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The purpose of this paper is to study a class of semilinear elliptic boundary value problems with degener-
ate boundary conditions which include as particular cases the Dirichlet problem and the Robin problem. The
approach here is based on the super-sub-solution method in the degenerate case, and is distinguished by the
extensive use of an Lp Schauder theory elaborated for second-order, elliptic differential operators with discon-
tinuous zero-th order term. By using Schauder’s fixed point theorem, we prove that the existence of an ordered
pair of sub- and supersolutions of our problem implies the existence of a solution of the problem. The results
extend an earlier theorem due to Kazdan and Warner to the degenerate case.
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1 Statement of main results

Let Ω be a bounded domain of Euclidean space RN , N ≥ 2, with smooth boundary ∂Ω; its closure Ω = Ω∪ ∂Ω
is an N dimensional, compact smooth manifold with boundary. Let A be a second-order, elliptic differential
operator with real coefficients such that

Au := −
N∑

i=1

∂

∂xi

⎛
⎝ N∑

j=1

aij(x)
∂u

∂xj

⎞
⎠+ c(x)u. (1.1)

Here:

(1) aij ∈ C∞(Ω) and aij(x) = aji(x) on Ω, and there exists a positive constant a0 such that

N∑
i,j=1

aij(x)ξiξj ≥ a0|ξ|2, x ∈ Ω, ξ = (ξ1, ξ2, . . . , ξN ) ∈ RN .

(2) The function c(x) is real-valued and may be discontinuous in Ω. More precisely, c ∈ L∞(Ω) and c(x) ≥ 0
almost everywhere in Ω.

Let B be a first-order, boundary condition with real coefficients such that

Bu := a(x′)
∂u

∂ν
+ b(x′)u on ∂Ω. (1.2)

Here:

(3) a ∈ C∞(∂Ω) and a(x′) ≥ 0 on ∂Ω.
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2 K. Taira: Semilinear degenerate elliptic boundary value problems

(4) b ∈ C∞(∂Ω) and b(x′) ≥ 0 on ∂Ω.

(5) ∂/∂ν is the conormal derivative associated with the operator A,

∂

∂ν
=

N∑
i,j=1

aij(x′)nj
∂

∂xi
,

where n = (n1, n2, . . . , nN ) is the unit exterior normal to the boundary ∂Ω.

We remark that the boundary condition B given by formula (1.2) is a smooth linear combination of the Dirichlet
condition and the Neumann condition.

In this paper we consider the following semilinear elliptic boundary value problem: Given a function f(x, ξ)
defined on Ω × R, find a function u(x) in Ω such that⎧⎨

⎩
Au = f(x, u(x)) in Ω,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂Ω.

(1.3)

Our fundamental hypotheses on the boundary conditionB are the following:

(H.1) a(x′) + b(x′) > 0 on ∂Ω.

(H.2) b(x′) �≡ 0 on ∂Ω.

It should be noticed that if a(x′) ≡ 0 and b(x′) ≡ 1 on ∂Ω (resp. a(x′) > 0 on ∂Ω), then the boundary
condition B is the Dirichlet condition (resp. Robin condition). It is easy to see that problem (1.3) is non-
degenerate (or coercive) if and only if either a(x′) > 0 on ∂Ω or a(x′) ≡ 0 and b(x′) > 0 on ∂Ω. Amann [2]
and Amann–Crandall [3] studied problem (1.3) under the condition that the boundary ∂Ω is the disjoint union of
the two closed subsets M = {x′ ∈ ∂Ω : a(x′) = 0} and ∂Ω \M = {x′ ∈ ∂Ω : a(x′) > 0}, each of which is an
(N−1) dimensional compact smooth manifold. What is the important feature of our boundary conditionB is that
problem (1.3) becomes a degenerate boundary value problem from an analytical point of view. This is due to the
fact that, having a first order pseudo-differential operator on the boundary ∂Ω, the so-called Shapiro–Lopatinskii
complementary condition is violated at each point of the set M (cf. [8]).

We remark that problem (1.3) is closely related to population dynamics in environments with spatial hetero-
geneity (cf. [16], [17]). In terms of biology, the functions a(x′) and b(x′) measure the hostility of the exterior of
the domain. For example, if a(x′) ≡ 0 and b(x′) ≡ 1 on ∂Ω, then the Dirichlet condition B represents that Ω
is surrounded by a completely hostile exterior such that any member of the population which reaches the bound-
ary dies immediately; in other words, the exterior of the domain is deadly to the population. If a(x′) ≡ 1 and
b(x′) ≡ 0 on ∂Ω, then the Neumann condition B represents that the boundary acts as a barrier, that is, individ-
uals reaching the boundary simply return to the interior. The intuitive meaning of hypothesis (H.1) implies that
individuals reaching the set M die immediately. Namely, the boundary portion M is deadly to the population.
On the other hand, hypothesis (H.2) implies that the boundary ∂Ω is not a complete barrier.

Our approach to problem (1.3) is based on the super-sub-solution method which goes back to Sattinger [13]
in the non-degenerate case. However, it should be emphasized that, in the case where c ∈ L∞(Ω), the classical
Schauder theory breaks down for problem (1.3). In fact, the solutions of problem (1.3) are not necessarily
smooth on Ω. Taira [15] and Runst [10] and Runst–Il’yasov [11] studied problem (1.3) under the condition that
c ∈ C∞(Ω) (see also [7, Chapter 33] for the abstract setting). The crucial point in our approach is how to control
the discontinuous function c(x) in formula (1.1) in terms of Sobolev spaces of Lp type, just as in Taira [17].

In order to study problem (1.3) in the framework of Sobolev spaces of Lp type, we impose the following
regularity condition (F.1) on the nonlinear term f(x, ξ):

(F.1) The function f(x, ξ) is real-valued and continuous on Ω × R, and its partial derivative ∂f/∂ξ exists and is
continuous on Ω × R.
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A function u ∈ W 2,p(Ω), N < p <∞, is called a solution of problem (1.3) if it satisfies the conditions{
Au = f(x, u(x)) almost everywhere in Ω,
Bu = 0 on ∂Ω.

Here it should be noticed that we have, by Sobolev’s imbedding theorem (see [1, Theorem 4.12]),

W 2,p(Ω) ⊂ C1(Ω), N < p <∞.

A function ψ ∈W 2,p(Ω), N < p <∞, is called a supersolution of problem (1.3) if it satisfies the conditions{
Aψ ≥ f(x, ψ(x)) almost everywhere in Ω,
Bψ ≥ 0 on ∂Ω.

Similarly, a function φ ∈ W 2,p(Ω), N < p < ∞, is called a subsolution of problem (1.3) if it satisfies the
conditions {

Aφ ≤ f(x, φ(x)) almost everywhere in Ω,
Bφ ≤ 0 on ∂Ω.

Now we are in a position to state our fundamental existence theorem of solutions of problem (1.3). The next
theorem asserts that the existence of an ordered pair of sub- and supersolutions implies the existence of a solution
of problem (1.3) (see [2, Theorem 9.4] in the non-degenerate case):

Theorem 1.1 Assume that the nonlinear term f(x, ξ) satisfies the regularity condition (F.1). If ψ(x) and φ(x)
are respectively super- and subsolutions of problem (1.3) which satisfy the condition that φ(x) ≤ ψ(x) on Ω,
then there exists a solution u ∈W 2,p(Ω), N < p <∞, of problem (1.3) such that φ(x) ≤ u(x) ≤ ψ(x) on Ω.

Remark 1.2 Taira [14] considered the smooth case where

c ∈ C∞(Ω) and c(x) > 0 in Ω,

and proved Theorem 1.1 under the conditions that the nonlinear term f(x, ξ, η) is a C1 function on Ω×R×RN

and that there exists a non-negative and increasing function d(r) on the interval [0,∞) such that

|f(x, ξ, η)| ≤ d (|ξ|) (1 + |η|2) , (x, ξ, η) ∈ Ω × R × RN .

As an application of Theorem 1.1, we give various sufficient conditions for a solution of problem (1.3) to exist.
To do this, we study the linearized elliptic boundary value problem{

Au = g in Ω,
Bu = 0 on ∂Ω

(1.4)

in the framework of the Hilbert space L2(Ω). We associate with problem (1.4) a densely defined, closed linear
operator

A : L2(Ω) −→ L2(Ω)

as follows:

(1) D(A) := {u ∈ W 2,2(Ω) : Bu = 0 on ∂Ω}.

(2) Au := Au, u ∈ D(A).

Then we have the following three fundamental results (i), (ii) and (iii) (see [17, Theorem 5.1]):

(i) The operator A is positive and selfadjoint in L2(Ω).
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4 K. Taira: Semilinear degenerate elliptic boundary value problems

(ii) The first eigenvalue λ1 of A is positive and algebraically simple, and the corresponding eigenfunction ϕ1 ∈
W 2,p(Ω), N < p <∞, may be chosen to be strictly positive in Ω. Namely, we have the assertions⎧⎪⎨

⎪⎩
Aϕ1 = λ1ϕ1 in Ω,
ϕ1 > 0 in Ω,
Bϕ1 = 0 on ∂Ω.

(iii) No other eigenvalues λj , j ≥ 2, have positive eigenfunctions.

The next existence theorem of solutions of problem (1.3) is a generalization of Kazdan–Warner [9, Corol-
lary 2.12] to the degenerate case (cf. [12, Theorem 6.5.2/2]):

Theorem 1.3 Assume that the nonlinear term f(x, ξ) satisfies the regularity condition (F.1) and one of the
following three conditions (A), (B) and (C):

(A) There exists a continuous function h(x) on Ω such that∫
Ω

h(x)ϕ1(x) dx < 0,

lim sup
|ξ|→∞

ξ

|ξ| [f(x, ξ) − λ1ξ] < h(x), x ∈ Ω,

where lim sup|ξ|→∞ is assumed to be uniform for x ∈ Ω.

(B) We have the condition

lim sup
|ξ|→∞

f(x, ξ)
ξ

< λ1,

where lim sup|ξ|→∞ is assumed to be uniform for x ∈ Ω.

(C) We have the condition

lim sup
|ξ|→∞

∂f

∂ξ
(x, ξ) < λ1,

where lim sup|ξ|→∞ is assumed to be uniform for x ∈ Ω.

Then the semilinear problem (1.3) has at least one solution u ∈W 2,p(Ω) with N < p <∞.

Example 1.4 A simple example of the nonlinear term f(x, ξ) is given by the formula

f(x, ξ) =

⎧⎪⎪⎨
⎪⎪⎩
γ
(
ξ + 1

2ξ − 5
4

)
for ξ > 1,

γ
4 ξ

2 for −1 ≤ ξ ≤ 1,

γ
(
−ξ − 1

2ξ − 5
4

)
for ξ < −1,

where γ is a constant such that 0 < γ < λ1. It is easy to verify that the function f(x, ξ) satisfies condition (F.1)
and condition (C).

The essential point in the proof of Theorem 1.3 is to reduce the study of the semilinear problem (1.3) to that
of the semilinear problem with linear part at resonance:⎧⎨

⎩
Au− λ1u = f(x, u(x)) in Ω,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂Ω.
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Moreover, we consider the following semilinear elliptic boundary value problem depending on a parameter:
Given a function F (x, ξ, t) defined on Ω × R × R, find a function u(x) in Ω such that⎧⎨

⎩
Au = F (x, u(x), t) in Ω,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂Ω.

(1.5)

The parameter t may enter naturally in a manner similar to an eigenvalue. In order to state our existence
theorem of solutions of problem (1.5), we impose the following regularity condition (F.2) on the nonlinear term
F (x, ξ, t):

(F.2) The function F (x, ξ, t) is real-valued and continuous on Ω × R × R, and its partial derivatives ∂F/∂ξ and
∂F/∂t exist and are continuous on Ω × R × R.

The next existence theorem of solutions of problem (1.5) extends Kazdan–Warner [9, Corollary 3.11] to the
degenerate case (cf. [12, Theorem 6.5.3/1]):

Theorem 1.5 Assume that the nonlinear term F (x, ξ, t) satisfies the regularity condition (F.2) and further
that the following three conditions (D.1), (D.2) and (D.3) are satisfied:

(D.1) For every m ∈ R, there exists a continuous function hm(x) on Ω, depending on m, such that

∂F

∂t
(x, ξ, t) ≥ hm(x) > 0, x ∈ Ω, ξ ≥ m, t ∈ R.

(D.2) We have, for every t ∈ R,

lim sup
ξ→−∞

F (x, ξ, t)
ξ

< λ1,

where lim supξ→−∞ is assumed to be uniform for x ∈ Ω.

(D.3) There exist constants t1, m1 and c > 0 such that

F (x, ξ, t1) − λ1ξ > c, x ∈ Ω, ξ > m1.

Then there exists a number t0 ∈ R such that the semilinear problem (1.5) has at least one solution u ∈W 2,p(Ω),
N < p <∞, for t < t0, but it has no solution for t > t0.

Example 1.6 A simple example of the nonlinear term F (x, ξ, t) is given by the formula

F (x, ξ, t) = t r(x) eξ + p(ξ).

Here:
(1) r ∈ C(Ω) and r(x) > 0 in Ω.
(2) p(ξ) is a real-valued, C1 function defined by the formula

p(ξ) =

⎧⎪⎨
⎪⎩
γ′′ξ + C1

γ′′

ξ + C2 for ξ > 1,
C3ξ

3 + C4ξ(ξ + 1) for −1 ≤ ξ ≤ 1,
γ′ξ + γ′

2ξ + C5 for ξ < −1,

where 0 < γ′ < λ1, γ′′ > λ1 and the Ci are some suitable constants.
It is easy to verify that the function F (x, ξ, t) satisfies condition (F.2) and conditions (D.1), (D.2) and (D.3).

Finally, the next corollary extends Kazdan–Warner [9, Corollary 3.12] to the degenerate case (cf. [12, Theo-
rem 6.5.3/3]):
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6 K. Taira: Semilinear degenerate elliptic boundary value problems

Corollary 1.7 Let the nonlinear term F (x, ξ, t) be of the special form

F (x, ξ, t) = f0(x) + t r(x) + g(x, ξ), (x, ξ, t) ∈ Ω × R × R, (1.6)

where f0 ∈ C(Ω), r ∈ C(Ω) with r(x) > 0 in Ω and g ∈ C1(Ω × R). We assume that the following two
conditions (E.1) and (E.2) are satisfied:

(E.1) We have the condition

lim sup
ξ→−∞

g(x, ξ)
ξ

< λ1,

where lim supξ→−∞ is assumed to be uniform for x ∈ Ω.

(E.2) There exist constants m1 and k such that

g(x, ξ) − λ1ξ > k, x ∈ Ω, ξ > m1.

Then there exists a number t0 ∈ R such that the semilinear elliptic boundary value problem{
Au = f0(x) + t r(x) + g(x, u(x)) in Ω,
Bu = 0 on ∂Ω

has at least one solution u ∈ W 2,p(Ω), N < p <∞, for t < t0, but it has no solution for t > t0.

The rest of this paper is organized as follows. In Section 2, by using Schauder’s fixed point theorem we
prove Theorem 1.1. Namely, we prove that the existence of an ordered pair of sub- and supersolutions of prob-
lem (1.3) implies the existence of a solution of problem (1.3). Section 3 is devoted to the proof of Theorem 1.3.
In Subsection 3.1 we make use of the Lyapunov–Schmidt procedure to construct sub- and supersolutions of prob-
lem (1.3), and then apply Theorem 1.1. This subsection is the heart of the subject. The essential step in the
proof of Theorem 1.3 is Lemma 3.2 in which we construct a supersolution of problem (1.3) provided that the
nonlinear term f(x, ξ) satisfies condition (A+). The crucial point is how to adjust the classical method to the
case where c ∈ L∞(Ω), by using an Lp Schauder theory. In Section 4 we prove Theorem 1.5 and Corollary 1.7.
Our proof is based on the super-sub-solution method, just as in the proof of Theorem 1.3. To do this, we use a
parameter-dependent version of Theorem 1.1 (Theorem 4.1). The essential step in the proof of Theorem 1.5 is
Theorem 4.3 which gives sufficient conditions in order that t0 > −∞. In the final Section 5, as an application
of Theorem 4.1 we obtain the existence theorem of positive solutions of the semilinear elliptic eigenvalue prob-
lem (5.1) (Theorem 5.1) which extends Kazdan–Warner [9, Proposition 4.2] to the degenerate case. The approach
here is distinguished by the extensive use of the ideas and techniques characteristic of the recent developments in
the theory of partial differential equations (see [17]).

2 Proof of Theorem 1.1

In this section, by using Schauder’s fixed point theorem we prove Theorem 1.1. Our proof of Theorem 1.1 is
based on a variant of the Bakel’man and Aleksandrov maximum principle in the framework of Sobolev spaces
due to Bony [4] (see also [18]), just as in Taira [17, Proposition 3.12]. The proof is divided into three steps.

Step 1: First, by the regularity condition (F.1) it follows that the nonlinear term f(x, ξ) satisfies the slope
condition. Namely, for any given positive number σ, there exists a positive constant ω = ω(σ), independent of
x ∈ Ω, such that

f(x, ξ) − f(x, η) > −ω · (ξ − η), x ∈ Ω, −σ ≤ η < ξ ≤ σ. (2.1)

Geometrically, this condition means that the slope of the function ξ �→ f(x, ξ) is bounded below, uniformly with
respect to x ∈ Ω.
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First, we replace the function c(x) by the function c(x) + ω, where ω > 0 is the same constant as in condi-
tion (2.1), and consider instead of problem (1.3) the following problem:⎧⎨

⎩
(A+ ω)u = ω u+ F (u) in Ω,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂Ω,

(2.2)

where F is the Nemytskii operator of f defined by the formula

Fu(x) = f(x, u(x)), x ∈ Ω.

By applying [17, Theorem 1.1] to our situation, we find that the boundary value problem{
(A+ ω)v = g in Ω,
Bv = 0 on ∂Ω

has a unique solution v ∈ W 2,p(Ω) for any function g ∈ Lp(Ω). Hence, we can introduce a continuous linear
operator (resolvent) Kω : Lp(Ω) → W 2,p(Ω) by the formula v = Kωg. Then it is clear that problem (1.3) is
equivalent to problem (2.2). Furthermore, since f(x, ξ) is continuous on Ω × R, we obtain that problem (2.2) is
equivalent to an operator equation

u = Kω(ω u+ F (u)) in C(Ω). (2.3)

Step 2: We let

Hω(u) := Kω(ω u+ F (u)), u ∈ C(Ω).

The next lemma asserts that the map Hω(·) leaves invariant the ordering of the ordered Banach space C(Ω)
(see [15, Lemma 4.1]):

Lemma 2.1 The operator Hω(·) : [φ, ψ] → C(Ω) is increasing. Here [φ, ψ] is the order interval defined by
the formula

[φ, ψ] = {u ∈ C(Ω) : φ(x) ≤ u(x) ≤ ψ(x) on Ω}.

Moreover, we have the following (see [15, Lemma 4.2]):

Lemma 2.2 The operatorHω(·) = Kω(ω · +F (·)) maps the order interval [φ, ψ] into itself.

Step 3: It should be noticed that we have, by Sobolev’s imbedding theorem (see [1, Theorem 4.12]),

W 2,p(Ω) ⊂ C2−N/p(Ω), N < p <∞.

Hence it follows from an application of the Ascoli–Arzelà theorem that the resolvent Kω, considered as an
operator Kω : C(Ω) → C1(Ω), is compact and further from an application of Lemma 2.2 that the mapping
Hω(·) : [φ, ψ] → [φ, ψ] is compact. We remark that the order interval [φ, ψ] is closed, bounded and convex
in the space C(Ω). Therefore, by applying Schauder’s fixed point theorem (see [19, Theorem 2.A]; [5, Corol-
lary 2.3.10]) to our situation we can find a solution u ∈ [φ, ψ] of equation (2.3).

The proof of Theorem 1.1 is complete.

3 Proof of Theorem 1.3

In this section, by using Theorem 1.1 we prove our existence theorem of solutions of problem (1.3) (Theorem 1.3).
To do this, we construct sub- and supersolutions of problem (1.3) in Subsection 3.1 by means of the Lyapunov–
Schmidt procedure. The essential step in the proof of Theorem 1.3 is Lemma 3.2 in which we construct a
supersolution of problem (1.3) provided that the nonlinear term f(x, ξ) satisfies condition (A+).

Copyright line will be provided by the publisher



8 K. Taira: Semilinear degenerate elliptic boundary value problems

3.1 Construction of sub- and supersolutions

In this subsection we give useful conditions in finding subsolutions and supersolutions of problem (1.3).
First, we introduce the following four conditions (A±) and (B±) on the nonlinear term f(x, ξ):

(A+) There exist a number s+ ∈ R and a bounded continuous function g+(x, ξ) on Ω × R such that if u(x) >
s+ϕ1(x) in Ω, then we have the inequalities

f(x, u(x)) ≤ g+(x, u(x)), x ∈ Ω,∫
Ω

g+(x, u(x))ϕ1(x) dx ≤ 0.

(A−) There exist a number s− ∈ R and a bounded continuous function g−(x, ξ) on Ω × R such that if u(x) <
s−ϕ1(x) in Ω, then we have the inequalities

f(x, u(x)) ≥ g−(x, u(x)), x ∈ Ω,∫
Ω

g−(x, u(x))ϕ1(x) dx ≥ 0.

(B+) There exists a continuous function h+(x) on Ω such that∫
Ω

h+(x)ϕ1(x) dx < 0,

lim sup
ξ→+∞

f(x, ξ) < h+(x), x ∈ Ω,

where lim supξ→+∞ is assumed to be uniform for x ∈ Ω.

(B−) There exists a continuous function h−(x) on Ω such that∫
Ω

h−(x)ϕ1(x) dx > 0,

lim inf
ξ→−∞

f(x, ξ) > h−(x), x ∈ Ω,

where lim infξ→−∞ is assumed to be uniform for x ∈ Ω.

Then we have the following (see [9, Lemma 2.3]):
Lemma 3.1 If the function f(x, ξ) satisfies condition (B+), then it satisfies condition (A+). Similarly, if the

function f(x, ξ) satisfies condition (B−), then it satisfies condition (A−).
In order to prove Theorem 1.3, we consider the following semilinear elliptic boundary value problem with

linear part at resonance:⎧⎨
⎩
Au− λ1u = f(x, u(x)) in Ω,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂Ω.

(3.1)

The next lemma is an essential step in the proof of Theorem 1.3 (cf. [9, Lemma 2.7]):
Lemma 3.2 Assume that a function z ∈ W 2,p(Ω), N < p <∞, satisfies the boundary condition

Bz = a(x′)
∂z

∂ν
+ b(x′)z = 0 on ∂Ω.

If the function f(x, ξ) satisfies condition (A+), then we can construct a supersolution u+ ∈ W 2,p(Ω) of prob-
lem (3.1) which satisfies the condition

u+(x) > z(x) in Ω. (3.2)
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Similarly, if the function f(x, ξ) satisfies condition (A−), then we can construct a subsolution u− ∈W 2,p(Ω)
of problem (3.1) which satisfies the condition

u−(x) < z(x) in Ω. (3.3)

P r o o f. The proof of Lemma 3.2 is based on the Lyapunov–Schmidt procedure which reduces an infinite-
dimensional problem to a finite-dimensional system. The proof is divided into three steps.

Step 1: First, we remark the following orthogonal decomposition of Lp(Ω) in the Hilbert space L2(Ω):

Lp(Ω) = {u ∈ Lp(Ω) : (A− λ1)u = 0, Bu = 0} ⊕ {(A− λ1)u : u ∈ W 2,p(Ω), Bu = 0
}

:= N (Ap − λ1I) ⊕R(Ap − λ1I)

= span [ϕ1] ⊕R(Ap − λ1I), (3.4)

where Ap : Lp(Ω) → Lp(Ω) is a densely defined, closed linear operator defined as follows:

(1) D(Ap) := {u ∈ W 2,p(Ω) : Bu = 0 on ∂Ω}.

(2) Apu := Au, u ∈ D(Ap).

Indeed, it suffices to note the following three assertions (i), (ii), and (iii):
(i) Since the operatorA2 = A is selfadjoint in L2(Ω), it follows that

L2(Ω) = N (A2 − λ1I) ⊕R(A2 − λ1I),

codimR(A2 − λ1I) = dimN (A2 − λ1I).

(ii) The null space N (Ap − λ1I) does not depend on p and N (Ap − λ1I) = N (A− λ1I) = span [ϕ1] for all
p > 1 (see [17, Theorem 3.3]).

(iii) If f ∈ Lp(Ω) for N < p <∞ and if u ∈ D(A2) satisfies the equation (A2 − λ1I)u = f , then it follows
that u ∈W 2,p(Ω), that is, u ∈ D(Ap) (see [17, Theorem 1.1]).

Now we assume that the function f(x, ξ) satisfies condition (A+). If w ∈ Lp(Ω), then we consider the
function

G(x,w(x))

:= g+(x,w(x)) −
(∫

Ω

g+(y, w(y))ϕ1(y) dy
)
ϕ1(x) ∈ R(Ap − λ1I) = N (Ap − λ1I)⊥.

Then we have, for some positive constant k,

|G(x,w(x))| ≤ k, x ∈ Ω, (3.5)

since the function g+(x, ξ) is bounded. Hence we can find a unique solution u ∈W 2,p(Ω) ∩R(Ap − λ1) of the
linear problem{

Au− λ1u = G(x,w(x)) in Ω,
Bu = 0 on ∂Ω.

(3.6)

Since u ∈ D(Ap) ∩R(Ap − λ1), by decomposition (3.4) and [17, Theorem 1.1] we have the a priori estimate

‖u‖W 2,p(Ω) ≤ C‖Au− λ1u‖Lp(Ω) = C‖G(·, w)‖Lp(Ω), u ∈W 2,p(Ω) ∩R(Ap − λ1), (3.7)

where C is a positive constant independent of u and w.
Therefore, by combining estimates (3.5) and (3.7) we obtain that

‖u‖W 2,p(Ω) = ‖(A− λ1I)−1 (G(·, w)) ‖W 2,p(Ω) ≤ C‖G(·, w)‖Lp(Ω) ≤ k C |Ω|1/p , (3.8)
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10 K. Taira: Semilinear degenerate elliptic boundary value problems

where |Ω| denotes the volume of Ω. However, we have, by Sobolev’s imbedding theorem,

u ∈W 2,p (Ω) ⊂ C1(Ω) ⊂W 1,∞(Ω), N < p <∞,

and so, for some positive constant C0,

‖u‖W 1,∞(Ω) ≤ C0 ‖u‖W 2,p(Ω) ≤ k C0 C |Ω|1/p
.

This proves that any solution u(x) of problem (3.6) is uniformly bounded in the Sobolev space W 1,∞(Ω) inde-
pendent of w ∈ Lp(Ω). In particular, we can find a constant β, independent of w, such that

βϕ1(x) < u(x) in Ω. (3.9)

Furthermore, we can choose a positive constant α so large that{
α+ β > s+,

αϕ1(x) + βϕ1(x) > z(x) in Ω.
(3.10)

Indeed, it suffices to note (see [16, Proposition 3.8]) that there exists a positive constant γ such that

−γϕ1(x) ≤ z(x) ≤ γ ϕ1(x) in Ω,

since Bz = 0 on ∂Ω.
Step 2: Now, by the orthogonal decomposition (3.4) of Lp(Ω) we can consider an operator equation

v = (A− λ1I)−1G(x, αϕ1(x) + v(x)), v ∈ Lp(Ω), (3.11)

in the closed subspace R(Ap − λ1I) = N (Ap − λ1I)⊥ of Lp(Ω). Then, by estimate (3.8) with

w(x) := αϕ1(x) + v(x), α > 0, v ∈ Lp(Ω),

it is easy to verify the following two assertions (I) and (II):

(I) The mapping (A− λ1I)−1G(x, αϕ1 + ·) : R(Ap − λ1I) → R(Ap − λ1I) is compact.

(II) ‖(A− λ1I)−1 (G(x, αϕ1 + v)) ‖W 2,p(Ω) ≤ k C |Ω|1/p for all v ∈ R(Ap − λ1I).

Therefore, by applying Schauder’s fixed point theorem to our situation we obtain that the operator equation
(3.11) has a fixed point v ∈ R(Ap − λ1I) ∩ B(0, k C|Ω|1/p), where B(0, r) denotes the closed ball of radius r
about the origin 0 in Lp(Ω). In other words, there exists a solution v ∈W 2,p(Ω)∩R(Ap −λ1I) of the semilinear
elliptic boundary value problem{

Av − λ1v = G(x, αϕ1(x) + v(x)) in Ω,
Bv = 0 on ∂Ω.

(3.12)

Step 3: If we let

u+ := αϕ1 + v ∈ W 2,p(Ω),

then we have, by inequality (3.9) with u := v and inequality (3.10),

u+(x) = αϕ1(x) + v(x) > αϕ1(x) + βϕ1(x) > z(x) in Ω,

and, by condition (A+),

u+(x) = αϕ1(x) + v(x) > αϕ1(x) + βϕ1(x) > s+ϕ1(x) in Ω
=⇒

G(x, u+(x)) = g+(x, u+(x)) −
(∫

Ω

g+(y, u+(y))ϕ1(y) dy
)
ϕ1(x) ≥ g+(x, u+(x))

≥ f(x, u+(x)) in Ω.
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Hence, by assertion (3.12) it follows that

(A− λ1)u+ = (A− λ1)v = G(x, u+(x)) ≥ f(x, u+(x)) in Ω,

and further that

Bu+ = αBϕ1 +Bv = 0 on ∂Ω.

Summing up, we have constructed a supersolution u+ ∈ W 2,p(Ω) of problem (3.1) satisfying condition (3.2).
The proof of Lemma 3.2 is now complete.

The next theorem gives sufficient conditions in order that problem (3.1) with linear part at resonance have at
least one solution (cf. [9, Theorem 2.5]):

Theorem 3.3 Assume that the nonlinear term f(x, ξ) satisfies the regularity condition (F.1) and conditions
(A+) and (A−). Then there exists at least one solution u ∈ W 2,p(Ω), N < p <∞, of problem (3.1).

P r o o f. First, we take a function z ∈ C2(Ω) ∩ C1(Ω) such that

Bz = 0 on ∂Ω.

Then, by using Lemma 3.2 we can find a supersolution u+ ∈ W 2,p(Ω) of problem (3.1) which satisfies con-
dition (3.2) and a subsolution u− ∈ W 2,p(Ω) of problem (3.1) which satisfies condition (3.3). Therefore, the
conclusion of Theorem 3.3 follows from an application of Theorem 1.1.

The next corollary gives a necessary and sufficient condition in order that problem (3.1) with linear part at
resonance have at least one solution (cf. [9, Corollary 2.10]):

Corollary 3.4 Assume that the nonlinear term f(x, ξ) satisfies the regularity condition (F.1) and the condition

∂f

∂ξ
(x, ξ) ≤ 0, (x, ξ) ∈ Ω × R.

Then there exists at least one solution u ∈ W 2,p(Ω), N < p < ∞, of problem (3.1) if and only if there exists a
function u0 ∈W 2,p(Ω), N < p <∞, which satisfies the conditions

Bu0 = 0 on ∂Ω, (3.13)∫
Ω

f(x, u0(x))ϕ1(x) dx = 0. (3.14)

P r o o f. The proof is divided into two steps.
(1) It is clear that the existence of a function u0(x) is necessary.
(2) Conversely, we assume that there exists a function u0 ∈ W 2,p(Ω), N < p < ∞, which satisfies condi-

tions (3.13) and (3.14). We verify that the function f(x, ξ) satisfies both conditions (A+) and (A−).
By [16, Proposition 3.8], we can find constants s+ and s− such that

s−ϕ1(x) < u0(x) < s+ϕ1(x) in Ω.

If we let

g±(x) := f(x, u0(x)),

then it follows that we have, for all u > s+ϕ1 in Ω,

f(x, u(x)) ≤ f(x, u0(x)) = g+(x), x ∈ Ω,∫
Ω

g+(x)ϕ1(x)dx =
∫

Ω

f(x, u0(x))ϕ1(x) dx = 0,
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12 K. Taira: Semilinear degenerate elliptic boundary value problems

since the function f(x, ξ) is decreasing in ξ, for each x ∈ Ω.
Similarly, we have, for all u < s−ϕ1 in Ω,

f(x, u(x)) ≥ f(x, u0(x)) = g−(x), x ∈ Ω,∫
Ω

g−(x)ϕ1(x) dx =
∫

Ω

f(x, u0(x))ϕ1(x) dx = 0.

Therefore, the existence of a solution u(x) of problem (3.1) follows from an application of Theorem 3.3.

3.2 End of proof of Theorem 1.3

First, by the mean value theorem it is easy to see that condition (C) implies condition (B).
Secondly, we show that condition (B) implies condition (A). We have only to consider the case where ξ > 0.
If condition (B) is satisfied for ξ > 0, then we can find a large positive number s0 and a continuous function

g(x) on Ω such that

g(x) > 0, x ∈ Ω,

f(x, ξ)
ξ

+ g(x) < λ1, ξ > s0, x ∈ Ω.

Hence we have, for all ξ > s0,

f(x, ξ) − λ1ξ < −ξg(x) ≤ −g(x), x ∈ Ω,

and ∫
Ω

(−g(x))ϕ1(x) dx < 0.

This verifies condition (A) for ξ > 0 with h(x) := −g(x).
Thirdly, it should be noticed that condition (A) is just a restatement of conditions (B±).
Therefore, the desired assertion of Theorem 1.3 follows by combining Lemma 3.1 and Theorem 3.3.

4 Proof of Theorem 1.5

In this section we prove our existence theorem of solutions of problem (1.5) depending on a parameter (The-
orem 1.5). To do this, we construct sub- and supersolutions of problem (1.5) just as in Subsection 3.1. The
essential step in the proof is Theorem 4.3 in which we give sufficient conditions in order that t0 > −∞.

4.1 Equations depending on a parameter

In this subsection we consider problem (1.5) depending on a parameter t. We recall that a solution of prob-
lem (1.5) is a function u ∈W 2,p(Ω), N < p <∞, which satisfies the conditions⎧⎨

⎩
Au = F (x, u(x), t) almost everywhere in Ω,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂Ω.

Similarly, a supersolution of problem (1.5) is a function ψ ∈ W 2,p(Ω), N < p < ∞, which satisfies the
conditions {

Aψ ≥ F (x, ψ(x), t) almost everywhere in Ω,
Bψ ≥ 0 on ∂Ω,
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and a subsolution of problem (1.5) is a function φ ∈W 2,p(Ω), N < p <∞, which satisfies the conditions{
Aφ ≤ F (x, φ(x), t) almost everywhere in Ω,
Bφ ≤ 0 on ∂Ω.

The next existence theorem of solutions of problem (1.5) is a generalization of Theorem 1.1 to the parameter
dependence case:

Theorem 4.1 Assume that F (x, ξ, t) satisfies the regularity condition (F.2). If ψ(x) and φ(x) are respectively
super- and subsolutions of problem (1.5) satisfying the condition

φ(x) ≤ ψ(x) on Ω,

then there exists a solution u ∈W 2,p(Ω), N < p <∞, of problem (1.5) such that φ(x) ≤ u(x) ≤ ψ(x) on Ω.
We give simple conditions on the nonlinear term F (x, ξ, t) in order that there exist a number t0 ∈ [−∞,+∞]

such that problem (1.5) has no (classical) solution for t > t0 and at least one solution for t < t0 (cf. [9,
Theorem 3.4]):

Theorem 4.2 Assume that the function F (x, ξ, t) satisfies the condition

∂F

∂t
(x, ξ, t) ≥ 0, (x, ξ, t) ∈ Ω × R × R, (4.1)

and further that the function f(x, ξ, t), defined by the formula

f(x, ξ, t) := F (x, ξ, t) − λ1ξ, (x, ξ, t) ∈ Ω × R × R,

satisfies condition (A−). Then there exists a number t0 ∈ [−∞,+∞] such that problem (1.5) has no (classical)
solution for t > t0 and at least one solution u ∈ W 2,p(Ω), N < p <∞, for t < t0.

P r o o f. Assume that problem (1.5) has a solution v ∈ W 2,p(Ω), N < p < ∞, for some t = c. By
condition (4.1), it follows that the function u+(x) := v(x) is a supersolution of problem (1.5) for all t ≤ c.
Indeed, we have the assertions{

Au+ = F (x, u+(x), c) ≥ F (x, u+(x), t) almost everywhere in Ω,
Bu+ = 0 on ∂Ω.

Moreover, by using Lemma 3.2 we can find a subsolution u− ∈ W 2,p(Ω), N < p < ∞, of problem (1.5) which
satisfies the condition u−(x) < u+(x) in Ω. Namely, we have the assertions⎧⎪⎨

⎪⎩
Au− ≤ F (x, u−(x), t) almost everywhere in Ω,
u− < u+ in Ω,
Bu− = 0 on ∂Ω.

(4.2)

Hence it follows from an application of Theorem 4.1 that problem (1.5) has a solution u ∈ W 2,p(Ω), N < p <
∞, for all t ≤ c. Therefore, we have only to take

t0 := sup {t ∈ R : problem (1.5) has a solution for t} .
The proof of Theorem 4.2 is complete.

Furthermore, we give some conditions which insure that t0 > −∞ and t0 < +∞. The next theorem gives
sufficient conditions in order that t0 > −∞ (cf. [9, Theorem 3.5]):

Theorem 4.3 In addition to the conditions of Theorem 4.2, we assume that there is a function h ∈ C(Ω)
satisfying the condition h(x) > 0 in Ω and that there exist numbers 0 ≤ m0 < m1 and t1 such that

∂F

∂t
(x, ξ, t) ≥ h(x) ≥ 0, x ∈ Ω, m0 ≤ ξ ≤ m1, t ≤ t1. (4.3)

Then there exists a number t ∈ R such that problem (1.5) has at least one solution u ∈ W 2,p(Ω) with N < p <
∞. In particular, it follows that t0 > −∞.
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14 K. Taira: Semilinear degenerate elliptic boundary value problems

P r o o f. The proof of Theorem 4.3 is divided into three steps.
Step 1: First, by arguing just as in the proof of Theorem 4.2 with u+ := 0 we can construct a subsolution

u− ∈ W 2,p(Ω), N < p <∞, of problem (1.5); more precisely, we can construct a function u− ∈ W 2,p(Ω) (see
assertion (4.2)) such that⎧⎪⎨

⎪⎩
Au− ≤ F (x, u−(x), t) in Ω,
u− < 0 in Ω,
Bu− = 0 on ∂Ω.

Step 2: Secondly, we construct a supersolution u+ ∈W 2,p(Ω), N < p <∞, of problem (1.5) for some t. To
do this, we may assume that t1 = 0. If we let

f(x, ξ) := F (x, ξ, t1) = F (x, ξ, 0),

then we have, by condition (4.3),

F (x, ξ, t) − t h(x) ≤ f(x, ξ), x ∈ Ω, m0 ≤ ξ ≤ m1, t ≤ 0.

Hence it suffices to find a function u+(x) such that{
Au+ ≥ t h(x) + f(x, u+(x)) in Ω,
Bu+ ≥ 0 on ∂Ω,

(4.4)

and that

m0 ≤ u+(x) ≤ m1 in Ω. (4.5)

We let

ω := sup
x∈Ω

m0≤ξ≤m1

f(x, ξ).

(i) The case where ω ≤ 0: In this case, we can take u+(x) ≡ m0 and t = 0 to satisfy conditions (4.4). Indeed,
we have the assertions{

Au+ = c(x)m0 ≥ 0 ≥ ω ≥ f(x, u+(x)) in Ω,
Bu+ = b(x′)m0 ≥ 0 on ∂Ω.

(ii) The case where 0 < ω < +∞: Let w(x) be an arbitrary function in W 2,p(Ω), with N < p < ∞, which
satisfies the boundary condition

Bw = 0 on ∂Ω.

By using [17, Theorem 1.1] and Sobolev’s imbedding theorem, we obtain that, for some positive constant C,

‖w‖W 1,∞(Ω) ≤ C‖Aw‖Lp(Ω), (4.6)

and further that

w ∈W 2,p (Ω) ⊂ C1(Ω) ⊂W 1,∞(Ω), N < p <∞.

We take two open subsets Ω1 and Ω2 of Ω such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ω1 � Ω2 � Ω,
h(x) > 0 on Ω2,

|Ω \ Ω1| <
(
m1 −m0

ωC

)p

,

(4.7)
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and let H(x) be a smooth function on Ω which satisfies the conditions⎧⎪⎨
⎪⎩

0 ≤ H(x) ≤ ω in Ω,
H(x) = ω in Ω \ Ω2,

H(x) = 0 in Ω1.

(4.8)

Moreover, if we take a large negative number t so that

ω + t h(x) < 0 in Ω2,

then it is easy to see that

H(x) ≥ ω + t h(x) in Ω. (4.9)

It should be emphasized that this t will be the value of t for which problem (1.5) has at least one solution
u ∈ W 2,p(Ω) with N < p <∞.

Now we let v ∈ W 2,p(Ω), N < p <∞, be the unique solution of the linear problem{
Av = H(x) in Ω,
Bv = 0 on ∂Ω.

(4.10)

Then it follows from an application of the maximum principle ( [17, Proposition 3.12]) that

v(x) > 0 in Ω. (4.11)

On the other hand, by applying inequality (4.6) with w := v and conditions (4.8) and (4.7) we obtain that

v(x) ≤ ‖v‖L∞(Ω) ≤ C ‖Av‖Lp(Ω) = C ‖H‖Lp(Ω) = C

(∫
Ω\Ω1

H(x)p dx

)1/p

≤ ω C |Ω \ Ω1|1/p
< m1 −m0, x ∈ Ω. (4.12)

If we let

u+(x) := v(x) +m0, x ∈ Ω,

then it follows that the function u+(x) satisfies condition (4.5). Indeed, we have, by assertions (4.11) and (4.12),

m0 < u+(x) = m0 + v(x) < m1 in Ω,

and so

f(x, u+(x)) ≤ ω = sup
x∈Ω

m0≤ξ≤m1

f(x, ξ) in Ω. (4.13)

Furthermore, by combining formula (4.10), inequalities (4.9) and (4.13) we obtain that

Au+ = Av + c(x)m0 ≥ Av = H(x) ≥ t h(x) + ω

≥ t h(x) + f(x, u+(x)) in Ω,

and further that

Bu+ = Bv + Bm0 = b(x′)m0 ≥ 0 on ∂Ω.

Summing up, we have constructed the desired supersolution u+ ∈W 2,p(Ω) of problem (1.5).
Step 3: Therefore, it follows from an application of Theorem 4.1 that problem (1.5) has a solution u ∈

W 2,p(Ω) with N < p <∞.
The proof of Theorem 4.3 is now complete.
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16 K. Taira: Semilinear degenerate elliptic boundary value problems

The next theorem gives some conditions under which t0 < +∞ (see [9, Theorem 3.8]):

Theorem 4.4 Assume that the following two conditions (a) and (b) are satisfied:

(a) If u ∈W 2,p(Ω), N < p <∞, is a solution of problem (1.5), then we have the assertion

u(x) ≥ c(t)ϕ1(x), x ∈ Ω, (4.14)

where c(t) is a function such that c(t) → +∞ as t→ +∞.

(b) There exist numbers s1 ∈ [−∞,+∞) and t2 ∈ [−∞,+∞) such that we have, for all u > s1ϕ1 and t > t2,∫
Ω

(F (x, u(x), t) − λ1u(x))ϕ1(x) dx > 0.

Then there exists a number t1 ∈ [−∞,+∞) such that problem (1.5) has no solution for t > t1.

The next proposition gives verifiable conditions under which condition (b) of Theorem 4.4 is satisfied (see [9,
Proposition 3.9]):

Proposition 4.5 Assume that the function F (x, ξ, t) satisfies the condition

∂F

∂t
(x, ξ, t) ≥ 0, (x, ξ, t) ∈ Ω × R × R,

and further that any of the following three conditions (b.1), (b.2) and (b.3) holds true for some t = t1:

(b.1) There exists a continuous function h(x) on Ω such that∫
Ω

h(x)ϕ1(x) dx > 0,

lim inf
ξ→+∞

(F (x, ξ, t1) − λ1ξ) > h(x), x ∈ Ω,

where lim infξ→+∞ is assumed to be uniform for x ∈ Ω.

(b.2) We have the condition

lim inf
ξ→+∞

F (x, ξ, t1)
ξ

> λ1,

where lim infξ→+∞ is assumed to be uniform for x ∈ Ω.

(b.3) We have the condition

lim inf
ξ→+∞

∂F

∂ξ
(x, ξ, t1) > λ1,

where lim infξ→+∞ is assumed to be uniform for x ∈ Ω.

Then it follows that condition (b) of Theorem 4.4 is satisfied.

The next proposition gives verifiable conditions under which condition (a) of Theorem 4.4 is satisfied (see [9,
Proposition 3.10]):

Proposition 4.6 Assume that the following two conditions (a.1) and (a.2) are satisfied:

(a.1) There exist constants γ < λ1, k and t1 such that

F (x, ξ, t) − γξ ≥ k, x ∈ Ω, ξ ∈ R, t ≥ t1.
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(a.2) For every m ∈ R, there exists a non-negative, continuous function hm(x) on Ω, depending on m, such that

∂F

∂t
(x, ξ, t) ≥ hm(x) ≥ 0, x ∈ Ω, ξ ≥ m, t ≥ t1.

If u ∈ W 2,p(Ω), N < p <∞, is a solution of problem (1.5) for some t ≥ t1, then we have the inequality

u(x) ≥ (at+ b)ϕ1(x), x ∈ Ω, (4.15)

for some constants a > 0 and b ∈ R independent of u.

Remark 4.7 The above condition (4.15) insures condition (4.14) with c(t) := at+ b.

4.2 End of proof of Theorem 1.5

The proof of Theorem 1.5 is divided into three steps.
Step 1: First, we prove that t0 > −∞: By condition (D.1), it follows that

∂F

∂t
(x, ξ, t) > 0, x ∈ Ω, ξ ≥ m, t ∈ R.

By condition (D.2), we can prove that, for every t, the function

f(x, ξ, t) := F (x, ξ, t) − λ1ξ

satisfies condition (A−) just as in the proof of Theorem 1.3 (see Subsection 3.2). Therefore, it follows from an
application of Theorem 4.2 that there exists a number t0 ∈ [−∞,+∞] such that problem (1.5) has at least one
solution u ∈W 2,p(Ω), N < p <∞, for t < t0, but it has no solution for t > t0.

Step 2: Secondly, by condition (D.1) it follows from an application of Theorem 4.3 that t0 > −∞.
Step 3: Thirdly, we prove that t0 < +∞: To do this, we apply Theorem 4.4.
Step 3-1: The condition (b) of Theorem 4.4 follows by combining conditions (D.3) and (D.1) with m := m1.

Indeed, we have, for all t2 > t1,

F (x, ξ, t2) − λ1ξ = (F (x, ξ, t1) − λ1ξ) + (F (x, ξ, t2) − F (x, ξ, t1))

> c+ hm1(x)(t2 − t1), ξ > m1.

This proves that

lim inf
ξ→+∞

(F (x, ξ, t2) − λ1ξ) ≥ c+ hm1(x) (t2 − t1) , x ∈ Ω. (4.16)

If we take a number t2 so large that

t2 > t1 −
c
∫
Ω
ϕ1(x) dx

2
∫
Ω hm1(x)ϕ1(x) dx

, (4.17)

and let

g(x) :=
c

2
+ hm1(x)(t2 − t1), x ∈ Ω,

then we obtain from inequality (4.16) that

lim inf
ξ→+∞

(F (x, ξ, t2) − λ1ξ) ≥ c+ hm1(x) (t2 − t1) >
c

2
+ hm1(x)(t2 − t1) = g(x), x ∈ Ω,

and further from inequality (4.17) that∫
Ω

g(x)ϕ1(x) dx =
c

2

∫
Ω

ϕ1(x) dx + (t2 − t1)
∫

Ω

hm1(x)ϕ1(x) dx > 0.
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18 K. Taira: Semilinear degenerate elliptic boundary value problems

This verifies condition (b.1) of Proposition 4.5 with h(x) := g(x).
Therefore, the desired condition (b) of Theorem 4.4 follows an application of Proposition 4.5.
Step 3-2: On the other hand, we make use of Proposition 4.6 to verify the desired condition (a) of Theorem 4.4.
(1) By using condition (D.2), we can find a constant γ < λ1 and a negative numberm0 such that we have, for

all ξ < m0,

F (x, ξ, t1)
ξ

< γ, x ∈ Ω.

More precisely, there exists a constant c1 such that

F (x, ξ, t1) − γξ > c1, ξ < m0, x ∈ Ω.

In view of condition (D.1) (with m < ξ < m0), this proves that

F (x, ξ, t) − γ ξ ≥ F (x, ξ, t1) − γ ξ > c1, t ≥ t1, ξ < m0, x ∈ Ω. (4.18)

(2) Furthermore, by condition (D.3) it follows that

F (x, ξ, t) − γξ ≥ F (x, ξ, t1) − γξ = (F (x, ξ, t1) − λ1ξ) + (λ1 − γ) ξ > c+ (λ1 − γ) ξ

> c2 := c+ (λ1 − γ)m1, t ≥ t1, ξ > m1, x ∈ Ω. (4.19)

(3) It is obvious that we have, for some constant c3,

F (x, ξ, t) − γξ ≥ F (x, ξ, t1) − γξ > c3, t ≥ t1, m0 ≤ ξ ≤ m1, x ∈ Ω. (4.20)

Therefore, by combining inequalities (4.18), (4.19) and (4.20) we obtain that condition (a.1) of Proposition 4.6
holds true with k := min (c1, c2, c3).

(4) Finally, we remark that condition (a.2) of Proposition 4.6 is a part of condition (D.1).
The proof of Theorem 1.5 is now complete.

4.3 Proof of Corollary 1.7

In order to prove Corollary 1.7, we have only to verify all the conditions (D.1), (D.2) and (D.3) of Theorem 1.5
for the function F (x, ξ, t) given by formula (1.6). Corollary 1.7 can be proved just as in the proof of Kazdan–
Warner [9, Corollary 3.12].

5 Existence of positive solutions

The purpose of this final section is to find a positive solution of the following semilinear elliptic eigenvalue
problem: Given a function f(x, ξ) defined on Ω × R, find a positive function u(x) in Ω such that⎧⎨

⎩
Au = t f(x, u(x)) in Ω,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂Ω.

(5.1)

The next existence theorem of positive solutions of problem (5.1) extends Kazdan–Warner [9, Proposition 4.2]
to the degenerate case (cf. [6, Theorem 2.2]; [15, Theorem 4]):

Theorem 5.1 Assume that the nonlinear term f(x, ξ) satisfies the regularity condition (F.1) and further that

f(x, ξ) > 0, (x, ξ) ∈ Ω × R.

Then there exists a number t0, 0 < t0 ≤ +∞, such that problem (5.1) has a positive solution for 0 < t < t0, but
it has no positive solution for t ≤ 0 and t > t0. Moreover, we have the following two assertions (i) and (ii):
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(i) If we have the condition

lim inf
ξ→+∞

f(x, ξ)
ξ

> 0,

where lim infξ→+∞ is assumed to be uniform for x ∈ Ω, then it follows that 0 < t0 < +∞.

(ii) If we have the condition

lim
ξ→+∞

f(x, ξ)
ξ

= 0,

where limξ→+∞ is assumed to be uniform for x ∈ Ω, then it follows that t0 = +∞. Namely, problem (5.1)
has a positive solution for all t > 0.

Theorem 5.1 can be proved just as in the proof of Kazdan–Warner [9, Proposition 4.2].
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