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The tube algebra of a monoidal category C was introduced in [A. Ocneanu, in: Subfactors. Proceedings
of the Taniguchi symposium on operator algebras, Kyuzeso, Japan, July 6–10, 1993. 32nd Taniguchi
international symposium. Singapore: World Scientific. 39–63 (1994; Zbl 0927.46032)] within the realm
of operator algebras. Connections between the tube algebra and the Drinfeld center Z(C) have inspired
much research, culminating in [Zbl 1415.46042] which claims that the category of representations of the
tube algebra is equivalent to Z(C). If C is a modular tensor category (MTC), then Z(C) is equivalent to
the category C ⊠ C, where ⊠ is the Deligne tensor product and C is obtained from C by equipping it with
the opposite braiding [M. Müger, Proc. Lond. Math. Soc. (3) 87, No. 2, 291–308 (2003; Zbl 1037.18005)].
This paper focuses alternatively on the tube category T C, which is a multiobject version of the tube
algebra, being Morita equivalent to it. To put it another way, the category of representations

RT C := Fun (T Cop, Vect)

is equivalent to that of the tube algebra, where Vect denotes the category of finite-dimensional vector
spaces. Therefore we have

RT C ≃ Z(C) ≃ C ⊠ C

which gives, as {I ⊠ J}I,J∈Irr(C) forms a complete set of simple objects in C⊠C, a complete set {FIJ}I,J∈Irr(C)
of irreducible functors in RT C. The so-called Yoneda embedding, which maps an object X in T C to
X# = HomT C (−, X) in RT C, gives rise to the decomposition

HomT C (X, Y ) = HomRT C
(
X#, Y #)

= ⊕I,JHomRT C
(
X#, FIJ

)
⊗ HomRT C

(
FIJ , Y #)

Since, for fixed I, J ∈ Irr(C), HomRT C
(
X#, FIJ

)
is to be put down at FIJ via the canonical Yoneda map

while HomRT C
(
FIJ , Y #)

is to be identified with HomRT C
(
Y #, FIJ

)∗ via the perfect pairing given by
composition which is to be regarded as FIJ(Y )∗ via Yoneda again, the (I, J) summand is to be looked
upon as FIJ(Y )∗ ⊗ FIJ(X) so that we have a natural injection

λIJ
Y X : FIJ(Y )∗ ⊗ FIJ(X) → HomT C (X, Y )

which, by naturality in X, is to be seen as a map

λIJ
Y : FIJ(Y )∗ → HomRT C

(
FIJ , Y #)

This paper, consisting of five sections, aims to give a graphical description of λIJ
Y X and therefore λIJ

Y ,
to which composition is easily described (Proposition 2.4), allowing of identification of the primitive
idempotents in EndT C(X) (Corollary 5.7) corresponding to the irreducible summands of X# in RT C and
being able to be thought of as categorical analogues of Ocneanu projections. A synopsis of the paper goes
as follows. §2 records some basic results arising from the Yoneda Lemma, Lemma 2.3 implying that λIJ

Y

is characterized as being the unique opposite of the canonical Yoneda map

µIJ
Y : FIJ(Y ) → HomRT C

(
Y #, FIJ

)
The graphical calculus of MTC’s is built in §3, culminating in Lemma 3.11 and Proposition 3.14. §4
provides an introduction to the tube category, while §5 gives a graphical candidate for λIJ

Y , establishing
that it is opposite to µIJ

Y .
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