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1 Introduction and main results

Let D be a bounded domain of Euclidean space RN , N ≥ 2, with C∞ boundary
∂D; its closure D = D ∪ ∂D is an N-dimensional, compact C∞ manifold with
boundary. In this paper we consider a second-order, uniformly elliptic differential
operator with real C∞ coefficients in divergence form

Au(x) = −
N∑
i=1

∂

∂xi

 N∑
j=1

aij(x)
∂u

∂xj
(x)

+ c(x)u(x).

Here:

(1) aij(x) = aji(x) for all x ∈ D and 1 ≤ i, j ≤ N , and there exists a constant
a0 > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ a0 |ξ|2 for all x ∈ D and ξ ∈ RN .

(2) c(x) ≥ 0 on D.

We study the following linear elliptic boundary value problem: Given function
f defined in D, find a function u in D such that{

Au = f in D,

Bu = a(x′) ∂u∂ν + b(x′)u = 0 on ∂D.
(1.1)

Here:

(3) a ∈ C∞(∂D) and a(x′) ≥ 0 on ∂D.
(4) b ∈ C∞(∂D) and b(x′) ≥ 0 on ∂D.
(5) ∂/∂ν is the outward conormal derivative associated with the operator A:

∂

∂ν
=

N∑
i,j=1

aijnj
∂

∂xi
,

where n = (n1, n2, . . . , nN ) is the unit outward normal to the boundary ∂D

(see Figure 1.1).
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Fig. 1.1 The unit outward normal n and the conormal ν to ∂D



Semilinear elliptic problems via the Semenov approximation 3

Remark 1.1 The terms a(x′)∂u/∂ν and b(x′)u of the boundary condition B are
supposed to correspond to reflection and absorption phenomena at the boundary
∂D, respectively (see [64]). The situation may be represented schematically as in
Figure 1.2.
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Fig. 1.2 The absorption phenomenon and the reflection phenomenon

It is worth pointing out (see [2, Definition 10.1], [35, Theorem 5]) that the
elliptic boundary value problem (1.1) is coercive (or non-degenerate) if and only if
either a(x′) > 0 on ∂D or a(x′) ≡ 0 and b(x′) > 0 on ∂D. In particular, if a(x′) ≡ 1
and b(x′) ≡ 0 on ∂D (resp. a(x′) ≡ 0 and b(x′) ≡ 1 on ∂D), then the boundary
condition B is the Neumann (resp. Dirichlet) condition.

However, our boundary condition B is degenerate in the Lopatinski–Shapiro
sense (see [3, p. 633], [24, Chapitre V, condition (4.5)], [31, Chapter XX, Definition
20.1.1], [73, Chapter II, Condition 11.1]). This is due to the fact that the so-called
Lopatinski–Shapiro complementary condition is violated at each point of the set

M =
{
x′ ∈ ∂D : a(x′) = 0

}
(see [60, Section 6.6]).

The present paper is amply illustrated; 1 table and 21 figures are provided
with appropriate captions in such a fashion that a broad spectrum of readers
could understand our problem and main results.

1.1 The closed realization A

First, we study problem (1.1) in the framework of L2 spaces. To do this, we as-
sociate with problem (1.1) a unbounded linear operator A from the Hilbert space
L2(D) into itself as follows:

(a) The domain of definition D(A) of A is the space

D(A) =
{
u ∈ H2(D) =W 2,2(D) : Bu = 0 on ∂D

}
.

(b) Au = Au for every u ∈ D(A).

Our starting point is the following theorem (see Theorem 2.1):

Theorem 1.1 Assume that the following hypotheses (H.1) and (H.2) are satisfied:
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(H.1) a(x′) ≥ 0 and b(x′) ≥ 0 on ∂D.

(H.2) a(x′) + b(x′) > 0 on ∂D.

Then the operator A is a non-negative, selfadjoint operator in the space L2(D).
Moreover, the spectrum of A is discrete and the eigenvalues λj of A have finite multi-

plicities. In particular, the first eigenvalue λ1 of A is positive and algebraically simple,
that is, 0 < λ1 < λ2, and the associated eigenfunction φ1 ∈ D(A) is strictly positive

everywhere in D: 
Aφ1 = λ1 φ1 in L2(D),

Bφ1 = 0 on ∂D,

φ1 > 0 in D.

Remark 1.2 A probabilistic meaning of condition (H.2) is that absorption phe-
nomenon occurs at each point of the boundary portion

M =
{
x′ ∈ ∂D : a(x′) = 0

}
,

while reflection phenomenon occurs at each point of the boundary portion

∂D \M =
{
x′ ∈ ∂D : a(x′) > 0

}
.

More precisely, a Markovian particle moves continuously in the state space D \M
until it “dies” at the time when it reaches the setM where the particle is definitely
absorbed (see Figure1.3).

M = {a = 0}
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Fig. 1.3 A probabilistic meaning of condition (H.2)

We give a simple example of eigenvalue problems for the operator A in the
plane R2 ([66, Theorem 2.3] and [32, Theorem II, formula (3)]):

Example 1.1 Let D = {(x1, x2) ∈ R2 : x21 + x22 < 1} be the unit disk with the
boundary (unit circle) S = {(x1, x2) ∈ R2 : x21 + x22 = 1}. For a local coordinate
system x1 = cos θ, x2 = sin θ with θ ∈ [0, 2π] on S, we define a function a(x1, x2)
as follows:

a(x1, x2) = a (cos θ, sin θ) =



e
2
π− 1

θ

(
1− e

2
π+ 1

θ−π
2

)
for θ ∈

[
0, π2

]
,

1 for θ ∈
[
π
2 , π

]
,

e
2
π+ 1

θ− 3π
2

(
1− e

2
π− 1

θ−π

)
for θ ∈

[
π, 3π2

]
,

0 for θ ∈
[
3π
2 , 2π

]
.
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We consider the negative Laplacian −∆B with the degenerate Robin boundary
condition B in the unit disk D:−∆u = λu in D,

Bu = a(x1, x2)
∂u

∂n
+ (1− a(x1, x2))u = 0 on S.

Then we have the asymptotic expansion formula for the Θ-function

Θ(t) =
∞∑
j=1

exp [−λj t] =
1

4t
+

√
π

8
√
t
+ o

(
1√
t

)
as t ↓ 0.

1.2 Bifurcation theory for the semilinear elliptic boundary value problem

Now, as an application of Theorem 1.1 we consider global static bifurcation prob-
lems for the following semilinear elliptic boundary value problem: Let h(t) be a
real-valued function on R, not depending explicitly on x. For a real parameter λ,
find a function u defined on D such thatAu− λu+ f(u) = 0 in D,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂D.

(1.2)

A solution u ∈ C2(D) of the semilinear problem (1.2) is said to be nontrivial

if it does not identically equal to zero on D. We call a nontrivial solution u of
the semilinear problem (1.2) a positive solution (resp. negative solution) if u(x) ≥ 0
(resp. u(x) ≤ 0) on D.

If the boundary condition B is non-degenerate such as the Dirichlet, Neumann
and Robin boundary conditions, then the exact number of solutions of the semilin-
ear elliptic boundary value problem (1.2) was studied by Ambrosetti–Prodi [12],
Amann [4], [6], Ambrosetti–Mancini [11], Berger [18], Berestycki [16] and Szulkin
[52]. See also Ambrosetti–Prodi [13], Runst–Sickel [49], Chang [23], Drábek–Milota
[29] and the references therein.

This paper is a continuation of the previous papers [57] through [62] and [70]
in the case where the boundary condition B is degenerate as in Example 1.1.

By using the bifurcation theory from a simple eigenvalue due to Crandall–
Rabinowitz [26] (Theorem 3.3), we can prove that there exist precisely two non-
trivial branches of solutions of the semilinear problem (1.2) bifurcating at the point
(λ1, 0) where λ1 is the first eigenvalue of A (cf. [55, Theorem 3]). Theorems 1.3
and 1.4 below characterize them globally.

It is worthwhile pointing out here that the bifurcation solution curve (λ, u) of
the semilinear problem (1.2) is “formally” given by the so-called Semenov approx-

imation in Chemistry ([51])

λ = λ1 +
f(u)

u
. (1.3)

Indeed, Theorem 1.1 asserts that the first eigenvalue λ1 is the unique eigenvalue
corresponding to a positive eigenfunction of the operator A. Hence, if we rewrite
the semilinear problem (1.2) asAu = λu− f(u) =

(
λ− f(u)

u

)
u,

u > 0 in D,
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then we have the equation

λ1 = λ− f(u)

u
.

This proves the desired formula (1.3) (see Figure 1.4).
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Fig. 1.4 The formal positive solution curve λ = λ1 +
f(u)

u

(I) The asymptotically linear nonlinearity case: The first theorem is a general-
ization of Szulkin [52, Theorem 1.3] to the degenerate case:

Theorem 1.2 Assume that hypotheses (H.1) and (H.2) are satisfied and let λ1 be the

first eigenvalue of A. Let f(t) be a function of class C1 on R such that

f(0) = f ′(0) = 0.

Moreover, we assume that

sup
t∈R

∣∣f ′(t)∣∣ < λ1 − δ for some constant 0 < δ < λ1, (1.4)

and further that the derivative f ′(t) is strictly decreasing for t < 0 and strictly increas-

ing for t > 0 and that there exist constants k− > 0 and k+ > 0 such that

lim
t→−∞

f ′(t) = k−,

lim
t→+∞

f ′(t) = k+.

Then we have the following four assertions (see Figures 1.5 and 1.6):

(i) The point (λ1, 0) is a bifurcation point of the semilinear problem (1.2). More pre-

cisely, the set of nontrivial solutions of the semilinear problem (1.2) consists of two
C1 curves Γ− and Γ+ parametrized respectively by λ as follows:

Γ− =
{
(λ, u−(λ)) ∈ R× C(D) : λ1 ≤ λ < λ1 + k−

}
,

Γ+ =
{
(λ, u+(λ)) ∈ R× C(D) : λ1 ≤ λ < λ1 + k+

}
.

The branch Γ− is negative and the branch Γ+ is positive except at (λ1, 0).
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(ii) The uniform norms ∥u−(λ)∥ and ∥u+(λ)∥ tend to ∞ as λ → λ1 + k− and as

λ → λ1 + k+, respectively. In other words, λ1 + k+ is a bifurcation point from

infinity for positive solutions and λ1 + k− is a bifurcation point from infinity for

negative solutions, respectively.

(iii) The semilinear problem (1.2) has no other positive or negative solutions for any

λ ≥ λ1.

(iv) The semilinear problem (1.2) has no other nontrivial solutions for λ ∈ [λ1, λ2].

Remark 1.3 If either c1 := λ1 + k+ > λ2 or c2 := λ1 + k− > λ2, then we do not
describe the behaviors of Γ∓ for λ ≥ λ2.
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Fig. 1.5 The bifurcation curves Γ+ and Γ− in the case c1 = λ1 + k+ < min{c2, λ2} = λ2
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Fig. 1.6 The bifurcation curves Γ+ and Γ− in the case c2 = λ1 + k− ≤ λ2

For Theorem 1.2, we give a simple example of the function f(t):
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Example 1.2 If k± are constants such that

0 < k± < λ1 − δ for some constant δ > 0,

then we let

f(t) :=


k+
(
t+ 1

2t −
4
3

)
for t > 1,

k+

6 t3 for 0 ≤ t ≤ 1,
k−
6 t3 for −1 ≤ t ≤ 0,

k−
(
t+ 1

2t +
4
3

)
for t < −1.

The next corollary is a generalization of Szulkin [52, Corollary 1.4] to the
degenerate case:

Corollary 1.1 We let

c1 := min {λ1 + k−, λ1 + k+} ,
c2 := max {λ1 + k−, λ1 + k+} .

Then we have the following three assertions (see Figures 1.5 and 1.6):

(i) If λ1 < λ < min{c1, λ2}, the semilinear problem (1.2) has two nontrivial solutions.

(ii) If c1 < min{c2, λ2} and c1 < λ < min{c2, λ2}, the semilinear problem (1.2) has

one nontrivial solution.

(iii) If c2 ≤ λ2 and c2 ≤ λ ≤ λ2, the semilinear problem (1.2) has no nontrivial

solutions.

(II) The bounded nonlinearity case: The second theorem asserts that if the func-
tion f(t) is bounded, then the set of nontrivial solutions has properties considerably
different from Theorem 1.2. More precisely, we have the following generalization
of Szulkin [52, Theorem 5.1] to the degenerate case:

Theorem 1.3 Assume that hypotheses (H.1) and (H.2) are satisfied. Let f(t) be a

bounded, C1 function on R such that

f(0) = f ′(0) = 0.

Moreover, we assume that f ′(t) is decreasing for t < 0 and increasing for t > 0, near
the origin t = 0, and further that

sup
|t|<η

∣∣f ′(t)∣∣ < λ1 − δ for some δ > 0 and η > 0.

Then the semilinear problem (1.2) has at least four nontrivial solutions u1, u2, u3 and

u4 for each λ ∈ (λ1, λ1 + ε) provided that ε > 0 is sufficiently small (see Figure 1.7).

For Theorem 1.3, we give a simple example of the function f(t):

Example 1.3 We let

f(t) :=


− 1

2t +
2
3 for t > 1,

t3

6 for −1 ≤ t ≤ 1,

− 1
2t −

2
3 for t < −1.

We may take η :=
√
λ1 and δ := λ1/4.
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Fig. 1.7 The semilinear problem (1.2) has at least four nontrivial solutions u1, u2, u3 and u4

The third theorem is a generalization of Szulkin [52, Theorem 5.2] to the de-
generate case, which asserts that the nontrivial solution branches turn back towards
the first eigenvalue λ1:

Theorem 1.4 Assume that hypotheses (H.1) and (H.2) are satisfied and let λ1, λ2 be

the first and second eigenvalues of A, respectively. Let f(t) be a bounded, C1 function

on R such that f(0) = 0 and f ′(0) = 0. Moreover, we assume that there exists a

constant k > 0 such that

0 ≤ f ′(t) ≤ k < min {λ1, λ2 − λ1} for all t ∈ R. (1.5)

Then the set of nontrivial solutions of the semilinear problem (1.2), bifurcating at

(λ1, 0), consists of two C1 branches Γ1 and Γ2. The branches Γ1 and Γ2 may be

parametrized respectively by s as follows (see Figure 1.8):

Γ1 =
{
(λ(1)(s), u1(s)) ∈ R× C(D) : 0 ≤ s <∞

}
,

Γ2 =
{
(λ(2)(s), u2(s)) ∈ R× C(D) : 0 ≤ s <∞

}
.

Moreover, (λ(i)(0), ui(0)) = (λ1, 0) and λ(i)(s) → λ1 as s→ ∞, for i = 1 and 2.

Remark 1.4 Condition (1.5) implies that the distance between λ1 and λ2 deter-
mines the rate of the linear growth of the nonlinearity.

For Theorem 1.4, we give a simple example of the function f(t):

Example 1.4 If k is a constant such that

0 < k < min {λ1, λ2 − λ1} ,
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Fig. 1.8 The bifurcation curves Γ1 and Γ2 “turn back” towards the first eigenvalue λ1

then we let

f(t) :=


k
(
− 1

2t +
2
3

)
for t > 1,

k
6 t

3 for −1 ≤ t ≤ 1,

k
(
− 1

2t −
2
3

)
for t < −1.

1.3 Summary of the Contents

The rest of this paper is organized as follows.
In Section 2 we study the linear boundary value problem (1.1) in the frame-

work of L2 spaces. Our class of semilinear second-order, elliptic boundary value
problems satisfies the maximum principle. Roughly speaking, this additional infor-
mation means that the operators associated with the boundary value problem (1.1)
are compatible with the natural ordering of the underlying function spaces. Conse-
quently, we are led to the study of nonlinear operator equations in the framework
of ordered Banach spaces. The material in this section is given for completeness,
to minimize the necessity of consulting many references.

By using the theory of ordered Banach spaces, we prove Theorem 1.1. More
precisely, we prove Theorem 2.1, which plays an essential role in the proof of
Theorem 1.2 in Section 4. On the way, we prove an existence and uniqueness
theorem for problem (1.1) in the framework of Lp Sobolev spaces and Hölder spaces
(Theorems 2.2 and 2.3). Our approach is based on various maximum principles for
second-order, elliptic differential operators with discontinuous coefficients such as
the weak and strong maximum principles (Theorems A.1 and A.2) and the Hopf
boundary point lemma (Lemma A.1) in the framework of Lp Sobolev spaces.

Furthermore, the maximum principle tells us that the resolvent K of the linear
boundary value problem (1.1) is a positive operator in the framework of ordered
Banach spaces. In order to obtain an abstract formulation of this fact, we intro-
duce an ordered Banach subspace Ce(D) of C(D) (see formulas (2.4) and (2.5)),
which combines the good properties of the resolvent K with the good properties
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of the natural ordering of C(D) (Proposition 2.2). The essential step in the proof
is Proposition 2.2 where the compactness and strong positivity of the resolvent
K : C(D) → Ce(D) are proved. Theorem 2.6 (or rather Theorem 2.1) is an im-
mediate consequence of the famous Krĕın–Rutman theorem for strongly positive,
compact linear operators (Theorem 2.5).

Section 3 is devoted to elements of topological methods in nonlinear analysis
for the study of the semilinear elliptic boundary value problem (1.2). By using
the bifurcation theory from a simple eigenvalue due to Crandall–Rabinowitz [26]
and Dancer [27] (Theorems 3.3 and 3.4), we discuss the changes that occur in the
structure of the solutions of the operator equation F (λ, u) = 0 as λ varies near the
first eigenvalue λ1 of the linear problem (1.1).

The Leray–Schauder degree is an important topological tool introduced by
Leray–Schauder [39] in the study of nonlinear partial differential equations. The
nontriviality of the degree guarantees the existence of a fixed point of the compact
mapping in the domain (Theorem 3.6). It should be emphasized that the more
precisely we know the degree the sharper we can estimate the number of fixed
points. This opens a door to the study of multiple solutions in nonlinear analysis.
The presentation here is taken from Brown [22], Chang [23] and Nirenberg [43].

In Section 4 we study the semilinear elliptic boundary value problem (1.2) and
prove Theorem 1.2. The semilinear problem (1.2) is reduced to the study of a
nonlinear operator equation for the resolvent K of problem (1.1)

λKu−K (f(u)) = u in C(D). (1.6)

This nonlinear operator equation (1.6) is solved by using the theory of positive
mappings in the ordered Banach space Ce(D) (cf. [5], [27]), just as in Szulkin [52].
The idea of the proof of Theorem 1.2 may be stated as follows: By using Lemma
4.1, Lemma 4.5 and the implicit function theorem (Theorem 3.1), we can prove
that the nonlinear operator equation (4.1) has a unique positive solution u+(λ)
for all λ1 < λ < λ1 + k+, and that the branch Γ+ of positive solutions emanating
from (λ1, 0) is a C

1 curve given by the formula

Γ+ =
{
(λ, u) ∈ R× C(D) : u = u+(λ), λ1 ≤ λ < λ1 + k+

}
.

The other branch Γ− is obtained in a similar way. Furthermore, it follows from
an application of Lemma 4.5 that no other positive or negative solutions exist for
λ > λ1, and also ∥u+(λ)∥ → ∞ as λ→ λ1 + k+ and ∥u−(λ)∥ → ∞ as λ→ λ1 + k−.
Finally, Lemma 4.6 tells us that there are no nontrivial solutions at λ = λ1.

The proof of Theorems 1.3 and 1.4 is based on the Lyapunov–Schmidt proce-
dure ([40], [50]) in Sections 6 and 7, which reduces an infinite-dimensional problem
to a finite-dimensional system. In Section 5 we apply the Lyapunov–Schmidt proce-
dure to the nonlinear operator equation (4.1) in the Banach space C(D) (Theorem
5.1). This section is the heart of the subject, which is based on the previous works
[57] and [58].

In Section 6 we prove Theorem 1.3 in the case where the nonlinear term f(t)
is bounded (Theorem 6.1). Our proof is based on an intermediate value argument,
just as in the proof of Szulkin [52, Theorem 5.1] (see also Landesman–Lazer [38]).
In the proof we make use of Amann–Ambrosetti–Mancini [7, Lemma 1.2] (Lemma
6.1).
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Section 7 is devoted to the proof of Theorem 1.4 in the case where the derivative
f ′(t) is bounded on R (Theorem 7.1). The proof of Theorem 1.4 is carried out by
using the global theory of positive mappings due to Dancer [27] (Theorem 3.4),
just as in the proof of Szulkin [52, Theorem 5.2].

In Section 8 we calculate the Leray–Schauder index of isolated critical points
in the framework of the Lyapunov–Schmidt procedure as in Section 5 (Theorem
8.1). Finally, we apply Theorem 8.1 (or Corollary 8.1) to the semilinear elliptic
boundary value problem (1.2) with λ := λ1, that is, the resonance case:{

Au− λ1 u+ f(u) = 0 in D,

Bu = 0 on ∂D.
(1.7)

We give sufficient conditions in order that this semilinear elliptic boundary value
problem at resonance has at least two nontrivial solutions (Theorem 8.2).

In the final Section 9, for the semilinear elliptic boundary value problem (1.2)
we give an overview of the classical Schauder theory in Szulkin [52] versus the Lp

theory of pseudo-differential operators in the present paper (Table 9.1).
The weak and strong maximum principles (Theorems A.1 and A.2) and the

Hopf boundary point lemma (Lemma A.1) are summarized in the Appendix.

2 Linear elliptic boundary value problems

In this section we consider the linearized boundary value problem (1.1) in the
framework of L2 spaces, and prove Theorem 1.1. More precisely, we prove the
following theorem (see [53, Theorem 7.3], [55, Theorem 1]):

Theorem 2.1 Assume that hypotheses (H.1) and (H.2) are satisfied. Then we have

the following two assertions:

(i) The first eigenvalue λ1 of A is positive and algebraically simple, and its associated

eigenfunction φ1 is positive everywhere in D.

(ii) No other eigenvalues have positive eigenfunctions.

We remark that Taira [55, Theorem 1] proved Theorem 2.1 by making use of
the theory of Feller semigroups in functional analysis. In this paper we shall give
a simple and direct proof of Theorem 2.1 by making use of the theory of positive
mappings in ordered Banach spaces (cf. [5], [22], [29], [36]).

2.1 Function spaces

Let D be an open set in Euclidean space RN .
(I) First, we let

C(D) = the space of continuous functions in D.

If k is a positive integer, we let

Ck(D) = the space of functions of class Ck in D.



Semilinear elliptic problems via the Semenov approximation 13

Furthermore, we let

C(D) = the space of functions in C(D) having continuous extensions

to the closure D of D.

If k is a positive integer, we let

Ck(D) = the space of functions in Ck(D) all of whose derivatives

of order ≤ k have continuous extensions to D.

Let 0 < θ < 1. A function u defined on D is said to be uniformly Hölder

continuous with exponent θ in D if the quantity

[u]θ;D = sup
x,y∈D
x̸=y

|u(x)− u(y)|
|x− y|α

is finite. We say that u is locally Hölder continuous with exponent θ in D if it is
uniformly Hölder continuous with exponent θ on compact subsets of D.

If 0 < θ < 1, we define the Hölder space Cθ(D) as follows:

Cθ(D) = the space of functions in C(D) which are locally Hölder

continuous with exponent θ in D.

If k is a positive integer and 0 < θ < 1, we define the Hölder space Ck+θ(D) as
follows:

Ck+θ(D) = the space of functions in Ck(D) all of whose k-th order

derivatives are locally Hölder continuous with exponent θ in D.

Furthermore, we let

Cθ(D) = the space of functions in C(D) which are Hölder

continuous with exponent θ on D,

and

Ck+θ(D) = the space of functions in Ck(D) all of whose k-th order

derivatives are Hölder continuous with exponent θ on D.

Let k be a non-negative integer and 0 < θ < 1. We introduce various seminorms
on the spaces Ck(D) and Ck+θ(D) as follows:

[u]k,0;D =
∣∣∣Dku

∣∣∣
0;D

= sup
x∈D

sup
|β|=k

∣∣∣Dβu(x)
∣∣∣ ,

[u]k,θ;D =
[
Dku

]
θ;D

= sup
|β|=k

[
Dβu

]
θ;D

.

We can define the associated norms on the spaces Ck(D) and Ck+θ(D) as follows:

∥u∥Ck(D) = |u|k;D =
k∑

j=0

∣∣∣Dju
∣∣∣
0;D

,
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∥u∥Ck+θ(D) = |u|k,θ;D = |u|k;D +
[
Dku

]
θ;D

.

The Hölder spaces Ck+θ(∂D) on the smooth boundary ∂D are defined to be
locally the Hölder spaces Ck+θ(RN−1), upon using local coordinate systems flat-
tening out ∂D, together with a partition of unity.

(II) Secondly, if 1 ≤ p <∞, we let

Lp(D) = the space of (equivalence classes of) Lebesgue measurable

functions u on D such that |u|p is integrable on D.

The space Lp(D) is a Banach space with the norm

∥u∥Lp(D) =

(∫
D
|u(x)|p dx

)1/p

.

If k is a positive integer and 1 < p <∞, we define a Sobolev space

W k,p(D) = the space of functions u ∈ Lp(D) whose derivatives

Dαu, |α| ≤ k, in the sense of distributions are in Lp(D).

The space W k,p(D) is a Banach space with the norm

∥u∥Wk,p(D) =

 ∑
|α|≤k

∫
D
|Dαu(x)|p dx

1/p

.

Furthermore, if the boundary ∂D is smooth, we let

Bk−1/p,p(∂D) = the space of the boundary values φ = u|∂D
of functions u ∈W k,p(D).

In the space Bk−1/p,p(∂D), we introduce a norm

|φ|Bk−1/p,p(∂D) = inf
{
∥u∥Wk,p(D) : φ = u|∂D for u ∈W k,p(D)

}
.

The space Bk−1/p,p(∂D) is a Banach space with respect to the norm |·|Bk−1/p,p(∂D);
more precisely, it is a Besov space (cf. [1], [19], [71]).

2.2 Existence and uniqueness theorem for the linear problem (1.1)

In this subsection we study the linear elliptic boundary value problem (1.1) in
the framework of Hölder spaces. To do so, we introduce a subspace of the Hölder
space C1+θ(∂D) for 0 < θ < 1, which is associated with the degenerate boundary
condition

Bu = a(x′)
∂u

∂ν
+ b(x′)u

under hypotheses (H.1) and (H.2) in the following way: We let

C1+θ
⋆ (∂D) := a(x′)C1+θ(∂D) + b(x′)C2+θ(∂D)
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=
{
φ = a(x′)φ1 + b(x′)φ2 : φ1 ∈ C1+θ(∂D), φ2 ∈ C2+θ(∂D)

}
,

and define a norm

|φ|
C1+θ

⋆ (∂D)
= inf

{
|φ1|C1+θ(∂D) + |φ2|C2+θ(∂D) : φ = a(x′)φ1 + b(x′)φ2

}
.

Then it is easy to verify that the space C1+θ
⋆ (∂D) is a Banach space with respect

to the norm | · |
C1+θ

⋆ (∂D)
. We remark that the space C1+θ

⋆ (∂D) is an “interpolation

space” between the spaces C2+θ(∂D) and C1+θ(∂D). More precisely, we have the
assertions

C1+θ
⋆ (∂D) = a(x′)C1+θ(∂D) + b(x′)C2+θ(∂D)

=


C2+θ(∂D) if a(x′) ≡ 0 on ∂D (the Dirichlet case),

C1+θ(∂D) if b(x′) ≡ 0 on ∂D (the Neumann case),

C1+θ(∂D) if a(x′) > 0 on ∂D (the regular Robin case),

and, for general a(x′), the continuous injections

C2+θ(∂D) ⊂ C1+θ
⋆ (∂D) ⊂ C1+θ(∂D).

The purpose of this subsection is to prove the following theorem (see [54,
Theorem 1.1]):

Theorem 2.2 If hypotheses (H.1) and (H.2) are satisfied, then the mapping

(A,B) : C2+θ(D) −→ Cθ(D)⊕ C1+θ
⋆ (∂D)

is an algebraic and topological isomorphism for all 0 < θ < 1.

Proof The proof is divided into four steps.
Step 1: Let g be an arbitrary element of Cθ(D), and φ an arbitrary element

of C1+θ
⋆ (∂D) such that

φ = a(x′)φ1 + b(x′)φ2, φ1 ∈ C1+θ(∂D), φ2 ∈ C2+θ(∂D).

First, we show that the boundary value problem{
Au = g in D,

Bu = φ on ∂D
(2.1)

can be reduced to the study of an operator on the boundary. To do this, we consider
the (purely) Neumann problemAv = g in D,

∂v

∂ν
= φ1 on ∂D.

(N)

By [30, Theorem 6.31], we can find a unique solution v in the space C2+θ(D) of
the Neumann problem (N). Then it is easy to see that a function u in C2+θ(D)
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is a solution of the boundary value problem (2.1) if and only if the function w =
u− v ∈ C2+θ(D) is a solution of the problem{

Aw = 0 in D,

Bw = φ−Bv on ∂D.

Here we remark that

Bv = a(x′)
∂v

∂ν
+ b(x′)v = a(x′)φ1 + b(x′)v,

so that
Bw = φ−Bv = b(x′)(φ2 − v) ∈ C2+θ(∂D).

However, we know that every solution w ∈ C2+θ(D) of the homogeneous equation:
Aw = 0 in D can be expressed as follows (cf. [31, Chapter XX], [49, Chapter 3]):

w = Pψ, ψ ∈ C2+θ(∂D).

Here the operator
P : C2+θ(∂D) −→ C2+θ(D)

is the Poisson kernel, that is, the function w = Pψ is the unique solution of the
Dirichlet problem {

Aw = 0 in D,

w = ψ on ∂D.

Thus we have the following proposition:

Proposition 2.1 For given functions g ∈ Cθ(D) and φ = a(x′)φ1 + b(x′)φ2 ∈
C1+θ
⋆ (∂D), there exists a solution u ∈ C2+θ(D) of the boundary value problem (2.1)

if and only if there exists a solution ψ ∈ C2+θ(∂D) of the equation

Tψ := BPψ = b(x′)(φ2 − v) on ∂D. (2.2)

Furthermore, the solutions u and ψ are related as follows:

u = v + Pψ,

where v ∈ C2+θ(D) is the unique solution of the Neumann problem (N).

Remark 2.1 The equation (2.2) is a modern version of the classical Fredholm integral

equation.

Step 2: We study the operator T in question. It is known (cf. [31, Chapter
XX], [49, Chapter 3]) that the operator

Tψ = BPψ = a(x′)
∂

∂ν
(Pψ) + b(x′)ψ

is a first-order, pseudo-differential operator on the boundary ∂D.
The next lemma is an essential step in the proof of Theorem 2.2 (see [66,

Lemma 6.1]):

Lemma 2.1 If hypotheses (H.1) and (H.2) are satisfied, then there exists a parametrix
E in the Hörmander class L0

1,1/2(∂D) for T that maps Ck+θ(∂D) continuously into

itself for all non-negative integers k.
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Proof By making use of [31, Theorem 22.1.3] just as in the proof of [65, Lemma
7.3], we can construct a parametrix E ∈ L0

1,1/2(∂D) for T :

ET ≡ TE ≡ I mod L−∞(∂D).

The boundedness of E : Ck+θ(∂D) → Ck+θ(∂D) follows from an application of a
Besov-space boundedness theorem due to Bourdaud [21, Theorem 1] (see [65, Theo-
rem 5.15] with m := 0, δ := 1/2 and p := ∞), since we have the assertion (see [71,
Chapter 1])

Ck+θ(∂D) = Bk+θ
∞,∞(∂D).

The proof of Lemma 2.1 is complete. ⊓⊔

Step 3: We consider the boundary value problem (2.1) in the framework of
Sobolev spaces of Lp style, and prove an Lp version of Theorem 2.2 (see [69, Part
III]).

We introduce a subspace of B1−1/p,p(∂D) which is an Lp version of C1+θ
⋆ (∂D)

under hypotheses (H.1) and (H.2). We let

B
1−1/p,p
⋆ (∂D)

=
{
φ = a(x′)φ1 + b(x′)φ2 : φ1 ∈ B1−1/p,p(∂D), φ2 ∈ B2−1/p,p(∂D)

}
,

and define a norm

|φ|
B

1−1/p,p
⋆ (∂D)

= inf
{
|φ1|B1−1/p,p(∂D) + |φ2|B2−1/p,p(∂D) : φ = a(x′)φ1 + b(x′)φ2

}
.

It is easy to verify that the space B
1−1/p,p
⋆ (∂D) is a Banach space with respect to

the norm | · |
B

1−1/p,p
⋆ (∂D)

.

Then we can obtain the following Lp version of Theorem 2.2 (see [65, Theorem
1.1]):

Theorem 2.3 If hypotheses (H.1) and (H.2) are satisfied, then the mapping

(A,B) : W 2,p(D) −→ Lp(D)⊕B
1−1/p,p
⋆ (∂D)

is an algebraic and topological isomorphism for all 1 < p <∞.

Step 4: Now we remark that{
Cθ(D) ⊂ Lp(D),

C1+θ
⋆ (∂D) ⊂ B

1−1/p,p
⋆ (∂D).

Thus we find from Theorem 2.3 that the boundary value problem (2.1) has a
unique solution u ∈ W 2,p(D) for any g ∈ Cθ(D) and any φ = a(x′)φ1 + b(x′)φ2 ∈
C1+θ
⋆ (∂D). Moreover, by virtue of Proposition 2.1 it follows that the solution u

can be written in the form

u = v + Pψ, v ∈ C2+θ(D), ψ ∈ B2−1/p,p(∂D).
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However, Lemma 2.1 tells us that

ψ ∈ C2+θ(∂D),

since we have, by equation (2.2),

ψ ≡ E(Tψ) = E
(
b(x′)(φ2 − v)

)
mod C∞(∂D).

Therefore, we obtain that

u = v + Pψ ∈ C2+θ(D).

The proof of Theorem 2.2 is complete. ⊓⊔

2.3 Proof of Theorem 2.1 – Part 1 –

First, we let

C2+θ
B (D) =

{
u ∈ C2+θ(D) : Bu = 0 on ∂D

}
.

By Theorem 2.2, we can define a resolvent

K : Cθ(D) −→ C2+θ
B (D)

for the linear problem (1.1) as follows: For any f ∈ Cθ(D), the function u = Kf ∈
C2+θ(D) is the unique solution of the problem{

Au = f in D,

Bu = 0 on ∂D.
(1.1)

Secondly, we let

W 2,p
B (D) =

{
u ∈W 2,p(D) : Bu = 0 on ∂D

}
.

By Theorem 2.3, we can define a resolvent

K : Lp(D) −→W 2,p
B (D)

for the linear elliptic boundary value problem (1.1) as follows: For any f ∈ Lp(D),
the function u = Kf ∈W 2,p(D) is the unique solution of the problem{

Au = f in D,

Bu = 0 on ∂D.
(1.1)

Furthermore, by the Ascoli–Arzelà theorem (see [30, Lemma 6.36]) it follows that
the operator K, considered as

K : C(D) −→ C1(D),

is compact if N < p <∞. Indeed, by Sobolev’s imbedding theorem (see [1, Theorem
4.12, Part II]) it suffices to note that the space W 2,p(D) is continuously imbedded
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K : C(D) −→ Lp(D)
K−→W 2,p(D) −→ C2−N/p(D) ↪→↪→

compactly
C1(D).

Fig. 2.1 The mapping properties of the resolvent K

into C2−N/p(D) with 2 − N/p > 1, for all N < p < ∞. The situation can be
visualized as in Figure 2.1.

Then it follows from an application of regularity theorem for the linear elliptic
boundary value problem (1.1) ([65, Theorem 7.1]) that u ∈ Lp(D) for 1 < p < ∞
is a solution of the eigenvalue problem{

Au = λu in D,

Bu = 0 on ∂D

if and only if it satisfies the operator equation

u = λKu in C(D). (2.3)

2.4 Theory of positive mappings in ordered Banach spaces

We shall make use of the theory of positive operators in ordered Banach spaces
to study positive solutions of equation (2.3) (cf. [5], [22, Chapter 18], [29, Chapter
6], [36]).

Let X be a non-empty set. An ordering ≤ in X is a relation in X that is
reflexive, antisymmetric and transitive:

(a) x ≤ x for all x ∈ X (reflexivity).
(b) If x ≤ y and y ≤ x, then we have x = y for all x and y ∈ X (antisymmetry).
(c) If x ≤ y and y ≤ z, then we have x ≤ z for all x, y and z ∈ X (transitivity).

A non-empty set together with an ordering is called an ordered set.
Let V be a real vector space. An ordering ≤ in V is said to be linear if the

following two conditions are satisfied:

(i) If x, y ∈ V and x ≤ y, then we have x+ z ≤ y + z for all z ∈ V .
(ii) If x, y ∈ V and x ≤ y, then we have αx ≤ αy for all α ≥ 0.

A real vector space together with a linear ordering is called an ordered vector space.
If x, y ∈ V and x ≤ y, then the set [x, y] = {z ∈ X : x ≤ z ≤ y} is called an order

interval.
Let V be an ordered vector space. If we let

Q = {x ∈ V : x ≥ 0} ,

then it is easy to verify that the set Q has the following two conditions:

(iii) If x, y ∈ Q, then αx+ βy ∈ Q for all α, β ≥ 0.
(iv) If x ̸= 0, then at least one of x and −x does not belong to Q, or equivalently,

Q ∩ (−Q) = {0}.
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The set Q is called the positive cone of the ordering ≤.
Let E be a Banach space E with a linear ordering ≤. The Banach space E is

called an ordered Banach space if the positive cone

Q = {x ∈ E : x ≥ 0}

is closed in E. We say that Q is generating if, for each x ∈ E there exist vectors
u, v ∈ Q such that x = u − v. It is to be expected that the topology and the
ordering of an ordered Banach space are closely related if the norm is monotone:
If 0 ≤ u ≤ v, then ∥u∥ ≤ ∥v∥.

For x, y ∈ E, we write

x ≥ y if x− y ∈ Q,

x > y if x− y ∈ Q \ {0}.

If the interior Int (Q) is non-empty, then we write

x≫ y if x− y ∈ Int (Q).

Here we give two simple but important examples of ordered Banach spaces:

Example 2.1 Let E = RN , and let

RN,+ =
{
x = (x1, x2, . . . , xN ) ∈ RN : xi ≥ 0 for all 1 ≤ i ≤ N

}
.

For any u, v ∈ RN , we write u ≤ v if v − u ∈ RN,+. Then it is easy to see

that
(
RN ,RN,+,≤

)
is an ordered Banach space and that the norm is monotone.

Moreover, the positive cone RN,+ is generating. We remark that

Int
(
RN,+

)
=
{
x = (x1, x2, . . . , xN ) ∈ RN : xi > 0 for all 1 ≤ i ≤ N

}
.

Example 2.2 Let E = C(D) be the set of real-valued, continuous functions on the
closure D, and let

P =
{
u ∈ C(D) : u(x) ≥ 0 on D

}
.

For any u, v ∈ C(D), we write u ≤ v if v − u ∈ P . Then it is easy to see that(
C(D), P

)
is an ordered Banach space and that the norm is monotone. Moreover,

the positive cone P is generating. We remark that

Int (P ) =
{
u ∈ C(D) : u(x) > 0 on D

}
.

A linear operator L : E → E is said to be positive if L maps P into itself:

L : P −→ P.

A linear operator L : E → E is said to be strictly positive if L maps P \ {0} into
itself:

L : P \ {0} −→ P \ {0}.

A linear operator L : E → E is said to be strongly positive if Lx is an interior point
of P for every x ∈ P \ {0}:

L : P \ {0} −→ Int (P ).
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A linear operator L : E → E is said to be compact if it is continuous (bounded)
and maps bounded sets into relatively compact sets.

The next famous Krĕın–Rutman theorem for strongly positive, compact linear
operators will play a fundamental role in the sequel (see [36, Chapter 2], [23,
Theorem 3.6.12], [29, Chapter 6, Theorem 6.3.35]):

Theorem 2.4 (Krĕın–Rutman) Let E be an ordered Banach space with total posi-

tive cone P . Assume that T : E → E is a compact linear operator such that its spectral

radius

r(T ) = lim
k→∞

k

√
∥T k∥

is positive. Then r(T ) is an eigenvalue of T with eigenvector in P and an eigenvalue

of the dual operator

T ∗ : E∗ −→ E∗

with eigenvector in the dual wedge P ∗ of P , respectively. Here

P ∗ = the space of all continuous, positive linear functionals on E.

Example 2.3 (Perron–Frobenius) Let
(
RN ,RN,+,≤

)
be the ordered Banach space

in Example 2.1. If L = (aij) is a transition matrix of positive entries aij of a Markov
chain such that

N∑
j=1

aij = 1 for each 1 ≤ i ≤ N,

N∑
k=1

akj = 1 for each 1 ≤ j ≤ N,

then it follows that L : E → E is a linear, compact and strongly positive operator.
It is easy to see that

r(L) = lim
n→∞

n
√

∥Ln∥ = 1,

x0 = (1, 1, . . . , 1) ∈ RN,+.

This is a special case of the classical Perron–Frobenius theorem.

Furthermore, we can obtain a sharp version of Theorem 2.4 in the case where
the operator T : E → E is strongly positive ([29, Chapter 6, Theorem 6.3.35]):

Theorem 2.5 (Krĕın–Rutman) Let E be an ordered Banach space with positive

cone P having non-empty interior Int (P ). Assume that

T : E −→ E

is a strongly positive, compact linear operator. Then we have the following five asser-

tions:

(i) The spectral radius r(T ) is positive.

(ii) r(T ) is an algebraically simple eigenvalue of T having a positive eigenvector

x0 ∈ Int (P ): Tx0 = r(T )x0. There exist no other eigenvalues with a positive

eigenvector.
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(iii) r(T ) is an algebraically simple eigenvalue of the dual operator T ∗ : E∗ → E∗

having a strictly positive eigenvector x∗0 ∈ P ∗ \ {0}. Namely, x∗0 satisfies the

condition

⟨x, x∗0⟩ > 0 for all x ∈ P \ {0}.

(iv) For every y ∈ P \ {0}, the equation

λx− Tx = y

has exactly one positive solution if λ > r(T ), and no positive solution for λ ≤ r(T ).
The equation

r(T )x− Tx = −y

has no positive solution.

(v) For every continuous linear operator S satisfying S ≥ T , we have the assertion

r(S) ≥ r(T ).

If S − T is strongly positive, then we have the assertion

r(S) > r(T ).

2.5 The ordered Banach space Ce(D)

Now we introduce an ordered Banach space that is associated with the operator
(see Figure 2.1)

K : C(D) −→ C1(D).

To do this, we need the following lemma (see [56, Lemma 3.7]):

Lemma 2.2 Assume that hypotheses (H.1) and (H.2) are satisfied. If v ∈ Cθ(D) with
0 < θ < 1 and if v ∈ P \ {0}, then the function u = Kv ∈ C2+θ(D) satisfies the

following three conditions:

(a) u(x′) = 0 on M = {x′ ∈ ∂D : a(x′) = 0}.
(b) u(x) > 0 on D \M .

(c) For the conormal derivative ∂u/∂ν of u, we have the inequality

∂u

∂ν
(x′) < 0 on M.

In particular, the operator K : C(D) → C(D) is strictly positive:

v > 0 =⇒ Kv > 0.

Proof The proof of Lemma 2.2 is divided into three steps.
Step 1: First, since the function u = Kv ∈ C2+θ(D) satisfies the condition

Au = v ≥ 0 in D,

it follows from an application of the weak maximum principle (Theorem A.1) that
the function u may take its negative minimum only on the boundary ∂D.

However, we have the following claim:
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Claim 2.1 The function u = Kv does not take its negative minimum on the boundary

∂D. In other words, the function u is non-negative on D.

Proof Our proof is based on a reduction to absurdity. Assume, to the contrary,
that there exists a point x′0 ∈ ∂D such that

u(x′0) < 0.

If a(x′0) = 0, then we have, by condition (H.2),

0 = Bu(x′0) = b(x′0)u(x
′
0) < 0.

This is a contradiction.
If a(x′0) > 0, then it follows that

Au(x) = v(x) ≥ 0 for all x ∈ D,

u(x′0) = minD u < 0,

u(x) > u(x′0) for all x ∈ D.

Thus it follows from an application of the Hopf boundary point lemma (Lemma
A.1) that

∂u

∂ν
(x′0) < 0.

However, by hypotheses (H.1) and (H.2) it follows that

a(x′) + b(x′) > 0 on ∂D.

Hence we have the assertion

0 = Bu(x′0) = a(x′0)
∂u

∂ν
(x′0) + b(x′0)u(x

′
0) ≤ a(x′0)

∂u

∂ν
(x′0) < 0.

This is also a contradiction. ⊓⊔

Step 2: Furthermore, we have the following claim:

Claim 2.2 The function u = Kv is strictly positive in D, that is,

u(x) = Kv(x) > 0 in D.

Proof Our proof is based on a reduction to absurdity. Assume, to the contrary,
that there exists a point x0 ∈ D such that

u(x0) = 0.

Then we obtain from the strong maximum principle (Theorem A.2) that

u(x) ≡ 0 in D,

so that

v = Ku = 0 in D.

This contradicts the condition that v is not the zero function in D. ⊓⊔
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Step 3: If there exists a point x′0 ∈ ∂D such that

u(x′0) = Kv(x′0) = 0,

then we have, by Claims 2.1 and 2.2,
Au(x) = v(x) ≥ 0 for all x ∈ D,

u(x′0) = minD u = 0,

u(x) > 0 for all x ∈ D.

Thus it follows from an application of the Hopf boundary point lemma (Lemma
A.1) that

∂u

∂ν
(x′0) < 0,

so that
a(x′0) = 0,

since we have

0 = Bu(x′0) = a(x′0)
∂u

∂ν
(x′0) = 0.

Conversely, if a(x′0) = 0, then we have, by condition (H.2),

b(x′0) > 0,

and so
u(x′0) = 0,

since 0 = Bu(x′0) = b(x′0)u(x
′
0).

Summing up, we have proved that{
u(x′) = 0 ⇐⇒ x′ ∈M,

u(x) > 0 ⇐⇒ x ∈ D \M.

This proves the desired assertions (a) and (b).
Assertion (c) is an immediate consequence of the Hopf boundary point lemma

(Lemma A.1), since the function u attains its minimum 0 at the set M .
Finally, in order to prove the positivity of K : C(D) → C(D), let v be an

arbitrary function in C(D) such that v ≥ 0 and v ̸≡ 0 on D. Then, by using
Friedrichs’ mollifiers we can find a sequence {vj} ⊂ C1(D) satisfying the conditions{

vj ≥ 0 on D,

vj −→ v in C(D).

Hence we have, by assertions (a) and (b),
Kvj ∈ C2(D),

Kvj ≥ 0 on D,

Kvj −→ Kv in C(D).

This proves that
Kv ≥ 0 on D.

The proof of Lemma 2.2 is complete. ⊓⊔
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If we let
e(x) := (K1)(x), (2.4)

it follows from an application of Lemma 2.2 that the function e ∈ C2+θ(D) satisfies
the conditions 

e(x′) = 0 on M,

e(x) > 0 on D \M,
∂e

∂ν
(x′) < 0 on M.

By using the function e = K1, we introduce a subspace of C(D) as follows:

Ce(D) (2.5)

=
{
u ∈ C(D) : there is a constant c > 0 such that −c e ≤ u ≤ c e on D

}
=
∪
c>0

[−c e, c e] .

The space Ce(D) is given a norm by the formula

∥u∥e = inf
{
c > 0 : −c e ≤ u ≤ c e on D

}
.

By rescaling, we may assume that

∥e∥C(D) = max
x∈D

e(x) = 1.

Then we have the inequality

−c e(x) ≤ v(x) ≤ c e(x) on D for all v ∈ Ce(D),

and so
∥v∥C(D) ≤ c ∥e∥C(D) = c for all v ∈ Ce(D).

This proves that
∥v∥C(D) ≤ ∥v∥e for all v ∈ Ce(D).

Namely, the injection
Ce(D) ↪→ C(D)

is continuous.
If we let

Pe = Ce(D) ∩ P =
{
u ∈ Ce(D) : u ≥ 0 on D

}
,

it is easy to verify that the space Ce(D) is an ordered Banach space having the
positive cone Pe with nonempty interior.

The next proposition will play an important role in the proof of Theorem 1.2
(see [70, Proposition 2.2]):

Proposition 2.2 The operator K maps C(D) compactly into Ce(D):

K : C(D) −→
compactly

Ce(D).

Moreover, K is strongly positive, that is, if v ∈ P \ {0}, then the function Kv is an

interior point of Pe:

v ∈ P \ {0} =⇒ Kv ∈ Int (Pe) .
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Proof The proof is divided into three steps.
Step (i): First, by the positivity of K we find that K maps C(D) into Ce(D).

Indeed, we have, for all v ∈ C(D),

−∥v∥C(D) ≤ v(x) ≤ ∥v∥C(D) on D.

Hence it follows from the positivity of K that

−∥v∥C(D) ·K1(x) ≤ Kv(x) ≤ ∥v∥C(D) ·K1(x) on D.

This proves that
−c e ≤ Kv ≤ c e on D,

with c = ∥v∥C(D).

Step (ii): Next we prove that

K : C(D) −→ Ce(D)

is compact. To do this, we let

C1
B(D) =

{
u ∈ C1(D) : Bu = 0 on ∂D

}
.

Since K maps C(D) compactly into C1
B(D), it suffices to show that the inclusion

mapping
ι : C1

B(D) −→ Ce(D) (2.6)

is continuous. The situation can be visualized as follows (see also Figure 2.1):

K : C(D) ↪→↪→
compactly

C1
B(D)

ι−→ Ce(D).

(ii-a) We verify that ι maps C1
B(D) into Ce(D). Let u be an arbitrary function

in C1
B(D). Since we have, for some neighborhood ω of M in ∂D,b(x

′) > 0 in ω,
∂e

∂ν
(x′) < 0 in ω,

it follows that

u

e
=

(
−a(x

′)

b(x′)

)
∂u

∂ν(
−a(x

′)

b(x′)

)
∂e

∂ν

=

∂u

∂ν
∂e

∂ν

in ω \M.

Hence there exists a constant c1 > 0 such that

|u(x′)| ≤ c1e(x
′) in ω.

Thus, by using Taylor’s formula we can find a neighborhood W of ω in D and a
constant c2 > 0 such that

|u(x)| ≤ c2 e(x) in W.

On the other hand, since we have, for some constant α > 0,

e(x) ≥ α on D \W,
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we can find a constant c3 > 0 such that∣∣∣∣u(x)e(x)

∣∣∣∣ ≤ c3 on D \W.

Therefore we have, with c = max{c2, c3},

−c e(x) ≤ u(x) ≤ c e(x) on D.

This proves that u ∈ Ce(D).
(ii-b) Now we show that the inclusion mapping

ι : C1
B(D) −→ Ce(D) (2.6)

is continuous. To do so, we have only to prove the closedness of ι, since its continuity
follows immediately from an application of Banach’s closed graph theorem ([74,
Chapter II, Section 6, Theorem 1]).

We assume that 
uj ∈ C1

B(D),

uj −→ u in C1
B(D),

uj −→ v in Ce(D).

Then there exists a sequence {cj}, cj → 0, such that∥∥uj − v
∥∥
e
≤ cj ∥e∥ .

Hence we have the assertion

uj −→ v in C(D),

and so
ι(u) = u = v.

This proves the closedness of ι.
Step (iii) It remains to prove the strong positivity of K, that is, K (P \ {0}) ⊂

Int (Pe).
(iii-a) We show that, for every v ∈ P \{0} there exist constants β > 0 and γ > 0

such that
β e(x) ≤ Kv(x) ≤ γ e(x) on D. (2.7)

By the positivity of K, we may modify the function v in such a way that v ∈ C1(D).
Furthermore, since the functions u = Kv and e = K1 vanish only on the set

M =
{
x′ ∈ ∂D : a(x′) = 0

}
,

it suffices to prove that there exists a neighborhood W of M in D such that

β e(x) ≤ u(x) in W. (2.8)

We recall (see Lemma 2.2) that we have, in a neighborhood ω of M in ∂D,
u =

(
−a(x

′)

b(x′)

)
∂u

∂ν
in ω,

∂u

∂ν
< 0 in ω,
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and 
e =

(
−a(x

′)

b(x′)

)
∂e

∂ν
in ω,

∂e

∂ν
< 0 in ω.

Thus we have, for β sufficiently small,u(x
′)− β e(x′) ≥ 0 in ω,

∂

∂ν
(u− β e)(x′) < 0 in ω.

Therefore, by using Taylor’s formula we can find a neighborhood W of M in D

such that
u(x)− β e(x) ≥ 0 in W.

This proves the desired inequality (2.8).
(iii-b) Finally, we show that the function u = Kv is an interior point of Pe.

Take

ε =
β

2
,

where β is the same constant as in estimate (2.7). Then, for all functions w ∈ Ce(D)
satisfying

∥w −Kv∥e < ε,

we have, by estimate (2.7),

w ≤ Kv + εe ≤ (γ + ε)e,

and also

w ≥ Kv − ε e ≥ β

2
e = ε e on D.

This implies that

Be (Kv, ε) :=
{
w ∈ Ce(D) : ∥w −Kv∥e < ε

}
⊂ Pe,

that is, the function Kv is an interior point of Pe.
The proof of Proposition 2.2 is now complete. ⊓⊔

The situation of Proposition 2.2 can be visualized as in Figure 2.2.

C(D)
K−−−−−→ Ce(D)x x

P \ {0} −−−−−→
K

Int (Pe)

Fig. 2.2 The mapping properties of the resolvent K in the ordered Banach spaces C(D) and

Ce(D)

Now we consider the resolvent K as an operator in the ordered Banach space
Ce(D), and prove important results concerning its eigenfunctions and correspond-
ing eigenvalues.
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First, Proposition 2.2 tells us that the operator

K : Ce(D) −→ Ce(D)

is strongly positive and compact. This implies that K has a countable number
of positive eigenvalues µj which may accumulate only at 0. Hence they may be
arranged in a decreasing sequence

µ1 ≥ µ2 ≥ · · · ≥ µj ≥ · · · > 0,

where each eigenvalue is repeated according to its multiplicity.
The next theorem characterizes the eigenvalues and positive eigenfunctions of

K:

Theorem 2.6 The resolvent K, considered as an operator K : Ce(D) → Ce(D), has
the following spectral properties:

(i) The largest eigenvalue µ1 is algebraically simple, that is, µ1 > µ2, and has a

positive eigenfunction ψ1: Kψ1 = µ1 ψ1.

(ii) No other eigenvalues, µj , j ≥ 2, have positive eigenfunctions.

This theorem is an immediate consequence of the Krĕın–Rutman theorem
(Theorem 2.5).

2.6 Proof of Theorem 2.1 – Part 2 –

By assertion (2.3) and Figure 2.2, it is easy to see that

Au = λu in L2(D) ⇐⇒ u = λKu in C(D)

⇐⇒ Ku =
1

λ
u in Ce(D).

Therefore, Theorem 2.1 (and hence Theorem 1.1) is an immediate consequence of
Theorem 2.6. ⊓⊔

3 Elements of topological methods in nonlinear analysis

This section is devoted to elements of topological methods in nonlinear analysis
for the study of the semilinear boundary value problem (1.2). For detailed studies
of topological methods in nonlinear analysis, the reader is referred to Ambrosetti–
Malchiodi [8], Ambrosetti–Prodi [13], Brown [22], Chang [23], Chow–Hale [25],
Drábek–Milota [29], Nirenberg [43], Papageorgiou–Rădulescu–Repovš [44] and Zei-
dler [75].

First, by making use of bifurcation theory from a simple eigenvalue essentially
due to Crandall–Rabinowitz [26] and Dancer [27], we discuss the changes that
occur in the structure of the solutions of F (λ, u) = 0 as λ varies near the first
eigenvalue λ1 of the linear problem (1.1) (Theorems 3.3 and 3.4).

The Leray–Schauder degree is an important topological tool introduced by
Leray–Schauder [39] in the study of the semilinear boundary value problem (1.2).
The nontriviality of the degree guarantees the existence of a fixed point of the
compact mapping in the domain (Theorem 3.6).
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3.1 Local properties of differentiable mappings

Let X, Y be Banach spaces. Let U be a subset of X. A map f : U → Y is said
to be compact if it is continuous on U and maps bounded sets in U into relatively
compact sets in Y .

Let U be an open set in X and let f : U → Y be a map. We say that the map f
is (Fréchet) differentiable at a point x ∈ U if there exist a continuous linear operator
A : X → Y and a map ψ defined for all sufficiently small h in X, with values in Y ,
such that {

f(x+ h) = f(x) +Ah+ ∥h∥ψ(h),
limh→0 ψ(h) = 0.

We remark that the continuous linear operator A is uniquely determined by f and
x. The operator A is called the (Fréchet) derivative of f at x, and is denoted by
Df(x) or f ′(x). A map f is said to be (Fréchet) differentiable on U if it is (Fréchet)
differentiable at every point of U . In this case, the derivative Df is a map of U
into the Banach space B(X,Y ) of all continuous (bounded) linear operators:

Df : U −→ B(X,Y )

u 7−→ Df(u).

If in addition Df is continuous from U into B(X,Y ), we say that f is of class C1.
If the derivative Df is differentiable at a point x ∈ U (resp. in U), we say

that f is twice differentiable at x (resp. in U). The derivative of Df at x is called
the second derivative of f at x, and is denoted by D2f(x). This is an element of
the Banach space B(X,B(X,Y )) which can be naturally identified with the space
B2(X,Y ) = B(X,X;Y ) of all continuous bilinear mappings of X ×X into Y .

By induction on k, we define a k times differentiable mapping f of U into Y
as a (k − 1) times differentiable mapping whose (k − 1)-th derivative Dk−1f is
differentiable in U . The derivative Dkf = D(Dk−1f) is called the k-th derivative

of f . The derivative Dkf(x) at a point x ∈ U can be identified with an element of
the space Bk(X,Y ) of all continuous k-linear mappings of X × · · · ×X into Y . A
map f : U → Y is said to be of class Cr (r ≥ 2) in U if all the derivatives Dkf exist
and are continuous in U for 1 ≤ k ≤ r.

Here it is worthwhile pointing out that if X = R, then the space B(X,Y ) can
be identified with the space Y , so the space Bk(R, Y ) can be identified with the
space Y for general k ≥ 2.

Now we assume that the Banach space X is the product space of two Banach
spaces X1 and X2:

X = X1 ×X2.

For each point x = (x1, x2) ∈ U ⊂ X, one can consider the partial mappings

F1 : u1 7−→ f(u1, x2),

F2 : u2 7−→ f(x1, u2)

of open subsets of X1 and X2 respectively into Y . We say that f is differentiable

with respect to the first (resp. second) variable if the mapping F1(u1) (resp. F2(u2))
is differentiable at x1 (resp. at x2). The derivative DF1(x1) (resp. DF2(x2)) is an
element of the Banach space B(X1, Y ) (resp. B(X2, Y )), and is called the partial
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(Fréchet) derivative of f at (x1, x2) with respect to the first (resp. second) variable.
We write

Dx1f(x1, x2) = DF1(x1),

Dx2f(x1, x2) = DF2(x2).

We can define inductively the partial (Fréchet) derivatives Dk
x1
Dℓ

x2
f for general k

and ℓ.
The process of linearization provides a key link between the linear and nonlin-

ear theories of partial differential equations. Our basic tool is the implicit function
theorem (cf. [43, Theorem 2.7.2], [23, Theorem 1.2.1], [29, Theorem 4.2.1]):

Theorem 3.1 (the implicit function theorem) Let X, Y , Z be Banach spaces,

and let f be a Cr map (r ≥ 1) of an open subset U ×V of X ×Y into Z. Assume that

the derivative Dyf(x0, y0) : Y → Z is an algebraic and topological isomorphism at a

point (x0, y0) of U × V . Then there exist neighborhoods U0 of x0 and W0 of f(x0, y0)
and a unique Cr map g : U0 ×W0 → V such that

f (x, g(x,w)) = w for all (x,w) ∈ U0 ×W0.

The local inverse mapping theorem provides a criterion for a map to be a local Cr

diffeomorphism in terms of its derivative (see [43, Corollary 2.7.3], [23, Theorem
1.2.3], [29, Theorem 4.1.1]):

Theorem 3.2 (the local inverse mapping theorem) Let X, Y be Banach spaces,

and let f be a Cr map (r ≥ 1) of an open subset U of X into Y . Assume that the

derivative f ′(x0) : X → Y is an algebraic and topological isomorphism at a point x0
of U . Then the map f is a Cr diffeomorphism of some neighborhood of x0 onto some

neighborhood of f(x0).

3.2 Bifurcation theory from a simple eigenvalue

Now we study the operator equation of the following form

f(λ, x) = 0, (3.1)

where f depends on a real parameter λ. In other words, f(λ, x) is a nonlinear
operator, depending on the parameter λ, which operates on the unknown vector x.
One of the first questions to be answered is whether or not the equation f(λ, x) = 0
has any solution x for a given value of λ. If it does, the question of how many
solutions it has arises, and then how this number varies with λ. Of particular
interest is the process of bifurcation whereby a given solution of f(λ, x) = 0 splits
into two or more solutions as λ passes through some critical value λ1.

Now let f(λ, x) be a Ck map, k ≥ 3, of a neighborhood of (λ1, 0) in a Banach
space R×X into a Banach space Y such that

f(λ1, 0) = 0.

The point (λ1, 0) is called a bifurcation point of the operator equation f(λ, x) = 0
if every neighborhood of (λ1, 0) in R×X contains a solution (λ, x) with x ̸= 0.

The next theorem gives sufficient conditions in order that the point (λ1, 0) is
a bifurcation point of the map f (cf. [26, Theorem 1.7], [29, Chapter 4, Theorem
4.3.22], [43, Theorem 3.2.2]):
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Theorem 3.3 (Crandall–Rabinowitz) Let f(λ, x) be a Ck map, k ≥ 3, of a neigh-

borhood of (λ1, 0) in a Banach space R×X into a Banach space Y such that

f(λ1, 0) = 0.

Assume that the following four conditions are satisfied:

(i) Dλf(λ1, 0) = 0.
(ii) The null space N (Dxf(λ1, 0)) is one-dimensional, spanned by a vector x0.

(iii) The range R (Dxf(λ1, 0)) has codimension one in the space Y .

(iv) D2
λf(λ1, 0) ∈ R (Dxf(λ1, 0)) and DλDxf(λ1, 0)x0 ̸∈ R (Dxf(λ1, 0)).

Then the point (λ1, 0) is a bifurcation point of the operator equation (3.1). In fact,

the set of solutions of f(λ, x) = 0 near (λ1, 0) consists of two Ck−2 curves Γ1 and

Γ2 intersecting only at the point (λ1, 0). Furthermore, the curve Γ1 is tangent to the

λ-axis at (λ1, 0) and may be parametrized by λ as

Γ1 = {(λ, x1(λ)) : |λ− λ1| < ε} ,

while the curve Γ2 may be parametrized by a variable s as

Γ2 = {(λ2(s), s x0 + x2(s)) : |s| < ε} .

Here

x2(0) =
dx2
ds

(0) = 0, λ2(0) = λ1.

In the case f(λ, 0) = 0 for all |λ−λ1| sufficiently small, we have a trivial solution
x = 0 available; so the curve Γ1 is in the λ-axis (see Figure 3.1).
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Fig. 3.1 The bifurcation curves Γ1 and Γ2 in the case f(λ, 0) = 0

The next theorem asserts the existence of global solution branches for positive
mappings due to Dancer [27, Corollary to Theorem 2] (cf. Rabinowitz [47, Theorem
1.3], Amann [5, Theorem 18.3]):

Theorem 3.4 (Dancer) Let E be an ordered Banach space with total positive cone

P . Let

A : R× E −→ E
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be a completely continuous map that satisfies the conditions{
A(0, x) = 0 for x ∈ E,

A(λ, 0) = 0 for λ ∈ R.

Assume that there exist a linear operator B : E → E and a map F : R× E → E such

that

A(λ, x) = λBx+ F (λ, x),

where

∥F (λ, x)∥ = o (∥x∥) as x→ 0 in E, locally uniformly in λ ∈ R.

We let

CP (B) := {λ ∈ [0,∞) : There exists an x ∈ P with ∥x∥ = 1 such that λBx = x} .

If the spectral radius r(B) is positive, then the component of the set

DP (A) = {(λ, x) ∈ [0,∞)× P : x = A(λ, x), x ̸= 0} ∪ ({0} × CP (B))

containing (1/r(B), 0) is unbounded in R × E. Moreover, the point (1/r(B), 0) is a

bifurcation point of the nonlinear operator equation x = A(λ, x) to the trivial solution

(see Figure 3.2).

1/r(B)

DP (A)

x

λ

Fig. 3.2 The point (1/r(B), 0) is a bifurcation point of the nonlinear operator equation x =
A(λ, x) to the trivial solution

Remark 3.1 Some remarks are in order:

(i) The operator B : E → E is compact. Hence the set CP (B) is a countable set
with no finite limit point.

(ii) If P has non-empty interior Int (P ) and if B is a strongly positive, then it fol-
lows from an application of the Krĕın–Rutman theorem (Theorem 2.4) that
r(T ) > 0. Hence, the sharp version of the Krĕın–Rutman theorem (Theorem
2.5) applies.
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3.3 Brouwer degree

In this subsection we consider the following situation:

(a) Ω is a bounded open set in Rn with boundary ∂Ω.
(b) f = (f1, . . . , fn) : Ω → Rn is a continuous map.
(c) p is a point of Rn such that f(x) ̸= p for all x ∈ ∂Ω.

For each triplet (f,Ω, p), we define an integer-valued function deg(f,Ω, p) in three
steps (see [22], [23], [29], [43], [75]):

(i) The regular value case: Let f ∈ C1(Ω,Rn) ∩ C(Ω,Rn). We say that p is a
regular value of f if the Jacobian determinant

Jf (x) = det


∂f1

∂x1

∂f1

∂x2
· · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · ∂f2

∂xn

· · · · ·
· · · · ·

∂fn
∂x1

∂fn
∂x2

· · ∂fn
∂xn


is different from zero for every x ∈ f−1(p), where

f−1(p) = {x ∈ Ω : f(x) = p}.

It is easy to see that if p is a regular value of f , then the set f−1(p) is a finite
set. Thus we can define an integer deg(f,Ω, p) for any regular value p of f by the
formula

deg(f,Ω, p) =

{∑
x∈f−1(p) sgn Jf (x) if f−1(p) ̸= ∅,

0 if f−1(p) = ∅.
(3.2)

The integer deg(f,Ω, p) is called the Brouwer degree of the map f with respect to
the set Ω and the point p.

(ii) The singular value case: Let f ∈ C1(Ω,Rn) ∩ C(Ω,Rn). In order to define
the Brouwer degree for any value p of f , we make use of the following theorem:

Theorem 3.5 (Sard) Let f ∈ C1(Ω,Rn). If we define the set Sf of singular points
of f by the formula

Sf = {x ∈ Ω : Jf (x) = 0},

then the Lebesgue measure of f(Sf ) is equal to zero.

If p is a point of f(Sf ), by virtue of Sard’s theorem we can find a sequence
{pj} of points in Rn such that

pj ̸∈ f(Sf ),

pj −→ p as j → ∞,

pj ̸= f(x) for each x ∈ ∂Ω and all j ∈ N.

Then we define the degrees deg(f,Ω, pj) by formula (3.2). We can show that the
limit

lim
j→∞

deg(f,Ω, pj)

exists and is independent of the approximation sequence {pj} chosen.



Semilinear elliptic problems via the Semenov approximation 35

Thus we can define the Brouwer degree for any value p of f as follows:

deg(f,Ω, p) = lim
j→∞

deg(f,Ω, pj). (3.3)

(iii) The general case: Let f ∈ C(Ω,Rn). By using the Weierstrass approxima-
tion theorem, we can find a sequence {fk} of polynomials such that{

fk −→ f uniformly on Ω as k → ∞,

p ̸= fk(x) for each x ∈ ∂Ω and all k ∈ N.

Then we define the degrees deg(fk, Ω, p) by formula (3.3). We can show that the
limit

lim
k→∞

deg(fk, Ω, p)

exists and is independent of the approximation sequence {fk} chosen.
In this way, for any map f ∈ C(Ω,Rn) and any point p ∈ Rn \ f(∂Ω) we can

define the Brouwer degree, deg(f,Ω, p), by the formula

deg(f,Ω, p) = lim
k→∞

deg(fk, Ω, p).

The Brouwer degree enjoys some basic properties (see [22, Chapter 9]):

(i) (Normalization property): If I : Ω → Rn is the identity map and p ∈ Rn, then
we have the formula

deg(I,Ω, p) =

{
1 if p ∈ Ω,

0 if p ̸∈ Ω.
.

(ii) (Translation invariance property): deg(f,Ω, p) = deg(f − p,Ω, 0).
(iii) (Domain additivity property): If Ω1, Ω2 are disjoint open subsets of Ω and a

point p ∈ Ω such that p ̸∈ f
(
Ω \ (Ω1 ∪Ω2)

)
, then we have the formula

deg(f,Ω, p) = deg
(
f |Ω1

, Ω1, p
)
+ deg

(
f |Ω2

, Ω2, p
)
.

Here f |V is the restriction of f to V .
(iv) (Solution property): If deg(f,Ω, p) ̸= 0, then there exists a point x ∈ Ω such

that
f(x) = p.

(v) (Excision property): Let Ω0 be an open subset of Ω such that

f(x) ̸= p for all x ∈ Ω \Ω0,

then we have the formula

deg(f,Ω, p) = deg(f,Ω0, p).

(vi) (Homotopy invariance property): For every family h(·, t) : Ω × [0, 1] → Rn of
compact maps such that h(x, t) ̸= p for all (x, t) ∈ ∂Ω × [0, 1], the integer

deg (h(·, t), Ω, p)

is independent of t ∈ [0, 1].
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3.4 The Leray–Schauder degree

The Leray–Schauder degree is an extension of the Brouwer degree to mappings
defined on an infinite dimensional real Banach space. The Brouwer fixed-point
theorem asserts that a continuous map f of a closed, bounded convex set K ⊂ Rn

into itself has a fixed point. This is no longer true in infinite dimensions. In infinite-
dimensional spaces, we must require more of f than mere continuity (see [22], [23],
[29], [43], [75]).

Let X be a real Banach space and let Ω be a bounded and open subset of X
with boundary ∂Ω. A continuous map

f : Ω −→ X

is said to be compact if it maps bounded sets in Ω into relatively compact sets of
X. It should be emphasized that f : Ω → X is compact if and only if f is a uniform
limit of mappings whose ranges lie in finite-dimensional subspaces.

The Leray–Schauder degree deg (f,Ω, p) of a compact perturbation f = I −K

of the identity map I at a point p ∈ X and relative to Ω can be defined by an
analogue of the Galerkin approximation procedures, by assuming that

f(x) ̸= p on ∂Ω.

More precisely, we define the integer-valued function deg (f,Ω, p) in two steps
(see [22, Chapter 10]):

Step 1: If the compact mapping K : Ω → X has finite-dimensional range con-
tained in a finite-dimensional subspace Xn of X, then, by assuming that p ∈ Xn

we define the Leray–Schauder degree of I −K at p relative Ω, deg (I −K,Ω, p), by
the formula

deg (I −K,Ω, p) = deg (I −K,Ω ∩Xn, p).

We can verify that the integer deg (I −K,Ω ∩Xn, p) is independent of the finite-
dimensional subspace Xn containing p and the range of K.

Step 2: For a general compact mapping K : Ω → X, we approximate K by a
sequence {Kn} of compact mappings with finite-dimensional range Kn : Ω → Xn

such that

sup
x∈Ω

∥Kx−Knx∥ ≤ 1

n
.

Then, by assuming that p ∈ Xn as in Step 1 we define the Leray–Schauder degree,
deg (I −K,Ω, p), by the formula

deg (I −K,Ω, p) = lim
n→∞

deg (I −Kn, Ω ∩Xn, p). (3.4)

We can show that the limit (3.4) exists and is independent of the approximating
sequence {Kn}.

Similar to the Brouwer degree, the Leray–Schauder degree enjoys some basic
properties (see [22, Chapter 11]):

(I) Normalization property: If I : X → X is the identity map, then we have the
assertion

deg (I,Ω, p) =

{
1 if p ∈ Ω,

0 if p ̸∈ Ω.
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(II) Homotopy invariance property: Let Ω be a bounded and open subset of X. If
K : Ω × [0, 1] → X is compact and if a point p ∈ X satisfies the condition

x−K(x, t) ̸= p for all x ∈ ∂Ω and 0 ≤ t ≤ 1,

then it follows that deg (I −K(·, t), Ω, p) is independent of t.
(III) Translation invariance property: For each point p ∈ X, we have the formula

deg (I −K,Ω, p) = deg (I −K − p,Ω, 0) .

(IV) Domain additivity property: If Ω1 and Ω2 are two open subsets in Ω such that
Ω1 ∩Ω2 = ∅ and satisfy the condition

x−Kx ̸= p for all x ∈ Ω \ (Ω1 ∪Ω2),

then we have the formula

deg (I −K,Ω, p) = deg (I −K,Ω1, p) + deg (I −K,Ω2, p) .

(V) Excision property: Let Ω be a bounded open set in X such that

x−Kx ̸= p for all x ∈ ∂Ω.

If W is an open subset of Ω such that

x−Kx ̸= p for all x ∈W,

then we have the formula

deg (I −K,Ω, p) = deg (I −K,Ω \W,p) .

(VI) Empty set property: deg (I −K, ∅, p) = 0.

The next theorem is a generalization of Kronecker’s existence theorem for the
Brouwer degree (see [23, Section 3.4]):

Theorem 3.6 (Kronecker) Let Ω be a bounded open subset of a real Banach space

X and let K : Ω → X be compact. If p0 ̸∈ (I −K)(∂Ω) and deg (I −K,Ω, p0) ̸= 0,
then there exists a point x0 ∈ Ω such that (I −K)x0 = p0.

Proof Our proof is based on a reduction to absurdity. Assume, to the contrary,
that

p0 ̸∈ (I −K)
(
Ω
)
= (I −K) (Ω) ∪ (I −K) (∂Ω) .

Then we have, by the excision property (V) and the empty set property (VI),

deg (I −K,Ω, p0) = deg
(
I −K,Ω \Ω, p0

)
= deg (I −K, ∅, p0) = 0.

This contradicts the assumption that deg (I −K,Ω, p0) ̸= 0.

The proof of Theorem 3.6 is complete. ⊓⊔
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3.5 The Leray–Schauder index

Let ϕ be a mapping of the closure Ω = Ω ∪ ∂Ω into X such that ϕ(x) ̸= 0 on ∂Ω.
Assume that

ϕ ∈ C1(Ω,X),

K = I − ϕ : Ω −→ X is compact.

If x0 is an isolated solution of the equation ϕ(x) = 0 and if the Fréchet derivative
Dϕ(x0) = I − DK(x0) at x0 is invertible, then we can define the Leray–Schauder

index of the map ϕ at x0, i(ϕ, x0, 0), by the formula

i (ϕ, x0, 0) = deg (ϕ,B(x0, ε), 0) ,

where the open ball B(x0, ε) of radius ε about x0 is chosen so that it contains
no other solution of the equation ϕ(x) = 0. It should be emphasized that the
Leray–Schauder index i(ϕ, x0, 0) does not depend on the special choice of ε.

The next index theorem plays an essential role in the proof of Theorem 8.2 in
the resonance case (see [29, Proposition 5.8.11], [43, Theorem 2.8.1]):

Theorem 3.7 (the index theorem) Let X be a real Banach space and let Ω be a

bounded open set in X. If ϕ is a mapping of the closure Ω = Ω ∪ ∂Ω into X such that

ϕ(x) ̸= 0 on ∂Ω and if it satisfies the conditions

ϕ ∈ C1(Ω,X),

K = I − ϕ : Ω −→ X is compact,

then we have the formula for the Leray–Schauder index i(ϕ, x0, 0)

i (ϕ, x0, 0) = (−1)β , (3.5)

where

β =
∑
µj>1

βj ,

βj being the algebraic multiplicity of the eigenvalue µj of the Fréchet derivative

DK (x0) = I −Dϕ (x0)

at x0.

4 Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2 under hypotheses (H.1) and
(H.2). Its proof is essentially based on three lemmas (Lemma 4.1, Lemma 4.5 and
Lemma 4.6) and the unique continuation property (see [15], [33], [42]), just as in
Szulkin [52, Theorem 1.3].
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Ce(D)xι

C(D)
K−−−−−→ C1

B(D)x
Ce(D)

Fig. 4.1 The mapping properties of the resolvent K in the spaces C(D), Ce(D) and C1
B(D)

Cθ(D)
A←−−−−− C2+θ

B (D)x x
Cθ(D)

K−−−−−→ C2+θ
B (D)x

C1
B(D)

Fig. 4.2 The mapping properties of the resolvent K

4.1 Reduction to an operator equation

By virtue of Figure 2.1, we have the mapping properties of the resolvent K in the
spaces C(D), Ce(D) and C1

B(D) as in Figure 4.1.
Moreover, by virtue of Theorem 2.2 we have the mapping properties of the

operator A and the resolvent K as in Figure 4.2.
Therefore, we find that the semilinear boundary value problemAu− λu+ f(u) = 0 in D,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂D

(1.2)

is equivalent to the following operator equation:

u = λKu−K (f(u)) in Ce(D). (4.1)

Now let m(x) be a function in C(D) such that

m(x) > 0 on D, (4.2)

and consider the following eigenvalue problem with the weight function m(x):

K (m(x)u) = µu in Ce(D). (4.3)

By Proposition 2.2, we find that the operator

K (m(x)·) : Ce(D)
m(x)·−→ C(D)

K−→ Ce(D) (4.4)

is strongly positive and compact (see Figure 4.3).
Therefore, by using the Krĕın–Rutman theorem (Theorem 2.5) with K :=

K(m(x)·) we obtain the following generalization of Szulkin [52, Proposition 1.1] to
the degenerate case:
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Ce(D)
K(m(x)·)−−−−−−−→ Ce(D)x x

Pe \ {0} −−−−−−−→
K(m(x)·)

Int (Pe)

Fig. 4.3 The mapping properties of the operator K (m(x)·) in the ordered Banach space

Ce(D)

Proposition 4.1 Assume that the weight function m(x) ∈ C(D) satisfies condition

(4.2). Then we have the following two assertions:

(i) The eigenvalue problem (4.3) has a countable number of positive eigenvalues µj(m),
which may accumulate only at 0. Hence, they may be arranged in a decreasing

sequence

µ1(m) ≥ µ2(m) ≥ . . . ,

where each eigenvalue is repeated according to its multiplicity.

(ii) The largest eigenvalue µ1(m) is algebraically simple, i.e., µ1(m) > µ2(m), and
has a positive eigenfunction. No other eigenvalues have positive eigenfunctions.

Since the operator A is positive and selfadjoint in the Hilbert space L2(D), we
can define its square root C = A1/2, and introduce a Hilbert space H as follows:

H = the domain D(C) with the inner product

(u, v)H = (Cu, Cv)L2(D) for all u, v ∈ D(C).

Here it is worthwhile pointing out (see [55, Theorem 1.10]) that the explicit formula
for the fractional power C = A1/2 on the domain D(A) is given by the formula

Cu = − 1

π

∫ ∞

0
s−1/2 (sI + A)−1 Au ds for all u ∈ D(A).

The next theorem gives a more concrete characterization of the Hilbert space
H (cf. [63, Proposition 4.1]):

Theorem 4.1 The Hilbert space H = D(C) coincides with the completion of the

domain

D(A) =
{
u ∈ H2(D) : Bu = 0 on ∂D

}
with respect to the inner product

(u, v)H = (Au, v)L2(D)

=
N∑

i,j=1

∫
D
aij(x)

∂u

∂xi

∂v

∂xj
dx+

∫
D
c(x)u · v dx

+

∫
{a(x′) ̸=0}

b(x′)

a(x′)
u · v dσ for all u, v ∈ D(A).

Here the last term on the right-hand side is an inner product of the Hilbert space

L2(∂D).
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Proof We have only to show that D(A) is dense in the domain D(A1/2) = D(C).
To do this, we remark that the operators

C−1 : L2(Ω) −→ D(C)

and
C−1 : D(A1/2) −→ D(A3/2)

are algebraic and topological isomorphisms, and further that

D(A3/2) ⊂ D(A).

Therefore, we obtain that the domain D(A) is dense in the domain D(C), since
D(A) is dense in L2(Ω).

The proof of Theorem 4.1 is complete. ⊓⊔

The situation of Theorem 4.1 can be visualized as in Figure 4.4.

L2(Ω)
C−1
−−−−−→ D(C) = Hx x

H = D(C) C−1
−−−−−→ D(C2) = D(A)x x

D(A) −−−−−→
C−1

D(A3/2)

Fig. 4.4 The mapping properties of the fractional power C−1 = A−1/2

The next proposition gives the variational characterization of eigenvalues of the
eigenvalue problem (4.3) (cf. [28, Proposition 1.10], [48, Chapter XIII, Theorem
XIII.2], [58, Proposition 3.4]):

Proposition 4.2 Assume that the weight function m(x) ∈ C(D) satisfies the condi-

tion (4.2). Then we have the following two assertions:

(i) The eigenvalues µn(m) are characterized as follows:

µn(m) = sup
Fn

inf

{∫
D
m(x) |u|2 dx : ∥u∥H = 1, u ∈ Fn

}
,

where Fn varies over all n-dimensional subspaces of H.

(ii) The corresponding orthonormal eigenfunctions φn(x) in H are characterized as

follows:

(φn, v)H =
N∑

i,j=1

∫
D
aij(x)

∂φn

∂xi

∂v

∂xj
dx+

∫
D
c(x)φn · v dx

+

∫
{a(x′) ̸=0}

b(x′)

a(x′)
φn · v dσ
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=
1

µn(m)

∫
D
m(x)φn · v dx for all v ∈ H.

µn(m) =

∫
D
m(x) |φn|2 dx.

(iii) If m1(x) ≤ m2(x) for all x ∈ D, then we have µn(m1) ≤ µn(m2) for all n. If

m1(x) < m2(x) for all x ∈ D, then we have µn(m1) < µn(m2) for all n.

Part (iii) is an immediate consequence of the maxmini formula of eigenvalues
µn(m) given by part (i) (see [58, Proposition 3.5]).

4.2 Proof of Theorem 1.2

The proof of Theorem 1.2 is divided into five steps.
Step 1: In order to study globally the bifurcation solution curves, we need the

following generalization of Szulkin [52, Lemma 2.1] to the degenerate case:

Lemma 4.1 If u is a positive or negative solution of the nonlinear operator equation

(4.1) with λ1 < λ <∞, then u is a regular point of the mapping

G (λ, u) : R× C(D) −→ C(D),

given by the formulas

G (λ, u) := u− F (λ, u) ,

F (λ, u) := K (λu− f(u)) .

Namely, the partial Fréchet derivative Gu (λ, u) at u is invertible.

Proof First, we remark that the Fréchet derivative of G(λ, ·) at u is equal to the
following:

Gu (λ, u) = I − Fu (λ, u) = I −K
(
λ− f ′(u)

)
.

Since the mapping
F (λ, u) = λKu−K (f(u))

is compact, it suffices to show that the operator equation

v = Fu (λ, u) v = K
(
λ v − f ′(u) v

)
(4.5)

has only the trivial solution v = 0.
Our proof is based on a reduction to absurdity. Assume, to the contrary, that

the operator equation (4.5) has a nontrivial solution u. Then the eigenvalue prob-
lem with weight λ− f ′(u)

K
(
λ− f ′(u)

)
v = µ v in C(D)

has an eigenvalue 1. This implies that

µk
(
λ− f ′(u)

)
= 1 for some k ≥ 1. (4.6)

If u is a positive solution of the equation

F (λ, u) = K (λu− f(u)) = u in C(D), (4.7)
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then the equation can be written in the form

u = K

(
λ− f(u)

u

)
u in C(D),

where
f(t)

t
= 0 for t = 0,

since we have the formula

lim
t→0

f(t)

t
= 0.

Hence the eigenvalue problem with weight λ− f(u)/u

K

(
λ− f(u)

u

)
v = µ v in C(D)

has an eigenvalue 1. This implies that

µj

(
λ− f(u)

u

)
= 1 for some j ≥ 1,

with a corresponding positive eigenfunction u.
However, it follows from condition (1.4) and the properties of f(t) that

λ− f(t)

t
> λ− f ′(t) > λ1 − f ′(t) > 0 for all t ̸= 0. (4.8)

Therefore, by applying part (ii) of Proposition 4.1 with (see formula (4.4))

m(x) := λ− f (u(x))

u(x)

we obtain that j = 1, that is,

µ1

(
λ− f(u)

u

)
= 1. (4.9)

Moreover, it follows from an application of Lemma 2.2 with v := λu − f(u) that
the solution

u = K (λu− f(u))

satisfies the condition
u(x) > 0 in D.

By combining inequality (4.8) and Proposition 4.2, we obtain from formulas
(4.6) and (4.9) that

1 = µ1

(
λ− f(u)

u

)
> µ1

(
λ− f ′(u)

)
≥ µk

(
λ− f ′(u)

)
= 1.

This is a contradiction.
Summing up, we have proved that the operator equation (4.5) has only the

trivial solution v = 0. In view of the Fredholm alternative, this implies that the
partial Fréchet derivative Gu (λ, u) at u is bijective and hence invertible.

Similarly, we can prove that a negative solution u of the nonlinear operator
equation (4.1) is a regular point of G(λ, u).

The proof of Lemma 4.1 is complete. ⊓⊔
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Step 2: Secondly, we show that the positive solution of the nonlinear operator
equation (4.1) is unique. The proof is essentially based on the following uniqueness
theorem for order convex maps (cf. [5, Theorem 24.2]):

Theorem 4.2 (the uniqueness theorem) Let (E,Q) be an ordered Banach space

having the positive cone Q with nonempty interior. If σ is a positive number, we let

Qσ = {u ∈ Q : ∥u∥ ≤ σ} .

Assume that a mapping

f : Qσ −→ E

satisfies the following two conditions:

(A) f is strongly increasing, that is, if u, v ∈ Qσ and if u ≤ v and v ̸= u, then it

follows that f(v)− f(u) is an interior point of Q.

(B) f is strongly sublinear, that is, f(0) ≥ 0 and if u ∈ Qσ and u ̸= 0, then it follows

that f(τu)− τf(u) is an interior point of Q for every 0 < τ < 1.

Then the mapping f has at most one positive fixed point.

Proof Our proof is based on a reduction to absurdity. Assume, to the contrary,
that u0 and u1 are two positive fixed points of f :{

u0 ∈ Pσ, f(u0) = u0,

u1 ∈ Pσ, f(u1) = u1.

Without loss of generality, we may assume that

u1 ̸≤ u0.

Since f is strongly monotone increasing, it follows that

u0 = f(u0) ≫ f(0) ≥ 0.

This implies that

u0 ∈ Int (P ).

Moreover, we can find a positive number τ such that

u0 − τ u1 ∈ ∂(P ).

Here we remark that 0 < τ < 1. Indeed, it suffices to note that u1 ̸≤ u0.
However, since f is strongly sublinear and strongly monotone increasing, we

obtain that

u0 = f(u0) ≥ f (τ u1) ≫ τ f(u1) = τ u1,

so that

u0 − τ u1 ∈ Int (P ).

This is a contradiction.
The proof of Theorem 4.2 is complete. ⊓⊔
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In the proof of Theorem 1.2, we shall apply Theorem 4.2 with

E := Ce(D),

Q := Pe =
{
u ∈ Ce(D) : u ≥ 0 on D

}
,

f := F (λ, ·)|Pe
= K (λ · −f(·))|Pe

.

If σ is a positive number, we let(
Pe
)
σ
:=
{
u ∈ Pe : ∥u∥ ≤ σ on D

}
.

We have only to consider in the space
(
Pe
)
σ
for every σ > 0. Indeed, if u1 and u2

are two positive solutions of the nonlinear operator equation (4.1), then we can
find a constant σ > 0 such that ∥u1∥, ∥u2∥ ≤ σ on D, so that u1, u2 ∈

(
Pe
)
σ
.

Then we have the following lemma:

Lemma 4.2 The operator F (λ, ·) maps
(
Pe
)
σ
into Pe.

Proof Let u be an arbitrary function in
(
Pe
)
σ
. By applying inequality (1.4), we

find that
λu− f(u) ∈ P.

Hence it follows from an application of Proposition 2.2 that

F (λ, u) = K (λu− f(u)) ∈ Pe.

The proof of Lemma 4.2 is complete. ⊓⊔

Moreover, we have the following lemma:

Lemma 4.3 The operator F (λ, ·) :
(
Pe
)
σ
−→ Pe is strongly increasing.

Proof The proof of Lemma 4.3 is based on the following claim:

Claim 4.1 The operator F (λ, ·) : [ϕ, ψ] → C(D) is increasing. Here [ϕ, ψ] is the order

interval defined by the formula

[ϕ, ψ] =
{
u ∈ C(D) : ϕ ≤ u ≤ ψ on D

}
.

Proof Let u and v be arbitrary functions in C(D) satisfying ϕ ≤ u ≤ v ≤ ψ on D.
Then we have the assertions

(F (λ, v(x))− F (λ, u(x)))

=

0 if v(x) = u(x),(
F (λ, v(x))− F (λ, u(x))

v(x)− u(x)

)
(v(x)− u(x)) if v(x) > u(x).

Hence it follows from inequality (1.4) and Lemma 2.2 that

F (λ, v)− F (λ, u) = K (λ(v − u)− (f(v)− f(u))) ≥ 0 on D,

or equivalently
F (λ, u) ≤ F (λ, v) on D.

This proves that F (λ, ·) is increasing.
The proof of Claim 4.1 is complete. ⊓⊔
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Therefore, Lemma 4.3 follows by combining Claim 4.1 and Proposition 2.2. ⊓⊔

Lemma 4.4 The operator F (λ, ·) :
(
Pe
)
σ
−→ Pe is strongly sublinear.

Proof Let u be an arbitrary function in
(
Pe
)
σ
but u ̸= 0. Since f(t) is convex for

t > 0, we have, for every 0 < τ < 1,{
f (τ u(x)) > τ f(u(x)) if u(x) > 0,

f (τu(x)) = f(0) = 0 if u(x) = 0,

and so

F (τλ, u)− τ F (λ, u)

= K (τλu− f(τu))− τ (λu− f(u)) ≥ 0 and ̸≡ 0 on D.

Hence it follows from an application of Proposition 2.2 that the function

F (τλ, u)− τ F (λ, u)

is an interior point of Pe for every 0 < τ < 1.
The proof of Lemma 4.4 is complete. ⊓⊔

By combining Lemmas 4.2, 4.3 and 4.4, we have proved that the mapping

F (λ, ·) :
(
Pe
)
σ
−→ Pe

satisfies conditions (A) and (B) of Theorem 4.2 with E := Ce(D) and Q := Pe.
Therefore, the uniqueness of positive fixed points of the nonlinear operator

equation (4.1) follows from an application of Theorem 4.2.
Step 3: The next lemma is a generalization of Szulkin [52, Lemma 2.2] to the

degenerate case, and is an essential step in the proof of Theorem 1.2:

Lemma 4.5 The nonlinear operator equation (4.1) has a unique positive solution for

each λ1 < λ < λ1 + k+. No positive solutions exist for λ ≥ λ1 + k+. The uniform

norm ∥u+(λ)∥ of the positive solution u+(λ) tends to ∞ as λ→ λ1 + k+:

lim
λ→λ1+k+

∥u+(λ)∥ = ∞.

Similar assertions hold true for negative solutions u−(λ) of the nonlinear operator

equation (4.1) for each λ1 < λ < λ1 + k−.

Proof The proof of Lemma 4.5 is divided into three steps.
Step (i): First, we show that the nonlinear operator equation (4.1) has a

positive solution.
By inequality (4.8), it follows that the mapping

F (λ, ·) = K (λ · −f(·)) : C(D) −→ C(D)

u 7−→ K (λu− f(u))

maps the positive cone P into itself. Moreover, we remark that F (λ, ·) is right

asymptotically linear. Indeed, we have the assertion

F (λ, u)

u
= λK −K

(
f(u)

u

)
→ (λ− k+)K as u→ +∞,
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and so
F ′
+(λ,∞)v = (λ− k+)Kv for all v ∈ P .

Here F ′
+(λ, ·) denotes the right Fréchet derivative of F (λ, ·).

Similarly, it follows that F (λ, ·) is right differentiable at zero, since we have the
formula

F (λ, u)

u
= λK −K

(
f(u)

u

)
→ λK as u→ 0,

and so
F ′
+(λ, 0)v = λKv for all v ∈ P .

The proof of Lemma 4.5 is based on the following positive fixed point theorem
for differentiable maps ([5, Theorem 13.6]):

Theorem 4.3 (Amann) Let f : P → P be a completely continuous map such that

f(0) = 0. Assume that f is asymptotically linear and right differentiable at zero such

that 1 is not an eigenvalue of f ′(∞) or of f ′+(0) to a positive eigenvector. Then f has

at least one positive fixed point, provided that one of the following two conditions (I)

and (II) is satisfied:

(I) f ′+(0) has no positive eigenvector to an eigenvalue greater than one, whereas f ′(∞)
possesses such a positive eigenvector.

(II) f ′+(0) possesses a positive eigenvector to an eigenvalue greater than one, but this

is not the case for f ′(∞).

If λ1 < λ < λ1 + k+, we find that{
(λ− k+)Kv = F ′

+(λ,∞)v = µ v,

v ∈ P \ {0}

⇐⇒Kv =
(

µ

λ− k+

)
v,

v ∈ P \ {0}
⇐⇒ λ− k+

µ
= λ1

⇐⇒

µ =
λ− k+
λ1

< 1 for λ < λ1 + k+.

This proves that F ′
+(λ,∞) possesses a positive eigenvector to an eigenvalue µ < 1.

On the other hand, we find that{
λKv = F ′

+(λ, 0)v = ν v,

v ∈ P \ {0}

⇐⇒{
Kv =

ν

λ
v,

v ∈ P \ {0}
⇐⇒ λ

ν
= λ1

⇐⇒

ν =
λ

λ1
> 1 for λ > λ1.

This proves that F ′
+(, λ) possesses a positive eigenvector to an eigenvalue ν > 1.

Summing up, we have proved that if λ1 < λ < λ1 + k+, then it follows that:
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(II) F ′
+(λ,∞) = (λ− k+)K possesses a positive eigenvector to an eigenvalue µ < 1,

while F ′
+(λ, 0) = λK possesses a positive eigenvector to an eigenvalue ν > 1.

Therefore, by applying Theorem 4.3 we obtain that the map F (λ, ·) has a
positive fixed point u:

F (λ, u) = K (λu− f(u)) = u, u ∈ P.

Step (ii): Secondly, we show that the nonlinear operator equation (4.1) has no
positive solutions for λ ≥ λ1 + k+.

Our proof is based on a reduction to absurdity. Assume, to the contrary, that
u is a positive solution of the nonlinear operator equation (4.1) for λ ≥ λ1 + k+.
Then we have the assertion

K

(
λ− f(u)

u

)
u = K (λu− f(u)) = u in C(D).

This implies that

µ1

(
λ− f(u)

u

)
= 1,

with a corresponding positive eigenfunction u.
On the other hand, since we have, by inequality (1.4),

λ− f ′(u) > λ− sup
t>0

f ′(t) = λ− k+,

we find from the proof of Proposition 4.2 that

1 = µ1

(
λ− f(u)

u

)
> µ1

(
λ− f ′(u)

)
> µ1 (λ− k+)

≥ µ1(λ1) = 1 for λ ≥ λ1 + k+.

This is a contradiction.
Step (iii): Thirdly, in order to show that the norm of the positive solution

tends to ∞ as λ→ λ1 + k+ we use the compactness of the resolvent K.
Our proof is based on a reduction to absurdity. Assume, to the contrary, that

there exist a sequence {(un, λ(n))} and a constant C > 0 such that
K
(
λ(n) un − f(un)

)
= F

(
λ(n), un

)
= un for all n,

∥un∥ ≤ C for all n,

λ(n) −→ λ1 + k+ as n→ ∞.

By virtue of the compactness of K, (by passing to a subsequence) we may assume
that

un = F
(
un, λ

(n)
)
−→ u0 in C(D). (4.10)

Then we have the formula

u0 = F (λ1 + k+, u0) in C(D).

This implies that u0 is a positive solution of the nonlinear operator equation (4.1)
for λ = λ1 + k+.
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However, it follows from Step 2 (the uniqueness of positive fixed points of the
nonlinear operator equation (4.1)) that

u0 = 0,

so that
un −→ 0 in C(D). (4.11)

Since f ′(0) = 0, we obtain from assertions (4.10) and (4.11) that

1 = µ1

(
λ(n) − f(un)

un

)
> µ1

(
λ(n) − f ′(un)

)
> µ1 (λ1) = 1 for n sufficiently large.

This is a contradiction.
In order to prove the lemma for negative solutions, we repeat the above argu-

ments in the “positive” cone
{
u ∈ C(D) : u ≤ 0

}
.

The proof of Lemma 4.5 is complete. ⊓⊔

Step 4: The next lemma is a generalization of Szulkin [52, Lemma 2.3] to the
degenerate case, which asserts that the nonlinear operator equation (4.1) has no
nontrivial solutions for λ1 − δ ≤ λ ≤ λ1:

Lemma 4.6 Let δ be the constant as in condition (1.4):

sup
t∈R

∣∣f ′(t)∣∣ < λ1 − δ for some constant 0 < δ < λ1. (1.4)

Then the nonlinear operator equation (4.1) has no nontrivial solutions for λ1 − δ ≤
λ ≤ λ1.

Proof Our proof is based on a reduction to absurdity. Assume, to the contrary,
that u is a nontrivial solution of the nonlinear operator equation (4.1)

K (λu− f(u)) = u in C(D).

Then the eigenvalue problem with weight

K

(
λ− f(u)

u

)
v = µ v in C(D)

has an eigenvalue 1, that is,

µk

(
λ− f(u)

u

)
= 1 for some k ≥ 1, (4.12)

with a corresponding eigenfunction u. Since f(0) = f ′(0) = 0 and f(t) is convex
for t > 0 and is concave for t < 0, it follows that

λ− f(u(x))

u(x)
≤ λ for u(x) ̸= 0.

This implies that

1 = µk

(
λ− f(u)

u

)
≤ µk(λ) ≤

λ

λk
for λ1 − δ ≤ λ ≤ λ1.
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Hence, we have the assertions

k = 1, λ = λ1,

and the corresponding eigenfunction u(x) is of constant sign:

u(x) ≥ 0 or u(x) ≤ 0 in D.

Moreover, it follows from Lemma 2.2 that

u(x) > 0 or u(x) < 0 in D.

Therefore, since we have the inequality

λ1 − f(u(x))

u(x)
> λ1 for u(x) ̸= 0,

we find from formula (4.12) with k := 1 and λ := λ1 that

1 = µ1

(
λ1 − f(u)

u

)
< µ1(λ1) = 1.

This is a contradiction.
The proof of Lemma 4.6 is complete. ⊓⊔

Remark 4.1 By the argument of Plastock [46, p. 321], we can prove that the map-
ping G(λ, ·) defined in Lemma 4.1 is a homeomorphism of C(D) onto itself for any
λ ≤ λ1.

Step 5: Finally, we show that each nontrivial solution of the nonlinear operator
equation (4.1) for λ1 < λ ≤ λ2 must necessarily be positive or negative in D.

If u ̸= 0 is a solution, then it follows that

µk

(
λ− f(u)

u

)
= 1 for some k ≥ 1,

with a corresponding eigenfunction u, just as in the proof of Lemma 4.6.
However, by the unique continuation property (see [15], [33], [42]) it follows that

u(x) ̸= 0 almost everywhere in D.

This implies that

λ− f(u(x))

u(x)
< λ almost everywhere in D.

Hence we have the assertion

µ2

(
λ− f(u)

u

)
≤ µ2(λ) =

λ

λ2
≤ 1 for λ1 < λ ≤ λ2.

Since the first eigenvalue µ1(λ− f(u)
u ) is algebraically simple, it follows that

µ1

(
λ− f(u)

u

)
= 1 for λ1 < λ ≤ λ2,

with a corresponding eigenfunction u.
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Therefore, we have proved that each nontrivial solution of the operator equa-
tion

K

(
λ− f(u)

u

)
v = v in C(D)

is of constant sign. Since u is a solution of this equation, it follows that u is positive
or negative in D.

Now the proof of Theorem 1.2 is complete. ⊓⊔

5 The Lyapunov–Schmidt procedure in the Banach space C(D)

In the proof of Theorems 1.3 and 1.4 we make use of the Lyapunov–Schmidt
procedure ([40], [50]) in order to study the nonlinear operator equation (4.1), which
reduces an infinite-dimensional problem to a finite-dimensional system (Theorem
5.1). This section is the heart of the subject.

We assume that hypotheses (H.1) and (H.2) are satisfied. Let e1(x) be the
normalized positive solution of the operator equation

e1 − λ1K e1 = 0 in C(D), (5.1)

or equivalently (see Theorem 1.1),
Ae1 = λ1 e1 in D,

B e1 = 0 on ∂D,

∥e1∥L2(D) = 1.

(5.2)

First, we have the following orthogonal decomposition in the Hilbert space
L2(D):

L2(D) (5.3)

= N (I − λ1K)⊕R (I − λ1K)

=
{
u ∈ L2(D) : (A− λ1)u = 0, Bu = 0

}
⊕
{
(I − λ1K)u : u ∈ H2(D), Bu = 0

}
.

= span [e1]⊕R (I − λ1K) .

Indeed, it suffices to note that the operator A is selfadjoint in L2(D) and that

K = A−1.

Hence, by restricting the orthogonal decomposition (5.3) to the subspace Lp(D)
for N < p <∞ we obtain the orthogonal decomposition

Lp(D) = span [e1]⊕ (R (I − λ1K) ∩ Lp(D)) for N < p <∞. (5.4)

However, it follows from an application of the regularity theorem ([65, Theorem
7.1]) that

R (I − λ1K) ∩ Lp(D) =
{
(I − λ1K) v : v ∈ C(D)

}
.

Indeed, it suffices to note the following:

u− λ1Ku ∈ C(D), u ∈ Lp(D)
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=⇒

Ku ∈W 2,p(D) ⊂ C2−N/p(D) for N < p <∞
=⇒

u = (u− λ1Ku) + λ1Ku ∈ C(D).

Hence, by restricting the orthogonal decomposition (5.4) to the subspace C(D)
of L2(D) we obtain the orthogonal decomposition (see Figure 5.1)

C(D) = span [e1]⊕
{
(I − λ1K) v : v ∈ C(D)

}
= span [e1]⊕W, (5.5)

where
W :=

{
(I − λ1K) v : u ∈ C(D)

}
.

-

6

0
span [e1] = N (I − λ1 K)

W = R (I − λ1 K)

X = C(D)

u = te1 + w

te1

w

�
�
�

�
�
�
��>

-

6

Fig. 5.1 The orthogonal decomposition (5.5) of X = C(D)

If we define the orthogonal projection Q from C(D) onto W along N (I − λ1K)
by the formula

Qu = u−
(∫

D
w(x) e1(x) dx

)
e1 for all u ∈ C(D),

or equivalently,

(I −Q)u =

(∫
D
w(x) e1(x) dx

)
e1 for all u ∈ C(D),

then it is easy to see that

W = Q(X) =

{
w ∈ C(D) :

∫
D
w(x) e1(x) dx = 0

}
.

Moreover, let e∗1 be a continuous linear functional on the space C(D) such that{
⟨e1, e∗1⟩ = 1,

⟨w, e∗1⟩ = 0 for all w ∈W.
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Then it follows from the orthogonal decomposition (5.5) that every function u ∈
C(D) can be written uniquely in the form (see Figure 5.1)

u = t e1 + w for t = ⟨u, e∗1⟩ and w ∈W. (5.6)

Hence we have the assertions{
Au− λu+ f(u) = 0 in D,

Bu = 0 in ∂D
(1.2)

⇐⇒

u− λKu+K (f(u)) = 0 in Ce(D) (4.1)

⇐⇒
u = t e1 + w,

w − λKw +Q (K (f (t e1 + w))) = 0 in C(D),⟨
t

(
1− λ

λ1

)
e1 + (I −Q)K (f (t e1 + w)) , e∗1

⟩
= 0.

(5.7)

Summing up, we are reduced to the infinite-dimensional equation

w − λKw +Q (K (f (t e1 + w))) = 0 in C(D) (5.8)

and the one-dimensional equation

Ψ(t, w) := t

(
1− λ

λ1

)
+ ⟨K (f (t e1 + w)) , e∗1⟩ = 0. (5.9)

However, the Fréchet derivative of the left-hand side of the infinite-dimensional
equation (5.8) at t = 0 and λ = λ1 is given by the formula

I − λ1K =

(I − λ1K)|W 0

0 1/λ1

 :
W

⊕
span [e1]

−→
W

⊕
span [e1]

(5.10)

Since we have, by formula (5.5),

C(D) =W ⊕ span [e1] ,

we find from formula (5.10) and Figure 5.1 that the Fréchet derivative I −λ1K of
the infinite-dimensional equation (5.8) at t = 0 and λ = λ1 is an isomorphism of
the space C(D).

Therefore, it follows from an application of the implicit function theorem (The-
orem 3.1) that there exists a constant ε1 > 0 such that if |t| < ε1 and |λ−λ1| < ε1,
then the infinite-dimensional equation (5.8) has a unique solution w(t, λ):

w(t, λ)− λKw(t, λ) +Q (K (f (t e1 + w(t, λ)))) = 0 in C(D), (5.11)

for |t| < ε1 and |λ− λ1| < ε1.

If we take λ ∈ (λ1, λ1 + ε1), then we find that all small solutions u = t e1 +
w(t, λ) of the nonlinear operator equation (4.1) are in one-to-one correspondence

with the solutions t of the one-dimensional equation

Φ (t, w(t, λ)) := t

(
1− λ

λ1

)
+
⟨
K (f (t e1 + w(t, λ))) , e∗1

⟩
= 0 for |t| < ε1. (5.12)

By combining formulas (5.7), (5.11) and (5.12), we have proved the following
theorem:
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Theorem 5.1 There exists a constant ε1 > 0 such that every small solution u of the

semilinear problem (1.2) can be uniquely expressed in the form

u = t e1 + w = t e1 + w(t, λ) for |t| < ε1 and λ1 < λ < λ1 + ε1, (5.13)

where the w(t, λ) satisfy the infinite-dimensional equation (5.11) and the t satisfy the

one-dimensional equation (5.12).

6 Proof of Theorem 1.3

In this section we study the semilinear elliptic boundary value problem (1.2) under
the condition that f(t) is bounded on R. It turns out that the set of nontrivial
solutions has properties considerably different from Theorem 1.2.

The semilinear elliptic boundary value problem (1.2) may be converted into
the nonlinear operator equation (4.1) which we rewrite as follows:

G(λ, u) := u− λKu+K (f(u)) = 0 in C(D). (6.1)

The purpose of this section is to prove the following generalization of Szulkin
[52, Theorem 5.1] to the degenerate case:

Theorem 6.1 Assume that hypotheses (H.1) and (H.2) are satisfied and let f(t) be a

bounded, C1 function on R such that

f(0) = f ′(0) = 0.

Moreover, we assume that f ′(t) is decreasing for t < 0 and increasing for t > 0, near
the origin t = 0, and further that

sup
|t|<η

∣∣f ′(t)∣∣ < λ1 − δ for some δ > 0 and η > 0. (1.4)

Then the nonlinear operator equation (6.1) has at least four nontrivial solutions u1,

u2, u3 and u4 for each λ ∈ (λ1, λ1 + ε) provided that ε > 0 is sufficiently small (see

Figure 1.7).

Proof The proof of Theorem 6.1 is based on an intermediate value argument just as
in Landesman–Lazer [38]. The proof is divided into five steps.

Step 1: By Theorem 3.3 (Crandall–Rabinowitz), there exists a constant ε1 > 0
such that the nonlinear operator equation (6.1) has two nontrivial solution curves
Γ1 and Γ2 emanating from the point (λ1, 0). Just as in Step 4 of the proof of
Theorem 1.2, we find that each small nontrivial solution of the nonlinear operator
equation (6.1) is of constant sign for λ ∈ [λ1, λ2). Moreover, under the present
hypotheses, Lemmas 4.1 and 4.5 remain valid for u of small norm. Hence there
exists a constant ε1 > 0 such that

Γ1 =
{
(λ, u1(λ)) ∈ R× C(D) : λ1 ≤ λ < λ1 + ε1

}
, (6.2a)

Γ2 =
{
(λ, u2(λ)) ∈ R× C(D) : λ1 ≤ λ < λ1 + ε1

}
. (6.2b)

Here Γ1 is the negative solution curve of the nonlinear operator equation (6.1)
and Γ2 is the positive solution curve of the nonlinear operator equation (6.1),
respectively (see Figures 1.5 and 1.6).
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It should be emphasized that u1(λ) and u2(λ) are regular points of the map
G(λ, ·) for every λ ∈ (λ1, λ1 + ε1) (see Lemma 4.1).

Step 2: Now we apply the Lyapunov–Schmidt procedure to the nonlinear op-
erator equation (6.1), just as in Section 5 (see Theorem 5.1). Let e1(x) be the
normalized positive solution of the equation

e1 − λ1Ke1 = 0 in C(D), (5.1)

that is, 
Ae1 = λ1 e1 in D,

Be1 = 0 on ∂D,

∥e1∥L2(D) = 1.

(5.2)

Since the eigenvalue λ1 is algebraically simple, we have the orthogonal decompo-
sition

C(D) = N (I − λ1K)⊕R (I − λ1K) = span [e1]⊕W, (5.5)

where (see Figure 5.1)

span [e1] = N (I − λ1K) ,

W = R (I − λ1K) .

By Mazur’s theorem ([74, Chapter IV, Section 6, Corollary]), there exists a con-
tinuous linear functional e∗1 such that⟨

e1, e
∗
1

⟩
= 1,⟨

w, e∗1
⟩
= 0 for all w ∈W.

More concretely, we have the formula⟨
u, e∗1

⟩
=

∫
D
u(x) e1(x) dx for all u ∈ C(D), (6.3)

since e1(x) is normalized.
If we define the orthogonal projection Q from C(D) onto W along N (I − λ1K)

by the formula (see Figure 5.1)

Qu = u−
(∫

D
u(x) e1(x) dx

)
e1 for all u ∈ C(D),

or equivalently,

(I −Q)u =

(∫
D
u(x) e1(x) dx

)
e1 =

⟨
u, e∗1

⟩
e1 for all u ∈ C(D), (6.4)

then it is easy to see that

W = R (I − λ1K) =

{
w ∈ C(D) :

∫
D
w(x) e1(x) dx = 0

}
.

Moreover, it follows from the orthogonal decomposition (5.5) and formula (6.3)
that every function u ∈ C(D) can be written uniquely in the form (see Figure 5.1)

u = t e1 + w(t) for t = ⟨u, e∗1⟩ and w(t) ∈W. (6.5)
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Hence we have, by formulas (6.5) and (6.4),{
Au− λu+ f(u) = 0 in D,

Bu = 0 in ∂D
(1.2)

⇐⇒

u− λKu+K (f(u)) = 0 in C(D) (4.1)

⇐⇒
u = t e1 + w(t),

w − λKw(t) +Q (K (f (t e1 + w(t)))) = 0 in C(D),

t

(
1− λ

λ1

)
+
∫
DK (f (t e1 + w(t))) · e1(x) dx = 0,

(6.6)

since K(W ) ⊂W .
Summing up, we are reduced to the study of the following system:

w(t)− λKw(t) +Q (K (f (t e1 + w(t)))) = 0 in C(D), (6.7a)

Ψ (t, w(t)) :=

(
1− λ

λ1

)
t+

⟨
K (f (t e1 + w(t))) , e∗1

⟩
= 0. (6.7b)

Step 3: Since I − λ1K is an isomorphism of W onto itself, it follows from an
application of the implicit function theorem (Theorem 3.1) that there exists a
constant ε2 > 0 such that if |t| < ε2 and |λ−λ1| < ε2, then the infinite-dimensional
equation (6.7a) has a unique solution w = w(t, λ) ∈ C(D):

w(t, λ)− λKw(t, λ) +Q (K (f (t e1 + w(t, λ)))) = 0 in C(D), (6.8)

for |t| < ε2 and |λ− λ1| < ε2.

If we take λ ∈ (λ1, λ1 + ε1), then we find from the one-dimensional equation
(6.7b) and the infinite-dimensional equation (6.8) that all small solutions

u = t e1 + w(t, λ)

of the nonlinear operator equation (6.1) are in one-to-one correspondence with the
solutions t of the one-dimensional equation

Φ(t) := Ψ (t, w(t, λ)) = t

(
1− λ

λ1

)
+
⟨
K (f (t e1 + w(t, λ))) , e∗1

⟩
(6.9)

= t

(
1− λ

λ1

)
+

∫
D
K (f (t e1 + w(t, λ))) · e1(x) dx = 0 for |t| < ε2.

Rephrased, the set of nontrivial solutions of the nonlinear operator equation (6.1)
consists of two C1 curves Γ1 and Γ2 that can be parametrized by t, for t < 0 and
for t > 0, respectively.

Therefore, we obtain that the one-dimensional equation (6.9)

Φ(t) = Ψ (t, w(t, λ)) = 0

has at least two nontrivial solutions, t1 = t1(λ) < 0 and t2 = t2(λ) > 0:

Φ(t1) = 0, Φ(t2) = 0,
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provided that λ ∈ (λ1, λ1 + ε). Here

ε = min {ε1, ε2} .

In this way, we find from formulas (6.6), (6.8) and (6.9) that the nonlinear
operator equation (6.1) has at least two nontrivial solutions u1 and u2 for each
λ ∈ (λ1, λ1 + ε): {

u1 = t1(λ) e1 + w (t1(λ), λ) , t1(λ) < 0,

u2 = t2(λ) e1 + w (t2(λ), λ) , t2(λ) > 0.

Step 4: Now we show that the nonlinear operator equation (6.1) possesses a
third nontrivial solution

u3 = t3 e1 + w3, t3 > 0, t3 ̸= t2, w3 = w3(λ) ∈W.

Without loss of generality, we may assume that

Φ(t) ̸= 0 for all t ∈ (0, ε2) and t ̸= t2.

In fact, if Φ(t3) = 0 for some t3 ∈ (0, ε2) and t ̸= t2, then we obtain the third
solution by setting

u3 = t3 e1 + w(t3).

First, we prove the following claim:

Claim 6.1 If λ > λ1, then the function Φ(t) satisfies the conditions{
Φ(0) = 0, Φ′(0) < 0,

Φ(t2) = 0, Φ′(t2) ̸= 0.

Proof Since f(0) = 0, we have, by formula (6.9),Φ(0) =
∫
DK (f(0)) · e1(x) dx = 0,

Φ(t2) = t2

(
1− λ

λ1

)
+
∫
DK (f (u2(t2))) · e1(x) dx = 0.

Moreover, we have the formula for the derivative Φ′(t) of Φ(t)

Φ′(t) = 1− λ

λ1
+

∫
D
K
(
f ′ (t e1 + w(t, λ))

)
(e1 + wt(t, λ)) · e1(x) dx.

Since f ′(0) = 0, this proves that

Φ′(0) = 1− λ

λ1
+

∫
D
K
(
f ′(0)

)
(e1 + wt(0, λ)) · e1(x) dx = 1− λ

λ1

< 0 for λ > λ1.

Recall that the solution

u2(t) = u2(t, λ) = t e1 + w(t, λ)



58 K. Taira

is a regular point of the map G(λ, ·) for each λ ∈ (λ1, λ1 + ε1), so that the partial
Fréchet derivative

Gu (λ, u2(t)) = I − λK +K
(
f ′ (u2(t))

)
: C(D) −→ C(D)

is an isomorphism for each λ ∈ (λ1, λ1 + ε1).
On the other hand, by differentiating the equation

G (λ, u2(t)) = u2(t)− λKu2(t) +K (f (u2(t)))

with respect to t, we obtain that

u′2(t)− λKu′2(t) +K
(
f ′ (u2(t))

)
· u′2(t) = Gu (λ, u2(t)) · u′2(t) ̸= 0, (6.10)

since we have the assertion

u′2(t) = e1 + wt(t, λ) ̸= 0 for wt(t, λ) ∈W. (6.11)

Therefore, we find from assertions (6.10) and (6.11) that

Φ′(t2) = 1− λ

λ1
+

∫
D
K
(
f ′ (t2 e1 + w(t2, λ))

)
(e1 + wt(t2, λ)) · e1(x) dx

= 1− λ

λ1
+

∫
D
K
(
f ′ (u2(t2))

)
· u′(t2) · e1(x) dx

̸= 1− λ

λ1
+

∫
D
{λK (e1 + wt(t2, λ))− e1 − wt(t2, λ)} · e1(x) dx

= 1− λ

λ1
+

λ

λ1

∫
D
e1(x)

2 −
∫
D
e1(x)

2 dx = 1− λ

λ1
+

λ

λ1
− 1

= 0 for λ > λ1.

Indeed, it suffices to note that

W =

{
w ∈ C(D) :

∫
D
w(x) e1(x) dx = 0

}
and further that K : W →W .

The proof of Claim 6.1 is complete. ⊓⊔

By Claim 6.1, it follows that

Φ(t̃2) = Ψ
(
t̃2, w(t̃2)

)
> 0 for some number t̃2 ∈ (t2, ε2).

We let

Σ := {(t, w) ∈ R×W : w − λKw +Q (K (f(t e1 + w))) = 0} .

It should be noticed that if t ∈ (−ε2, ε2), then (t, w) ∈ Σ if and only if w = w(t).
In particular, we have the assertion(

t̃2, w
(
t̃2
))

∈ Σ.

Since f is bounded on R, there is a constant C > 0 such that

∥K (f(u))∥ ≤ C for all u ∈ C(D). (6.12)
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Moreover, by applying Schwarz’s inequality we obtain that∣∣∣∣∫
D
K (f(u(x))) · e1(x) dx

∣∣∣∣ ≤ C

∫
D
e1(x) dx ≤ C

√∫
D
dx ·

√∫
D
e1(x)2 dx

= C
√

|D| for all u ∈ C(D),

where |D| is the volume of the bounded domain D.
Hence we have, for all w ∈W ,

Ψ
(
t̃3, w

)
= t̃3

(
1− λ

λ1

)
+

∫
D
K
(
f
(
t̃3 e1 + w(x)

))
· e1(x) dx

< t̃3

(
1− λ

λ1

)
+ C

√
|D| < 0,

if we take a large number t̃3 > t̃2 such that

t̃3 >

(
λ1

λ− λ1

)
C
√

|D|.

Furthermore, by arguing just as in Amann–Ambrosetti–Mancini [7, Lemma
1.2] we can prove the following lemma:

Lemma 6.1 For every α > 0, there exists a connected subset Σ(α) of Σ such that

projRΣ(α) ⊃ [−α, α] .

Proof First, we remark that the mapping

g(t, w) : R×W −→W

(t, w) 7−→ (I − λK)−1
Q (K (f(t e1 + w)))

is uniformly bounded and compact on bounded sets, for each λ ∈ (λ1, λ1 + ε1).
Moreover, the image f(X) is bounded in the space X = C(D), since the function
f is bounded on R.

Now we choose a constant r > 0 so large that

∥g(t, w)∥ < r for all (t, w) ∈ R×W.

If we denote by B(0, r) the open ball about 0 in W with radius r, then it is easy
to see that

Σ = {(t, w) ∈ R×W : w − λKw +Q (K (f(t e1 + w))) = 0}
= {(t, w) ∈ R×W : w + g(t, w) = 0}
⊂ R×B(0, r).

Hence we can define the Leray–Schauder degree deg (G(t, ·), B(0, r), 0) for a map
G = I + g defined by the formula

G : R×W −→W

(t, w) 7−→ w + g(t, w).
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Then, by a homotopic argument it follows that

deg (G(t, ·), B(0, r), 0) = deg (IW , B(0, r), 0) = 1 for every t ∈ R,

where IW is the identity map on the space W .
Hence, we have the assertion

projRΣ = R.

In order to show that, for every α > 0 there is a connected subset Σ(α) with
the stated properties, we follow a well-known argument used in bifurcation theory
(see [22, Chapter 19]). For α > 0, we let

A := [−α, α]×B(0, r).

Furthermore, we let

K := Σ ∩A,

K± := Σ ∩
(
{±α} ×B(0, r)

)
.

Then K is a compact metric space and K± are non-empty disjoint, closed subsets
of K.

Our proof is based on a reduction to absurdity. Assume, to the contrary, that
there does not exist a connected subset of K joining K+ and K−. Then it follows
from an application of the separation theorem ([22, Theorem 19.4]) that there exist
disjoint compact sets C± ⊃ K± such that

K = C+ ∪ C−.

We remark that

C− ∩
(
C+ ∪ ([−α, α]× S(0, r)) ∪

(
{α} ×B(0, r)

))
= ∅,

where S(0, r) is the surface of the ball B(0, r). Hence we can find an open subset
U of A such that

• C− ⊂ U,

• U ∩
(
C+ ∪ ([−α, α]× S(0, r)) ∪

(
{α} ×B(0, r)

))
= ∅.

This implies that

G(t, w) ̸= 0 for all (t, w) in the boundary of U relative to A,

and that

Uα := {w ∈W : (α,w) ∈ U} = ∅.

Therefore, by the excision property and the homotopy invariance property of
the Leray–Schauder degree we obtain that

1 = deg (G(−α, ·), B(0, r), 0) = deg (G(−α, ·), U−α, 0) = deg (G(α, ·), Uα, 0)

= 0.
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This contradiction proves the existence of a connected subset Σ(α) of Σ joining
K+ and K−.

Summing up, we have proved the desired assertion

projRΣ ⊃ [−α, α] .

The proof of Lemma 6.1 is complete. ⊓⊔

By applying Lemma 6.1 with α := t̃3, we can find a connected subset Σ
(
t̃3
)
of

Σ such that

projRΣ
(
t̃3
)
⊃
[
−t̃3, t̃3

]
⊃
[
−t̃2, t̃2

]
.

Hence we have the assertions

{(
t̃2, w

(
t̃2
))

∈ Σ1,(
t̃3, w̃3

)
∈ Σ1 for some w̃3 ∈W.

since
(
t̃2, w̃2

)
∈ Σ if and only if w̃2 = w(t̃2) for t̃2 < ε2.

Moreover, the mapping

Ψ : Σ1 −→ Ψ(t, w)

is continuous and satisfies the inequalities:

{
Ψ
(
t̃2, w(t̃2)

)
= Φ(t̃2) > 0,

Ψ
(
t̃3, w̃3

)
< 0.

Therefore, by an intermediate value argument we find a point (t3, w3) ∈ Σ1 such
that {

t̃2 < t3 ≤ t̃3,

Ψ (t3, w3) = 0.

In this way, we have found the third solution by setting

u3 = t3 e1 + w3 for t3 > t2 and w3 ∈W.

Step 5: The fourth solution

u4 = t4 e1 + w4 for t4 < t1 and w4 ∈W

can be obtained in an analogous way.

Now the proof of Theorem 6.1 is complete. ⊓⊔
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7 Proof of Theorem 1.4

In this last section we consider the case where f(t) and f ′(t) are bounded on R.
The proof of Theorem 1.4 is carried out by using the global theory of positive
mappings due to Dancer [27] (Theorem 3.4).

More precisely, we prove the following generalization of Szulkin [52, Theorem
5.2] to the degenerate case:

Theorem 7.1 Assume that hypotheses (H.1) and (H.2) are satisfied and let f(t) be a

C1 function on R such that f(0) = 0 and f ′(0) = 0. Then we have the following two

assertions:

(i) If, in addition, there exists a constant k > 0 such that

0 ≤ f ′(t) ≤ k < min{λ1, λ2 − λ1}, (1.5)

then the set of nontrivial solutions of the nonlinear operator equation (4.1), bifur-
cating at (λ1, 0), consists of two C

1 branches, one positive Γ1 and one negative Γ2.

These branches are given respectively by the formulas (see Figure 1.8)

Γ1 =
{
(λ, u) ∈ R× C(D) : λ = λ(1)(s), u = u1(s) for 0 ≤ s <∞

}
, (7.1a)(

λ(1)(0), u1(0)
)
= (λ1, 0) , (7.1b)

and

Γ2 =
{
(λ, u) ∈ R× C(D) : λ = λ(2)(s), u = u2(s) for 0 ≤ s <∞

}
, (7.2a)(

λ(2)(0), u2(0)
)
= (λ1, 0) . (7.2b)

(ii) Furthermore, if f(t) is bounded, it follows that

λ(1)(s) −→ λ1 as s→ ∞, (7.3a)

λ(2)(s) −→ λ1 as s→ ∞. (7.3b)

Remark 7.1 The behavior of Γ1 and Γ2 for a bounded function f(t) is in sharp
contrast with that described in Theorem 1.2. More precisely, the branches turn

back towards λ1, hence they cannot be parametrized by λ.

Proof By Theorem 3.3 (Crandall–Rabinowitz), it follows that there exist precisely
two branches of solutions emanating from the point (λ1, 0). We shall show the
conclusions of the theorem hold true for the positive branch Γ1, since the proof
for the negative one Γ2 is analogous.

The proof of Theorem 7.1 is divided into four steps.
Step 1: Take a real-valued, smooth function g(λ) on R such that 0 ≤ g(λ) ≤ 1

on R and that

g(λ) =

{
0 for λ ≤ λ1 − δ,

1 for λ ≥ λ1.

We define a mapping

G1(λ, u) : R× C(D) −→ C(D)
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by the formula

G1(λ, u) = u− λKu+ g(λ)K (f(u)) for (λ, u) ∈ R× C(D).

We remark that

g(λ)K (f(u))

∥u∥ −→ 0 as u→ 0 in P \ {0}, locally uniformly in λ ∈ R.

Hence, by applying Theorem 3.4 due to Dancer [27] to our situation we find that
the set of positive solutions of the operator equation G1(λ, u) = 0 contains an
unbounded subcontinuum Γ1 emanating from (λ1, 0).

Step 2: We consider the case where 0 < λ < λ1: If condition (1.5) is satisfied,
then we have, for 0 < λ < λ1,

λ− g(λ)
f(u)

u
≥

{
λ for 0 < λ ≤ k,

λ− k for k < λ < λ1.

Hence it follows from an application of Proposition 4.2 that

µ1

(
λ− g(λ)

f(u)

u

)
≤ µ1(λ) =

λ

λ1
< 1 for 0 < λ < λ1.

This implies that the eigenvalue problem with weight λ− g(λ) f(u)/uK
(
λ− g(λ)

f(u)

u

)
v = µ v,

v ∈ P

does not have an eigenvalue 1. In other words, the operator equation

G1(λ, u) = u−K

(
λ− g(λ)

f(u)

u

)
u = 0

has only the trivial solution for 0 < λ < λ1.
Therefore, we have the assertion

Γ1 ∩ {(λ, u) : 0 < λ < λ1} = ∅. (7.4)

Step 3: We consider the case where λ > λ1: Remark that we have the formula

G(λ, u) = u− λKu+K (f(u)) = u− λKu+ g(λ)K (f(u))

= G1(λ, u) = 0 for (λ, u) ∈ Γ1.

Substep (3-1): The case where λ = λ2. Since we have, by condition (1.5),

λ1 < λ2 − f(t)

t
for t ∈ R,

it follows that

µ1

(
λ2 − f(u)

u

)
> µ1(λ1) = 1.
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This implies that the eigenvalue problem with weight λ2 − f(u)/uK
(
λ2 − f(u)

u

)
v = µ v,

v ∈ P

does not have an eigenvalue 1. In other words, the equation

G(λ, u) = u−K

(
λ− f(u)

u

)
u = 0

has no positive solutions for λ = λ2.
Therefore, we have proved that the subcontinuum Γ1 is bounded away from

the hyperplane {λ = λ2} (see Figure 1.4), since we have, by condition (1.5),

f(t)

t
≤ k < λ2 − λ1 for all t ∈ R.

Substep (3-2): The case where λ1 < λ < λ2. Then we have, for λ1 < λ < λ2,

λ− f ′(u) ≥ λ− k > 0.

Hence it follows from an application of Proposition 4.2 that

µ2
(
λ− f ′(u)

)
≤ µ2(λ) =

λ

λ2
< 1 for λ1 < λ < λ2.

We are reduced to the study of the following three cases:

(a) µ2
(
λ− f ′(u)

)
< µ1

(
λ− f ′(u)

)
< 1 for (λ, u) ∈ Γ1 with λ < λ2.

(b) µ2
(
λ− f ′(u)

)
< 1 < µ1

(
λ− f ′(u)

)
for (λ, u) ∈ Γ1 with λ < λ2.

(c) µ2
(
λ− f ′(u)

)
< 1 = µ1

(
λ− f ′(u)

)
for (λ, u) ∈ Γ1 with λ < λ2.

In order to prove part (i) of Theorem 7.1, it suffices to show that

The set Γ1 \ {(λ1, 0)} is locally homeomorphic to the set of real numbers. (7.5)

We shall show that the Fréchet derivative

G′(λ, u) =
(
−Ku, I − (K

(
λ− f ′(u)

))
: R× C(D) −→ C(D)

is an epimorphism (a surjective function). Here

G′(λ, u)(µ, v) = −µKu+ v −K
(
λ− f ′(u)

)
v for (µ, v) ∈ R× C(D).

The situation can be visualized as in Figure 7.1 and assertion (7.6) below.
Cases (a) and (b): Since µ1

(
λ− f ′(u)

)
̸= 1 for (λ, u) ∈ Γ1, it follows that the

partial Fréchet derivative

Gu(·, u) = I −K
(
λ− f ′(u)

)
is an isomorphism. In other words, u is a regular point of the mapping G(λ, u).

Case (c): If µ1
(
λ− f ′(u)

)
= 1 for (λ, u) ∈ Γ1, it follows from an application of

Proposition 4.1 that the eigenvalue µ1
(
λ− f ′(u)

)
is algebraically simple. However,

since the operator K
(
λ− f ′(u)

)
is compact, we have the formula

ind Gu(λ, u) = ind
(
I −K

(
λ− f ′(u)

))
= 0.

This implies that

codim R (Gu(λ, u)) = dimN (Gu(λ, u)) = 1.

More precisely, we have the following claim:
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- C(D)

6
C(D)

•
G′(λ, u)(µ, v)

•

0

(µ, v)

R

Fig. 7.1 The derivative G′(λ, u) = (−Ku, I −K (λ− f ′(u))) is an epimorphism

Claim 7.1 The function Ku ∈ Int (Pe) and

Ku ̸∈ R (Gu(λ, u)) .

In other words, we have the assertion (see Figure 7.2)

C(D) = R (Gu(λ, u))⊕N (Gu(λ, u)) = R (Gu(λ, u)) +̇span [Ku] . (7.6)

-

6

0
N(Gu(λ, u))

R(Gu(λ, u))

C(D)

Ku

�
�
��>

Fig. 7.2 The function Ku ∈ Int (Pe) and Ku ̸∈ R (Gu(λ, u))

Proof First, by the strong positivity of K it follows that

Ku ∈ Int (Pe) .
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Our proof is based on a reduction to absurdity. We assume, to the contrary,
that

Ku ∈ R (Gu(λ, u)) .

Then it follows that

Ku = Gu(λ, u)v = v −K
((
λ− f ′(u)

)
v
)

for some v ∈ C(D).

We remark that
v = Ku− λKv +K

(
f ′(u)v

)
∈ Ce(D),

since the operator K maps C(D) into Ce(D).
We introduce a strongly positive, compact linear operator

T : Ce(D) −→ Ce(D)

by the formula
T := K

((
λ− f ′(u)

)
v
)∣∣

Ce(D)
.

Then the operator T has an eigenvalue 1, since µ1
(
λ− f ′(u)

)
= 1.

Therefore, by using the Krĕın–Rutman theorem (Theorem 2.5) we can find a
linear functional ψ∗ ∈ Ce(D)

∗
such that{

T ∗ ψ∗ = ψ∗,

⟨z, ψ∗⟩ > 0 for all z ∈ Pe \ {0}.

In particular, we have the assertion

⟨v −K
(
λ− f ′(u)

)
v, ψ∗⟩ = ⟨Ku,ψ∗⟩ > 0,

since Ku ∈ Pe \ {0}.
However, we have the assertion

0 <
⟨
v −K

(
λ− f ′(u)

)
v, ψ∗⟩ = ⟨v − Tv, ψ∗⟩

= ⟨v, ψ∗⟩ − ⟨v, T ∗ ψ∗⟩ = ⟨v, ψ∗⟩ − ⟨v, ψ∗⟩ = 0.

This is a contradiction.
The proof of Claim 7.1 is complete. ⊓⊔

By Claim 7.1, we find that the Fréchet derivative G′(λ, u) is an epimorphism
(a surjective function).

Summing up, by applying the implicit function theorem (Theorem 3.1) we
obtain a local homeomorphism at each point (λ, u) ∈ Γ1 \{(λ1, 0)} for λ1 < λ < λ2.
Indeed, it suffices to note the following:

(λ, u) ∈ Γ1 \ {(λ1, 0)} for λ1 < λ < λ2

⇐⇒
G(λ, u) = u− λKu+K (f(u)) = u− λKu+ g(λ)K (f(u)) = G1(λ, u) = 0

for λ1 < λ < λ2 and u ̸= 0.

Part (i) of Theorem 7.1 follows from assertions (7.4) and (7.5). Namely, we
have the assertion (see Figure 1.8)

(λ, u) ∈ Γ1 \ {(λ1, 0)} for λ1 < λ < λ2
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⇐⇒{
λ = λ(1)(s) for 0 < s <∞,

u = u1(s) = t1(s) e1 + w1(s) for 0 < s <∞.

Similarly, we have the assertion (see Figure 1.8)

(λ, u) ∈ Γ2 \ {(λ1, 0)} for λ1 < λ < λ2

⇐⇒{
λ = λ(2)(s) for 0 < s <∞,

u = u2(s) = t2(s) e1 + w2(s) for 0 < s <∞.

Step 4: In order to prove part (ii) of Theorem 7.1, we apply the Lyapunov–
Schmidt procedure to the nonlinear operator equation (4.1).

Let e1, e
∗
1, W and Q be as in Section 5. By virtue of formula (5.13), we can

express uniquely the solution u(s) as follows:

u1(s) = t1(s) e1 + w1(s), w1(s) ∈W =
{
(I − λ1K) v : u ∈ C(D)

}
.

Here we recall the following two assertions:

(1) The positive solution branch Γ1 is unbounded (see Step 1).
(2) The distance from Γ1 to the hyperplane {λ = λ2} is positive (Substep (3-1)).

First, we consider the case where w1(s) is bounded in C(D) as s→ ∞ and

t1(s) −→ ∞ as s→ ∞.

Then it follows from the one-dimensional equation (5.9) that(
1− λ(1)

λ1

)
t1(s) + ⟨K (f (t1(s) e1 + w1(s))) , e

∗
1⟩ = 0.

However, we find from inequality (6.12) that if f(t) is bounded, the second term
on the left-hand side of this equation is bounded.

Therefore, we find that the desired assertion

λ(1)(s) −→ λ1 as s→ ∞

holds true.
Secondly, we consider the case where w1(s) is unbounded in C(D) as s → ∞.

We have, by the operator equation (5.7),

w1

∥w1(s)∥
−λ(1)(s)K

(
w1(s)

∥w1(s)∥

)
+Q

(
K

(
f (t e1 + w1(s))

∥w1(s)∥

))
= 0 in C(D). (7.7)

Since the resolvent
K : C(D) −→ Ce(D)

is compact and strongly positive, we can find a sequence {sj}, a function χ ∈ Pe

and a number λ1 ≤ γ < λ2 such that, as j → ∞,

v(sj) :=
w1(sj)

∥w1(sj)∥
∈ C(D) \ {0}, (7.8a)
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Kv(sj) −→ χ in Ce(D), (7.8b)

λ(1)(sj) −→ γ. (7.8c)

Hence, by passing to the limit in formula (7.7) we obtain from assertions (7.8) that

v(sj) −→ γχ in Ce(D) as j → ∞,

so that
Kv(sj) −→ γ Kχ in Ce(D) as j → ∞.

Summing up, we have proved that
χ ∈ Pe, ∥χ∥ =

1

γ
,

Kχ =
1

γ
χ in Ce(D),

λ1 ≤ γ < λ2.

By Proposition 4.1, this proves that

1

γ
= µ1 =

1

λ1
,

so that
γ = λ1.

Therefore, we find from assertion (7.8c) that the desired assertions

λ(1)(sj) −→ λ1 as j → ∞ (7.3)

hold true.
Now the proof of Theorem 7.1 is complete. ⊓⊔

8 The Leray–Schauder index of critical points and its application

Let X be a Banach space and let G be a nonlinear map of X into itself. In this
last section we consider the case where G is a compact perturbation of the identity
map. It is known (see [23, Section 3.4]) that if u0 is an isolated solution of the
nonlinear operator equation

G(u) = p for p ∈ X,

then the Leray–Schauder index i (G, u0) is well-defined. The purpose of this section
is to show (Theorem 8.1) that if the null space N

(
G′(u0)

)
is one dimensional, then

we have the assertion
|i(G, u0)| ≤ 1.

Finally, we apply Theorem 8.1 (or Corollary 8.1) to the semilinear elliptic boundary
value problem (1.2) with λ := λ1:Au− λ1u+ f(u) = 0 in D,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂D.

(1.7)



Semilinear elliptic problems via the Semenov approximation 69

8.1 The Leray–Schauder index calculation

Now we formulate our result more precisely. Assume that a mapping G : X → X

is of class C1 such that

G = I − C for some compact map C : X → X.

Recall that C : X → X is said to be compact if it is continuous and maps bounded
sets into relatively compact sets.

If u0 is an isolated solution of the nonlinear operator equation

G(u) = u− C(u) = p, p ∈ X,

then the Leray–Schauder index i (G, u0) is defined by the formula

i (G, u0) = lim
ε↓0

deg (G,B(u0, ε), p) ,

where B(u0, ε) is an open ball about u0 of radius ε.
It is known from the index formula (see [22, Theorem 21.10]) that

i (G, u0) = ±1, (8.1)

provided that the Fréchet derivative G′(u0) is invertible.
In this section we study the case where the null space N

(
G′(u0)

)
is one di-

mensional. Without loss of generality, we may assume that u0 = 0 and p = 0:

i (G, 0) = lim
ε↓0

deg (G,B(0, ε), 0) .

We express the map C in the form

C(u) = Ku−N(u) for u ∈ X,

whereK : X → X is a self-adjoint, bounded linear operator and N : X → X satisfies
the condition

∥N(u)∥ = o (∥u∥) as u→ 0 in X, (8.2)

so that the Fréchet derivative G′(0) is equal to the following:

G′(0) = I −K.

Furthermore, we assume that K has the first reciprocal eigenvalue 1 of simple
algebraic multiplicity:

Ke0 = e0,

where e0 is an eigenvector of K such that

∥e0∥ = 1,

N (I −K) = span [e0] .

Now, as in formula (5.5) we consider the Lyapunov–Schmidt orthogonal de-
composition of X:

X = N (I −K)⊕R (I −K) . (8.3)
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By Mazur’s theorem ([74, Chapter IV, Section 6, Corollary]), there exists a con-
tinuous linear functional e∗0 on X such that⟨

e∗0, e0
⟩
= 1,⟨

e∗0, w
⟩
= 0 for all w ∈W := R (I −K).

Then we can express every vector u ∈ X as follows (see Figure 8.1):

u = t e0 + w for t = ⟨e∗0, u⟩ and w ∈W. (8.4)

-

6

0
N(I −K) = span [e0]

W = R(I −K)

X

u = te0 + w

te0

w

�
�
�

�
�
�
��>

-

6

Fig. 8.1 The orthogonal decomposition (8.3) of X

Denote by Q the projection of X onto W along N (I −K):

Qu = u−
⟨
e∗0, u

⟩
e0 for u ∈ X,

or equivalently,
(I −Q)u =

⟨
e∗0, u

⟩
e0 for u ∈ X.

Then it is easy to see that the operator equation

G(u) = u−Ku+Nu = 0 for u = t e0 + w, (8.5)

is equivalent to the following system:

w −Kw +QN(t e0 + w) = 0 in W, (8.6a)

Φ(t, w) :=
⟨
N(t e0 + w), e∗0

⟩
= 0 in R. (8.6b)

However, since ∥N(u)∥ = o (∥u∥) as u → 0 in X, it follows from an application of
the implicit function theorem (Theorem 3.1) that, for each t ∈ R near the origin
the equation (8.6a) has a unique solution

w = φ(t) ∈W

such that the map
φ : (−ε, ε) −→W
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is of class C1 and φ(0) = φ′(0) = 0. Indeed, it suffices to note that the Fréchet
derivative

I −K : W −→W

is an isomorphism.
Hence we have the equivalent assertions{

G(u) = u−Ku+N(u) = 0 in X,

u = te0 + w
(8.5)

⇐⇒{
w −Kw +QN(t e0 + w) = 0 in W,

Φ(t, w) = ⟨N(t e0 + w), e∗0⟩ = 0 in R
(8.6)

⇐⇒
φ(t)−Kφ(t) +QN (t e0 + φ(t)) = 0 in W,

Φ (t, φ(t)) = 0 in R,

u = t e0 + φ(t) for sufficiently small norm.

(8.7)

We remark that

Φ (t, φ(t)) ̸= 0 for sufficiently small t with t ̸= 0, (8.8)

since u = 0 is an isolated solution of the equation G(u) = 0.
We are in a position to prove the following generalization of Szulkin [52, The-

orem 6.1] to the degenerate case:

Theorem 8.1 Assume that u = 0 is an isolated solution of the equation G(u) = 0
and that

X = N (I −K)⊕R (I −K) . (8.3)

Then we have the assertion

|i(G, 0)| ≤ 1. (8.9)

Furthermore, we have the product formula

i(G, 0) = i ((I −K)|W , 0) · i (Φ (·, φ(·)) , 0) .

Proof The proof of Theorem 8.1 is divided into two steps.
Step 1: Our proof is based on the Leray–Schauder continuation method. To do

so, we show that the homotopy

(−ε, ε)×B(0, ε)× [0, 1] ∋ (t, w, s) 7−→(
Φ (t, sw + φ(t)− φ(st)) , w −Kw +

QN(ste0 + sw)

s

)
is admissible on the set

Uε = {u = t e0 + w ∈ X : |t| < ε, ∥w∥ < ε} ,

provided that ε is sufficiently small. Here we have set

QN(st e0 + sw)

s
= 0 for s = 0,
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according to the condition (8.2).
It suffices to show that the system of equations

w −Kw +
QN (st e0 + sw)

s
= 0, (8.10a)

Φ (t, sw + φ(t)− φ(st)) = 0 (8.10b)

has no solution for 0 ≤ s ≤ 1 on the boundary

∂U = {|t| = ε, ∥w∥ ≤ ε} ∪ {|t| ≤ ε, ∥w∥ = ε} ,

if ε is sufficiently small.
For each |t| ≤ ε, the equation (8.10a) has a unique solution

w =
φ(st)

s
for 0 ≤ s ≤ 1,

where we set
φ(st)

s
= 0 for s = 0,

recalling that φ′(0) = 0.
(1) First, since we have the assertion

φ(t) = o(t) as t→ 0,

we may choose ε > 0 so small that∥∥∥∥φ(st)s

∥∥∥∥ = ∥∥∥∥φ(st)st

∥∥∥∥ |t| < ε whenever |t| ≤ ε.

This proves that the equation (8.10b) has no solution if ∥w∥ = ε and |t| ≤ ε.
Indeed, we have the contradiction

∥w∥ =

∥∥∥∥φ(st)s

∥∥∥∥ < ε = ∥w∥.

(2) Secondly, since we have the formula

w =
φ(st)

s
for 0 ≤ s ≤ 1,

then we have, by assertion (8.8),

Φ (t, sw + φ(t)− φ(st)) = Φ (t, φ(t)) ̸= 0 for |t| = ε and ∥w∥ ≤ ε.

Summing up, we have proved that

Φ (t, sw + φ(t)− φ(st)) ̸= 0 if either |t| = ε or ∥w∥ = ε.

Namely, the system (8.10a) and (8.10b) has no solution on the boundary ∂U for
0 ≤ s ≤ 1.

Step 2: By Step 1, we obtain from Brown [22, Theorem 9.9] that i(G, 0) is
equal to the index of the mapping given by the formula

(t, w) 7−→ (Φ (t, φ(t)) , w −Kw) .
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Hence we have, by the product formula ([17, Theorem 5.3.16], [22, Theorem 11.3]),

i(G, 0) = i ((I −K)|W , 0) · i (Φ (·, φ(·)) , 0) . (8.11)

However, since (I −K)|W is invertible, it follows from formula (8.1) that

i ((I −K)|W , 0) = ±1. (8.12)

Furthermore, it follows from an application of Brown [22, Theorem 9.9] that

i (Φ (·, φ(·)) , 0) = 0,±1, (8.13)

since Φ (·, φ(·)) maps a subset of R into R.
By combining formulas (8.11), (8.12) and (8.13), we have proved the desired

assertion
|i(G, 0)| ≤ 1. (8.9)

The proof of Theorem 8.1 is now complete. ⊓⊔

It is an easy consequence of the additivity property of degree that if p is a regu-
lar value of G, that is, if G−1(p) contains no critical points, and if deg (G,U, p) = n,
then the nonlinear operator equation G(u) = p has at least |n| distinct solutions
in U . This result can be extended as follows (see [52, Corollary 6.3]):

Corollary 8.1 Let U be an open bounded subset of X such that p ̸∈ G(∂U). Assume

that deg (G,U, p) = n and that

dimN
(
G′(u)

)
≤ 1 for all u ∈ G−1(p) ∩ U.

Then the nonlinear operator equation G(u) = p has at least |n| distinct solutions in U .

Proof If not all of the solutions are isolated, there is nothing to prove. If all of the
solutions are isolated, then the conclusion follows immediately from the additivity
property of degree and Theorem 8.1.

The proof of Corollary 8.1 is complete. ⊓⊔

8.2 Application to the resonance case

In this subsection we apply Theorem 8.1 or Corollary 8.1 to the resonance case.
More precisely, we consider the semilinear elliptic boundary value problem (1.2)
with λ := λ1: Au− λ1u+ f(u) = 0 in D,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂D,

(1.7)

and prove that the semilinear problem (1.7) has at least two nontrivial solutions.
To do so, we rewrite the semilinear problem (1.7) in the nonlinear operator

form
G (u, λ1) = u− λ1Ku+K (F (u)) = 0. (8.14)

Recall that λ1 is the first reciprocal eigenvalue of K and further that λ1 is alge-
braically simple:

λ1Ke0 = e0 in X = C(D).

The next theorem is a generalization of Szulkin [52, Theorem 6.4] to the de-
generate case:
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Theorem 8.2 Assume that hypotheses (H.1) and (H.2) are satisfied and let f(t) be a

C1 function on R such that f(0) = 0. Moreover, we assume that

lim
t→±∞

f ′(t) = c (8.15)

and that

0 < c0 ≤ λ1 − f ′(t) ≤ c1 < λ2. (8.16)

Then the nonlinear operator equation (8.14) has at least two nontrivial solutions u1,

u2 if one of the following conditions is satisfied (see Figure 8.2):

(i) f ′(0) < 0 < c.

(ii) c < 0 < f ′(0).
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Fig. 8.2 The formal solution curve λ = λ1 +
f(u)

u
in the case (i)

Proof The proof of Theorem 8.2 is divided into three steps.
Step 1: First, it follows from condition (8.14) that

µ2
(
λ1 − f ′(u)

)
< µ2(λ2) = 1.

Hence we have the assertion

dimN (Gu (u, λ1)) ≤ 1 for any u ∈ X.

More precisely, we have the formula

dimN (Gu (u, λ1)) =

{
1 if µ1

(
λ1 − f ′(u)

)
= 1,

0 if µ1
(
λ1 − f ′(u)

)
̸= 1.

(8.17)

By condition (8.15), we obtain that the mapping

u : 7−→ λ1Ku−K (F (u))

is asymptotically linear and has the asymptote

K (λ1 − c) . (8.18)
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Step 2: We consider the case where condition (i) is satisfied. Then it follows
that

µ1 (λ1 − c) =
λ1 − c

λ1
< 1.

Since we have the formula

G(·, λ1) = I − (λ1K −K (F (·)))

and assertions (8.17) and (8.18), we obtain from [29, Chapter 5, Proposition 5.8.11]
that

deg (G(·, λ1), B(0, R), 0) = (−1)0 = 1 (8.19)

if the open ball B(0, R) is sufficiently large. Indeed, it suffices to note that the
operator K (λ1 − c) has no eigenvalue greater than 1.

On the other hand, we have, by condition (i) and condition (8.16),

µ1
(
λ1 − f ′(0)

)
=
λ1 − f ′(0)

λ1
> 1

and

µ2
(
λ1 − f ′(0)

)
=
λ1 − f ′(0)

λ2
≤ c1
λ2

< 1.

Therefore, by applying the Leray–Schauder index formula (3.5) (see Theorem 3.7)
we obtain that

i (G(·, λ1), 0) = (−1)1 = −1. (8.20)

Indeed, it suffices to note that the operator

K
(
λ1 − f ′(0)

)
has only one eigenvalue µ1

(
λ1 − f ′(0)

)
greater than 1.

Now we assume that all the solutions of the nonlinear operator equation
G(u, λ1) = 0 are isolated. Then, we have, by formulas (8.19) and (8.20),

deg (G(·, λ1), B(0, R), 0)− i (G(·, λ1), 0) = 2. (8.21)

Therefore, by using Theorem 8.1 with

C(u) := λ1Ku−K (F (u)) ,

K := λ1K, N(u) := K (F (u)) ,

and the additivity property of degree we find that there must exist at least two

additional nontrivial solutions u1, u2 of the nonlinear equation G (u, λ1) = 0 (see
the proof of Corollary 8.1).

Step 3: Similarly, we can prove that if condition (ii) is satisfied, formula (8.21)
holds true.

The proof of Theorem 8.2 is complete. ⊓⊔

Results similar to our last theorem have been obtained in Ambrosetti–Mancini
[9] and [10] by means of completely different methods.

For Theorem 8.2, we give a simple example of the nonlinear term f(t):
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Example 8.1 If λ1, λ2 are eigenvalues of the non-negative, selfadjoint operator A,
we let

f(t) =:



λ1
2
t+

1

2
λ1 − λ2 for t > 2,

λ1
2
t2 − λ1 + λ2

2
t+

λ1
2

for 1 < t ≤ 2,

λ1 − λ2
2

t for −1 ≤ t ≤ 1,

−λ1
2
t2 − λ1 + λ2

2
t− λ1

2
for −2 ≤ t < −1,

λ1
2
t− λ1

2
+ λ2 for t < −2.

Then it is easy to verify that

f ′(0) =
λ1 − λ2

2
,

c =
λ1
2
, c0 =

λ1
2
, c1 =

λ1 + λ2
2

.

9 Concluding remarks

This paper is devoted to the study of static bifurcation theory for a class of de-
generate boundary value problems for semilinear elliptic differential operators of
second-order, which includes as particular cases the Dirichlet and Robin prob-
lems. The purpose of this paper is to generalize some results of Szulkin [52] to the
degenerate case. The approach here is distinguished by the extensive use of the
ideas and techniques characteristic of the recent developments in the Lp theory
of pseudo-differential operators ([69, Part II]). In the proof of main theorems 1.2,
1.3, 1.4 and 8.2 we re-work and expand in a different sprit the material of the
previous papers [57] through [62] and [70], even though there is a lot of overlap
in the contents of the present paper and those of them. This makes the present
paper fairly self-contained.

This paper will provide a solid foundation for the reader interested in elliptic
boundary value problems and topological methods in nonlinear analysis such as
the bifurcation theory from a simple eigenvalue due to Crandall–Rabinowitz [26]
and Dancer [27] and the Leray–Schauder degree introduced by Leray–Schauder
[39], via the Semenov approximation in Chemistry.

For the semilinear elliptic boundary value problem (1.2), we give an overview of
the classical Schauder theory in Szulkin [52] versus the theory of pseudo-differential
operators in the present paper (see Table 9.1 below).

Finally, it should be noticed that Anh–My [14] studied semilinear Dirichlet
problems for a strongly degenerate elliptic system of Hamiltonian type (see [34])
and further that Papageorgiou–Zhang [45] studied nonlinear Dirichlet problems
for the sum of a p-Laplacian and a Laplacian with concave terms (see [41]).

10 Appendix: The maximum principle in Lp Sobolev spaces

In this appendix we formulate various maximum principles for second-order, el-
liptic differential operators with discontinuous coefficients such as the weak and
strong maximum principles (Theorems A.1 and A.2) and the Hopf boundary point
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Type of Classical Theory of
nonlinearity Schauder theory pseudo-differential operators

Asymptotically linear [52, Theorem 1.3] Theorem 1.2
nonlinearity case

[52, Theorem 1.4] Corollary 1.1

Bounded nonlinearity [52, Theorem 5.1] Theorem 1.3
case [52, Theorem 5.2] Theorem 1.4

Resonance [52, Theorem 6.4] Theorem 8.2
case

Table 9.1 An overview of the classical Schauder theory versus the theory of pseudo-differential
operators for the semilinear elliptic boundary value problem (1.2)

lemma (Lemma A.1) in the framework of Lp Sobolev spaces. The results here are
adapted from Bony [20], Troianiello [72, Chapter 3] and also Taira [64, Chapter
8].

Let D be a bounded domain in Euclidean space RN , N ≥ 3, with boundary ∂D
of class C1,1. We consider a second-order, uniformly elliptic differential operator A
with real discontinuous coefficients in non-divergence form

Au := −
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

N∑
i=1

bi(x)
∂u

∂xi
+ c(x)u.

More precisely, we assume that the coefficients aij(x), bi(x) and c(x) of the differ-
ential operator A satisfy the following three conditions:

(1) aij(x) ∈ L∞(D), aij(x) = aji(x) for almost all x ∈ D and there exist a constant
λ > 0 such that

1

λ
|ξ|2 ≤

N∑
i,j=1

aij(x)ξiξj ≤ λ |ξ|2 for almost all x ∈ D and all ξ ∈ RN .

(2) bi(x) ∈ L∞(D) for all 1 ≤ i ≤ N .
(3) c(x) ∈ L∞(D) and c(x) ≥ 0 for almost all x ∈ D.

First, we state a variant of the weak maximum principle in the framework of Lp

Sobolev spaces, due to Bony [20] ([72, Chapter 3, Lemma 3.25]):

Theorem A.1 (the weak maximum principle) If a function u ∈ W 2,p(D), N <

p <∞, satisfies the condition

Au(x) ≤ 0 for almost all x ∈ D,

then we have the inequality

max
D

u ≤ max
∂D

u+,
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where

u+(x) = max {u(x), 0} for x ∈ D.

A detailed proof of Theorem A.1 is given in Taira [67, Theorem 8.1].
Secondly, the Hopf boundary point lemma reads as follows ([72, Chapter 3,

Lemma 3.26], [68, Lemma 6.1]):

Lemma A.1 (the boundary point lemma) Assume that a function u ∈W 2,p(D),
N < p <∞, satisfies the condition

Au(x) ≤ 0 for almost all x ∈ D.

If u(x) attains a non-negative, strict local maximum at a point x′0 of ∂D, then we have

the inequality
∂u

∂ν
(x′0) > 0

(see Figure 1.1).

Finally, we can obtain the following strong maximum principle for the operator
A ([20, Théorème 2], [72, Chapter 3, Theorem 3.27], [68, Theorem 6.2]):

Theorem A.2 (the strong maximum principle) Assume that a function u ∈
W 2,p(D), N < p <∞, satisfies the condition

Au(x) ≤ 0 for almost all x ∈ D.

If u(x) attains a non-negative maximum at an interior point x0 of D, then it is a

(non-negative) constant function.
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19. Bergh, L. and Löfström, J.: Interpolation spaces, an introduction. Springer-Verlag, Berlin

Heidelberg New York (1976)
20. Bony, J.-M.: Principe du maximum dans les espaces de Sobolev. C. R. Acad. Sc. Paris

Sér. A-B 265, A333–A336 (1967)
21. Bourdaud, G.: Lp-estimates for certain non-regular pseudo-differential operators. Comm.

Partial Differential Equations 7, 1023–1033 (1982)
22. Brown, R. F.: A topological introduction to nonlinear analysis, third edition. Springer,

Cham (2014)
23. Chang, K.-C.: Methods in nonlinear analysis. Springer Monographs in Mathematics

Springer-Verlag, Berlin (2005)
24. Chazarain, J. et Piriou, A.: Introduction à la théorie des équations aux dérivées partielles
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