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This paper constructs an admissible representation for the Hilbert lattice L [P. Pták and S. Pulmannová,
Orthomodular structures as quantum logics. Transl. from the Slovak. Dordrecht etc.: Kluwer Academic
Publishers; Bratislava: Veda (1991; Zbl 0743.03039)], based upon which admissible representations St and
Obs for the set of quantum states and that of quantum observables are presented. The construction is
fulfilled by making use of the fairly abstract methods of topological domain theory. These data types
come endowed with the notion of computability in the sense of Weihrauch’s Type Two Effectivity [loc.
cit.], in which a map between admissible representations is computable iff it is realized by an element of
K2,eff , namely, a computable element of the Baire space also known as a total recursive function. The
resulting category AdmRepeff is a full reflective subcategory of what is called Kleene-Vesley topos KV,
which is the effective part of RT (K2) as described in [J. van Oosten, Realizability. An introduction to
its categorical side. Amsterdam: Elsevier (2008; Zbl 1225.03002)]. The following effective version of von
Neumann’s spectral theorem is established.
Theorem. The spectral theorem for self-adjoint operators holds in RT (K2) and KV.
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