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S U M M A R Y
Conventional seismic source inversion estimates the earthquake rupture process on an assumed
fault plane that is determined a priori. It has been a difficult challenge to obtain the fault geom-
etry together with the rupture process by seismic source inversion because of the nonlinearity
of the inversion technique. In this study, we propose an inversion method to estimate the
fault geometry and the rupture process of an earthquake from teleseismic P waveform data,
through an elaboration of our previously published finite-fault inversion analysis (Shimizu
et al. 2020). That method differs from conventional methods by representing slip on a fault
plane with five basis double-couple components, expressed by potency density tensors, instead
of two double-couple components compatible with the fault direction. Because the slip direc-
tion obtained from the potency density tensors should be compatible with the fault direction,
we can obtain the fault geometry consistent with the rupture process. In practice we rely on
an iterative process, first assuming a flat fault plane and then updating the fault geometry
by using the information included in the obtained potency density tensors. In constructing a
non-planar model-fault surface, we assume for simplicity that the fault direction changes only
in either the strike or the dip direction. After checking the validity of the proposed method
through synthetic tests, we applied it to the MW 7.7 2013 Balochistan, Pakistan, and MW 7.9
2015 Gorkha, Nepal, earthquakes, which occurred along geometrically complex fault systems.
The modelled fault for the Balochistan earthquake is a curved strike-slip fault convex to the
south-east, which is consistent with the observed surface ruptures. The modelled fault for the
Gorkha earthquake is a reverse fault with a ramp-flat-ramp structure, which is also consistent
with the fault geometry derived from geodetic and geological data. These results exhibit that
the proposed method works well for constraining fault geometry of an earthquake.

Key words: Image processing; Inverse theory; Waveform inversion; Earthquake dynamics;
Earthquake source observations.

1 I N T RO D U C T I O N

Earthquakes can rupture fault surfaces with complicated geometry
and variable slip vector due to the influence of lithology on fault
geometry, the distribution of initial stress, and the dynamic stresses
driving the rupture propagation. In mountainous areas, for example,
fault geometry tends to be highly non-planar (e.g. Fielding et al.
2013; Avouac et al. 2014; Elliott et al. 2016) due to the typical flats-
and-ramps geometry of fold-and-thrust systems (e.g. Elliott et al.
2016), which was suggested to introduce spatiotemporal complexi-
ties in the regional seismicity (Qiu et al. 2016; Dal Zilio et al. 2019).

It has also been shown that spatial variations in the fault geome-
try play an important role in rupture propagation (e.g. Aki 1979;
Wald & Heaton 1994; Okuwaki & Yagi 2018; Okuwaki et al. 2020).
Thus, fault geometry has important information that adds detail to
our understanding of regional tectonics and earthquake dynamics.

The seismic waveform typically contains information on both
rupture propagation and fault geometry underground. Multiple
point source inversions have been developed to estimate focal mech-
anisms and source locations of subevents of large rupture events
from seismic waveforms (e.g. Kikuchi & Kanamori 1991; Duputel
et al. 2012a, b; Duputel & Rivera 2017; Shi et al. 2018; Yue & Lay
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2020). Although this technique allows us to roughly track rupture
propagation from the locations of several point sources, rupture
propagation between subevents cannot be well resolved, obscur-
ing the details of rupture propagation and its relationship to fault
geometry.

Finite-fault inversion of seismic waveforms has been widely used
for resolving rupture propagation in detail along a model fault plane
(e.g. Olson & Apsel 1982; Hartzell & Heaton 1983). However, it
had been generally difficult to constrain the fault geometry of an
earthquake solely by using it because of strong nonlinearity in the
inversion analysis (Fukahata & Wright 2008; Asano & Iwata 2009).
An inappropriate assumption of fault geometry increases modelling
errors, which may greatly distort solutions (e.g. Ragon et al. 2018;
Shimizu et al. 2020).

In a recent paper, we refined the method of Yagi & Fukahata
(2011), which explicitly introduced uncertainty of Green’s func-
tions into seismic source inversion, to develop a novel method of
finite-fault inversion that extracts information on fault geometry as
well as rupture propagation from teleseismic P waveforms (Shimizu
et al. 2020). The key to the method is that it adopts five basis
double-couple components (Kikuchi & Kanamori 1991), which are
not restricted to the two slip components compatible with the fault
direction, to represent fault slip. Of course, the true fault geometry
should be compatible with the actual slip direction, but because the
teleseismic P-wave Green’s function is insensitive to slight changes
in the absolute source location, the new inversion method enables
us to infer the spatiotemporal distribution of potency density ten-
sors (e.g. Ampuero & Dahlen 2005) along the assumed model fault
plane. Potency density tensors, which are obtained by dividing a
moment density tensor by rigidity, contain information on the di-
rection of fault displacement. However, the locations of potency
density tensors estimated on an assumed model fault surface can
deviate from their true location, which means that the spatial distri-
bution of the strike and dip angles of potency density tensors cannot
directly yield the fault geometry. Moreover, the estimated potency
density cannot be directly interpreted as slip because the assumed
model fault surface is not always identical to the real fault surface.
Rupture propagation velocity and its relation to fault geometry are
also difficult to properly understand. Thus, source models obtained
by the inversion method of Shimizu et al. (2020) may not be inter-
preted in the same way as those obtained by conventional inversion
methods, in which a shear slip direction is fixed on the assumed
model fault surface.

Here, we propose an iterative inversion method to construct fault
geometry from teleseismic P waveforms that uses the method of
Shimizu et al. (2020) to solve the spatial distribution of strike and
dip angles on the assumed fault. Iterative solutions allow us to
update the fault geometry step by step, yielding a fault geometry
that is consistent with the spatial distribution of strike and dip
angles. With an improved source model, we can better estimate
the relationship between rupture propagation and fault geometry.
This paper reports our evaluation of the proposed method through
synthetic tests and our successful application of it to waveforms
of the MW 7.7 2013 Balochistan, Pakistan and the MW 7.9 2015
Gorkha, Nepal, earthquakes, which occurred on well-characterized,
geometrically complex fault systems.

2 M E T H O D

We used the inversion method of Shimizu et al. (2020) to construct
fault geometries consistent with the spatial distribution of the strike

or dip of the obtained potency density tensors. Since the potency
density tensors obtained by the inversion method of Shimizu et al.
(2020) depend to some degree on the assumed model fault geome-
try, we used the inversion analysis iteratively to construct the fault
geometry, at each step solving the spatial distribution of potency
density tensors on the assumed fault surface. In this study, we as-
sumed for simplicity that the fault geometry changes only either
along strike or along dip and then neglected discontinuity and seg-
mentation of the fault. This assumption leads to two types of model
fault: a vertical fault with variable strike and uniform dip direction,
and a nonvertical fault with variable dip and uniform strike. The
proposed method follows four steps.

Step 1: Set an initial model fault plane
The initial model fault is a single flat plane, which is placed to
roughly cover the possible source region of an earthquake (Step
1 in Fig. 1). The model fault is discretized into a number of flat
subfaults evenly spaced along the strike and dip directions, with
each subfault identical in strike and dip to the model fault plane.
The initial rupture point coincides with the earthquake hypocentre
obtained from other studies.

Step 2: Perform a potency density tensor inversion
The finite-fault inversion of Shimizu et al. (2020) is performed to
obtain the spatial distribution of potency density tensors on the ini-
tial model fault plane or the non-planar fault surface obtained out
of the previous iteration. Displacement of a seismic waveform uj

observed at a far-field station j is represented by a linear combina-
tion of potency rate density functions of five basis double-couple
components (Kikuchi & Kanamori 1991) on the assumed model
fault surface S:

u j (t) =
5∑

q=1

∫
S

Gq j (t, ξ ) ∗ Ḋq (t, ξ )dξ + ebj (t), (1)

where Gqj is the Green’s function of the qth basis double-couple
component, Ḋq is the potency rate density function of the qth
double-couple component, ebj is background and instrumental
noise, ξ represents a location on the model fault surface S, and
∗ is the convolution operator in the time domain. By introducing
the modelling error of the Green’s function into the inversion anal-
ysis (Yagi & Fukahata 2011), the potency rate density function is
stably obtained from observed waveforms (Shimizu et al. 2020).
The spatial distribution of the potency density tensors is obtained
by integrating the potency rate density functions with respect to
time.

Step 3: Estimate strike/dip along the model fault
In this study, we considered that a fault surface has curvature only
along the strike, in which case the fault has a uniform dip, or has
curvature only along the dip direction, in which case the fault has
a uniform strike. We calculate the average of the estimated potency
density tensors along the direction in which the fault is not curved.
Thus, for example, along the strike direction of the model fault
surface, we obtain focal mechanisms averaged in the dip direction
(Step 2 in Fig. 1). To construct a model fault surface, we must
select one of the two nodal planes determined by the averaged focal
mechanism, which we do for each subfault by calculating the inner
product between the normal vectors of the two nodal planes and the
normal vector of a reference surface defined by the analyst. In this
study, the reference surface is not updated after the first iteration,
for simplicity. The nodal plane with the larger inner product (in
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Construction of fault geometry 1005

Figure 1. Schematic illustration of the workflow of the iterative inversion process to construct fault geometry. The x axis is the distance from the hypocentre
along the strike (or dip) direction of the initial flat model-fault plane. The y axis is the displacement of the updated model fault plane perpendicular to the x
axis. The star denotes the location of the hypocentre. Grey bars with grey circles at their midpoints represent subfaults of the model fault plane used in the
finite-fault inversion analysis. The beach ball at each subfault in step 2 represents a focal mechanism obtained by the finite-fault inversion of Shimizu et al.
(2020). In step 3, we select one of the nodal planes (blue line) of the double-couple components to represent the fault geometry from the focal mechanism
obtained in step 2. The orange line in the step 4 represents the updated fault geometry determined by spline interpolation with quadratic functions. The orange
line of this iteration is used as the model fault geometry in the next iteration.

the absolute) value is selected as the realistic fault plane (Step 3 in
Fig. 1).

Step 4: Update the model fault geometry or finish the iteration
Taking the nodal plane selected in step 3 as the direction of the fault
surface, we update the fault geometry by assigning the direction of
that nodal plane to the centre of each subfault. We smoothly connect
the central points of the subfaults by a spline interpolation with a
quadratic function fi:

y = fi (x),

fi (x) = ai (x − xi )
2 + bi (x − xi ) + ci (xi ≤ x ≤ xi+1),

i = 1, 2, . . . , N − 1, (2)

where x is the distance from the hypocentre along the strike/dip
direction of the initial flat model plane, y is the displacement of the
model fault surface perpendicular to the initial flat model plane, and
N is the number of subfaults along the strike/dip. The xi term, which
corresponds to a knot of the quadratic function fi, is the x coordinate
of the central point of the ith subfault along the strike/dip.

Here, the unknown parameters are ai, bi, and ci; the total number
of them is 3(N − 1). The displacement y and its derivative are
continuous at the nodes from i = 2 to N − 1:

fi−1(xi ) = fi (xi ),

f ′
i−1(xi ) = f ′

i (xi ),

i = 2, 3, . . . , N − 1. (3)

The number of these conditions is 2(N − 2). In addition, the gradient
of the fault surface at each knot is given by the direction of the nodal
plane selected in step 3:

y′(xi ) = di ,

i = 1, 2, . . . , N , (4)

where di represents the gradient of the fault surface at the ith subfault
along the strike/dip. The number of this condition is N. Therefore,
by fixing the location of the hypocentre (i.e. fi(x) = 0), we can
uniquely determine the values of ai, bi, and ci and obtain the updated
geometry of the model fault surface (Step 4 in Fig. 1).
After updating the fault geometry, the model fault surface is dis-
cretized into rectangular subfaults again. Here, the interval between
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central points of adjacent subfaults is taken to be the same as the
original one and the distance of the strike/dip direction, to which the
fault is bending, is measured not along the original fault strike/dip
(the x axis) but along the fault surface. In this study, each subfault is
not adjusted to have the same area, which results in slight biases in
the estimated density of potency. The model fault surface obtained
in step 4 is used to update the fault geometry, and the process returns
to step 2 (Fig. 1).
The iterations end when the strike/dip direction obtained by step 3
is sufficiently close to that of the model fault surface used in the
inversion analysis. The closeness of the two strikes/dips is based
on the inner product between the unit vectors representing the two
strikes/dips. When the inner product averaged over the subfaults
along the strike/dip is acceptably close to 1 (more than 0.99 in
this study), the model fault surface is adopted as the fault surface
geometry.

To sum up, the nonlinear inversion method starts from step 1 and
then proceeds from step 2 to 4 iteratively. We assign (step 1) or
update (step 4) the fault geometry, with which we solve the potency
density tensor distribution (step 2), and then extract the information
from that solution (step 3) to update the fault geometry (step 4).

3 S Y N T H E T I C T E S T S

We performed synthetic tests of the proposed method for a strike-
slip fault (case 1) and a dip-slip fault (case 2). For both cases, we
prepared input source models, described below, and calculated syn-
thetic velocity waveforms by using theoretical Green’s functions. In
both cases, the slip-rate function at each subfault was represented
as a combination of linear B-spline functions with a time interval of
0.8 s. Theoretical Green’s functions were calculated following the
method of Kikuchi & Kanamori (1991) at 0.1 s intervals, where the
attenuation time constant t∗ for the P wave was taken to be 1.0 s. The
1-D near-source velocity structures for the cases 1 and 2 are listed
in Tables S1 and S2 in the Supporting Information, respectively. In
the calculation of synthetic waveforms, we added errors of Green’s
function and background noise to synthetic waveforms. As an error
of Green’s function, we added random Gaussian noise with zero
mean and a standard deviation of 5 per cent, which was arbitrarily
chosen rate, of the maximum amplitude of each calculated Green’s
function. We then added random Gaussian noise with zero mean and
a standard deviation of 1 μm as the background noise. In the inver-
sion process, we resampled the calculated synthetic waveform data
at 0.8 s intervals without applying any filter to either the calculated
waveforms or the theoretical Green’s functions.

3.1 Case 1: strike-slip fault with variable strike

We applied the proposed method for a vertical fault with variable
strike and uniform dip direction. The fault is composed of two ver-
tical flat fault planes, each one 75 km long and 20 km wide, with
strikes of 160◦ and 200◦, respectively (Fig. 2a). The slip distribu-
tion of the input source model with two slip patches is shown in
Fig. 2(b). The slip direction is pure right lateral. The input slip-rate
function at each subfault had a total duration of 6 s. The hypocentre
location was 26.900◦N, 65.400◦E at a depth of 7.5 km. Rupture of
each subfault was triggered by the expanding circular rupture front
propagating from the hypocentre at 3 km s–1. Synthetic waveforms
were calculated for the selected stations shown in Fig. 2(c).

In the inversion analysis, the initial model fault was a vertical
plane 150 km long and 20 km wide with a strike of 180◦ (Fig. 3a).

The potency rate density functions on this plane were expanded by
bilinear B-spline functions with a spatial interval of 5 km and by
linear B-spline functions with a temporal interval of 0.8 s and a total
duration of 6 s. The hypocentre was the same one used as the input.
The maximum rupture front velocity was assumed to be 3 km s–1.
We adopted a plane with a strike of 354◦ and a dip of 89◦, derived
from the total potency tensor obtained by a preliminary analysis, as
the reference surface used for selecting realistic nodal planes.

The obtained fault model after two iterations reproduced the
straight parts and bend in the input fault very well (Fig. 3a). The
slip distribution with two slip patches (Fig. 3c) was also consistent
with the input source model, including the slip direction (Fig. 2b).
Although the distributions of potency density tensors obtained af-
ter the first and the last iterations are quite similar to each other
(Supporting Information Fig. S5), the source model obtained after
the last iteration also reproduced fault geometry of the input source
model (Fig. 3a), which can be said to highlight the advancement
made in this study. Testing the model’s sensitivity to the strike of
the initial model plane by changing it to 170◦ and 190◦, we obtained
nearly the same results (Figs 3b and c). However, large deviations
of the initial fault plane from the true one and the modelling error
of the Green’s function, which increases with distance from the
hypocentre, may cause unstable estimates of fault geometry, as seen
at the southern end of the model fault with 170◦ strike. These results
confirm that the proposed method works well for faults with variable
strike when the initial model fault plane is reasonably accurate.

3.2 Case 2: reverse fault with variable dip angle

We applied the proposed method for a nonvertical fault with variable
dip and uniform strike. The fault is composed of three adjacent
planes with different dips (Fig. 4a). The three planes had a 285◦

strike and together extended 65 km; from top to bottom their dips
were 20◦, 0◦ and 20◦, and their widths were 20, 25 and 20 km,
respectively. The slip distribution of the input source model is shown
in Fig. 4(b). The input slip-rate function at each subfault had a total
duration of 10 s. The hypocentre location was 28.231◦N, 84.731◦E
at a depth of 15 km. Rupture in each subfault was triggered by the
expanding circular rupture front propagating from the hypocentre
at 3 km s–1. Synthetic waveforms were calculated for the selected
stations shown in Fig. 4(c).

In the inversion analysis, the initial model fault was a horizontal
plane 65 km long and 75 km wide, and 15 km deep with a strike of
285◦ and a dip of 0◦ (Fig. 5b). The potency rate density functions
on this plane were expanded by bilinear B-spline functions with
a spatial interval of 5 km and by linear B-spline functions with a
temporal interval of 0.8 s and a total duration of 10 s. The hypocentre
was the same one used as the input. The maximum rupture front
velocity was assumed to be 3.0 km s–1. We adopted a plane with a
strike of 273◦ and a dip of 11◦, derived from the total potency tensor
obtained by a preliminary analysis, as the reference surface used for
selecting realistic nodal planes.

The obtained fault model after two iterations, shown in Fig. 5(a)
as a 3-D view and in Fig. 5(b) as a cross sectional view, features a dip
that ranges from 4◦ around the hypocentre to 18◦ and 19◦ near the
up-dip and down-dip edges, respectively. The obtained fault model
reproduced the input fault geometry and its slip distribution well
(Fig. 5d), although its geometry was slightly smoother. Testing the
model’s sensitivity to the dip of the initial model plane by changing
it to 10◦ and 20◦, we obtained nearly the same results (Figs 5c and
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Construction of fault geometry 1007

Figure 2. Input source model for case 1. (a) Fault geometry. The input fault plane consists of two vertical rectangles with different strikes that meet the surface
along the black lines and intersect on the blue line. The yellow star denotes the hypocentre. (b) Slip distribution on the input fault plane; contour interval is 4 m.
The arrows are slip vectors, and the star denotes the hypocentre. (c) Station distribution (red triangles) around the epicentre (star) in an azimuthal equidistant
projection. The grey circles indicate the 30◦ and 90◦ teleseismic distances.

Figure 3. Results of synthetic test case 1. (a) True, initial, and estimated fault traces. The grey line represents the trace of the true fault surface. Grey and red
circles represent the central points of subfaults of the initial and estimated model fault surfaces, respectively. The star denotes the epicentre. (b) Sensitivity
of results to the strike of the initial model fault plane. All three initial fault planes (open circles) yield estimated fault traces (filled circles) that are nearly
indistinguishable at the scale of this plot. (c) Estimated slip distribution on the model fault surface; contour interval is 4 m. The arrows represent slip vectors.
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Figure 4. Input source model for case 2. (a) Fault geometry. The input fault plane consists of three rectangles with a ramp-flat-ramp structure. Black and
blue lines are top of model fault and intersections of subplanes, respectively. The yellow star denotes the hypocentre. (b) Slip distribution on the input fault
plane; contour interval is 2.5 m. The arrows represent slip vectors. (c) Station distribution (red triangles) around the epicentre (star) in an azimuthal equidistant
projection. The grey circles indicate the 30◦ and 90◦ teleseismic distances.

Figure 5. Results of synthetic test case 2. (a) Estimated fault geometry. The star denotes the hypocentre. (b) Cross sections of the true, initial, and estimated
fault surfaces. (c) Sensitivity of results to the dip of the initial fault plane. All three initial fault planes (open circles) yield estimated fault traces (filled circles)
that are indistinguishable at the scale of this plot. (d) Estimated slip distribution on the model fault surface; contour interval is 2.5 m. The arrows represent slip
vectors.

d). These results confirm that the proposed method works well for
faults with bending along dip.

4 A P P L I C AT I O N T O R E A L WAV E F O R M S

In order to further examine the validity of the proposed method,
we applied it to the MW 7.7 2013 Balochistan, Pakistan, and
the MW 7.9 2015 Gorkha, Nepal, earthquakes. Fault geome-
tries of the both earthquakes have been well constrained by
previous studies showing that they occurred on non-planar
faults. Thus, these earthquakes provide us opportunities to
test whether the proposed method can reconstruct curved fault
geometries.

4.1 The 2013 Balochistan earthquake

The Balochistan earthquake was a strike-slip event as indicated
by Global Centroid Moment Tensor (GCMT; Dziewonski et al.
1981; Ekström et al. 2012,https://www.globalcmt.org/CMTsearch.
html; last accessed 17 January 2020) solution and the W-phase
moment tensor solution determined by the U.S. Geological Survey,
National Earthquake Information Center (USGS NEIC; https://eart
hquake.usgs.gov/earthquakes/eventpage/usb000jyiv, last accessed
17 January 2020). Analyses of optical satellite images acquired
after the earthquake (Avouac et al. 2014; Jolivet et al. 2014; Zinke
et al. 2014) showed surface displacements that describe a curve
convex to the south-east. The teleseismic P-waveform inversion
analysis of Shimizu et al. (2020) yielded a source model suggesting
strike-slip faulting in which the strike rotates from 205◦ at the north
end to 240◦ at the south end.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/224/2/1003/5925333 by Tsukuba U

niv user on 15 D
ecem

ber 2020

https://www.globalcmt.org/CMTsearch.html
https://earthquake.usgs.gov/earthquakes/eventpage/usb000jyiv


Construction of fault geometry 1009

Our inversion analysis used the observed vertical components of
teleseismic P waveforms converted to velocity (Supporting Infor-
mation Fig. S1) at 36 stations shown in Fig. 2(c), the same data used
by Shimizu et al. (2020), and then resampled the waveform data at
0.8 s intervals without applying any filter. We adopted the USGS epi-
centre of 26.900◦N, 65.400◦E and the hypocentral depth of 7.5 km
used by Shimizu et al. (2020). Theoretical Green’s functions were
calculated the same way as the synthetic tests in Section 3, using
the 1-D near-source velocity structure (Supporting Information Ta-
ble. S1) used in Avouac et al. (2014). The initial fault plane was
200 km long and 20 km wide, with a strike of 230◦ and a dip of
90◦, that roughly followed the trace of the surface rupture observed
by Zinke et al. (2014 ) (Fig. 6a). The potency rate density func-
tions on this plane were expanded by bilinear B-spline functions
with a spatial interval of 5 km and by linear B-spline functions
with a temporal interval of 0.8 s and a total duration of 31 s. We
also assumed the maximum rupture-front velocity to be 4 km s–1

and the potency rate density to be zero after 60 s from the rupture
initiation, following the finite-fault inversion analysis of Shimizu
et al. (2020). We adopted a plane with a strike of 226◦ and a dip of
69◦, derived from the total potency tensor obtained by a preliminary
analysis, as the reference surface used for selecting realistic nodal
planes.

The inversion results after the third iteration, shown in Fig. 6, had
an excellent fit between the observed and synthetic waveforms at
all stations (Supporting Information Fig. S1). We defined a variance
reduction to quantify the fit:

Variance Reduction (per cent) =⎛
⎜⎜⎜⎝1 −

∑
j

∑
t

(
uobs

j (t) − usyn
j (t)

)2

∑
j

∑
t

uobs
j (t)

2

⎞
⎟⎟⎟⎠ × 100, (5)

where uobs
j and usyn

j represent observed and synthetic waveforms
obtained by the inversion analysis at the jth station at time t, and
our source model of the Balochistan earthquake yielded a variance
reduction of 69.3 per cent. The estimated fault trace is 205 km long
and curved, with a strike that changes from 218◦ at the northern
edge around 50 km north-east of the epicentre, to 213◦ around the
epicentre, to 241◦ at the southern edge around 140 km south-west of
the epicentre (Fig. 6a). Its geometry is consistent with the surface
ruptures observed after the earthquake (e.g. Zinke et al. 2014),
shown by the grey line in Fig. 6(a), though the estimated fault
geometry is slightly smoother than the observed surface rupture
trace, which is possibly originated from our methodology, in which
the dip angle is given to be uniform along the fault surface. Focal
mechanisms along the fault trace (Fig. 6a), obtained by integrating
the potency density tensors (Fig. 6b) along the dip direction, clearly
show that strike-slip faulting is dominant. Integrating the potency
density tensors (Fig. 6b) over the model fault surface yields the total
potency tensor of this earthquake (Fig. 6a), which indicates strike-
slip faulting with a strike of 226◦ and a dip of 69◦. The total seismic
moment release is 6.16 × 10 Nm (MW 7.8), which is comparable
to the estimate of 7.53 × 1020 Nm (MW 7.8) by Shimizu et al.
(2020) and the GCMT solution of 5.59 × 1020 Nm (MW 7.8). The
estimated source-time function, with a prominent peak at around
12 s and three minor peaks at around 28, 43, and 58 s (Fig. 6a), is
comparable to the result of Shimizu et al. (2020).

Although focal mechanisms have two nodal planes, we could
select the realistic fault plane from the focal mechanisms obtained
in this inversion analysis by using the reference surface (Figs 6a and

b). Decomposing the potency density tensors at the Earth’s surface
into the strike-slip component (positive for left-lateral fault slip) and
the dip-slip component (positive for reverse fault slip), as shown in
Fig. 6(c), demonstrates that left-lateral strike-slip is predominant,
reaching a maximum of 16.3 m near the epicentre and gradual
decrease towards both ends of the fault. The dip-slip component
has a maximum value of 3.0 m at a point 25 km north-east of the
epicentre and decreases to −1.3 m (1.3 m normal faulting) at a point
100 km south-west of the epicentre with small fluctuation (Fig. 6c).

Dip angles, which were derived from the realistic fault planes
selected from the obtained focal mechanisms on the fault surface,
range from 57◦ to 89◦ (Fig. 6d). Dip is recognizably dependent
on depth, being steeper in the shallower part of the fault surface
consistent with the idea of a listric fault, especially around the
epicentre and 100 km south-west of the epicentre (Fig. 6d). Around
the epicentre, the dip gradually increases from 68◦ at 17.5 km depth
to 72◦ at 2.5 km depth (Fig. 6d). Around 100 km south-west of the
epicentre, the depth dependence of the dip angle is clearer than that
around the epicentre; the dip angle increases from 60◦ at 17.5 km
depth to 71◦ at 2.5 km depth (Fig. 6d).

4.2 The 2015 Gorkha earthquake

Both the GCMT solution (Dziewonski et al. 1981; Ekström et al.
2012) and the W-phase moment tensor solution determined by
the USGS NEIC (https://earthquake.usgs.gov/earthquakes/eventp
age/us20002926, last accessed 17 January 2020) indicate that the
Gorkha earthquake was a thrust event with a fault surface dipping at
7◦. A teleseismic P-waveform inversion analysis (Yagi & Okuwaki
2015) produced a finite-fault source model in which the main rup-
ture area is distributed around 50 km east of the epicentre. The
Gorkha earthquake has been reported to have occurred along the
Main Himalayan Thrust (e.g. Avouac et al. 2015; Duputel et al.
2016; Elliott et al. 2016; Hubbard et al. 2016). An analysis of Inter-
ferometric Synthetic Aperture Radar (InSAR) and Global Naviga-
tion Satellite System (GNSS) data (Elliott et al. 2016) showed that
the earthquake occurred on a north-dipping fault with a ramp-flat-
ramp structure, dipping at 30◦ from the surface to 5 km depth, 7◦ in
a relatively flat section 75 km wide, and 20◦ in the deepest section
30 km wide. Hubbard et al. (2016) proposed a similar geometric
model of the Main Himalayan Thrust, covering the source area of
the Gorkha earthquake, on the basis of geological data in which the
central portion had a 7◦ dip and the adjoining portions on the up-dip
and down-dip sides had a 26◦ dip. Duputel et al. (2016) also pro-
posed a ramp-flat-ramp fault geometry for the Gorkha earthquake
on the basis of a receiver function analysis.

Our inversion analysis used the observed vertical components of
teleseismic P waveforms converted to velocity (Supporting Infor-
mation Fig. S2) at the 54 stations shown in Fig. 4(c), the same data
used by Yagi & Okuwaki (2015), and then resampled the waveform
data at 1.0 s intervals without applying any filter. We adopted the
USGS epicentre of 28.231◦N, 84.731◦E and the hypocentral depth
of 15 km used by Yagi & Okuwaki (2015). Theoretical Green’s
functions were calculated the same way as the synthetic tests in
Section 3, using the 1-D near-source velocity structure (Supporting
Information Table. S2) from the CRUST 1.0 model (Laske et al.
2013). The initial fault plane was 160 km long and 110 km wide,
with a strike of 285◦ and a dip of 0◦, that entirely covered the pos-
sible source region estimated by Yagi & Okuwaki (2015) (Fig. 7a).
The potency rate density functions on the model fault plane were
expanded by bilinear B-spline functions with a spatial interval of
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Figure 6. Source model of the 2013 Balochistan earthquake estimated by the proposed method. (a) The initial fault geometry is shown by grey circles at
the centre of subfaults. The small beachball symbols show the focal mechanisms of the subfaults on the estimated fault trace, obtained by integrating the
potency density tensors, shown in (b), with respect to the dip direction. Blue bars and numbers indicate the strike of the subfaults at the hypocentre and both
ends of the estimated fault. The large beachball symbol shows the total potency tensor of the earthquake, obtained by integrating the potency density tensors
shown in (b), over the fault surface. The grey line represents the surface rupture trace observed by Zinke et al. (2014). The inset shows the estimated moment
rate function of the earthquake. The star denotes the epicentre. (b) Distribution of potency density tensors on the estimated fault surface. Beachball symbols
indicate the focal mechanism at each subfault and their colour indicates the slip amount. (c) Profiles along the model fault trace of the strike-slip and dip-slip
components, estimated from the potency density tensors at the top of the fault surface. The strike-slip component is positive for left-lateral faulting, and the
dip-slip component is positive for reverse faulting. The grey vertical bar represents the location of the epicentre. (d) Distribution of dip (colour) on the estimated
fault surface.

10 km and 5 km along the strike and dip directions, respectively, and
by linear B-spline functions with a temporal interval of 1.0 s and a
total duration of 28 s. We also assumed the maximum rupture-front
velocity to be 3 km s–1 and the potency rate density to be zero after
60 s from the rupture initiation, following Yagi & Okuwaki (2015).
We adopted a plane with a strike of 326◦ and a dip of 8◦, derived
from the total potency tensor obtained by a preliminary analysis, as
the reference surface used for selecting realistic nodal planes.

The inversion results after the third iteration, shown in Fig. 7,
had an excellent fit between the observed and synthetic waveforms
(Supporting Information Fig. S2) and yielded a variance reduction
(eq. 5) of 82.1 per cent. The fault plane dips towards the north-east
and is 105 km wide (Fig. 7b). The spatial distribution of potency
density tensors (Fig. 7a) shows that the main rupture area (>50
per cent of the maximum slip) is distributed around 50 km east of
the epicentre, where the maximum slip is 5.0 m. The main rupture
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Figure 7. Source model of the 2015 Gorkha earthquake estimated by the proposed method. (a) Distribution of potency density tensors on the estimated fault
surface. The light grey line outlines the initial fault plane. Small beachball symbols indicate the focal mechanism for each subfault and their colour indicates
the slip amount according to the colour scale in (d). The large beachball symbol shows the total potency tensor of the earthquake, obtained by integrating the
potency density tensors over the fault surface. Arrow indicates azimuth of 3-D view of (d). (b) Cross section of the model-fault surface along line A–B in (a).
Grey and red circles represent the central points of subfaults of the initial and estimated model fault surfaces, respectively. Blue bar indicates the dip of each
subfault. Denoted numbers are dip angles at the hypocentre and both ends of the estimated fault. (c) Estimated moment rate function of the earthquake. (d)
Estimated fault geometry and slip amount (colour) viewed from the north-east indicated by the arrow in (a).

area is dominated by thrust faulting with dips ranging from 2◦ to
22◦. The total potency tensor indicates thrust faulting with a strike
of 332◦ and a dip of 9◦ (Fig. 7a). The total seismic moment release
is 9.1 × 1020 Nm (MW 7.9), which matches the 9.1 × 1020 Nm (MW

7.9) estimated by Yagi & Okuwaki (2015). The cross section of the
estimated fault surface (Fig. 7b), taken perpendicular to the fault
strike (the A−B line shown in Fig. 7a), shows that the dip changes
from 42◦ at the up-dip edge (45 km south-west of the hypocentre)
to a minimum of 6◦ at the hypocentre to 15◦ at the down-dip edge
(55 km north-east of the hypocentre). As seen in the 3-D view of the
fault model (Fig. 7d), we resolved the main rupture area distributed
in the flat part of the model fault surface with lower dip (<10◦). Both
the up- and down-dip part of the main rupture area were bounded
by the ramp structure with higher dip angles.

5 D I S C U S S I O N

In this study, we proposed a nonlinear inversion method to construct
the fault geometry of an earthquake through the development of the
finite-fault inversion method of Shimizu et al. (2020). They esti-
mated spatial distribution of potency density tensors on an assumed
fault plane, from which we can extract information on slip direction
on the fault plane. Through synthetic tests and application to real
waveform data, we showed that our proposed method can construct
the fault geometry well, even if the strike or dip varies along the

fault surface. Thus, it is possible to directly compare the obtained
source model with other observed data, as can be done for source
models obtained by using conventional inversion methods.

The clear surface ruptures from the Balochistan earthquake doc-
umented by Zinke et al. (2014) can be readily compared with our
source model (Fig. 6a) and seen to be in good agreement. The in-
creased surface displacement around the hypocentre in our model
(Fig. 6b) is also consistent with the distribution of surface displace-
ment across the fault trace estimated by the analyses of optical satel-
lite images (e.g. Avouac et al. 2014; Zinke et al. 2014) and the slip
distribution of finite-fault model of Avouac et al. (2014) (Support-
ing Information Figs S3a and b). The Arabia plate subducts beneath
the Eurasia plate in the southern part of the Makran accretionary
wedge, and active thrust faults exist in the Makran accretionary
wedge (Haghipour et al. 2012), the site of the Balochistan earth-
quake hypocentre. The shallowing dip with increasing depth on the
estimated fault surface (Fig. 6d) may suggest that the earthquake
ruptured a thrust fault that has listric geometry. The dip angle in
our fault model shows steeper at around the epicentre and shal-
lower at around 100 km south-west from the epicentre (Fig. 6d),
but the along-strike variation of dip angle seems not to be con-
tinuous and generally steeper than those in the models of Avouac
et al. (2014) (Supporting Information Fig. S3c) and Jolivet et al.
(2014). Although our model itself may represent a listric geometry
of the Balochistan earthquake as discussed in Avouac et al. (2014)
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and Jolivet et al. (2014), it should be difficult to judge whether
Avouac et al. (2014)’s or Jolivet et al. (2014)’s model would be
more consistent with our model.

Because the Gorkha earthquake did not produce surface ruptures
(e.g. Avouac et al. 2015), there are no observational data that can
be directly compared with our estimated fault geometry. Our source
model of the Gorkha earthquake has a fault geometry with a ramp-
flat-ramp structure (Figs 7b and d and Supporting Information Fig.
S4), which is consistent with the fault geometry modelled by using
geophysical and geological data (e.g. Elliott et al. 2016; Hubbard
et al. 2016; Duputel et al. 2016), although the flat part is narrower in
our model. In particular, the ramp structures in the up- and down-dip
parts of our fault model can be considered to represent the middle
and the deep ramps of the Main Himalayan Thrust model presented
by Hubbard et al. (2016). The estimated slip distribution, with larger
slip in the flat part (Figs 7a and d and Supporting Information Fig.
S4), is also consistent with the analysis of InSAR and GNSS data
by Elliott et al. (2016). The fault geometry modelled by Hubbard
et al. (2016), using geological knowledge and the slip distribution
estimated by Avouac et al. (2015), also places the main rupture area
in the flat part of the fault. The dip angles of the ramp structures
in the up- and down-dip parts of our fault model are different from
those of the fault geometry modelled by Hubbard et al. (2016), but
our source model can be considered to resolve the main rupture area
bounded by the ramp structures, which is consistent with the model
of Hubbard et al. (2016). Therefore, our proposed method, based
solely on teleseismic data, yields a source model of the Gorkha
earthquake that is comparable to fault geometry and slip distri-
butions independently estimated from geophysical and structural
geology data.

Because our proposed method uses spline interpolation in con-
structing fault geometry, continuous and geometrically smooth
faults are best suited to this method. Furthermore, a realistic strike
or dip was selected for each subfault on the basis of the similarity
of the resolved nodal plane to the single reference surface. This
procedure implicitly assumes that the strike or dip varies by less
than 45◦ because a rotation of a focal mechanism around its own
B axis greater than 45◦ places the conjugate nodal plane closer to
the reference surface. This assumption was sound in the cases the
Balochistan and Gorkha earthquakes because the strike and dip of
their faults varied by less than 45◦. Our proposed method may be
extended to construct a fault geometry with a greater variation of
strike or dip than 45◦ by determining a realistic nodal plane on
the basis of the nodal plane of the adjacent subfault and extending
this procedure sequentially in the direction away from the epicen-
tre. Unlikely to inversion methods of geodetic data, our proposed
method can estimate rupture process as well as fault geometry and
would be applicable to an earthquake occurred under seafloors with
poor geodetic observations. On the other hand, it would be diffi-
cult to use our proposed method to construct a conjugated fault
system or a segmented fault system, such as the faults of the MW

7.8 2016 Kaikoura, New Zealand, and the MW 7.9 2018 Alaska
earthquakes.

Our proposed method is optimized for application to teleseismic
P waveform data because modelling error of teleseismic P-wave
Green’s function is well defined in the inversion method used in
this study (Shimizu et al. 2020). It would be possible to jointly use
teleseismic S waveforms and geodetic data by considering possible
errors of picking first motion of S-phase and modelling error of
geodetic Green’s function. The spatial resolution of the fault geom-
etry constructed by our proposed method is limited by the product of
the sampling interval of waveform data and the assumed maximum

rupture front velocity, but may be lower due to the smoothing con-
straints adopted by the inversion method of Shimizu et al. (2020).
The joint use of geodetic data would make it possible to increase
the spatial resolution and to constrain the absolute location of the
constructed fault geometry. The smoothing constraints also impose
CLVD components on potency density tensors estimated by the in-
version method of Shimizu et al. (2020), even when a true source
mechanism is pure double couple. Thus, it is difficult for the in-
version method of Shimizu et al. (2020) to constrain the strike of
low angle thrust fault, such as that of the Gorkha earthquake, which
makes it difficult to use strike angles to construct fault geometry of
such low angle thrust by using our proposed method and was the
reason why we used only dip angles to construct the fault geometry
of the Gorkha earthquake.

In each application of our method to both synthetic and real
waveforms, it took only a few iterations of the finite-fault inver-
sion to reconstruct the fault geometry, which was expected from
the assumption that the fault geometry can be constructed from
strike or dip data alone. Although this assumption results in a weak
nonlinearity in our method, nonlinearities may also stem from the
low spatial resolution of teleseismic data and the fact that the uncer-
tainty of the Green’s function is taken into account in the finite-fault
inversion (Shimizu et al. 2020).

6 C O N C LU S I O N S

We proposed and tested a method of constructing fault geometry
that relies on only teleseismic data, using a finite-fault inversion
iteratively to estimate potency density tensor distributions that can
express slips in an arbitrary direction. We assumed that an esti-
mated fault surface has bends only along the strike or only in the
dip direction, which leads to a weak nonlinearity of the method. Af-
ter testing the performance of the method through synthetic tests,
we applied this method to the 2013 Balochistan and 2015 Gorkha
earthquakes, which previous studies have shown to have occurred
along geometrically complex fault systems. For both events, our es-
timates of the fault geometry were consistent with previous studies
that analysed different observational data. This method works well
for constructing the fault geometry of an earthquake that ruptured
a geometrically smooth and continuous fault surface.
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Figure S4. Comparison with another study of the Gorkha earth-
quake.
Figure S5. Potency density tensor distributions obtained after the
first and the last iterations.
Table S1. Velocity structure in the source region of the 2013
Balochistan earthquake

Table S2. Velocity structure in the source region of the 2015 Gorkha
earthquake
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