remark 4.3.3. By Definitions 2.4.1 and 4.3.2, we know that Nf ≥ Ψf (A1) for any
subgroup A1 of A, where Nf denotes the nonlinearity of f .

The parameters of the constructed AMD code have the following relationship
with the nonlinearity of f .

Theorem 4.3.4. If the function f from A = A1 × A2 to B with partial nonlin-
earity Ψf (A1) has equiprobable sources and Ef is equiprobable encoding, then the
systematic weak AMD code (Ef ,Dec) generated by Construction 4.3.1 has parame-
ters (n1, n1n2m,Ψf (A1) ≤ Nf ), where |A1| = n1, |A2| = n2, and |B| = m.

Proof. By Construction 4.3.1, we only need to prove that the probability of suc-
cessful tampering is upper bounded by Ψf (A1). For any ∆ = (a1, a2, b) ∈ G =

A1 ×A2 ×B with a1 ∈ A1 \ {0}, a2 ∈ A2 and b ∈ B,∑
S1∈A1

Pr(S′ = S1)
∑
S2∈A2

Pr(Ef (S1) = (S1, S2, f(S1, S2))

×Pr(Dec((S1, S2, f(S1, S2)) + ∆) 6∈ {S1,⊥})
=

∑
S1∈A1

Pr(S′ = S1)
∑
S2∈A2

Pr(S∗ = S2)

×Pr(Dec((S1, S2, f(S1, S2)) + ∆) 6∈ {S1,⊥}) (4.8)

=
∑
S1∈A1

1

|A1|
∑
S2∈A2

1

|A2|
Pr(f(S1 + a1, S2 + a2) = f(S1, S2) + b)

=
1

|A1||A2|
∑
S1∈A1

∑
S2∈A2

Pr(f(S1 + a1, S2 + a2) = f(S1, S2) + b)

=
1

|A1||A2|
|{(S′, S∗) ∈ A : f(S′ + a1, S

∗ + a2)− f(S′, S∗) = b}|

≤ Ψf (A1)

≤ Nf . (4.9)
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According to Definitions 2.3.5 and 4.3.2, we know that the systematic weak AMD
code (Ef ,Dec) generated by Construction 4.3.1 has parameters (n1, n1n2m,Ψf (A1) ≤
Nf ), which completes the proof.

For deterministic systematic weak AMD codes, Theorem 4.3.4 is similar to [2,
Theorem 2]. However, our construction also works for general case of systematic
weak AMD codes with a random part. It is a generalization of [2, Theorem 2] for
the case of a map f of two variables.

In what follows, we list some well-known highly nonlinear functions and their
corresponding systematic AMD codes as applications of Construction 4.3.1.

4.3.1 Linear functions

One simple but useful way to obtain functions with high nonlinearity is to use linear
functions from (Fqr ,+) to (Fq,+) as functions from (F∗qr ,×) ∼= (Zqr−1,+) to (Fq,+).

Lemma 4.3.5 ([16]). Any nonzero linear function L from (Fqr ,+) to (Fq,+) is a
function from (F∗qr ,×) to (Fq,+) with nonlinearity Nf = 1

q + 1
q(qr−1) .

Applying the highly nonlinear functions in Lemma 4.3.5, the following corollary
follows directly from Construction 4.3.1 and Theorem 4.3.4.

Corollary 4.3.6. Let A = (Zqr−1,+) and B = (Fq,+). Further let A1 = (Zm1 ,+)

and A2 = (Zm2 ,+) be two subgroups of A with order m1 and m2 = qr−1
m1

, respectively.
If gcd(m1,m2) = 1, then A ∼= A1 × A2. Define the probabilistic encoding map EL
from A1 to G = A1 ×A2 ×B as

EL(s1) = (s1, s2, L(Φ(s1, s2))), (4.10)

where s2 ∈R A2, Φ is an isomorphism from Zqr−1 to (F∗qr ,×), and L(x) is a nonzero
linear function from (F∗qr ,×) to (Fq,+). If the systematic weak AMD code (EL,Dec)

given by (4.10) and (2.4) has equiprobable sources and EL is equiprobable encoding,
then it is an m2-regular (m1, (q

r − 1)q, 1
q + 1

q(qr−1))-AMD code.

Corollary 4.3.7. Let r ∈ N and m2 be a factor of qr − 1. Further let m1 = qr−1
m2

,
u = blogm1c, and k = blog qr−1

qr−1 c. If gcd(m1,m2) = 1, then the effective tag size
$∗(k, u) for weak AMD codes satisfies

k − 1 ≤ $∗(k, u) < k + 1 + log
m2q

r

qr − 1
.

The systematic weak AMD code in Corollary 4.3.6 has an asymptotically optimal
effective tag size with respect to the bound in Lemma 2.3.7, i.e.,

lim
k→∞

log |G| − log |A1|
k − 1

= 1.
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Proof. By Corollary 4.3.6, there exists a systematic weak AMD code with |A1| =
qr−1
m2
≥ 2u, ρ = qr−1

qr−1 ≤ 2−k, and the tag size

$ = log |G| − log |A1| = log(m2q) = logm2 + log q.

Note that

$ − k = logm2 + log q −
⌊

log
qr − 1

qr−1

⌋
<1 + logm2 + log

qr

qr − 1
.

The first conclusion then follows from the fact that for any k, u ∈ N, we have
k − 1 ≤ $∗(k, u) ≤ $. The second conclusion can be derived by the fact that

lim
k→∞

log |G| − log |A1|
k − 1

= lim
q→∞

1 + logm2 + log qr

qr−1 + k

k − 1
= 1

by noting that m2 ∈ N is a constant.

Example 4.3.8. Let L be the trace function from F24 to F2, i.e.,

L(x) = Tr24

2 (x) = x+ x2 + x4 + x8.

Set m1 = 5 and m2 = 3. Define a probabilistic encoding function from Z5 × Z3 to
Z5 × Z3 × Z2 as

EL((x1)) = (x1, x2, L(αφ(x1,x2))),

where x2 ∈R Z3, α is a primitive element of F24 and αφ(x1,x2) = α(6x1+10x2) is an
isomorphism from Z5 × Z3 to F∗24. Let A = {Ai : i ∈ Z5}, where

Ai = {(i, x2, L(αφ(i,x2))) : x2 ∈ Z3}.

It is easy to check that (Z5,Z5×Z3×Z2,A, EL) is a weak AMD code with parameters
(30, 5, 15, 8

15).

4.3.2 Maiorana-McFarland’s class of functions

Let r ∈ N and q be a prime power. Define a function f : (F2r
q ,+)→ (Fq,+) as

f(x1, x2, . . . , x2r) =
∑

1≤i≤r
xixi+r. (4.11)

Lemma 4.3.9 ([70]). The function f(x1, x2, . . . , x2r) defined by (4.11) has perfect
nonlinearity Nf = 1

q .
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Corollary 4.3.10. Let A1 = (Fq2r−1 ,+) and A2 = B = (Fq,+), where we regard
an element of Fq2r−1 as a vector in F2r−1

q . Define the probabilistic encoding map Ef
from A1 to G = A1 ×A2 ×B as

Ef (S1) =(S1, s2, f(S1, s2))

=

x1, x2, . . . , x2r−1, s2, xrs2 +
∑

1≤i≤r−1

xixi+r

 ,
(4.12)

where S1 = (x1, x2, . . . , x2r−1) ∈ A1, s2 ∈R A2, and f is defined by (4.11). If the sys-
tematic weak AMD code (Ef ,Dec) given by (4.12) and (2.4) has equiprobable sources
and Ef is equiprobable encoding, then it is an R-optimal q-regular (q2r−1, q2r+1, 1

q )-
AMD code with respect to the bound in Corollary 4.2.4.

Proof. The statement that the constructed AMD code (Ef ,Dec) has parameters
(q2r−1, q2r+1, 1

q ) directly follows from Theorem 4.3.4, Lemma 4.3.9, and the fact
that it is q-regular. According to Corollary 4.2.4, we should have

ρ ≥
⌈
q2q2r−1(q2r−1 − 1)

q2r+1 − 1

⌉
1

q2r
=

1

q
,

which means that the constructed AMD code is R-optimal.

The encoding map (4.11) appeared in [2, 20, 63] without requiring a random
s2 ∈R A2, i.e., it is deterministic.

Corollary 4.3.11. For any k, u ∈ N, the effective tag size $∗(k, u) for weak AMD
codes is bounded as follows:

k − 1 ≤ $∗(k, u) ≤ 2k.

Proof. For any given k and u, choose q = 2k and r to be the smallest positive
integer such that u ≤ k(2r − 1). According to Corollary 4.3.10, there exists a
systematic weak AMD code with |A1| = q2r−1 ≥ 2u, ρ = 1

q ≤ 2−k, and the tag size
$ = log |G| − log |A1| = 2 log q = 2k. Then the claim follows from the fact that
k − 1 ≤ $∗(k, u) ≤ $.

Example 4.3.12. Let

f(x1, x2, x3, x4) =
∑

1≤i≤2

xixi+2

be a function from F4
2
∼= F24 to F2. Define a probabilistic encoding function from F3

2

to F5
2 as

Ef ((x1, x2, x3, x4)) = (x1, x2, x3, x4, F (x1, x2, x3, x4)),

where x4 ∈R F2. Let A = {Ai : i ∈ F3
2}, where

Ai = {(i, x4, f(i, x4)) : x4 ∈ F2}.

It is easy to check that (F3
2,F5

2,A, Ef ) is a weak AMD code with parameters (32, 8, 16, 1
2).
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4.3.3 Dillon’s class of functions

In this subsection, we recall the well-known Dillon’s class of functions with perfect
nonlinearity. A function g : A → B is balanced if the size of g−1(b) is the same for
every b ∈ B, which is |A|/|B|. It is known (see, for example, [16]) that g has perfect
nonlinearity if and only if for every a ∈ A\{0}, the derivative Da(g(x)) is balanced,
and this is possible only when |B| divides |A|.

Lemma 4.3.13 ([30]). For any r ∈ N, let Frq be identified with the finite field Fqr
and let g be any balanced function from Fqr to Fq. Then the function f : (Fq2r ,+)→
(Fq,+) defined by

f(x, y) = g(xyq
r−2), x, y ∈ Fqr

has perfect nonlinearity Nf = 1
q .

Corollary 4.3.14. Let A1 = (Fq2r−1 ,+) and A2 = B = (Fq,+), where we regard
an element of Fq2r−1 as a vector in F2r−1

q . Let g : Fqr → Fq be a balanced function.
Define the probabilistic encoding map Ef from A1 to G = A1 ×A2 ×B as

Ef (S1) =(S1, yr, f(X,Y ))

=
(
x1, x2, . . . , xr, y1, y2, . . . , yr−1, yr, g(XY qr−2)

)
,

(4.13)

where S1 = (x1, x2, . . . , xr, y1, y2, . . . , yr−1) ∈ A1, yr ∈R A2, X = (x1, x2, . . . , xr),
and Y = (y1, y2, . . . , yr). If the systematic weak AMD code (Ef ,Dec) given by (4.13)
and (2.4) has equiprobable sources and Ef is equiprobable encoding, then it is an R-
optimal q-regular (q2r−1, q2r+1, 1

q )-AMD code with respect to the bound in Corollary
4.2.4.

The proof of Corollary 4.3.14 is similar to that of Corollary 4.3.10 so we omit
it here. Note that although the parameters of the systematic weak AMD codes
constructed in Corollaries 4.3.10 and 4.3.14 are the same, their probabilistic encoding
maps are different.

Remark 4.3.15. In the past few decades, highly nonlinear functions have received
much attention, and many results have been reported in this topic. For more general
form of functions with perfect nonlinearity, similar to f in (4.11), the interested
reader is referred to [26,58,64,70,71].

Example 4.3.16. Let the balanced function g(x) be the trace function Trq
2

q : Fq2 →
Fq defined by

Trq
2

q (x) = x+ xq,

then
f(X = (x1, x2), Y = (y1, y2)) = Trq

2

q (XY q2−2),
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is a function from F2
q2
∼= Fq4 to Fq, where we regard the element of F2

q as a vector
of length 2 over Fq. Define a probabilistic encoding map from F3

q to F5
q as

Ef ((x1, x2, x3, x4)) = (x1, x2, x3, x4, f(X = (x1, x2), Y = (x3, x4))),

where x4 ∈R Fq. Let A = {Ai : i ∈ F3
q}, where

Ai=(x1,x2,x3) = {(x1, x2, x3, x4, f(X = (x1, x2), Y = (x3, x4))) : x4 ∈ Fq}.

It is easy to check that (F3
q ,F5

q ,A, Ef ) is a weak AMD code with parameters (q5, q3, q4, 1
q ).
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Chapter 5

Strong Algebraic Manipulation
Detection Codes

In this chapter, we study strong algebraic manipulation detection (AMD) codes,
i.e., under the assumption that the adversary has full knowledge about the source.
We investigate the relationships between systematic strong AMD codes and high-
ly nonlinear functions. By means of relationships, we construct infinite families
of systematic strong AMD codes and highly nonlinear functions, respectively. A
combinatorial construction for systematic strong AMD codes is also provided.

5.1 Known results about strong algebraic manipulation
detection codes

In this section we recall some known results about strong algebraic manipulation
detection codes.

5.1.1 Strong algebraic manipulation detection codes: bounds

For strong algebraic manipulation detection codes, the following theoretic bounds
on the parameters are known.

Theorem 5.1.1 ([81]). For any strong AMD code (S,G,A, E) with parameters
(n,m, a, ρ), we have

ρ ≥ a−min{|Ai| : Ai ∈ A}
n− 1

. (5.1)

Theorem 5.1.2 ([81]). For any strong AMD code (S,G,A, E) with parameters
(n,m, a, ρ), we have

ρs ≥
1

|As|
(5.2)

for any source s ∈ S, where ρs is the probability of successful tampering given the
source s ∈ S for a random chosen ∆.

Definition 5.1.3 ([81]). A strong AMD code is G-optimal if its parameters meet
the bound in Lemma 5.1.2 with equality. Here, "G" indicates that guessing the most
likely encoding is an optimal strategy for the adversary.



Theorem 5.1.4 ([28]). For any systematic strong AMD code (G1, G = G1 ×G2 ×
B, {{(s, x, f(s, x)) : x ∈ G2} : s ∈ G1}) with parameters (|G|, |G1|, (|G2|, · · · , |G2|), ρ),
we have

ρ ≥ 1

|G2|
and

ρ ≥ 1

|B|
.

5.1.2 Strong algebraic manipulation detection codes: algebraic con-
structions

For strong algebraic manipulation detection codes, Cramer et al. introduced a
construction of strong AMD codes with nearly optimal tag size via polynomial e-
valuations [27].

Construction 5.1.5 ([27]). Let Fq be a finite field with characteristic p. Define a
probabilistic encoding mapping Eh : Fqt → Fqt × Fq × Fq given by

Eh(S = (s1, s2, · · · , st))→ (S, x2, h(S, x2))

with x2 ∈R Fq and
h(S, x) = xt+2 +

∑
1≤t≤t

six
i. (5.3)

Theorem 5.1.6 ([27]). If p - t+ 2, then the systematic strong AMD code generated
by Construction 5.1.5 has parameters (qt+2, qt, qt+1, d+1

q ).

In [29], Cramer et al. introduced an explicit construction of systematic strong
AMD codes based on linear error correcting codes.

Definition 5.1.7. For a linear code C over Fq with parameters [n, k, d]q, the code-
words C1 = (c1,1, c1,2, . . . , c1,n) ∈ C and C2 = (c2,1, c2,2, . . . , c2,n) ∈ C is said to be
AMD-equivalent if there exists a pair (x, y) ∈ Fq × Zn such that

Ly(C1 + x) , (c1,y + x, c1,y+1 + x, . . . , c1,y−1 + x) = C2.

Construction 5.1.8 ([29]). For a linear code C over Fq with parameters [n, k, d]q,
let C = {C1, C2, . . . , Cm} ⊆ C be a subset of codewords such that any two codewords
of C are not AMD-equivalent. Then there exists a strong AMD code (Zm,Zm×Zn×
Fq,A, Ec), where the encoding function Ec from Zm to Zm×Zn×Fq can be defined
as

Ec(i) = (i, x, ci,x),

with x ∈R Zn and A = {Ai : i ∈ Zn}

Ai = {(i, x, ci,x) : x ∈ Zn}.
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Lemma 5.1.9 ([29]). If the linear code C over Fq has parameters [n, k, d]q, then the
strong AMD code (Zm,Zm × Zn × Fq,A, Ec) generated by Construction 5.1.8 has
parameters (mnq, |C|,mn, ρ = n−d

n ).

5.1.3 Strong algebraic manipulation detection codes: combinato-
rial constructions

In [81], it was proved that external difference families are important tools to con-
struct strong algebraic manipulation detection codes. In this subsection, we recall
some of those relationships between external difference families and strong algebraic
manipulation detection codes.

Lemma 5.1.10 ([81]). If there exists an (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF, there
exists an R-optimal AMD code with a =

∑
1≤i≤m ki.

Lemma 5.1.11 ([81]). If there exists an R-optimal strong AMD code with equiprob-
able encoding, then {As : s ∈ S} forms an (n,m, k1, k2, · · · km;λ1, λ2, · · · , λm)-
GSEDF.

Lemma 5.1.12 ([81]). A G-optimal strong AMD code is equivalent to an (n,m; k1,

. . . , km; 1, . . . , 1)-BGSEDF

Remark 5.1.13. Although GSEDFs and BGSEDFs are closely related with strong
AMD codes, the problem of finding explicit constructions for GSEDFs and BGSEDFs
is still widely open.

5.1.4 From weak AMD codes to strong AMD codes

In [27], Cramer et al. introduced a method to modify weak AMD codes to strong
AMD codes. In this subsection, we recall this method as the main known relationship
between weak AMD codes and strong AMD codes. The main idea is to apply an
authentication code and weak AMD codes to encoding the source messages and the
random redundance at the same time.

Definition 5.1.14 ([87]). A systematic authentication code is a four-tuple (S, T,K,

Au), where S denotes the source space, T is the tag space, K is the key space, and
Au : S × K → T is the encode function. A transmitter and a receiver share a
secret k ∈ K. The transmitter communicates a piece of information s ∈ S to the
receiver by encoding s using Au into (s,Au(s, k)) ∈ S×T and transmits the message
m = (s,Au(s, k)) by a public channel. For each received message m∗ = (s∗, t∗), the
receive checks whether t∗ = Au(s∗, k). If yes, the receiver will accept the message
m∗, otherwise the receiver will reject it.
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Construction 5.1.15 ([27]). Let Au be an encoding function of a systematic au-
thentication code from S × K to T , i.e, (x, k) 7→ Au(x, k) ∈ T , where k ∈R K

denotes the private key for the source x ∈ S. Let (K,G,A, E) be a weak AMD code.
Then we can define an encoding function Es from S to S ×G× T as

Es(x) = (s, E(k), Au(s, k)),

where k ∈R K is a key chosen at random. Define A′ = {A′i : i ∈ S},

A′i = {(i, E(k), Au(s, k)) : k ∈ K}.

Theorem 5.1.16 ([27]). The code (S,G′ = S × G × T,A′, Es) is a systematic
strong AMD code with parameters (|G′|, |S|, |S||K|, ρ′), where ρ′ = ρ+ pau. Herein,
ρ and pau denote the probability of successful tampering for the weak AMD code
(S,G,A, E) and the probability of successful substitution attack, i.e., the maximum
over all s 6= s′ ∈ S of the probability of successfully substituting the authenticated s
by s′, for the authentication code (S, T,K,Au) in Construction 5.1.15, respectively.
Furthermore, if the underlying weak AMD code is systematic then ρ′ = max{ρ, pau}.

5.2 Strong algebraic manipulation detection codes via
highly nonlinear functions

In this section, we consider the systematic strong AMD codes generated by Con-
struction 4.3.1 via highly nonlinear functions. We first analyze the relationship
between the nonlinearity of the function f and the probability of successful tamper-
ing in Theorem 5.2.1. By choosing some special functions, we construct systematic
strong AMD codes as examples in Corollaries 5.2.2 and 5.2.5.

By the probabilistic encoding map Ef given by (4.6) and the corresponding
decoding function given by (2.4), we can define a systematic AMD code (Ef ,Dec)

from A1 to G = A × B = A1 × A2 × B. In what follows, we first analyze the
relationship between parameters of the strong AMD code generated by Construction
4.3.1 and the nonlinearity of f .

Theorem 5.2.1. Let f be a function from A = A1 ×A2 to B with nonlinearity Nf

and partial nonlinearity Ψf (A1), where |A1| = n1, |A2| = n2, and |B| = m. For
the equiprobable encoding case, the systematic strong AMD code (Ef ,Dec) generated
by Construction 4.3.1 has parameters (n1, n1n2m, ρ) if and only if for any given
S1 ∈ A1,

|{S∗ ∈ A2 : f(S1 + a1, S
∗ + a2) = f(S1, S

∗) + b}|
|A2|

≤ ρ (5.4)

holds for any ∆ = (a1, a2, b) ∈ (A1 \ {0})× A2 ×B. The parameter ρ satisfies that
ρ ≥ Ψf (A1) ≥ 1

|B| . Furthermore, if f is a perfect nonlinear function, then we have
ρ ≥ Nf .
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Proof. By Construction 4.3.1 and Definition 2.3.5, the AMD code (Ef ,Dec) gen-
erated by Construction 4.3.1 has parameters (n1, n1n2m, ρ) if and only if for any
S1 ∈ A1,

Pr(Dec(Ef (S1) + ∆) 6∈ {S1,⊥}) ≤ ρ (5.5)

holds for any ∆ = (a1, a2, b) ∈ G with a ∈ A1 \ {0}, a2 ∈ A2, and b ∈ B. But

Pr(Dec(Ef (S1) + ∆) 6∈ {S1,⊥})
=

∑
S∗∈A2

Pr(S2 = S∗) Pr(f(S1 + a1, S
∗ + a2) = f(S1, S

∗) + b)

=
∑
S∗∈A2

1

|A2|
Pr(f(S1 + a1, S

∗ + a2) = f(S1, S
∗) + b)

=
|{S∗ ∈ A2 : f(S1 + a1, S

∗ + a2) = f(S1, S
∗) + b}|

|A2|
,

where the second equality follows from the fact that Ef is equiprobable encoding.
Therefore, (5.5) is equivalent with (5.4).

Now we prove ρ ≥ Ψf (A1). Clearly, there exists a fixed ∆ = (a1, a2, b) ∈
(A1 \ {0})×A2 ×B such that Ψf (A1) = Pr(D(a1,a2)(f(S1, S2)) = b). Then

Ψf (A1) = Pr(D(a1,a2)(f(S1, S2)) = b)

=

∑
S1∈A1

|{S∗ ∈ A2 : f(S1 + a1, S
∗ + a2) = f(S1, S

∗) + b}|

|A1||A2|

≤

∑
S1∈A1

ρ

|A1|
= ρ.

For any a1 ∈ A1 \ {0} and a2 ∈ A2,

max
b∈B

|{(S′, S∗) ∈ A1 ×A2 : D(a1,a2)(f(S′, S∗)) = b}|
|A1||A2|

≥

∑
b∈B

|{(S′,S∗)∈A1×A2: D(a1,a2)(f(S′,S∗))=b}|
|A1||A2|

|B|

=
1

|B|

implies that Ψf (A1) ≥ 1
|B| .

At last, if f is a perfect nonlinear function, then we have 1
|B| = Nf ≥ Ψf (A1) ≥

1
|B| according to Remark 4.3.3. Thus, we have ρ ≥ Ψf (A1) = Nf = 1

|B| .

In what follows, we list a few systematic strong AMD codes with ρ = 1
|B| . Espe-

cially, we include the classes of Maiorana-McFarland functions and Dillon functions
to construct such AMD codes.

Based on Theorem 5.2.1 and Lemma 4.3.9, we have the following corollary.
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Corollary 5.2.2. Let A1 = A2 = Fqr and B = Fq, where we regard an element
of Fqr as a vector in Frq. Define the probabilistic encoding map Ef from A1 to
G = A1 ×A2 ×B as

Ef (S1) =(S1, S2, f(S1, S2))

=

x1, x2, . . . , xr, xr+1, . . . , x2r,
∑

1≤i≤r
xixi+r

 ,

where S1 = (x1, x2, . . . , xr) ∈ A1, S2 = (xr+1, xr+2, . . . , x2r) ∈R A2, and f is defined
by (4.11). Then, for the equiprobable encoding case, the systematic strong AMD code
given by Ef has parameters (qr, q2r+1, 1

q ), where ρ = 1
q is minimum with respect to

Theorem 5.2.1. Especially, when r = 1, the q-regular AMD code is optimal with
respect to the bound in Lemma 5.1.4.

Proof. We first prove ρ = Nf = 1
q . By Theorem 5.2.1, we only need to prove that

for any S1 ∈ Fqr , a1 ∈ Fqr \ {0}, a2 ∈ Fqr , and b ∈ Fq,

|{S2 ∈ Fqr : f(S1 + a1, S2 + a2) = f(S1, S2) + b}|
qr

≤ 1

q
, (5.6)

i.e., f(S1 + a1, S2 + a2) = f(S1, S2) + b has at most qr−1 solutions for S2 ∈ Fqr .
Since a1 6= 0, without loss of generality, we may assume a1 = (a11, a12, . . . , a1r) with
a1r 6= 0. Note that

f(S1 + a1, S2 + a2)− f(S1, S2)− b
= h(S + ∆)− h(S) + (xr + a1r)(x2r + a2r)− xrx2r − b
= h(S + ∆)− h(S) + a1rx2r + a2rxr + a1ra2r − b,

(5.7)

where

h(S) = h(S1, S2) =h(x1, x2, . . . , x2r)

,


∑

1≤i≤r−1 xixi+r, r ≥ 2,

0, r = 1,

∆ = (a1, a2) = (a11, a12, . . . , a1r, a21, a22, . . . a2r),

and a2 = (a21, a22, . . . , a2r). For any given (x1, x2, . . . , x2r−1) ∈ F2r−1
q , a1 ∈ Fqr\{0},

and a2 ∈ Fqr , the fact h(S+∆)−h(S)+a1rx2r +a2rxr +a1ra2r− b = 0 has at most
one solution x2r ∈ Fq implies that (5.7) has at most qr−1 solutions for all possible
S2 ∈ Fqr , i.e., (5.6) holds. Then ρ = Nf = 1

q by Theorem 5.2.1.
The second assertion is obvious from the definitions.

Remark 5.2.3. (1) When q is a power of 2, the AMD codes above based on
Maiorana-McFarland’s class of functions are special cases of the codes based on
Reed-Muller codes [60].
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(2) For more general form of functions with perfect nonlinearity, similar to f in
(4.11), the interested reader is referred to [26,58,64,70].

Example 5.2.4. Let
f(x1, x2, x3, x4) =

∑
1≤i≤2

xixi+2

be a function from F4
2
∼= F24 to F2. Define a probabilistic encoding function from F2

2

to F5
2 as

Ef ((x1, x2, x3, x4)) = (x1, x2, x3, x4, F (x1, x2, x3, x4)),

where (x3, x4) ∈R F2
2. Let A = {Ai : i ∈ F2

2}, where

Ai = {(i, x3, x4, f(i, x4)) : (x3, x4) ∈ F2
2}.

It is easy to check that (F2
2,F5

2,A, Ef ) is a weak AMD code with parameters (32, 4, 16, 1
2).

Recalling the well-known Dillon’s class of functions with perfect nonlinearity
in Lemma 4.3.13, we have the following corollary. Note that the trace function
Trq

r

q : Fqr → Fq defined by Trq
r

q (x) =
∑

0≤i≤r−1 x
qi is a balanced function.

Corollary 5.2.5. Let A1 = A2 = Fqr and B = Fq, where we regard an element
of Fqr as a vector in Frq. Let {α1, α2, . . . , αr} and {β1, β2, . . . , βr} be a pair of dual
bases of Fqr over Fq, that is,

Trq
r

q (αiβj) =

1, i = j,

0, otherwise.
(5.8)

Define f : (Fq2r ,+)→ (Fq,+) as f(x, y) = Trq
r

q (x̂q
r−2ŷ), where x = (x1, x2, . . . , xr) ∈

Fqr , y = (y1, y2, . . . , yr) ∈ Fqr , x̂ =
∑

1≤i≤r xiαi, and ŷ =
∑

1≤i≤r yiβi. Define the
probabilistic encoding map Ef from A1 to G = A1 ×A2 ×B as

Ef (S1) = (S1, S2, f(S1, S2)),

where S1 = (x1, x2, . . . , xr) ∈ A1 and S2 = (y1, y2, . . . , yr) ∈R A2. Then, for
the equiprobable encoding case, the systematic strong AMD code given by Ef has
parameters (qr, q2r+1, 1

q ), where ρ = 1
q is minimum with respect to Theorem 5.2.1.

Especially, when r = 1, the q-regular AMD code is optimal with respect to the bound
in Lemma 5.1.4.

Proof. To prove ρ = 1
q , according to Theorem 5.2.1, it suffices to prove that for any

S1 ∈ Fqr , a1 = (a11, . . . , a1r) ∈ Fqr \ {(0, 0, . . . , 0)}, a2 = (a21, . . . , a2r) ∈ Fqr , and
b ∈ Fq,

|{S2 ∈ Fqr : f(S1 + a1, S2 + a2) = f(S1, S2) + b}|
qr

≤ 1

q
,
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i.e., f(S1 + a1, S2 + a2) = f(S1, S2) + b has at most qr−1 solutions for S2 ∈ Fqr . Let

Ŝ1
qr−2

=
∑

1≤i≤r
x′1iαi, (5.9)

(Ŝ1 +
∑

1≤i≤r
a1iαi)

qr−2 =
∑

1≤i≤r
x∗1iαi, (5.10)

and
a′ = (a′11 = x∗11 − x′11, . . . , a

′
1r = x∗1r − x′1r). (5.11)

Since a1 6= (0, 0, . . . , 0) and xq
r−2 is a non-identity permutation of Fqr , we have

a′ 6= (0, 0, . . . , 0). Without loss of generality, we may assume a′11 6= 0. By (5.8)-
(5.11),

f(S1 + a1, S2 + a2)− f(S1, S2)− b

= y1

Trq
r

q

β1

Ŝ1 +
∑

1≤i≤r
a1iαi

qr−2
− Trq

r

q

(
β1Ŝ1

qr−2
)

+ C(S, a1, a2, b)

= a′11y1 + C(S, a1, a2, b),

where S = (x1, x2, . . . , xr, y2, . . . , yr) ∈ Fq2r−1 and C(S, a1, a2, b) is a constant de-
termined by S, a1, a2, and b. Thus, the fact a′11 6= 0 means that

f(S1 + a1, S2 + a2)− f(S1, S2)− b = 0

has at most qr−1 solutions for S2 ∈ Fqr , which completes the proof.

5.3 Highly nonlinear functions from systematic AMD
codes

By Theorems 4.3.4 and 5.2.1, we can construct systematic AMD codes from known
highly nonlinear functions for both weak and strong attack models. In this sec-
tion, we further analyze the relationship between AMD codes and highly nonlinear
functions. Especially, we try to construct highly nonlinear functions from given
systematic AMD codes. Note that a strong (m,n, ρ)-AMD code is always a weak
(m,n, ρ)-AMD code. Thus, throughout this section, we only consider the functions
derived from systematic weak AMD codes.

Let A1, A2 and B be Abelian groups. For a given systematic AMD code with
probabilistic encoding map E : A1 → A1 ×A2 ×B,

E(s1) = (s1, s2, ts1,s2), s1 ∈ A1, s2 ∈R A2,
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define a function fE from A1 ×A2 to B as

fE(s1, s2) = ts1,s2 . (5.12)

Theorem 5.3.1. Let E : A1 → A1 × A2 × B be the probabilistic encoding map
of a systematic weak AMD code with parameters (m,n, ρ), where m = |A1| and
n = |A1||A2||B|. Then the map fE : A1 ×A2 → B has nonlinearity

NfE ≤ max{{ρ} ∪ {NfE,s′ : s′ ∈ A1}},

where fE,s′(x) , fE(s′, x) is a map from A2 to B defined by fE and s′ ∈ A1, and
NfE,s′ denotes the nonlinearity of fE,s′.

Proof. Let ρ(∆1,∆2,∆3) denote the probability of successful tampering (∆1,∆2,∆3) ∈
(A1 \ {0})×A2 ×B. Then

ρ ≥max
{
ρ(∆1,∆2,∆3) : (∆1,∆2,∆3) ∈ (A1 \ {0})×A2 ×B

}
= max

∆1∈A1\{0}
max

∆2∈A2

max
∆3∈B

{ ∑
s′∈A1

Pr(s1 = s′)
∑
s∗∈A2

Pr(s2 = s∗)

× Pr(fE(s′ + ∆1, s
∗ + ∆2) = fE(s′, s∗) + ∆3)

}
= max

∆1∈A1\{0}
max

∆2∈A2

max
∆3∈B

{ ∑
s′∈A1

1

|A1|
∑
s∗∈A2

1

|A2|

× Pr(fE(s′ + ∆1, s
∗ + ∆2) = fE(s′, s∗) + ∆3)

}
= max

∆1∈A1\{0}
max

∆2∈A2

max
∆3∈B{

|{(s′, s∗) ∈ A1 ×A2 : fE(s′ + ∆1, s
∗ + ∆2) = fE(s′, s∗) + ∆3}|

|A1||A2|

}
.

Meanwhile, for ∆1 = 0 and ∆2 ∈ A2 \ {0}, we define

ρ(0,∆2,∆3) ,
|{(s′, s∗) ∈ A1 ×A2 : fE(s′, s∗ + ∆2) = fE(s′, s∗) + ∆3}|

|A1||A2|
.

Then

max
∆2∈A2\{0}

max
∆3∈B

ρ(0,∆2,∆3)

= max
∆2∈A2\{0}

max
∆3∈B

∑
s′∈A1

|{s∗ ∈ A2 : fE,s′(s
∗ + ∆2) = fE,s′(s

∗) + ∆3}|
|A1||A2|

≤max{NfE,s′ : s′ ∈ A1},

where the last inequality comes from the fact that

NfE,s′ = max
∆2∈A2\{0}

max
∆3∈B

|{s∗ ∈ A2 : fE,s′(s
∗ + ∆2) = fE,s′(s

∗) + ∆3}|
|A2|

.
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Therefore,

NfE = max
(∆1,∆2)∈A1×A2\{(0,0)}

max
∆3∈B

|{(s′, s∗) ∈ A1 ×A2 : f(s′ + ∆1, s
∗ + ∆2) = f(s′, s∗) + ∆3}|

|A1||A2|
= max{max{ρ(∆1,∆2,∆3) : ∆1 ∈ A1 \ {0},∆2 ∈ A2,∆3 ∈ B},

max{ρ(0,∆2,∆3) : ∆2 ∈ A2 \ {0},∆3 ∈ B}}
≤max{{ρ} ∪ {NfE,s′ : s′ ∈ A1}}.

Generally speaking, from a systematic AMD code we can not determine the
nonlinearity of the function fE directly. This is mainly because that in an AMD
code, we do not regard the case Dec(E(s) + ∆) = s as an adversary’s successful
tampering, as shown in Theorem 5.3.1. However, for a stronger setting [28,60,94] an
adversary succeeds even when producing a new encoding of the original source, that
is, the case Dec(E(s) + ∆) 6= ⊥ is regarded as an adversary’s successful tampering.
In this setting, we directly have the following result. The proof is similar, so we
omit it here.

Theorem 5.3.2. Let E : A1 → A1 ×A2 ×B be the probabilistic encoding map of a
systematic weak AMD code. If

Pr(Dec(E(s) + ∆) 6= ⊥) ≤ ρ,

then the function fE : A1 ×A2 → B defined as (5.12) has nonlinearity NfE ≤ ρ.

As an application of Theorem 5.3.1, we analyse the functions derived from the
systematic q-regular strong AMD codes in [27, Theorem 2].

Corollary 5.3.3. Let q be a power of a prime p, and t > 0 be an integer such
that p - (t+ 2). Let (Eh,Dec) be the systematic strong AMD codes in [27, Theorem
2] with parameters (qt, qt+2, t+1

q ), where the probabilistic encoding map Eh : Fqt →
Fqt × Fq × Fq is given by

Eh(S = (s1, s2, . . . , st)) = (S, x, h(S, x))

with x ∈R Fq and
h(S, x) = xt+2 +

∑
1≤i≤t

six
i. (5.13)

Then the function h(S, x) can be viewed as a function from (Fqt+1 ,+) to (Fq,+) with
nonlinearity Nh ≤ t+1

q , where we regard elements of Fqt+1 as vectors in Ft+1
q .
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Proof. According to Theorem 5.3.1, it suffices to prove that for any given S1 ∈ Fqt ,
NhE,Si

≤ t+1
q holds, where hE,S1(x) = h(S1, x) is a function from Fq to Fq. By

(5.13), for any given S1 = (s1, s2, . . . , st) ∈ Fqt and ∆ ∈ Fq \ {0}, we have

hE,S1(x+ ∆)− hE,S1(x)

=(x+ ∆)t+2 − xt+2 +
∑

1≤i≤t
si((x+ ∆)i − xi)

=R(S1,∆)(x),

where deg(R(S1,∆)(x)) = t+1, for the reason that p - (t+2). Thus, for any S1 ∈ Fqt ,

NhE,S1
= max

∆∈Fq\{0}
max
b∈Fq

|{x ∈ Fq : R(S1,∆)(x) = b}|
q

≤ t+ 1

q
,

which completes the proof.

Remark 5.3.4. By Corollary 5.3.3, we know that the systematic AMD codes in
Theorem 2 of [27] can also be explained by means of highly nonlinear functions.

5.4 A combinatorial construction of strong AMD codes

In this section, we are going to construct AMD codes via combinatorial methods.
For positive integers m, e and u > 2, let p be a prime and pm = eu+ 1. Let Fpm

be the finite field with pm elements and α be a primitive element of Fpm . Define

V0 = {αje : 0 ≤ j ≤ u− 1}.

It is easy to check that V0 is a subgroup of (F∗pm , ∗) with order u. Thus, there exists
e elements ai = αi with 0 ≤ i ≤ e− 1 such that

Vi = aiV0 = {αi+je : 0 ≤ j ≤ u− 1}

are exactly e cosets of V0 in (F∗pm , ∗).

Construction 5.4.1. Let V = {Vi : 0 ≤ i ≤ e − 1}. Define A , {Ai : 0 ≤ i ≤
e− 1} such that

Ai , {(i, j, αi+je) : 0 ≤ j ≤ u− 1}. (5.14)

Let Ev be the encoding function from Ze to Ze × Zu × Fpm

Ev(i) ∈R Ai for 0 ≤ i ≤ e− 1, (5.15)

where Ev(i) ∈R Ai implies that Ev(i) is chosen from Ai uniformly at random.
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Theorem 5.4.2. For positive integers m, e, and u > 2, let p be a prime and
pm = eu + 1. Then, considering the equiprobable encoding case, there exists a G-
optimal systematic strong AMD code with parameters (uepm = (pm − 1)pm, e, 1

u),
where the probabilistic encoding map Ev : Ze → Ze × Zu × Fpm is given by (5.15).

Proof. By Construction 5.4.1, we only need to prove ρ ≤ 1
u , i.e., for any given

s ∈ Zm, the inequality

Pr(Dec(E(s) + ∆) 6∈ {s,⊥}) ≤ 1

u
(5.16)

holds for any ∆ = (∆1,∆2,∆3) with ∆1 ∈ Ze \ {0}, ∆2 ∈ Zu, and ∆3 ∈ Fpm .
By (5.14) and (5.15), we have

Pr(Dec(E(s) + ∆) 6∈ {s,⊥})
= Pr({αs+∆1+(t+∆2)e = αs+te + ∆3 : t ∈R Zu})

=
|{t ∈ Zu : αs+∆1+(t+∆2)e = αs+te + ∆3}|

u

(5.17)

where the second equality holds by the fact that E is equiprobable encoding. Since
∆1 6= 0, we haveAs∩As+∆1 = ∅. For any given ∆ = (∆1,∆2,∆3) with ∆1 ∈ Ze\{0},
∆2 ∈ Zu, and ∆3 ∈ Fpm , note that αs+∆1+(t+∆2)e−αs+te = αs+te(α∆1+∆2e−1) run
through the set F∗pm , when (s, t) run through the set Ze × Zu. Therefore, we have
for any given ∆ = (∆1,∆2,∆3) with ∆1 ∈ Ze \ {0}, ∆2 ∈ Zu, and ∆3 ∈ Fpm , we
have

|{t ∈ Zu : αs+∆1+(t+∆2)e = αs+te + ∆3}| ≤ 1.

Recall (5.17), we have

Pr(Dec(E(s) + ∆) 6∈ {s,⊥}) ≤ 1

u
.

This completes the proof.
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Chapter 6

Conclusions and Open Problems

In this chapter, we draw a brief conclusion of new results obtained in this disserta-
tion, and also propose several interesting open problems.

6.1 Conclusions

In this dissertation, we studied algebraic manipulation detection codes for both
strong/weak attack model and related structures such as external difference families
and highly nonlinear functions. In the following, we briefly list the new results in
this dissertation.

Weak algebraic manipulation detection codes

• We defined a new type of weighted external difference families, which are
proved equivalent with weak algebraic manipulation detection codes. In this
way, the combinatorial characterization of weak algebraic manipulation detec-
tion codes was proposed.

• We improved the known lower bound, i.e., the R-bound by Paterson and
Stinson [81] on the maximum probability of successful tampering for the ad-
versary’s all possible strategies;

• We derived a necessary condition for the R-bound to be achieved;

• We determined the exact combinatorial structure for a weak algebraic ma-
nipulation detection code with the minimum possible probability of successful
tampering, when the R-bound is not achievable.

• We constructed some new R-optimal weak algebraic manipulation detection
codes based on weighted external difference families.

• We constructed some new weak algebraic manipulation detection codes with
asymptotically optimal effective tag size.

Strong algebraic manipulation detection codes



• We constructed optimal strong algebraic manipulation detection codes via
highly nonlinear functions.

• We constructed G-optimal strong algebraic manipulation detection codes by
an explicit combinatorial construction.

• We constructed highly nonlinear functions based on strong algebraic manipu-
lation detection codes.

External difference family

• We proposed three constructions of optimal bounded standard weighted ex-
ternal difference families.

• We proposed a construction of optimal cyclic standard weighted external dif-
ference families.

• We constructed optimal partitioned difference families with new parameters.

• We constructed optimal difference system of sets with positive rate based on
partitioned difference families.

6.2 Open problems

In this section, we list several interesting open problems related with the topics in
this dissertation.

• How to construct strong algebraic manipulation detection codes with flexible
parameters via highly nonlinear functions?

• We proved that the R-bound for weak algebraic manipulation detection codes
is not always tight. How about the R-bound for strong algebraic manipulation
detection codes? If it is also not tight in some special cases, how to improve
the R-bound for strong algebraic manipulation detection codes?

• How to explicitly construct standard weighted external difference families for
the case m ≥ 3, i.e., R-optimal weak algebraic manipulation detection codes?

• The general relationship between error correcting codes and algebraic manip-
ulation detection codes is known. However, how to find explicit construction
that yields better parameters than the known ones?

• How to explicitly construct bounded standard weighted external difference
families?

• How to construct strong external difference families for the case m ≥ 5?
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