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1 Introduction and Main Results

Let Ω be a bounded domain in Euclidean space RN , N ≥ 3, with boundary ∂Ω

of class C1,1. We consider a second-order, elliptic differential operator A with real
discontinuous coefficients of the form

Au :=
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

N∑
i=1

bi(x)
∂u

∂xi
+ c(x)u. (1.1)

In the case of continuous coefficients aij(x), an Lp Schauder theory has been elab-
orated for second-order, uniformly elliptic differential operators (see [3], [17], [19]).
However, the situation becomes rather difficult if we try to allow discontinuity on
the aij(x). In fact, it is known (see [26], [27], [38]) that arbitrary discontinuity of
the aij(x) breaks down as the Lp Schauder theory, except for the two-dimensional
case (N = 2). In order to handle with the multidimensional case (N ≥ 3), ad-
ditional conditions on the aij(x) should be required. Here we shall see that the
relevant condition is that the coefficients aij(x) belong to the Sarason class VMO
of functions with vanishing mean oscillation. We recall that VMO consists of the
John–Nirenberg class BMO of functions with bounded mean oscillation whose in-
tegral oscillation over balls shrinking to a point converge uniformly to zero (see
Section 2).

Our approach here is distinguished by the extensive use of the Calderón–
Zygmund theory of singular integrals (see [11]). Since second-order elliptic differen-
tial operators are pseudo-differential operators only if the coefficients are smooth,
we cannot make use of the theory of pseudo-differential operators as in the pre-
vious work [35]. Singular integral operators provide a powerful tool to deal with
smoothness of solutions of partial differential equations, with minimal assumptions
of regularity on the coefficients. Several recent developments in the theory of sin-
gular integrals (see [12], [13], [31], [10], [14], [24], [25]) have made possible further
progress in the study of elliptic boundary value problems with VMO coefficients
and hence in the study of Markov processes.

It should be emphasized that the condition N ≥ 3 is essential in the whole
theory of singular integrals. In fact, we make use of integral representation formulas
for the second derivatives of functions in the Sobolev spaces W 2,p(Ω) that are
based on the fundamental solutions of elliptic differential operators with constant
coefficients (see [12, Section 3], [25, Chapter 2]).

1.1 Formulation of the Problem

Throughout this paper, we assume that the coefficients aij(x), bi(x) and c(x) of
the differential operator A satisfy the following three conditions (1), (2) and (3):

(1) aij(x) ∈ VMO∩L∞(Ω), aij(x) = aji(x) for almost all x ∈ Ω and there exist a
constant λ > 0 such that

1

λ
|ξ|2 ≤

N∑
i,j=1

aij(x)ξiξj ≤ λ|ξ|2 for almost all x ∈ Ω and all ξ ∈ RN .

(2) bi(x) ∈ L∞(Ω) for 1 ≤ i ≤ N .



Oblique derivative problems and Feller semigroups 3

(3) c(x) ∈ L∞(Ω) and c(x) ≤ 0 for almost all x ∈ Ω.

The differential operator A is called a diffusion operator which describes analyt-
ically a strong Markov process with continuous paths in the interior Ω such as
Brownian motion (see Figure 1.1 below). The differential opertor A is a special
case of Waldenfels integro-differential operators ([43], [35, Chapter 10]).
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Fig. 1.1 A Markovian particle moves continuously

Moreover, we consider a first-order, boundary operator of the form

Lu := µ(x′)
∂u

∂n
+ β(x′) · ∂x′u+ γ(x′)u− δ(x′) (Au|∂Ω) (1.2)

= µ(x′)
∂u

∂n
+

N−1∑
j=1

βj(x′)
∂u

∂xj
+ γ(x′)u− δ(x′) (Au|∂Ω) on ∂Ω.

Here the local coordinate systems (x′, xN ) = (x1, x2, . . . , xN−1) give local coordi-
nates near the boundary ∂Ω such that{

Ω =
{
(x′, xN ) : xN > 0

}
,

∂Ω =
{
(x′, xN ) : xN = 0

}
.

(1.3)

We assume that the coefficients µ(x′), βj(x′), γ(x′) and δ(x′) of the boundary
operator L satisfy the following four conditions (4), (5), (6) and (7) (see Figure
1.2):

(4) µ(x′) is a Lipschitz continuous function on ∂Ω and µ(x′) ≥ 0 on ∂Ω.
(5) βj(x′) are Lipschitz continuous functions on ∂Ω.
(6) γ(x′) is a Lipschitz continuous function on ∂Ω and γ(x′) ≤ 0 on ∂Ω.
(7) δ(x′) is a Lipschitz continuous function on ∂Ω and δ(x′) ≥ 0 on ∂Ω.
(8) n = (n1, n2, . . . , nN ) is the unit inward normal to the boundary ∂Ω.

The boundary condition L is called a first-order, Wentzell (Ventcel’) boundary con-

dition (see [44], [35, Chapter 9]). The four terms of L

µ(x′)
∂u

∂n
, β(x′) · ∂x′u, γ(x′)u, δ(x′) (Au|∂Ω)

are supposed to correspond to the reflection phenomenon, the drift phenomenon
along the boundary, the absorption phenomenon and the sticking (or viscosity)
phenomenon, respectively (see Figures 1.3 and 1.4 below).
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Fig. 1.2 The tangent vector field β and the unit inward normal n to the boundary ∂Ω
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Fig. 1.3 The absorption phenomenon and the reflection phenomenon
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Fig. 1.4 The drift phenomenon along ∂Ω and the sticking phenomenon

Let C(Ω) be the Banach space of real-valued, continuous functions on the
closure Ω = Ω ∪ ∂Ω, equipped with the maximum norm

∥f∥C(Ω) = max
x∈Ω

|f(x)| for f ∈ C(Ω).

A strongly continuous semigroup {Tt}t≥0 on the space C(Ω) is called a Feller

semigroup on the state space Ω if it is non-negative and contractive on the Banach
space C(Ω), that is, if it satisfies the condition

f ∈ C(Ω), 0 ≤ f(x) ≤ 1 on Ω =⇒ 0 ≤ Ttf(x) ≤ 1 on Ω for all t ≥ 0.

It is known (see [16], [35, p. 447, Theorem 9.34]) that if Tt is a Feller semigroup
on the Banach space C(Ω), then there exists a unique Markov transition function
pt(x, ·) on the state space Ω such that

Ttf(x) =

∫
Ω
pt(x, dy)f(y) for f ∈ C(Ω).

Furthermore, it can be shown (see [15], [35, p. 439, Theorem 9.28]) that the func-
tion pt(x, ·) is the transition function of some strong Markov process whose paths
are right-continuous and have no discontinuities other than jumps; hence the value
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pt(x,E) expresses the transition probability that a Markovian particle starting at
position x will be found in the set E at time t.

The purpose of this paper is devoted to the functional analytic approach to the
problem of existence of Markov processes in probability theory. More precisely, we
consider the following problem (see [35, p. 12, Problem 1.1]):

Problem 1 Conversely, given analytic data (A,L), can we construct a Feller semi-

group {Tt}t≥0 whose infinitesimal generator A is characterized by (A,L)?

1.2 Statement of Main Results

The next theorem asserts that there exists a Feller semigroup corresponding to
such a diffusion phenomenon that a Markovian particle moves continuously in
the state space, with absorption, reflection, drift and sticking phenomena at the
boundary (cf. [8, Théorème XIX]):

Theorem 1.1 Let N ≥ 3. If N < p < ∞, we define a linear operator A from C(Ω)
into itself as follows (see Remark 8.1 in Section 8):

(a) The domain D(A) is the set

D(A) =
{
u ∈W 2,p(Ω) : Au ∈ C(Ω), Lu = 0 on ∂Ω

}
. (1.4)

(b) Au = Au for every u ∈ D(A).

Here Au and Lu are taken in the sense of distributions.

Assume that the following condition is satisfied:

(H.1) µ(x′) > 0 on ∂Ω.

Then the operator A is the infinitesimal generator of a Feller semigroup on the state

space Ω.

Rephrased, Theorem 1.1 asserts that there exists a Feller semigroup corre-
sponding to such a diffusion phenomenon that a Markovian particle moves contin-
uously in the state space with absorption, reflection, drift and sticking phenomena
at the boundary (see Figure 1.5).
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Fig. 1.5 A probabilistic meaning of Theorem 1.1 with absorption, reflection, drift and sticking
phenomena at the boundary
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The most crucial point in the proof of Theorem 1.1 is how to treat the term
δ(x′) (Au|∂Ω) of sticking phenomenon in the first-order Wentzell boundary condi-
tion

Lu = µ(x′)
∂u

∂n
+ β(x′) · ∂x′u+ γ(x′)u− δ(x′) (Au|∂Ω) on ∂Ω (1.2)

as a term of perturbation of the oblique derivative boundary condition (δ(x′) ≡ 0)

Lνu := µ(x′)
∂u

∂n
+ β(x′) · ∂x′u+ γ(x′)u on ∂Ω. (1.5)

To do this, in Section 6 we prove the following generation theorem for Feller
semigroups with oblique derivative boundary condition:

Theorem 1.2 Let N ≥ 3. If N < p < ∞, we define a linear operator Aν from C(Ω)
into itself as follows:

(c) The domain D(Aν) is the set

D(Aν) =
{
u ∈W 2,p(Ω) : Au ∈ C(Ω), Lνu = 0 on ∂Ω

}
. (1.6)

(d) Aνu = Au for every u ∈ D(Aν).

Here Au and Lνu are taken in the sense of distributions.
If condition (H.1) is satisfied, then the operator Aν is the infinitesimal generator

of a Feller semigroup on the state space Ω.

Rephrased, Theorem 1.2 asserts that there exists a Feller semigroup corre-
sponding to such a diffusion phenomenon that a Markovian particle moves contin-
uously in the state space with absorption, reflection and drift phenomena at the
boundary (see Figure 1.6).
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Fig. 1.6 A probabilistic meaning of Theorem 1.2 with absorption, reflection and drift phe-
nomena at the boundary

In the previous paper [34, Theorems 1.1 and 1.2], we constructed Feller semi-
groups for second-order, uniformly elliptic differential operators with VMO coef-
ficients under the additional condition that

(H.2) γ(x′) < 0 on ∂Ω.

This implies that the boundary condition Lν is not the pure oblique derivative
boundary condition.

Therefore, Theorems 1.1 and 1.2 substantially extend the main results of [34]
(see Table 10.1 in the last Section 10).
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1.3 Summary of the Contents

The rest of this paper is organized as follows.
In Section 2 we summarize some important topics from real analysis such

as BMO and VMO functions (Proposition 2.1). In Section 3 we provide a brief
description of the basic definitions and results about Feller semigroups associated
with Markov processes in probability theory, which forms a functional analytic
background for the proof Theorems 1.1 and 1.2. In particular, we formulate the
Hille–Yosida theorem adapted to the present context (Theorem 3.1 and Corollary
3.1). Moreover, we give two useful criteria in order that a linear operator is the
infinitesimal generator of some Feller semigroup (Theorem 3.2 and Corollary 3.2).
These two sections are intended as a brief introduction to our problem and results
in such a fashion that a broad spectrum of readers could understand.

In Section 4 we consider the Dirichlet problem for the diffusion operator A
with VMO coefficients in the framework of Sobolev spaces of Lp type, and state
an existence and uniqueness theorem for the non-homogeneous Dirichlet problem
(Theorem 4.1).

In Section 5 we study the oblique derivative problem in the framework of
Sobolev spaces of Lp type, and prove an existence and uniqueness theorem for the
oblique derivative problem with VMO coefficients under condition (H.1) (Theorem
5.1). The main purpose of this section is to drop the additional condition (H.2) on
the boundary condition Lν . In fact, by using the distance function

d(x) = dist (x, ∂Ω) for x ∈ Ω,

we show that Theorem 5.1 under condition (H.1) may be reduced to [34, Theorem
4.1] (see Subsection 5.2). The uniqueness result (Theorem 5.1) follows from a
variant of the Bakel’man–Aleksandrov maximum principle in the framework of
Sobolev spaces due to Lieberman [22] (Theorem 5.3).

Section 6 is devoted to the proof of Theorem 1.2 under condition (H.1). By
using Theorem 5.1, we verify all the conditions in the Hille–Yosida theorem (The-
orem 3.1) for the closed operator Aν defined by formula (1.6).

Section 7 is the heart of the subject. Its purpose is to prove a general exis-
tence theorem for Feller semigroups with first-order Wentzell boundary condition
in terms of elliptic boundary value problems (Theorem 7.2), which is based on
the main idea of Taira [32]. Intuitively, Theorem 7.2 asserts that we can “piece
together” a strong Markov process on the boundary ∂Ω with A-diffusion in the
interior Ω to construct a strong Markov process on the closure Ω = Ω ∪ ∂Ω.

In Section 8 we prove Theorem 1.1 under condition (H.1). In fact, we make use
of the generation theorem for Feller semigroups with oblique derivative boundary
condition Lν (Theorem 1.2) to verify all the conditions of a version of the Hille–
Yosida–Ray theorem (Theorem 3.2) for the closed operator A defined by formula
(1.4). The proof of Theorem 1.1 is carried out in a series of propositions (Propo-
sitions 8.1, 8.2 and 8.3). In the proof we make good use of the Boutet de Monvel
calculus [9] just as in [35, Section 7.7] (see Figure 8.1).

In Section 9 we prove Remark 7.2, which gives a precise definition of the defi-
nition (1.4) (and the definition (1.6)) in terms of the closed operators A and LHα.

In the last Section 10, we give an overview of the classical Schauder theory
versus the Calderón–Zygmund theory of singular integrals for general results on
generation theorems for Feller semigroups (see Table 10.1).
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2 The Spaces BMO and VMO

In this section we recall some basic definitions and results concerning BMO and
VMO functions on RN . For more thorough treatments of this subject, the reader
might be referred to Garnett [18] and Torchinsky [39].

A function f(x) ∈ L1
loc(R

N ) is said to be of bounded mean oscillation, f(x) ∈
BMO, if it satisfies the condition (see [21])

∥f∥∗ := sup
B

1

|B|

∫
B
|f(x)− fB | dx <∞,

where the supremum is taken over all balls B in RN and fB is the average of f
over B

fB :=
1

|B|

∫
B
f(x) dx.

It should be noticed that the quantity ∥f∥∗ defines a norm on the quotient space
BMO /R.

Next we introduce a subspace of BMO functions whose BMO norm over a ball
vanishes as the radius of the ball tends to zero. More precisely, if f(x) ∈ BMO and
r > 0, then we let

η(r) := sup
ρ≤r

1

|B|

∫
B
|f(x)− fB | dx,

where the supremum is taken over all balls B with radius ρ ≤ r.

A function f(x) ∈ BMO has vanishing mean oscillation, f(x) ∈ VMO, if it
satisfies the condition (see [28])

lim
r↓0

η(r) = 0.

The function η(r) is called the VMO modulus of f .

The assumption aij(x) ∈ VMO means a kind of continuity in the average
sense, not in the pointwise sense. This property implies that VMO functions may
be approximated by smooth functions.

The relationship between BMO and its subspace VMO is quite similar to the
relationship between L∞ and its subspace BUC of bounded uniformly continuous
functions (see Figure 2.1).

L∞ −−−−−→ BMOx x
BUC −−−−−→ VMO

Fig. 2.1 The spaces L∞, BMO, BUC and VMO

The next proposition collects some important results concerning VMO func-
tions (see [18, Chapter VI, Theorem 5.1], [39, Chapter VIII]):
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Proposition 2.1 (i) If f(x) ∈ VMO, then, for any ε > 0 there exists a uniformly

continuous function gε(x) on RN such that ∥f − gε∥∗ < ε.

(ii) Uniformly continuous functions that belong to BMO are VMO functions.

(iii) VMO is a closed subspace of BMO.

(iv) VMO functions are invariant under C1,1-diffeomorphisms ([1, Proposition

1.3]).

3 Generation Theorems for Feller Semigroups

This section is devoted to the Hille–Yosida theory of Feller semigroups.
Let K be a locally compact, separable metric space and let C(K) be the space

of real-valued, bounded continuous functions f on K. The space C(K) is a Banach
space with the supremum norm

∥f∥ = sup
x∈K

|f(x)| .

We add a point ∂ to the space K as the point at infinity if K is not compact, and
as an isolated point if K is compact. Thus the space K∂ = K ∪ {∂} is compact.
Then we introduce a closed subspace of C(K) as follows:

C0(K) =

{
f ∈ C(K) : lim

x→∂
f(x) = 0

}
.

It should be noticed that the space C0(K) may be identified with the subspace of
C(K∂) which consists of all functions f satisfying the condition f(∂) = 0:

C0(K) = {f ∈ C(K∂) : f(∂) = 0} .

We remark that C0(K) may be identified with C(K) if K is compact.
A family {Tt}t≥0 of bounded linear operators acting on the Banach space

C0(K) is called a Feller semigroup on the state space K if it satisfies the following
three conditions (i), (ii) and (iii):

(i) Tt+s = Tt · Ts for t, s ≥ 0 and T0 = I.
(ii) The family {Tt} is strongly continuous in t at every t ≥ 0:

lim
s↓0

∥Tt+sf − Ttf∥ = 0 for each f ∈ C0(K).

(iii) The family {Tt} is non-negative and contractive on C0(K):

f ∈ C0(K), 0 ≤ f(x) ≤ 1 on K =⇒ 0 ≤ Ttf(x) ≤ 1 on K for all t ≥ 0.

If {Tt}t≥0 is a Feller semigroup on the state space K, we define its infinitesimal

generator A by the formula

Au = lim
t↓0

Ttu− u

t
, (3.1)

provided that the limit (3.1) exists in C0(K).
The next theorem is the Hille–Yosida theorem [45] adapted to the present

context (see [32, Theorem 9.3.1 and Corollary 9.3.2], [35, Theorem 9.35]):



10 Kazuaki Taira

Theorem 3.1 (Hille–Yosida) Let K be a locally compact, separable metric space.

Then we have the following two assertions (i) and (ii).

(i) Let {Tt}t≥0 be a Feller semigroup on the state space K and A its infinitesimal

generator. Then we have the following four assertions (a), (b), (c) and (d):

(a) The domain D(A) is dense in the Banach space C0(K).
(b) For each α > 0, the equation (α I − A)u = f has a unique solution u in D(A)

for any f ∈ C0(K). Hence, for each α > 0, the Green operator

(α I − A)−1 : C0(K) −→ C0(K)

can be defined by the formula

u = (α I − A)−1
f for f ∈ C0(K).

(c) For each α > 0, the Green operator (α I − A)−1 is non-negative on the space

C0(K):

f ∈ C0(K), f ≥ 0 on K =⇒ (α I − A)−1
f ≥ 0 on K.

(d) For each α > 0, the Green operator (α I−A)−1 is bounded on the space C0(K)
with norm ∥∥∥(α I − A)−1

∥∥∥ ≤ 1

α
.

(ii) Conversely, if A is a linear operator from C0(K) into itself satisfying condition (a)

and if there is a constant α0 ≥ 0 such that, for all α > α0, conditions (b) through

(d) are satisfied, then A is the infinitesimal generator of some Feller semigroup

{Tt}t≥0 on the state space K.

The next corollary plays an important role in the proof of Lemma 8.3 in Section
8 (see [35, Corollary 2.17]):

Corollary 3.1 Let A be the infinitesimal generator of a Feller semigroup on a com-
pact metric space K. Assume that the constant function 1 belongs to the domain D(A)
of A and further that we have, for some constant c,

(A1)(x) ≤ −c on K. (3.2)

Then the operator B = A+ c I is the infinitesimal generator of some Feller semigroup

on the state space K.

Following [32], we recall two useful criteria in terms of the positive maximum

principle in order that a linear operator is the infinitesimal generator of some
Feller semigroup (see [32, Theorem 9.3.3 and Corollary 9.3.4], [35, Theorem 9.50
and Corollary 9.51]):

Theorem 3.2 (Hille–Yosida–Ray) Let K be a compact metric space. Then we have

the following two assertions (i) and (ii).

(i) Let B be a linear operator from the Banach space C(K) = C0(K) into itself, and

assume that the following two conditions (α) and (β) are satisfied:

(α) The domain D(B) of B is dense in C(K).
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(β) There exists an open and dense subset K0 of K such that if u ∈ D(B) takes a

positive maximum at a point x0 of K0, then we have the inequality

Bu(x0) ≤ 0.

Then the operator B is closable in C(K).

(ii) Let B be as in part (i), and further assume that the following two conditions (β′)
and (γ) are satisfied:

(β′) If u ∈ D(B) takes a positive maximum at a point x′ of K, then we have the

inequality

Bu(x′) ≤ 0.

(γ) For some α0 ≥ 0, the range R(α0I −B) of α0I −B is dense in C(K).
Then the minimal closed extension B of B is the infinitesimal generator of some

Feller semigroup on the state space K.

The next corollary plays an important role in the proof of Lemma 8.2 in Section
8 (see [35, Corollary 2.19]):

Corollary 3.2 Let A be the infinitesimal generator of a Feller semigroup {Tt}t≥0 on

a compact metric space K and let M be a bounded linear operator on the Banach space

C(K) into itself. If either M or C = A+M satisfies condition (β′) of Theorem 3.2,

then the operator C is the infinitesimal generator of some Feller semigroup on the state

space K.

4 The Dirichlet Problem

An open set Ω in RN is said to be of class C1,1 if its boundary ∂Ω can be locally
represented as the graph of a C1 function whose first-order partial derivatives
are all Lipschitz continuous. It should be emphasized that VMO functions are
invariant under C1,1-diffeomorphisms (see [1, Proposition 1.3]).

Let Ω be a bounded domain in Euclidean space RN , N ≥ 3, with boundary
∂Ω of class C1,1. If 1 < p < ∞, we define the usual Sobolev space W 2,p(Ω),
and the boundary space B2−1/p,p(∂Ω) of the boundary values γ0u of functions
u ∈W 2,p(Ω). It is known (see [2], [5], [40]) that the space B2−1/p,p(∂Ω) is a Besov
space.

In this section we consider the following non-homogeneous Dirichlet problem:
Given functions f(x) and φ(x′) defined in Ω and on ∂Ω, respectively, find a function
u(x) in Ω such that {

Au = f in Ω,

γ0u = φ on ∂Ω.
(4.1)

The next existence and uniqueness theorem is a generalization of Bony [7,
Théorème 3] to the VMO case (see [33, Theorem 4.1]):

Theorem 4.1 Let N < p <∞, and assume that c(x) ≤ 0 for almost all x ∈ Ω. Then

the non-homogeneous Dirichlet problem (4.1) has a unique solution u ∈ W 2,p(Ω) for

any f ∈ Lp(Ω) and any φ ∈ B2−1/p,p(∂Ω).
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If we associate with problem (4.1) a continuous linear operator

AD = (A, γ0) : W
2,p(Ω) −→ Lp(Ω)⊕B2−1/p,p(∂Ω),

then we obtain from Theorem 4.1 that the mapping AD is an algebraic and topo-
logical isomorphism. Indeed, the continuity of the inverse of AD follows from an
application of Banach’s closed graph theorem (see [30, Theorem 3.10], [45, Chapter
II, Section 6, Theorem 1]).

5 The Oblique Derivative Problem

The purpose of this section is to prove an existence and uniqueness theorem for the
non-homogeneous oblique derivative problem in the framework of Sobolev spaces
of Lp type under condition (H.1) (Theorem 5.1).

5.1 Formulation of the Oblique Derivative Problem

In this subsection, we consider an oblique derivative boundary operator of the
form

Lνu := µ(x′)
∂u

∂n
+ β(x′) · ∂x′u+ γ(x′)u. (1.5)

Our starting point is the following existence and uniqueness theorem for the
non-homogeneous oblique derivative problem with VMO coefficients under condi-
tion (H.1):

Theorem 5.1 Let N < p < ∞ and α > 0. Assume that condition (H.1) is satisfied.

Then, for any f ∈ Lp(Ω) and any φ ∈ B1−1/p,p(∂Ω) the non-homogeneous oblique

derivative problem {
(A− α)u = f in Ω,

Lνu = φ on ∂Ω
(5.1)

has a unique solution u ∈W 2,p(Ω).

If we associate with problem (5.1) a linear operator

Aν(α) = (A− α,Lν) : W
2,p(Ω) −→ Lp(Ω)⊕B1−1/p,p(∂Ω),

then we obtain from the trace theorem (see [2, Remarks 7.45], [40, p. 200, The-
orem]) and Theorem 5.1 that the mapping Aν(α) is an algebraic and topological
isomorphism for any α > 0. Indeed, the continuity of the inverse of Aν(α) follows
from an application of Banach’s closed graph theorem (see [30, Theorem 3.10], [45,
Chapter II, Section 6, Theorem 1]).
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5.2 Proof of Theorem 5.1

The proof of Theorem 5.1 is divided into two steps. First, since n is the unit inward
normal to the boundary ∂Ω, it follows (see Figure 1.2) that⟨

µ(x′)n+ β(x′),n
⟩
= µ(x′) ⟨n,n⟩ = µ(x′) for all x′ ∈ ∂Ω.

Therefore, in terms of the local coordinates (1.3) we find that condition (H.1) is
equivalent to the condition that the directional derivative

µ(x′)
∂

∂n
+ β(x′) · ∂x′ = µ(x′)

∂

∂xN
+

N−1∑
j=1

βj(x′)
∂

∂xj

associated with Lν is nowhere tangential to the boundary ∂Ω.

5.2.1 Oblique Derivative Problems and the Distance Function

First, we introduce the distance function d(x) by the formula

d(x) = dist (x, ∂Ω) for x ∈ Ω.

It is easy to see that d(x) is uniformly Lipschitz continuous. In fact, we have, by
the triangle inequality,

|d(x)− d(y)| ≤ |x− y| for all x, y ∈ Ω.

Furthermore, for a > 0 we define a tubular neighborhood Γa of ∂Ω by the formula

Γa :=
{
x ∈ Ω : d(x) ≤ a

}
.

Then we find from the proof of [19, Lemma 14.16] that

d(x) ∈ C1,1 (Γa0) for some a0 > 0.

It should be noticed that the points x ∈ Γa0 and y′ ∈ ∂Ω are related as follows:

x = y′ + d(x)n(y′),

where n(y′) is the unit inward normal to ∂Ω at y′.
By using [23, Lemma 1.67], we can extend the distance function d(x) in such

a way that
d(x) ∈ C1,1 (Ω)

.

Hence, it follows from an application of Sobolev imbedding theorem ([2, Theorem
4.12, Part II]) and Rademacher’s theorem ([23, Corollary 1.73]) that

d(x) ∈W 2,∞(Ω) = C1,1 (Ω)
. (5.2)

Finally, we have the formula

grad d(x′) = n(x′) at every point x′ ∈ ∂Ω. (5.3)

Now we are in a position to study the non-homogeneous oblique derivative
problem via the distance function (cf. [24, Theorem 4.1], [25, Theorem 2.3.5]):
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Theorem 5.2 Let N < p <∞ and

A0u :=
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
.

If condition (H.1) is satisfied, then there exists a constant α0 > 0 (see formula (5.8)
below) such that the non-homogeneous oblique derivative problem{

(A0 − α0)u = f in Ω,

Lνu = φ on ∂Ω
(5.4)

has a unique solution u ∈W 2,p(Ω) for any f ∈ Lp(Ω) and any φ ∈ B1−1/p,p(∂Ω).

Proof The proof of Theorem 5.2 is divided into three steps.
Step (1): If we let

u(x) = v(x) e−d(x) for x ∈ Ω,

then we have, by a direct calculation (cf. [25, pp. 138–139]),

(A0 − α)u = f in Ω ⇐⇒
(
Ã0 − α

)
v = f ed(x) in Ω. (5.5)

Here the differential operator Ã0 is given by the formula

Ã0v =
N∑

i,j=1

aij(x)
∂2v

∂xi∂xj
+

N∑
i=1

b̃i(x)
∂v

∂xi
+ c̃(x) v(x)

:=
N∑

i,j=1

aij(x)
∂2v

∂xi∂xj
− 2

N∑
i=1

 N∑
j=1

aij(x)
∂d

∂xj

 ∂v

∂xi

+

 N∑
i,j=1

aij(x)
∂d

∂xi

∂d

∂xj
−

N∑
i,j=1

aij(x)
∂2d

∂xi∂xj

 .

By assertion (5.2), we remark that the coefficients b̃i(x) and c̃(x) satisfy the fol-
lowing regularity conditions:

• b̃i(x) = −2
N∑
j=1

aij(x)
∂d

∂xj
∈ L∞(Ω) for 1 ≤ i ≤ N, (5.6)

• c̃(x) =
N∑

i,j=1

aij(x)
∂d

∂xi

∂d

∂xj
−

N∑
i,j=1

aij(x)
∂2d

∂xi∂xj
∈ L∞(Ω). (5.7)

Therefore, if we let

α0 := max
x∈Ω

∣∣∣∣∣∣
N∑

i,j=1

aij(x)

(
∂d

∂xi

∂d

∂xj
− ∂2d

∂xi∂xj

)∣∣∣∣∣∣ , (5.8)

then we have the inequality

c̃(x)− α0 ≤ 0 on Ω. (5.9)
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Step (2): On the other hand, by using assertions (5.2) and (5.3) we have the
formula

Lνu = µ(x′)
∂u

∂n
+ β(x′) · ∂x′u+ γ(x′)u = φ on ∂Ω (5.10)

⇐⇒

L̃νv := µ(x′)
∂v

∂n
+ β(x′) · ∂x′v + γ̃(x′)v = φ on ∂Ω,

where
γ̃(x′) = γ(x′)− µ(x′) on ∂Ω. (5.11)

Indeed, it suffices to note the following:
∂
∂n

(
ed(x)

)
=

⟨
n, grad d(x′)

⟩
ed(x

′) = ⟨n,n⟩ = 1 on ∂Ω,

β(x′) · ∂x′

(
ed(x)

)
= 0 on ∂Ω.

Step (3): By combining formulas (5.5) and (5.10), we have the equivalence of
the two oblique derivative problems (5.4) and (5.12):{

(A0 − α0)u = f in Ω,

Lνu = φ on ∂Ω
(5.4)

⇐⇒
(
Ã0 − α0

)
v = f ed(x) in Ω,

L̃νv = φ on ∂Ω.
(5.12)

By assertions (5.6) and (5.7) and inequality (5.9), it should be noticed that the
coefficients b̃i(x) and c̃(x) of the differential operator Ã0 satisfies the following two
conditions:

(2) b̃i(x) ∈ L∞(Ω) for 1 ≤ i ≤ N .
(3) c̃(x) ∈ L∞(Ω) and c̃(x)− α0 ≤ 0 for almost all x ∈ Ω.

By formula (5.11), it follows that the coefficients µ(x′) and γ̃(x′) of the boundary
condition L̃ν satisfies the following two conditions (H.1) and (H̃.2):

(H.1) µ(x′) > 0 on ∂Ω.
(H̃.2) γ̃(x′) = γ(x′)− µ(x′) ≤ −µ(x′) < 0 on ∂Ω.

Therefore, by applying [34, Theorem 4.1] (cf. [24, Theorem 4.1], [25, Theorem
2.3.5]) with

A := Ã0, c(x) := c̃(x)− α0, α := 0,

f := f ed(x),

L0 := L̃ν , γ(x′) := γ̃(x′),

we obtain that the non-homogeneous oblique derivative problem (5.12) has a
unique solution v ∈W 2,p(Ω) for any f ed(x) ∈ Lp(Ω) and any φ ∈ B1−1/p,p(∂Ω).

Rephrased, the non-homogeneous oblique derivative problem (5.4) has a unique
solution u = v e−d(x) ∈ W 2,p(Ω) for any f ∈ Lp(Ω) and any φ ∈ B1−1/p,p(∂Ω).
Indeed, we have, by assertion (5.2),

u = v e−d(x) ∈W 2,p(Ω) for v ∈W 2,p(Ω).

Now the proof of Theorem 5.2 is complete. ⊓⊔
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5.2.2 End of Proof of Theorem 5.1

The proof of Theorem 5.1 is divided into five steps.

Step (1): If we associate with problem (5.4) a continuous linear operator

A0(α0) = (A0 − α0, Lν) : W
2,p(Ω) −→ Lp(Ω)⊕B1−1/p,p(∂Ω),

then we obtain from Theorem 5.2 that the mapping A0(α0) is an algebraic and
topological isomorphism. In particular, we have the assertion

indA0(α0) = dimN (A0(α0))− codimR (A0(α0)) = 0. (5.13)

Step (2): If we let

B(α0 − α)u :=
N∑
i=1

bi(x)
∂u

∂xi
+ (c(x) + α0 − α)u for α > 0,

then it follows that the operator

B(α0 − α) : W 2,p(Ω) −→W 1,p(Ω)

is continuous for 1 < p <∞. However, it follows from an application of the Rellich–
Kondrachov theorem (see [2, Theorem 6.3, Part II], [19, Theorem 7.26]) that the
injection

W 1,p(Ω) −→ Lp(Ω)

is compact for 1 < p <∞. Hence we find that the mapping

B(α0 − α) : W 2,p(Ω) −→ Lp(Ω)

is compact for 1 < p <∞. It should be noticed that

Aν(α) = (A− α,Lν) = (A0 − α0, Lν) + (B(α0 − α), 0) = A0(α0) + (B(α0 − α), 0) .

However, we know (see [20, Theorem 2.6], [30, Theorem 5.10]) that the index is
stable under compact perturbations.

Therefore, we obtain that the mapping

Aν(α) = A0(α0) + (B(α0 − α), 0) : W 2,p(Ω) −→ Lp(Ω)⊕B1−1/p,p(∂Ω)

is a Fredholm operator with index zero, for any α > 0, since we have, by assertion
(5.13),

indAν(α) = indA0(α0) = 0. (5.14)

In particular, the Fredholm alternative holds true for the operator Aν(α) for any
α > 0.

Step (3): On the other hand, the uniqueness result in Theorem 5.1 follows
from an application of the Bakel’man–Aleksandrov maximum principle (see [22,
Corollary 2.4], [34, Theorem 4.3])):
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Theorem 5.3 (the maximum principle) Let N < p <∞ and α > 0. Assume that

condition (H.1) is satisfied. If a function u ∈W 2,p(Ω) satisfies the conditions{
(A− α)u ≤ 0 almost everywhere in Ω,

Lνu ≤ 0 on ∂Ω,
(5.15)

then it follows that either u(x) is a non-negative constant function or u(x) > 0 on Ω.

Step (4): By applying Theorem 5.3 to the two functions ±u(x), it follows that
we have, for α > 0,{

(A− α)u = 0 almost everywhere in Ω,

Lνu = 0 on ∂Ω
=⇒ u = 0 in Ω.

This proves that the mapping

Aν(α) = (A− α,Lν) : W
2,p(Ω) −→ Lp(Ω)⊕B1−1/p,p(∂Ω)

is injective for any α > 0 if N < p < ∞. Hence it is also surjective for any α > 0 if
N < p <∞, since we have, by assertion (5.14),

indAν(α) = dimN (Aν(α))− codimR (Aν(α)) = 0.

Step (5): Summing up, we have proved that the mapping

Aν(α) = (A− α,Lν) : W
2,p(Ω) −→ Lp(Ω)⊕B1−1/p,p(∂Ω)

is an algebraic and topological isomorphism for any α > 0 if N < p <∞, since the
continuity of the inverse of Aν(α) follows from an application of Banach’s closed
graph theorem (see [30, Theorem 3.10], [45, Chapter II, Section 6, Theorem 1]).

Now the proof of Theorem 5.1 is complete. ⊓⊔

6 Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2 under condition (H.1). In
order to prove Theorem 1.2, it suffices to verify all conditions (a) through (d) in
the Hille–Yosida theorem (Theorem 3.1) with

K := Ω, C0(K) := C(Ω), A := Aν .

The proof of Theorem 1.2 is divided into four steps.
Step (1): First, we prove that, for each α > 0, the equation (α I −A)u = f has

a unique solution u ∈ D(AN ) for any f ∈ C(Ω).
By applying Theorem 5.1, we obtain that the oblique derivative problem{

(α−A)u = f almost everywhere in Ω,

Lνu = 0 on ∂Ω

has a unique solution u ∈ W 2,p(Ω) for any f ∈ Lp(Ω) with N < p < ∞. In
particular, for any f ∈ C(Ω) there exists a function u ∈W 2,p(Ω) such that

(α−A)u = f in Ω.
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Hence we have the assertion

Au = αu− f ∈ C(Ω).

By formula (1.6), this proves that{
u ∈ D(Aν),

(α I − Aν)u = f.

Step (2): Secondly, we prove that, for each α > 0, the Green operator Gν
α =

(α I − Aν)
−1 is non-negative on the space C(Ω):

f ∈ C(Ω), f(x) ≥ 0 in Ω =⇒ u(x) = Gν
αf(x) ≥ 0 in Ω.

More precisely, we prove the following assertion:

f ∈ C(Ω), f(x) ≥ 0, f(x) ̸≡ 0 in Ω =⇒ u(x) = Gν
αf(x) > 0 on Ω. (6.1)

The situation can be visualized as follows:

D(Aν)
α I−Aν−−−−−→ C(Ω)∥∥∥ ∥∥∥

D(Aν) ←−−−−−
Gν

α

C(Ω)

Fig. 6.1 The operators α I − Aν and Gν
α = (α I − Aν)−1 for α > 0

Since we have the formulas
u ∈W 2,p(Ω) for N < p <∞,

(A− α)u = −f ≤ 0 almost everywhere in Ω,

Lνu = 0 on ∂Ω,

by applying Theorem 5.3 (the maximum principle) we obtain that either u(x) is a
non-negative constant function or u(x) > 0 on Ω. However, if u(x) ≡ 0 in Ω, then
it follows that

f(x) = (α−A)u(x) ≡ 0 in Ω.

This contradiction proves that either u(x) is a positive constant function or u(x) >
0 on Ω, that is,

Gν
αf(x) > 0 on Ω.

Step (3): Thirdly, we prove that, for each α > 0, the Green operator Gν
α =

(α I − Aν)
−1 is bounded on the space C(Ω) with norm 1/α:∥∥Gν

α

∥∥ ≤ 1

α
for all α > 0. (6.2)

By virtue of assertion (6.1), it suffices to show that

αGν
α1(x) ≤ 1 on Ω.
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If we let

v(x) := αGν
α1(x)− 1,

then we have the assertions
u ∈W 2,p(Ω) for N < p <∞,

(A− α) v = 0 in Ω,

Lνv = 0 on ∂Ω.

By applying Theorem 5.3 to the function u(x) := −v(x), we arrive at a contradic-
tion that

max
Ω

v > 0 =⇒ v(x) ≡ 0 in Ω.

This proves that

max
Ω

v ≤ 0,

or equivalently,

αGν
α1(x) ≤ 1 on Ω.

Step (4): The closedness of Aν is an immediate consequence of that of the
inverse Gν

α
−1 = α I − Aν (see [45, p. 79, Proposition 3]).

Step (5): Finally, we prove that the domain D(Aν) is dense in C(Ω). More
precisely, we prove that, for each u ∈ C(Ω), we have the assertion

lim
α→+∞

∥∥αGν
αu− u

∥∥
C(Ω)

= 0. (6.3)

It suffices to prove assertion (6.3) for any v ∈ C1,1(Ω) such that Lνv = 0 on
∂Ω. In fact, we have the following (see [4, Lemma 3.2], [34, Lemma 4.4])):

Lemma 6.1 Let u ∈ C(Ω). For any given ε > 0, we can find a function v ∈ C1,1(Ω) =
W 2,∞(Ω) such that {

∥u− v∥C(Ω) < ε,

Lνv = 0 on ∂Ω.
(6.4)

In order to prove assertion (6.3) for any v ∈ C1,1(Ω) such that Lνv = 0, we
introduce an extension G̃ν

α of the Green operator Gν
α to the space L∞(Ω) for

N < p <∞. By Theorem 5.1, we find that the oblique derivative problem{
(α−A)u = f almost everywhere in Ω,

Lνu = 0 on ∂Ω

has a unique solution u ∈W 2,p(Ω) for any f ∈ Lp(Ω). If we let

u := G̃ν
αf for f ∈ L∞(Ω),

then it is easy to verify that the operator G̃ν
α is an extension of Gν

α to L∞(Ω).
Moreover, just as in the proof of assertions (6.1) and (6.2) we can prove the
following two assertions (A) and (B):

(A) The operator G̃ν
α : L

∞(Ω) → C(Ω) is non-negative.
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C(Ω)
x

W 2,p
(Ω)

fGν

α

←−−−− D(G̃ν
α) = L∞(Ω)

x
x

D(Aν) ←−−−−
Gν

α

D(G
ν
α) = C(Ω)

Fig. 6.2 The mapping properties of the Green operators Gν
α and G̃ν

α for α > 0

(B) The operator G̃ν
α : L

∞(Ω) → C(Ω) is bounded with norm 1/α:∥∥∥G̃ν
α

∥∥∥ ≤ 1

α
for all α > 0. (6.5)

First, since aij(x), bi(x), c(x) ∈ L∞(Ω) and v ∈ C1,1(Ω) =W 2,∞(Ω), it follows
that

Av =
N∑

i,j=1

aij(x)
∂2v

∂xi∂xj
+

N∑
i=1

bi(x)
∂v

∂xi
+ c(x)v ∈ L∞(Ω). (6.6)

Thus, if we let

w := αGν
αv − G̃ν

α(Av),

then we have the assertions (see Figure 6.2)
w ∈W 2,p(Ω) for N < p <∞,

(A− α)w = (A− α) v almost everywhere in Ω,

Lνw = 0 on ∂Ω,

and so 
w − v ∈W 2,p(Ω) for N < p <∞,

(A− α) (w − v) = 0 almost everywhere in Ω,

Lν (w − v) = 0 on ∂Ω.

By applying Theorem 5.1 to the function w(x)− v(x), we obtain that w− v = 0 in
Ω. This implies that

v = w = αGν
αv − G̃ν

α(Av).

Therefore, the desired assertion (6.3) for any v ∈ C1,1(Ω) such that Lνv = 0 follows
from an application of assertions (6.5) and (6.6), since we have, for all α > 0,

∥∥v − αGν
αv

∥∥
C(Ω)

=
∥∥∥G̃ν

α(Av)
∥∥∥
C(Ω)

≤ 1

α
∥Av∥L∞(Ω) .

Now the proof of Theorem 1.2 is complete. ⊓⊔
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7 Feller Semigroups and Boundary Value Problems

The purpose of this section is to prove a general existence theorem for Feller
semigroups in terms of boundary value problems (Theorem 7.2), following the
main idea of Taira [32, Section 9.6] (see Bony–Courrège–Priouret [8] and Sato–
Ueno [29]).

7.1 Green Operators and Harmonic Operators for the Dirichlet problem

Let N < p <∞ and α > 0. Since we have the inequality

c(x)− α ≤ −α for almost all x ∈ Ω,

by applying Theorem 4.1 to the operator A− α we obtain that, for any f ∈ C(Ω)
and any φ ∈ C2(∂Ω) the Dirichlet problem{

(α−A)u = f almost everywhere in Ω,

u = φ on ∂Ω
(7.1)

has a unique solution u ∈ W 2,p(Ω). Indeed, it suffices to note that C(Ω) ⊂ Lp(Ω)
and C2(∂Ω) ⊂ B2−1/p,p(∂Ω). Therefore, we can introduce two linear operators

G0
α : C(Ω) −→ C(Ω),

and
Hα : C

2(∂Ω) −→ C(Ω)

as follows.

(I) For any f ∈ C(Ω), the function G0
αf ∈W 2,p(Ω)∩W 1,p

0 (Ω) is the unique solution
of the problem {

(α−A)G0
αf = f in Ω,

G0
αf = 0 on ∂Ω.

(7.2)

(II) For any φ ∈ C2(∂Ω), the function Hαφ ∈W 2,p(Ω) is the unique solution of the
problem {

(α−A)Hαφ = 0 in Ω,

Hαφ = φ on ∂Ω.
(7.3)

Here it should be noticed that we have, by Sobolev’s imbedding theorem (see
[2, Theorem 4.12, Part II]),

W 2,p(Ω) ⊂ C2−N/p(Ω) ⊂ C1(Ω) for N < p <∞, (7.4)

and also, by an imbedding theorem for Besov spaces (see [2, Theorem 7.34, Part
(c)]), {

C1(∂Ω) ⊂ B1−1/p,p(∂Ω) ⊂ C(∂Ω),

C2(∂Ω) ⊂ B2−1/p,p(∂Ω) ⊂ C1(∂Ω),
(7.5)

since (1− 1/p)p = p− 1 > N − 1.
The operator G0

α is called the Green operator and the operator Hα is called the
harmonic operator, respectively.

Then we can prove the following theorem for the Dirichlet problem (see [35,
Theorem 10.9]):
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Theorem 7.1 Let α > 0. Then we have the following two assertions for the operators

G0
α and Hα.

(i) The Green operator

G0
α : C(Ω) −→ C(Ω)

enjoys the following properties (a) through (d):

(a) The operator G0
α is non-negative and bounded with norm∥∥∥G0

α

∥∥∥ =
∥∥∥G0

α1
∥∥∥
C(Ω)

≤ 1

α
. (7.6)

(b) For any f ∈ C(Ω), we have the assertion

G0
αf = 0 on ∂Ω.

(c) For all α, β > 0, the resolvent equation holds true:

G0
αf −G0

βf + (α− β)G0
α(G

0
βf) = 0 for each f ∈ C(Ω). (7.7)

(d) For any f ∈ C(Ω), we have the assertion

lim
α→+∞

αG0
αf(x) = f(x) for each x ∈ Ω. (7.8)

Furthermore, if f |∂Ω = 0, that is, if f ∈ C0(Ω), then this convergence is

uniform in x ∈ Ω. In other words, we have the assertion

lim
α→+∞

αG0
αf = f in C0(Ω). (7.9)

(ii) The harmonic operator Hα : C
2(∂Ω) → C(Ω) can be uniquely extended to a non-

negative, bounded linear operator

Hα : C(∂Ω) −→ C(Ω)

that enjoys the following properties (e) through (g):

(e) The operator Hα is bounded with norm ∥Hα∥ = 1.
(f) For any φ ∈ C(∂Ω), we have the assertion

Hαφ = φ on ∂Ω.

(g) For all α, β > 0, we have the equation

Hαφ−Hβφ+ (α− β)G0
α (Hβφ) = 0 for each φ ∈ C(∂Ω). (7.10)

Remark 7.1 The resolvent equation (7.7) remains valid for each f ∈ L∞(Ω) (see
Figure 7.1 below):

G̃0
αf − G̃0

βf + (α− β)G0
α

(
G̃0

βf
)
= 0 for each f ∈ L∞(Ω). (7.7′)

Indeed, since the function

u := G̃0
αf − G̃0

βf + (α− β)G0
α(G̃0

βf) ∈W 2,p(Ω) ∩W 1,p
0 (Ω)

is a unique solution of the Dirichlet problem{
(α−A)u = 0 almost everywhere in Ω,

u = 0 on ∂Ω,

it follows from an application of Theorem 4.1 with A := A− α that

G̃0
αf − G̃0

βf + (α− β)G0
α

(
G̃0

βf
)
= 0.
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D(G̃0

α) = L∞(Ω)

fG0

α

−−−−→ W 2,p
(Ω) ∩ W

1,p
0

(Ω)
x

D(G0

α) = C(Ω)
G0

α

−−−−→ W 2,p
(Ω) ∩ W

1,p
0

(Ω)

Fig. 7.1 The Green operators G0
α and G̃0

α for α > 0 in Theorem 7.1 and Remark 7.1

7.2 General Boundary Value Problems

Let L be a first-order, Wentzell boundary condition of the form

Lu := µ(x′)
∂u

∂n
+ β(x′) · ∂x′u+ γ(x′)u− δ(x′) (Au|∂Ω) on ∂Ω. (1.2)

In this subsection we consider the following first-order Wentzell boundary value
problem in the framework of the spaces of continuous functions:{

(α−A)u = f in Ω,

Lu = 0 on ∂Ω.
(7.11)

To do this, we introduce three linear operators associated with problem (7.11).
(I) First, we introduce a linear operator

A : C(Ω) −→ C(Ω)

as follows:

(a) The domain D(A) of A is the space

D(A) =
{
u ∈W 2,p(Ω) : Au ∈ C(Ω)

}
for N < p <∞. (7.12)

(b) Au = Au for every u ∈ D(A).

Here Au is taken in the sense of distributions.

W 2,p(Ω)x
D(A)

A−−−−−→ C(Ω)x
D(Aν)

Aν−−−−−→ C(Ω)

Fig. 7.2 The operators Aν and A in the definitions (1.6) and (7.12)

Then we have the following lemma:
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Lemma 7.1 The operator A is a densely defined, closed linear operator in the space

C(Ω).

Proof (1) First, by the definition (1.6) of Aν it follows from the definition (7.12)
of A that (see Figure 7.2 above)

Aν ⊂ A.

This proves the density of the domain D(A) in C(Ω), since the domain D(Aν) is
dense in C(Ω) (see assertion (6.3)).

(2) Now, let (u, v) be an arbitrary element of the product space

C(Ω)⊕ C(Ω)

such that there exists a sequence {un} ⊂ D(A) which satisfies the conditions{
un −→ u in C(Ω),

Aun −→ v in C(Ω).

Then we have, by the boundedness of G0
α,

G0
α(Aun) = αG0

αun − un +Hα (un|∂Ω) −→ αG0
αu− u+Hα (u|∂Ω) in C(Ω),

and also

G0
α(Aun) −→ G0

αv in C(Ω).

This proves that

u = αG0
αu+Hα (u|∂Ω)−G0

αv ∈W 2,p(Ω). (7.13)

Thus, by applying the operator α−A to the both hand sides of formula (7.13) we
obtain that

(α−A)u = α (α−A)G0
αu− (α−A)G0

αv = αu− v,

so that
Au = v ∈ C(Ω).

Summing up, we have proved that{
u ∈ D(A),

Au = v.

This proves the closedness of A.
The proof of Lemma 7.1 is complete. ⊓⊔

Remark 7.2 The domain D(A) does not depend on p, for N < p < ∞ (see Section
9).

The (extended) operators G0
α : C(Ω) → C(Ω) and Hα : C(∂Ω) → C(Ω) for

α > 0 still satisfy formulas (7.2) and (7.3) respectively in the following sense (see
[35, Lemma 10.12 and Corollary 10.13]):

Lemma 7.2 Let α > 0. Then we have the following assertions (i) and (ii).
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(i) For any f ∈ C(Ω), we have the formulas{
G0

αf ∈ D(A),(
α I −A

)
G0

αf = f.
(7.14)

(ii) For any φ ∈ C(∂Ω), we have the formulas{
Hαφ ∈ D(A),(
α I −A

)
Hαφ = 0.

(7.15)

Proof Assertion (i): If f ∈ C(Ω), then it follows from the definition of G0
α that{

G0
αf ∈W 2,p(Ω),

A(G0
αf) = αG0

αf − f ∈ C(Ω).

This proves the desired formulas (7.14).
Assertion (ii): If φ ∈ C(∂Ω), we can find a sequence {φj} in the space C2(∂Ω)

such that

φj −→ φ in C(∂Ω).

Hence, we have, by the boundedness of Hα,

Hαφj −→ Hαφ in C(Ω).

However, it follows that

Hαφj ∈W 2,p(Ω),

A(Hαφj) = αHαφj ∈ C(Ω),

so that

Hαφj ∈ D(A).

Therefore, we have the assertions
Hαφj ∈ D(A),

Hαφj −→ Hαφ in C(Ω),

A(Hαφj) −→ αHαφ in C(Ω).

This proves the desired formulas (7.15){
Hαφ ∈ D(A),

A (Hαφ) = αHαφ,

since the operator A is closed.
The proof of Lemma 7.2 is complete. ⊓⊔

Corollary 7.1 Every function u ∈ D(A) can be written in the form

u = G0
α

((
α I −A

)
u
)
+Hα (u|∂Ω) for α > 0. (7.16)
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Proof We let

w = u−G0
α

((
αI −A

)
u
)
−Hα (u|∂Ω) ∈W 2,p(Ω).

Then it follows from Lemma 7.2 that the function w is in D(A) and satisfies the
conditions {(

αI −A
)
w = 0 in Ω,

w = 0 on ∂Ω.

Therefore, we can apply Theorem 4.1 to the operator A− α to obtain that

0 = w = u−G0
α

((
αI −A

)
u
)
−Hα (u|∂Ω) .

This proves the desired formula (7.16).
The proof of Corollary 7.1 is complete. ⊓⊔

The situation of Lemma 7.2 can be visualized as in Figures 7.3 and 7.4 below.

C(Ω)x
D(G0

α) = C(Ω)
G0

α−−−−−→ D(A)

Fig. 7.3 The Green operator G0
α and the domain D(A) for formulas (7.14)

C(Ω)x
D(Hα) = C(∂Ω)

Hα−−−−−→ D(A)x x
B2−1/p,p(∂Ω) −−−−−→

Hα

R(Hα)x
C2(∂Ω)

Fig. 7.4 The harmonic operator Hα and the domain D(A) for formulas (7.15)

(II) Secondly, for α > 0 we introduce a linear trace operator

LG0
α : C(Ω) −→ C(∂Ω)

as follows.
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(a) The domain D
(
LG0

α

)
of LG0

α is the space C(Ω).

(b) LG0
αf = L(G0

αf) = µ(x′) ∂
∂n (G

0
αf) + δ(x′) (f |∂Ω) for every f ∈ D

(
LG0

α

)
.

Here it should be emphasized that we have, by Sobolev’s imbedding theorem (see
[2, Theorem 4.12, Part II]),{

G0
αf ∈W 2,p(Ω) ⊂ C2−N/p(Ω) ⊂ C1(Ω),

A(G0
αf) = αG0

αf − f ∈ C(Ω),

since 2−N/p > 1 for N < p <∞.
Then we have the following lemma (see [35, Lemma 10.14]):

Lemma 7.3 The trace operators LG0
α : C(Ω) → C(∂Ω) are non-negative and bounded

for all α > 0.

Proof Let f be an arbitrary function in D(LG0
α) = C(Ω) such that f(x) ≥ 0 on Ω.

Then we have the assertions
G0

αf ∈ C1(Ω),

G0
αf ≥ 0 on Ω,

G0
αf = 0 on ∂Ω,

and so

LG0
αf(x

′) = L(G0
αf)(x

′) = µ(x′)
∂

∂n
(G0

αf)(x
′) + δ(x′)f(x′)

≥ 0 on ∂Ω.

This proves that the operator LG0
α is non-negative.

By the non-negativity of LG0
α, we have, for all f ∈ D(LG0

α),

−LG0
α∥f∥C(Ω) ≤ LG0

αf ≤ LG0
α∥f∥C(Ω) on ∂Ω.

This implies the boundedness of LG0
α with norm∥∥∥LG0

α

∥∥∥ =
∥∥∥L(G0

α1)
∥∥∥
C(∂Ω)

.

The proof of Lemma 7.3 is complete. ⊓⊔

The trace operators LG0
α for α > 0 can be visualized as in Figures 7.5 and 7.6

below.

LG0
α : D

(
LG0

α

)
= C(Ω)

G0
α−→ D(A)

L−→ C(∂Ω).

Fig. 7.5 The mapping property of the operators LG0
α in Lemma 7.3
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Remark 7.3 More generally, we can prove that the trace operators

L̃G0
α : L

∞(Ω) −→ C(∂Ω)

f 7−→ L
(
G̃0

αf
)

are non-negative and bounded for all α > 0, with norm (see Figure 7.6 below)∥∥∥L̃G0
α

∥∥∥ =
∥∥∥L(

G0
α1

)∥∥∥
C(∂Ω)

=
∥∥∥LG0

α

∥∥∥ .

Lp
(Ω) C(Ω) C(∂Ω)
x

x
x

D(L̃G0

α) = L∞
(Ω)

fG0

α

−−−−→ W 2,p
(Ω) ∩ W

1,p
0

(Ω)
L

−−−−→ B1−1/p,p
(∂Ω)

x
y

D(LG0

α) = C(Ω)
LG0

α

−−−−→ C(∂Ω)

Fig. 7.6 The mapping properties of the operators LG0
α and L̃G0

α

The next lemma states a fundamental relationship between the trace operators
LG0

α and LG0
β for all α, β > 0 (see [35, Lemma 10.15]):

Lemma 7.4 For any α, β > 0, we have the equation

LG0
αf − LG0

βf + (α− β)LG0
α (G0

βf) = 0 for each f ∈ C(Ω). (7.17)

Proof In fact, since the function

u := G0
αf −G0

βf + (α− β)G0
α

(
G0

βf
)
∈W 2,p(Ω) ∩W 1,p

0 (Ω)

is a unique solution of the Dirichlet problem{
(α−A)u = 0 almost everywhere in Ω,

u = 0 on ∂Ω,

it follows from an application of Theorem 4.1 with A := A− α that

G0
αf −G0

βf + (α− β)G0
α

(
G0

βf
)
= 0. (7.18)

Therefore, the desired formula (7.17) follows by applying the boundary operator
L to the both sides of formula (7.18).

The proof of Lemma 7.4 is complete. ⊓⊔

(III) Finally, by virtue of assertion (7.5) we can introduce a linear operator

LHα : C(∂Ω) −→ C(∂Ω)

as follows.
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(c) The domain D (LHα) of LHα is the space B2−1/p,p(∂Ω) for N < p <∞.

(d) LHαψ = L (Hαψ) = µ(x′)
∂

∂n
(Hαψ) + β(x′) · ∂x′ψ + γ(x′)ψ − α δ(x′)ψ for every

ψ ∈ D (LHα).

By assertion (7.5), we remark that the domain D (LHα) is dense in the space
C(∂Ω):

C1(∂Ω) ⊂ D (LHα) = B1−1/p,p(∂Ω) ⊂ C(∂Ω) for N < p <∞.

Then we have the following lemma (see [35, Lemma 10.16]):

Lemma 7.5 The operator LHα for α > 0 has its minimal closed extension LHα in

the space C(∂Ω).

Proof We apply part (i) of the Hille–Yosida–Ray theorem (Theorem 3.2) with

K := ∂Ω, B := LHα.

To do this, it suffices to show that the operator LHα satisfies condition (β) with
K := K0 = ∂Ω of the same theorem.

Assume that a function φ in the domain D(LHα) = B2−1/p,p(∂Ω) takes its
positive maximum at some point x′0 of ∂Ω. Since the harmonic function

Hαφ ∈W 2,p(Ω)

satisfies the conditions {
(A− α)Hαφ = 0 in Ω,

Hαφ = φ on ∂Ω,

by applying the weak maximum principle (see [6], [41, p. 191, Lemma 3.25], [36,
Theorem 8.1]) with A := A − α to the function Hαψ, we find that the function
Hαφ takes its positive maximum at a boundary point x′0 ∈ ∂Ω:

max
x∈Ω

Hαφ(x) = Hαφ(x
′
0) = φ(x′0) > 0.

Thus we can apply Hopf’s boundary point lemma (see [6], [41, p. 192, Lemma
3.26], [37, Lemma 6.1]) to obtain that

∂

∂n
(Hαφ)(x

′
0) < 0.

However, it should be noticed that the coefficients of the boundary condition L

satisfy the conditions 
µ(x′) > 0 on ∂Ω,

γ(x′) ≤ 0 on ∂Ω,

δ(x′) ≥ 0 on ∂Ω.

Hence we have the inequality

LHαφ(x
′
0) = µ(x′0)

∂

∂n
(Hαφ)(x

′
0) + β(x′0) · ∂x′φ(x′0) + γ(x′0)φ(x

′
0)− αδ(x′0)φ(x

′
0)
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= µ(x′0)
∂

∂n
(Hαφ)(x

′
0) + γ(x′0)φ(x

′
0)− αδ(x′0)φ(x

′
0)

≤ µ(x′0)
∂

∂n
(Hαφ)(x

′
0) < 0.

This verifies condition (β) of Theorem 3.2.
The proof of Lemma 7.5 is complete. ⊓⊔

Remark 7.4 The closed operator LHα enjoys the positive maximum principle:

If a function φ in the domain D
(
LHα

)
takes its positive maximum

at some point x′0 of ∂Ω, then we have the inequality

LHαφ(x
′
0) ≤ 0.

Namely, this assertion implies that the closed operator LHα satisfies condition (β′)
in Theorem 3.2.

The next lemma states a fundamental relationship between the operators LHα

and LHβ for all α, β > 0 (see [35, Lemma 10.18]):

Lemma 7.6 The domain D(LHα) of LHα does not depend on α > 0; so we denote

by D the common domain. Then we have, for all α, β > 0,

LHαφ− LHβφ+ (α− β)LG0
α (Hβφ) = 0 for each φ ∈ D. (7.19)

Proof Let φ be an arbitrary function in D
(
LHβ

)
, and choose a sequence {φj} in

D(LHβ) = B2−1/p,p(∂Ω) such that{
φj −→ φ in C(∂Ω),

LHβφj −→ LHβφ in C(∂Ω).

Then it follows from the boundedness of the operators Hβ and LG0
α that

LG0
α(Hβφj) −→ LG0

α(Hβφ) in C(∂Ω).

Therefore, by using formula (7.10) with φ := φj we obtain that

LHαφj = LHβφj − (α− β)LG0
α(Hβφj)

−→ LHβφ− (α− β)LG0
α(Hβφ) in C(∂Ω).

Since the operator LHα is closed, it follows that{
φ ∈ D

(
LHα

)
,

LHαφ = LHβφ− (α− β)LG0
α(Hβφ).

This proves the desired equation (7.19).
Conversely, we have, by interchanging α and β,

D
(
LHα

)
⊂ D

(
LHβ

)
,

and so
D

(
LHα

)
= D

(
LHβ

)
for all α, β > 0.

The proof of Lemma 7.6 is complete. ⊓⊔
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Remark 7.5 It should be noticed that the common domain D contains the Besov
space B2−1/p,p(∂Ω), since we have the formula

B2−1/p,p(∂Ω) = D (LHα) ⊂ D
(
LHα

)
= D.

The operators LHα and LHα for α > 0 can be visualized as in Figure 7.7 below.

C(∂Ω)x
D(LHα) = D

LHα−−−−−→ C(∂Ω)x x
D(LHα) = B2−1/p,p(∂Ω)

Hα−−−−−→ W 2,p(Ω)
L−−−−−→ B1−1/p,p(∂Ω)

Fig. 7.7 The mapping properties of the operators LHα and LHα in Lemmas 7.5 and 7.6

7.3 General Existence Theorem for Feller Semigroups

Now we can give a general existence theorem for Feller semigroups on the boundary
∂Ω in terms of the boundary value problem (7.20), which is a generalization of the
classical Fredholm integral equation. The next theorem asserts that the operator
LHα is the infinitesimal generator of some Feller semigroup on the state space ∂Ω
if and only if problem (7.20) is solvable for sufficiently many functions φ in the
Banach space C(∂Ω) (see [35, Theorem 10.19]):

Theorem 7.2 (i) If the closed operator LHα for α > 0 is the infinitesimal generator

of a Feller semigroup on the state space ∂Ω, then, for each constant λ > 0 the Wentzell

boundary value problem {
(α−A)u = 0 in Ω,

(λ− L)u = φ on ∂Ω
(7.20)

has a solution u ∈ W 2,p(Ω) for any φ in some dense subset of the Banach space

C(∂Ω).
(ii) Conversely, if the Wentzell boundary value problem (7.20) has a solution u ∈

W 2,p(Ω) for any φ in some dense subset of C(∂Ω) for a constant λ ≥ 0, then the

closed operator LHα is the infinitesimal generator of some Feller semigroup on the

state space ∂Ω.

Proof (i) If the operator LHα generates a Feller semigroup on the state space ∂Ω,
by applying part (i) of the Hille–Yosida theorem (Theorem 3.1) with K := ∂Ω to
the operator A := LHα we obtain that

R
(
λI − LHα

)
= C(∂Ω) for each λ > 0.
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This implies that the range R (λI − LHα) is a dense subset of C(∂Ω) for each λ > 0.

However, if φ ∈ R (λI − LHα) with φ = (λI − LHα)ψ for some ψ ∈ B2−1/p,p(∂Ω),
then the harmonic function u = Hαψ ∈ W 2,p(Ω) is a solution of the Wentzell
boundary value problem (7.20). This proves part (i).

(ii) We apply part (ii) of the Hille–Yosida–Ray theorem (Theorem 3.2) with
K := ∂Ω to the operator LHα. To do this, it suffices to show that the operator
LHα satisfies condition (γ) of the same theorem, since it satisfies condition (β′),
as is shown in the proof of Lemma 7.5.

By the uniqueness theorem for the Dirichlet problem (7.1), it follows that any
function u ∈W 2,p(Ω) which satisfies the equation

(α−A)u = 0 in Ω

can be written in the form{
u = Hα (u|∂Ω) ,

u|∂Ω ∈ B2−1/p,p(∂Ω) = D(LHα) ⊂ D(LHα) = D.

Thus we find that if there exists a solution u ∈W 2,p(Ω) of the Wentzell boundary
value problem (7.20) for some function φ ∈ C(∂Ω), then we have the formula

(λI − LHα) (u|∂Ω) = φ,

and so
φ ∈ R (λI − LHα) .

Therefore, if there exists a constant λ ≥ 0 such that the Wentzell boundary value
problem (7.20) has a solution u ∈W 2,p(Ω) for any φ in some dense subset of C(∂Ω),
then the range R (λI − LHα) is dense in the space C(∂Ω):

R
(
λI − LHα

)
= C(∂Ω) for some λ ≥ 0.

This verifies condition (γ) (with α0 := λ) of Theorem 3.2.
Hence, part (ii) follows from an application of Theorem 3.2.
The proof of Theorem 7.2 is complete. ⊓⊔

We conclude this subsection by giving a precise meaning to the boundary
conditions Lu for functions u in the domain D(A) given by the definition (7.12).

We let

D(L) :=
{
u ∈ D(A) : u|∂Ω ∈ D

}
=

{
u ∈W 2,p(Ω) : Au ∈ C(Ω), u|∂Ω ∈ D

}
,

where D is the common domain of the operators LHα for all α > 0 (see Lemma
7.6). Then Corollary 7.1 asserts that every function u in D(L) ⊂ D(A) can be
written in the form

u = G0
α

(
(α I −A)u

)
+Hα (u|∂Ω) for all α > 0. (7.16)

Hence we can define the boundary condition Lu by the formula

Lu := LG0
α
(
(α I −A)u

)
+ LHα (u|∂Ω) . (7.21)

The next lemma justifies the definition (7.21) of Lu for u ∈ D(L) (see [35,
Lemma 10.20]):
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Lemma 7.7 The right-hand side of formula (7.21) depends only on u, not on the

choice of expression (7.16).

Proof Assume that

u = G0
α

(
(αI −A)u

)
+Hα (u|∂Ω) = G0

β

(
(βI −A)u

)
+Hβ (u|∂Ω) ,

where α > 0 and β > 0. Then it follows from formula (7.17) with f := (αI − A)u
and formula (7.19) with ψ := u|∂Ω that

LG0
α
(
(αI −A)u

)
+ LHα (u|∂Ω) (7.22)

= LG0
β

(
(αI −A)u

)
− (α− β)LG0

αG
0
β

(
(αI −A)u

)
+ LHβ (u|∂Ω)− (α− β)LG0

αHβ (u|∂Ω)

= LG0
β ((βI −A)u) + LHβ (u|∂Ω)

+ (α− β)
{
LG0

βu− LG0
αG

0
β

(
αI −A

)
u− LG0

αHβ(u|∂Ω)
}
.

However, the last term of formula (7.22) vanishes. Indeed, it follows from formula
(7.16) with α := β and formula (7.17) with f := u that

LG0
βu− LG0

α

(
G0

β(αI −A)u
)
− LG0

αHβ (u|∂Ω)

= LG0
βu− LG0

α

(
G0

β(βI −A)u+Hβ (u|∂Ω) + (α− β)G0
βu

)
= LG0

βu− LG0
αu− (α− β)LG0

αG
0
βu

= 0.

Therefore, we obtain from formula (7.22) that

LG0
α
(
(αI −A)u

)
+ LHα (u|∂Ω) = LG0

β

(
(βI −A)u

)
+ LHβ (u|∂Ω) .

The proof of Lemma 7.7 is complete. ⊓⊔

8 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The crucial point in the proof
is that we consider the term

δ(x′) (Au|∂Ω)

of sticking (or viscosity) phenomenon in the original Wentzell boundary condition

Lu = Lνu− δ(x′) (Au|∂Ω) on ∂Ω (1.2)

as a term of perturbation of the oblique derivative boundary condition

Lνu = µ(x′)
∂u

∂n
+ β(x′) · ∂x′u+ γ(x′)u on ∂Ω. (1.5)

More precisely, we make use of a generation theorem for Feller semigroups with
oblique derivative boundary condition Lν to verify all the conditions of the Hille–
Yosida–Ray theorem (Theorem 3.2) for the operator A defined by formula (1.4),
just as in the proof of [35, Theorem 10.21].

We shall apply part (ii) of Theorem 3.2 to the operator A. The proof is carried
out in a series of lemmas and propositions.

Step (I): First, we prove the following lemma:
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Lemma 8.1 If condition (H.1) is satisfied, then the closed operator LνHα is the gen-

erator of some Feller semigroup on the state space ∂Ω for any α > 0.

Proof We apply Theorem 7.2 with L := Lν . By virtue of Theorem 5.1 with f := 0,
we obtain that the oblique derivative problem{

(A− α)u = 0 in Ω,

Lνu = φ on ∂Ω

has a unique function u ∈W 2,p(Ω) for any function φ ∈ B1−1/p,p(∂Ω), if N < p <

∞. Here it should be emphasized that we have, by assertion (7.5),

C1(∂Ω) ⊂ B1−1/p,p(∂Ω) ⊂ C(∂Ω) for N < p <∞.

Hence, for any φ ∈ B1−1/p,p(∂Ω) we can find a function ψ ∈ B2−1/p,p(∂Ω)
such that the harmonic function

u = Hαψ ∈W 2,p(Ω)

satisfies the boundary condition

LνHαψ = Lν (Hαψ) = µ(x′)
∂(Hαψ)

∂n
+ β(x′) · ∂x′ψ + γ(x′)ψ = φ on ∂Ω.

This implies that the range R(LνHα) is a dense subset of the space C(∂Ω).
Therefore, by applying part (ii) of Theorem 7.2 with λ := 0 we obtain that the

closed operator LνHα generates a Feller semigroup on the state space ∂Ω, for any
α > 0.

The proof of Lemma 8.1 is complete. ⊓⊔

Step (II): Secondly, we prove the following lemma:

Lemma 8.2 If condition (H.1) is satisfied, then the closed operator LHα generates a

Feller semigroup on the state space ∂Ω for any α > 0.

Proof We apply Corollary 3.2 with K := ∂Ω to the operator LHα for each α > 0.
By formula (1.2), we find that the operator LHα can be written in the form

LHα = LνHα +M,

where

M := −α δ(x′)

is a bounded linear operator on C(∂Ω) into itself. However, since δ(x′) ≥ 0 on
∂Ω, it follows that the bounded operator M satisfies condition (β′) of the Hille–
Yosida–Ray theorem (Theorem 3.2):

(β′) If ψ ∈ C(∂Ω) takes a positive maximum at a point x′0 of ∂Ω, then we have the
inequality

Mψ(x′0) = −α δ(x′0)ψ(x′0) ≤ 0.
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By virtue of Lemma 8.1, we can apply Corollary 3.2 with

K := ∂Ω, A := LνHα, M := −α δ(x′)

to obtain that the closed operator LHα = LνHα+M generates a Feller semigroup
on the state space ∂Ω for any α > 0.

The proof of Lemma 8.2 is complete. ⊓⊔

Step (III): Thirdly, we prove the following lemma:

Lemma 8.3 Assume that condition (H.1) is satisfied. Then the equation

LHα ψ = φ (8.1)

has a unique solution ψ in D(LHα) for any φ ∈ C(∂Ω); hence the inverse LHα
−1

of

LHα can be defined on the whole space C(∂Ω). Furthermore, the operator −LHα
−1

is

non-negative and bounded on the space C(∂Ω).

Proof Since the function Hα1 takes its positive maximum 1 only on the boundary
∂Ω, we can apply Hopf’s boundary point lemma (see [6], [41, p. 192, Lemma 3.26],
[37, Lemma 6.1]) to obtain that

∂

∂n
(Hα1) < 0 on ∂Ω. (8.2)

Hence it follows from inequality (8.2) and condition (H.1) that

LHα1(x
′) = L (Hα1) (x

′) = µ(x′)
∂

∂n
(Hα1)(x

′) + γ(x′)− α δ(x′)

≤ µ(x′)
∂

∂n
(Hα1)(x

′) < 0 on ∂Ω,

so that
ℓα = − sup

x′∈∂Ω
LHα1(x

′) > 0.

Furthermore, by applying Corollary 3.1 with

K := ∂Ω, A := LHα, c := ℓα,

we obtain that the operator LHα+ℓαI is the infinitesimal generator of some Feller
semigroup on the state space ∂Ω.

Therefore, since ℓα > 0, it follows from an application of part (i) of the Hille–
Yosida theorem (Theorem 3.1) with A := LHα + ℓαI that the equation

−LHα ψ =
(
ℓαI − (LHα + ℓαI)

)
ψ = φ

has a unique solution ψ ∈ D(LHα) for any φ ∈ C(∂Ω), and further that the
operator

−LHα
−1

=
(
ℓαI − (LHα + ℓαI)

)−1

is non-negative and bounded on the space C(∂Ω) with norm∥∥∥−LHα
−1

∥∥∥ =
∥∥∥(ℓαI − (LHα + ℓαI)

)−1
∥∥∥ ≤ 1

ℓα
.

The proof of Lemma 8.3 is complete. ⊓⊔
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Step (IV): By assertion (8.1), we can define the Green operator Gα for α > 0
by the formula

Gαf = G0
αf −Hα

(
LHα

−1
(
LG0

αf
))

for f ∈ C(Ω). (8.3)

Namely, the Green operator Gα can be expressed in the matrix form via the Boutet
de Monvel calculus (see [35, p. 349, Section 7.7] and Figure 8.1 below): G0

α Hα

LG0
α −LHα

−1

 :
C(Ω)⊕
C(∂Ω)

−→
C(Ω)⊕
C(∂Ω)

D(G0
α) = C(Ω)

LG0
α−−−−−→ C(∂Ω)

G0
α

y −LHα
−1

y
D(A) ←−−−−−

Hα

D = D(LHα)

Fig. 8.1 The mapping property of each term in formula (8.3) via the Boutet de Monvel
calculus

Now we are in a position to prove the following proposition:

Proposition 8.1 Assume that condition (H.1) is satisfied. Then we have the formula

Gα = (α I − A)−1
for all α > 0, (8.4)

where A is a linear operator from C(Ω) into itself defined as follows:

(a) The domain D(A) is the set

D(A) =
{
u ∈ D(A) : u|∂Ω ∈ D, Lu = 0 on ∂Ω

}
. (8.5)

(b) Au = Au = Au for every u ∈ D(A).

Here D is the common domain of the operators LHα for all α > 0 (see Lemma 7.6).

Remark 8.1 By the definition (7.12) of A, it follows that the domain D(A) in
Proposition 8.1 coincides with that of the definition (1.4).

Proof The proof of Proposition 8.1 is divided into two steps.
(1) In view of Lemmas 7.2 and 7.6, it follows that we have, for every f ∈ C(Ω),

Gαf = G0
αf −Hα

(
LHα

−1
(
LG0

αf
))

∈ D(A),

(Gαf)|∂Ω = −LHα
−1

(
LG0

αf
)
∈ D

(
LHα

)
= D,

LGαf = LG0
αf − LHα

(
LHα

−1
(
LG0

αf
))

= 0 on ∂Ω,

and (
α I −A

)
Gαf = f.
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That is, we have the assertions{
Gαf ∈ D(A),

(α I − A)Gαf = f.

This proves that
(α I − A)Gα = I on C(Ω).

(2) In order to prove the desired formula (8.4), it suffices to show the injectivity

of the operator α I − A for α > 0.
Assume that

u ∈ D(A) and (α I − A)u = 0.

Then, by Corollary 7.1 it follows that the function u can be written as follows:

u = Hα(u|∂Ω), u|∂Ω ∈ D = D
(
LHα

)
.

Thus we have the assertion

LHα(u|∂Ω) = Lu = 0 on ∂Ω.

In view of assertion (8.1), this implies that

u|∂Ω = 0,

so that
u = Hα (u|∂Ω) = 0 in Ω.

The proof of Proposition 8.1 is complete. ⊓⊔

Step (V): Moreover, we prove the following proposition:

Proposition 8.2 Let α > 0. If condition (H.1) is satisfied, then the Green operator

Gα given by formula (8.3) is non-negative and bounded on the space C(Ω) with norm

∥Gα∥ ≤ 1

α
for all α > 0. (8.6)

Proof (1) The non-negativity of Gα (α > 0) follows immediately from formula (8.3),

since the operators G0
α, Hα, −LHα

−1
and LG0

α are all non-negative.
(2) In order to prove inequality (8.6), it suffices to show that

Gα1 ≤ 1

α
on Ω, (8.7)

since Gα is non-negative on C(Ω).
First, it follows from the uniqueness property of solutions of the Dirichlet prob-

lem (7.1) (Theorem 4.1 with A := A− α) that

αG0
α1 +Hα1 = 1 +G0

αc(x) on Ω. (8.8)

Indeed, it suffices to note that the both hand sides of formula (8.8) have the same
boundary value 1 and satisfy the same equation: (α−A)u = α in Ω.

By applying the operator L to the both hand sides of formula (8.8), we obtain
that

−LHα1 = −L1− LG0
αc+ αLG0

α1
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= −(γ(x′)− δ(x′) c(x′))−
(
µ(x′)

∂

∂n
(G0

αc) + δ(x′)c(x′)

)
+ αLG0

α1

= −γ(x′)− µ(x′)
∂

∂n
(G0

αc) + αLG0
α1

≥ αLG0
α1 on ∂Ω,

since G0
αc|∂Ω = 0 and G0

αc ≤ 0 on Ω. Hence we have, by the non-negativity of

−LHα
−1

,

−LHα
−1

(
LG0

α1
)
≤ 1

α
on ∂Ω. (8.9)

By using formula (8.3) with f := 1, inequality (8.9) and formula (8.8), we obtain
that

Gα1 = G0
α1 +Hα

(
−LHα

−1
(
L
(
G0

α1
)))

≤ G0
α1 +

1

α
Hα1 =

1

α
+

1

α
G0

αc

≤ 1

α
on Ω,

since the operators Hα and G0
α are non-negative.

The proof of Proposition 8.2 is complete. ⊓⊔

Corollary 8.1 The operator A defined by formula (8.5) is closed in the space C(Ω).

Indeed, the closedness of A is an immediate consequence of that of the inverse
Gα

−1 = α I − A (see [45, p. 79, Proposition 3]).

Step (VI): Finally, we prove the following proposition:

Proposition 8.3 The domain D(A) of the closed operator A is dense in the space

C(Ω).

Proof The proof is divided into two steps.

(1) Before the proof, we need some lemmas on the behavior of the operators

G0
α, Hα and −LHα

−1
as α → +∞ (see [34, Lemmas 6.1 and 6.2 and Corollary

6.3], [35, Lemmas 10.24 and 10.25 and Corollary 10.26]):

Lemma 8.4 For all f ∈ C(Ω), we have the assertion

lim
α→+∞

[
αG0

αf +Hα (f |∂Ω)
]
= f in C(Ω). (8.10)

Lemma 8.5 The function

∂

∂n
(Hα1) (x

′) for x′ ∈ ∂Ω,

diverges to −∞ uniformly and monotonically as α→ +∞.

Corollary 8.2 limα→+∞
∥∥∥−LHα

−1
∥∥∥ = 0.
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(2) In view of formula (8.4) and inequality (8.6), it suffices to prove that

lim
α→+∞

∥αGαf − f∥C(Ω) = 0 for all f ∈ C2(Ω), (8.11)

since the space C2(Ω) is dense in C(Ω).
First, we remark that

∥αGαf − f∥C(Ω) =
∥∥∥αG0

αf − αHα

(
LHα

−1
(
LG0

αf
))

− f
∥∥∥
C(Ω)

≤
∥∥∥αG0

αf +Hα (f |∂Ω)− f
∥∥∥
C(Ω)

+
∥∥∥−αHα

(
LHα

−1
(
LG0

αf
))

−Hα (f |∂Ω)
∥∥∥
C(Ω)

≤
∥∥∥αG0

αf +Hα(f |∂Ω)− f
∥∥∥
C(Ω)

+
∥∥∥−αLHα

−1
(
LG0

αf
)
− (f |∂Ω)

∥∥∥
C(∂Ω)

.

Thus, in view of assertion (8.10) it suffices to show that

lim
α→+∞

[
−αLHα

−1
(
LG0

αf
)
− (f |∂Ω)

]
= 0 in C(∂Ω). (8.12)

We take a constant β such that 0 < β < α, and express the function f ∈ C2(Ω)
in the form

f = G̃0
β g +Hβφ, (8.13)

where (see formula (7.16) with u := f and α := β)

• g = (β −A) f

= (β − c(x)) f −
N∑

i,j=1

aij(x)
∂2f

∂xi∂xj
−

N∑
i=1

bi(x)
∂f

∂xi
∈ L∞(Ω),

• φ = f |∂Ω ∈ C2(∂Ω).

Since f ∈ C2(Ω) and φ = f |∂Ω ∈ C2(∂Ω), we find from assertion (7.5), Lemma 7.5
and Remark 7.3 that

LHαφ ∈ B1−1/p,p(∂Ω) ⊂ C(∂Ω), (8.14a)

Lf = L
(
G̃0

β g +Hβφ
)
= L̃G0

β g + LHβφ ∈ C(∂Ω). (8.14b)

Moreover, by using the resolvent equation (7.7) with f := g ∈ L∞(Ω) (see Remark
7.1) and the equation (7.10) with φ ∈ C2(∂Ω), we obtain from formula (8.13) that

G0
αf = G0

α

(
G̃0

β g
)
+G0

α

(
Hβφ

)
=

1

α− β

(
G̃0

β g − G̃0
α g +Hβφ−Hαφ

)
. (8.15)

By combining formulas (8.15) and (8.14b), we have the inequality∥∥∥−αLHα
−1

(
LG0

αf
)
− (f |∂Ω)

∥∥∥
C(∂Ω)

(8.16)

=

∥∥∥∥ α

α− β

(
−LHα

−1
)(

L̃G0
β g − L̃G0

α g + LHβφ− LHαφ
)
− φ

∥∥∥∥
C(∂Ω)
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=

∥∥∥∥ α

α− β

(
−LHα

−1
)(

L̃G0
β g − L̃G0

α g + LHβφ
)
+

α

α− β
φ− φ

∥∥∥∥
C(∂Ω)

=

∥∥∥∥ α

α− β

(
−LHα

−1
)(

Lf − L̃G0
α g

)
+

β

α− β
φ

∥∥∥∥
C(∂Ω)

≤ α

α− β

∥∥∥−LHα
−1

∥∥∥ · ∥Lf∥C(∂Ω)

+
α

α− β

∥∥∥−LHα
−1

∥∥∥ ·
∥∥∥LG0

α

∥∥∥ · ∥g∥L∞(Ω) +
β

α− β
∥φ∥C(∂Ω) .

However, by Corollary 8.2 it follows that the first term on the last inequality (8.16)
converges to zero as α→ +∞.

For the second term, by using the resolvent equation (7.7) with f := 1 and the

non-negativity of G0
β and L̃G0

α we obtain that∥∥∥LG0
α

∥∥∥ =
∥∥∥L(

G0
β1

)
− (α− β)LG0

α(G
0
β1)

∥∥∥
C(∂Ω)

≤
∥∥∥L(

G0
β1

)∥∥∥
C(∂Ω)

=
∥∥∥LG0

β

∥∥∥ for all α > 0.

Hence, by Corollary 8.2 it follows that the second term on the last inequality
(8.16) also converges to zero as α → +∞. It is clear that the third term on the
last inequality (8.16) converges to zero as α → +∞. This completes the proof of
assertion (8.12) and hence of assertion (8.11).

The proof of Proposition 8.3 is now complete. ⊓⊔

Step (VII): By combining Propositions 8.1, 8.2 and 8.3 and Corollary 8.1, we
obtain that the closed operator A, defined by formula (8.5), satisfies conditions (a)
through (d) in Theorem 3.2. Therefore, it follows from an application of the same
theorem that the closed operator A is the infinitesimal generator of some Feller
semigroup on the state space Ω.

Now the proof of Theorem 1.1 is complete. ⊓⊔

9 Proof of Remark 7.2

Finally, we prove that the domain

D(A) =
{
u ∈W 2,p(Ω) : Au ∈ C(Ω)

}
is independent of p, for N < p <∞.

The proof is divided into three steps.

Step 1: First, we consider the following non-homogeneous Dirichlet boundary
value problem {

Au = f in Ω,

γ0u = φ on ∂Ω.
(4.1)

Our proof is based on the following regularity theorem due to Vitanza [42,
Theorem 2.2] (see also [13, Theorem 4.2]):
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Theorem 9.1 (the regularity theorem) Let 1 < p <∞. If a function u ∈W 2,q(Ω)
for 1 < q < p < ∞ is a solution of the Dirichlet problem (4.1) with f ∈ Lp(Ω) and

φ ∈ B2−1/p,p(∂Ω), then it follows that u ∈W 2,p(Ω).
Moreover, we have the global a priori estimate

∥u∥W 2,p(Ω) ≤ C
(
∥u∥Lp(Ω) + ∥f∥Lp(Ω) + ∥φ∥B2−1/p,p(∂Ω)

)
,

with a constant C > 0.

Step 2: Now we let

Ep :=
{
u ∈W 2,p(Ω) : Au ∈ C(Ω)

}
.

In order to prove Remark 7.2, it suffices to show that

Ep1 = Ep2 for N < p1 < p2 <∞.

First, it follows that
Ep2 ⊂ Ep1 ,

since we have the inclusion

Lp2(Ω) ⊂ Lp1(Ω) for p2 > p1.

Step 3: Conversely, let v be an arbitrary element of Ep1 :

v ∈W 2,p1(Ω), Av ∈ C(Ω).

Then, since we have the assertions

v, Av ∈ C(Ω) ⊂ Lp2(Ω),

it follows from an application of Theorem 9.1 with p := p2 and φ := 0 that

G0
α ((α−A) v) ∈W 2,p2(Ω), (9.1)

where G0
α is the Green operator introduced in part (i) of Theorem 7.1.

Moreover, we can find a sequence {φj} in C2(∂Ω) such that

φj −→ v|∂Ω in C(∂Ω).

Then we have the assertions
Hαφj ∈W 2,p2(Ω),

Hαφj −→ Hα(v|∂Ω) in C(Ω),

A (Hαφj) = αHαφj −→ αHα (v|∂Ω) in C(Ω),

(9.2)

where Hα is the harmonic operator introduced in part (ii) of Theorem 7.1.
However, it follows from an application of Lemma 7.1 wit p := p2 that the

operator

Ap2 : Ep2 −→ C(Ω)

u 7−→ Au
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is closed. Hence we have, by assertions (9.2),

Hα (v|∂Ω) ∈ D
(
Ap2

)
= Ep2 ⊂W 2,p2(Ω), (9.3a)

AHα (v|∂Ω) = αHα (v|∂Ω) . (9.3b)

Therefore, by applying Corollary 7.1 with A := Ap2 and u := v we obtain from
assertions (9.1) and (9.3a) that

v = G0
α

((
αI −Ap2

)
v
)
+Hα (v|∂Ω) = G0

α ((α−A) v) +Hα (v|∂Ω) ∈W 2,p2(Ω).

This implies that
v ∈ Ep2 .

The proof of Remark 7.2 is complete. ⊓⊔

10 Concluding Remarks

In the previous paper [34], we assumed the additional condition (H.2) on the bound-
ary condition Lν defined by formula (1.5). The main purpose of the present paper
is how to drop this additional condition (H.2). In the proof of Theorems 1.1 and
1.2 we re-work and expand in different sprit the material of the previous paper [34]
under condition (H.1), even though there is a lot of overlap in the contents of the
present paper and those of [34]. This makes the present paper fairly self-contained.

Finally, for general results on generation theorems for Feller semigroups we
give the following overview of the classical Schauder theory versus the Calderón–
Zygmund theory of singular integrals:

Elliptic boundary Classical Calderón–Zygmund
value Problems Schauder theory theory

• Dirichlet case [8, Théorème XV] [33, Theorem 1.2]

• Feller semigroup [8, Théorème XVI] [33, Theorem 1.1]
with sticking term

• Oblique derivative [8, Théorème XVIII] [34, Theorem 1.2]
case (under (H.1)) (under (H.1) and (H.2))

• Feller semigroup [8, Théorème XIX] [34, Theorem 1.1]
with sticking term (under (H.1)) (under (H.1) and (H.2))

Table 10.1 An overview of the classical Schauder theory versus the Calderón–Zygmund the-
ory of singular integrals for Feller semigroups
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