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Oblique Derivative Problems in Sobolev
Spaces

This chapter is devoted to the study of the regular oblique derivative
problem for a second-order, uniformly elliptic differential operator with
discontinuous coefficients in the framework of LP Sobolev spaces. More
precisely, we consider a second-order, uniformly elliptic differential oper-
ator with VMO coeflicients and an oblique derivative boundary operator
that is nowhere tangential to the boundary. We state global regulariz-
ing property of the oblique derivative problem in the framework of L?
Sobolev spaces (Theorem 16.1). Furthermore, we state an exsitence and
uniqueness theorem for the oblique derivative problem in the framework
of LP Sobolev spaces (Theorem 16.2).

16.1 Formulation of the Oblique Derivative Problem

Let © be a bounded domain of R™, n > 3, with boundary 0% of class
CY1. In the interior Q, we consider a second-order, elliptic differential
operator £ with real discontinuous coefficients of the form

Lu = i aij(x)ﬂ for z € Q

T =1 8$i8$j '
More precisely, we assume that the coefficients a' () satisfy the follow-
ing three conditions (1), (2) and (3):

(1) a¥(x) € VMONL>®(Q) for 1 <4,j < n.

(2) a¥(x) = a’*(z) for almost all z € Q and 1 < i,j < n.

(3) There exists a positive constant A such that

SR < 3 @ (@)Eg < NP (16.1)
i,j=1
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488 Oblique Derivative Problems in Sobolev Spaces
for almost all x € 2 and for all £ € R™.
If % (r) is the VMO modulus of a™/(z), then we let

1/2
> n(r)?

ij=1

n(r) :

On the boundary 952, we consider a first-order boundary operator B
with real continuous coeflicients of the from

gsz +o(x)u forz’ € 00. (16.2)

._@ / _’ﬂ o
Bu := (%—&—U(a:)u—izzlﬁ(x)

Concerning the boundary operator B, we assume that the following three
conditions (16.3a), (16.3b) and (16.3c) are satisfied:

¢(z') and o (') are Lipschitz continuous functions on 9.  (16.3a)

(l(2"),n(2")) = Zﬁi(x’) n;(x’) >0 on 0. (16.3b)
i=1

o(x') <0 on ON. (16.3¢)

Here n(2') = (n1(2'),n2(2’),...,n,(a’)) is the unit interior normal to

o0 and l(z') = (£*(2'),6%(z'),..., " (2)) is a vector field on 9. Tt
should be emphasized that the boundary operator B is given by a direc-
tional derivative with respect to the vector field £(z') on 9. The simple
geometric meaning of conditions (16.3b) is that the vector field ¢(z') is
nowhere tangential to the boundary 99 (see Figure 16.1).

o0 o

Fig. 16.1. the unit interior normal n(z’) and the oblique vector field ¢(z’) at
!
x
To interpret the boundary condition (16.2) in the sense of traces on
1), we recall some definitions and useful notations. If 1 < p < oo and

if k=1 or k =2, we define the L? Sobolev space

WHP(Q) = the space of (equivalence classes of) functions
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u € LP(Q) whose derivatives D%u, |a| < k, in the

sense of distributions are in LP({2),
and define the boundary space of traces of functions
BF1/PP(9Q) = the space of the traces you of functions u € WP (Q).
In the space B*~1/PP(9Q), we introduce a norm
|90|Bk*1/P~P(BQ) = inf{H“”W’v»p(Q) RS Wk’p(9)7 You = p on 59} ‘

The space BF=1/PP(9Q) is a Banach space with respect to the norm
| “ | Br-1/p.0(90)- We recall that the space BF=1/Pr(90) is a Besov space
(see the trace theorem (Theorem 7.4)).

The purpose of this chapter is to study global regularity and solvability
in the framework of Sobolev spaces of the the following non-homogenous
oblique derivative problem:

{Eu(wl) = f(x)  for almost all x € €, (16.4)

Bu(z') = p(2') in the sense of traces on 0.

It should be emphasized that the boundary value problem (16.4) is a
regular oblique derivative problem, since the vector field £(z’) is nowhere
tangential to the boundary 0.

The interest in the study of oblique derivative problems for elliptic
operators with VMO coefficients increased significantly in the last twenty
years. This is mainly due to the fact that VMO contains as a proper
subspace C(Q) which ensures the extension of the LP Schauder theory
of operators with continuous coefficients to discontinuous coefficients
(see [33], [40]). On the other hand, the Sobolev spaces W1 m(2) and
Won/9(Q), 0 < < 1, are also contained in VMO; hence the VMO
discontinuity of the a%(z) becomes more general than those studied
before (see [49], [50], [88]).

16.2 Statement of Main Results (Theorems 16.1 and 16.2)

The first main result of this chapter is stated as follows (see [47, Chapter
2, Theorem 2.2.1]):

Theorem 16.1 (the regularity theorem). Let 1 < p < 0o, and assume
that conditions (16.1) and (16.3) are satisfied. If a functionu € W24(Q),
1 <qg<p< oo, is a solution of problem (16.4) with f € LP(Q) and
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@ € BYTYP2(9Q), then it follows that u € W2P(Q). Moreover, we have
the global a priori estimate

lullw2r (@) < C1 (llull o) + 1 fllLri@) + 10l pr-1rmp@n) ,  (16.5)
with a positive constant C; = C1(n,p, \,n, £, 0, 08).
The proof of Theorem 16.1 can be visualized in the following diagram:

Theorem 13.1
(interior representation formula (13.1))

Theorem 12.1
(interior estimate (12.2))

Lemma 13.2
(local interior estimate (13.7))

Theorem 16.1
(global estimate (16.5))

Theorem 18.3
(boundary representation formula (18.7))

Lemma 19.1
(boundary estimate (19.2))

Lemmas 18.2 and 19.3
(geometric properties of formula (18.7))

Table 16.1. A flowchart for the proof of Theorem 16.1

The regularizing property of the couple (£, B) implies the well-posed-
ness of problem (16.4) in the framewok of LP Sobolev spaces. More
precisely, the second main result of this chapter is stated as follows (see
[47, Chapter 2, Theorem 2.2.2], [84, Theorem 1.1}, [86, Theorem 1.2]):

Theorem 16.2 (the existence and uniqueness theorem). Let 1 < p <
00, and assume that conditions (16.1) and (16.3) are satisfied. Then, for
any f € LP(Q) and any p € B'=Y/PP(0Q) there exists a unique solution
of problem (16.4). Moreover, we have the global a priori estimate

[ullwzr0) < Co (I fllLro) + @l Br-1/m500)) - (16.6)
with a positive constant Co = Co(n, p, \,n, £, 0, 08).

Remark 16.1. The results presented here can be applied to the study
of Sobolev regularity of the solutions of problem (16.4) for a general
second-order elliptic operator

L 0?u "L Ou
Au E a (x)ﬁa:,@xj + ;:1 b (x) oz, + ¢(2)u,

i,j=1

where the lower order coefficients b’(x) and ¢(z) satisfy suitable Lebesgue
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integrability conditions (see [46]) such as study the case where
bi(x), c(z) € L(Q),
and

c(x) <0 almost everywhere in €.
Remark 16.2. The condition that
o(z') <0 on 9 (16.7)

is not necessary for the regularity result of problem (16.4). In fact,
problem (16.4) for a sign-changing function o (z") may be reduced to the
case considered here if we take a function F'(z) € C1'(Q) which satisfies
the condition
oF
W = 7(7(1'/) —1 on 39,

and let
u(z) = v(z)el @),

On the other hand, in the proof of Theorem 16.2, condition (16.7) is
essential for the uniqueness result of problem (16.4).

The crucial point of our investigations is the local boundary Sobolev
regularity of the solutions of problem (16.4). Our approach is based
on explicit integral representation formulas (18.8) for the second deriva-
tives of solutions of problem (16.4) with constant coefficients operators
and homogeneous boundary conditions (near the boundary), in terms
of singular integral operators with Calderén—Zygmund kernels and their
commutators and operators with positive kernels (Theorem 18.3). This
method has been already used in the study of the Dirichlet problem in
Part III of this book. In order to deal with non-homogeneous oblique
derivative boundary conditions with variable coeflicients, we introduce
a special auxiliary function which, roughly speaking, absorbs the right-
hand side of the boundary condition (16.4) (Lemma 17.1). Moreover,
we make use of special non-dimensional norms (17.1) and (17.6) to esti-
mate effectively the Sobolev norms of the second derivatives of solutions
of problem (16.4).

Finally, it should be emphasized that VMO functions are invariant
under C't1-diffeomorphisms (see [1, Proposition 1.3]).
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16.3 Notes and Comments

This chapter is adapted from Di Fazio—Palagachev [22] and Maugeri—
Palagachev—Softova [47].



17
Oblique Derivative Boundary Conditions

In this chapter, for a given boundary function, we construct an auxiliary
function that satisfies an oblique derivative boundary condition. More
precisely, for a given boundary function ¢(z’) € B*~1/PP(9Q), we con-
struct a special extension ¢(x) € W?2P(Q) which satisfies the oblique
derivative boundary condition (see Figure 16.1)

8¢_ - % ()
ﬁ—;g(fﬂ)

This result (Lemma 17.1) will allow us to represent, locally near the
boundary, the solution of the non-homogeneous oblique derivative prob-
lem (16.4) in Chapter 19 (see formula (19.10)). In this way, we are
reduced to the study of the homogeneous oblique derivative problem:

gi = on 0f.

{Eu(w) = f(z) for almost all x € ,

Bu(z') =0 in the sense of traces on 0.

17.1 Construction of Auxiliary Functions

Let T be a bounded portion of the hyperplane

{z, = 0}
={z=(",z,) ER": 7' = (21,22,...,2n-1) € R z, = 0}.

Let ¢(z') be a function defined on I which belongs to B'=1/P?(T'). The
space Blfl/p’p(l"), 1 < p < o0, is a Banach space equipped with the
norm (cf. the norm (7.11) with m:=0 and 6 :=1—1/p)

1/p
180, = (L1500 ') (r.)
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SN (NP 1/p
rJr

|1'/ _ y/|p+n 2

where d = diam T'/2.
First, following the proof of [33, Theorem 6.26] we take a bell-shaped
function ¢(2’) on R"~! which satisfies the following four conditions:

C(z) € CE(R™Y). (17.2a)

¢(#')>0 onR"™ (17.2b)

supp( C {2’ e R"' 1 |2/| < 1}. (17.2¢)

/ ¢(z")da’ = 1. (17.2d)
Rn—l

We take an arbitrary point zo = (x(,0) of the hyperplane {z, = 0} and
R > 0, and let (see Figure 17.1)

BE = BR(l‘o) N {xn > 0},

and

FR = BR(l‘()) N {xn = O}

Fig. 17.1. The semi-ball B}, in R} and the ball I'r = BN {z, =0} in R"™!

Without loss of generality, we may take I'p instead of I in the above

definition of the norm ||35||*Blfl/p,p(f)’

function @ € B'~Y/PP(I'g), we may assume that $(z’) can be extended
to the whole hyperplane {z,, = 0} as a function with compact support,
preserving its B'~1/PP_norm.

Assuming that the boundary 02 is locally flattened out near the point
xo such that Q C {z, > 0} (see Figure 17.2 below), we remark that the

and take d = R. For a given
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regular oblique derivative boundary condition (16.3b) implies that

£ (xg) > 0. (17.3)
Consider now the function
Tn ~ / / /
T) = -z, d 17.4
o) = s [ B a7
for x = (2',2,) € RT}.
o0 Tp

Fig. 17.2. The semi-ball B}, in R’} and the oblique vector field £(xo) at xo

The next lemma is an essential step in our further considerations:

Lemma 17.1. Let 1 < p < co. The function ¢(x), defined by formula
(17.4), belongs to the space W2’p(BE) and satisfies the conditions

é(x',0) =0 on g, (17.5a)
99, p(")
— = I'g. 17.5b
9z, («',0) () onTp (17.5Db)
If we introduce a norm
* o 2
10lnnsy = [6logssy + BNVl 0y (176)

then we have the estimate
10152058y < CRVZ NG 511/ ) (17.7)
with a positive constant C = C(n,p, A\, ¢, ().

Proof. The proof of Lemma 17.1 is divided into three steps.
Step 1: First, we prove that

||¢HLP(B;;) < ClRl+1/p||<z“*3171/p,p(rR) (17.8)

for some constant Cy = Ci(n,p,?, () > 0,
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Without loss of generality, we may assume (see Figure 17.3) that

.’E():O,
B} = Br(0)N{z, >0} ={z = (2/,2,) € R" : |2| < R, z, > 0},

and

I'r = Br(0)N{z, =0} ={z = (2/,0) e R" : |2| < R}.

T

B} = Br(0) N {z, > 0}

Fig. 17.3. The semi-ball B}, in R7 and the ball T = BrN{z, =0} in R"!

By using Minkowski’s inequality for integrals (Theorem 3.18) and Fu-
bini’s theorem (Theorem 3.10), we obtain that

[ P ds (17.9)
B

R

1 /
[ (@)P

<ctun 0 [ 1w < /.

p
dx

oo [ F ) by

zh|p(x — zny') P dx) dy’

R

= Clnp.t.O) [ P50

Rn—1

where
Ip:(y) = / 2P| p(a" — zpy) P da.
R Bt

R

However, by letting (see Figure 17.4)

Qr
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= {zz (1,72, Tp1,2,) ER" 11| <R, 22| < R, ...

1] SR, 0< 2, < R},
we obtain that

Lo ) < Tou(y) = | all(e’ ~ 2P do’da,

R
R
§/ z? / (2P d2" | day,
0 Q}z(mn)
where

! A /
2= (21,22, 2n-1) =0 —xny

= (T1 — TpY1, T2 — TnY2, -+, Tn—1 — Tn¥Yn—1),

and

Q;a(ffn) = {Zl = (21,22, .., 2n-1) € R |21 + zny1| < R,

|22 + zpy2| < R, ..., |20 + Tuyn—1| < R}.

Tn

Qr

T

Fig. 17.4. The semi-ball BE and the cube Qr in R}

=

Since we have, for some positive constant c,

[ era <c(Ifllsme,) fro<m<h,
Qr(zn)
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it follows that

Ini(y) =/+xﬁl¢5(x’—xny’)|”dx (17.10)
BR
R
i P
S (I
CRP+1

- (||¢||Blfl/p,p(FR)) for y' € R 1.

Therefore, by combining estimates (17.9) and (17.10) we obtain that

o(x)|P do
CRp 1

<Coopt )T [ @ (11
- p + 1 Rn—l B P,P(FR)

This proves the desired estimate (17.8), with

cC(n,p, ¥, C))l/p
ci i = —2=~ P(Rn—1).
1 ( 1 ||C||L (R )

Step 2: Secondly, we prove that
R HW‘?HLp(B;) < 0231/2||¢||gl,1/p,p<pR), (17.11)

for some a positive constant Co = Ca(n,p, ¥, ().

To do this, we calculate now the first and second derivatives of the
function ¢(z) defined by formula (17.4).

We use the shorthand

0 0?

Di=——, D=
8l‘i J 81‘i83§‘]’

for derivatives on R™.
By letting 2’ = 2’ — x,y’ in formula (17.4), it follows that

T

2—n / /

n ~ r —=z /

= d

(o) /RMW)C( T ) -
so that

1—n ! !
. / _ L 718% aé_ S !
Dz¢($ vxn) - gn(mo) /R"—l QO(Z )8331' ( Tn > a2

for1<i<n-—1;

_ 1-n I
Doota'va) = B [ g (T ) a

o (xo) Tn

(725(1‘/, zn) =
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_ z;n =N/ ' -2 (o
e | Mw(ch( — ) (2 — ') dz,
o 0 0
oo (L2 o)
Oy1’ Oy OYn—1

n—1
’ I .
xr -y = E Z5Yj-
j=1

Hence we have, for the gradient V¢ = (9¢/0x1,0¢/0xa, . ..,0¢/0xy,),

Dol ) = s [ G e )DCW)a (7a20)

for1 <i<n-—1,;

where

and

Dn(b(.’lf/,l‘n) = 62'”;&:/) /Rni1 95(3?/ _ xny/)C(y’) dy/ (1712b>
1 ~ 1 N
_ 07 (x0) /Rni1 ola’ —zy )\V'CW) -y dy'.

However, by conditions (17.2) it follows from an application of the di-
vergence theorem (Theorem 5.2) that

/ DiC(y) dyf = / DiC(y) dyf (17.13a)
Rnfl

Rn—1

:/ V(DO () -y dy' =0 for1<4,j<n-—1;
Rn—1
/ () dy' =1, / V) ydy =1-n, (17.13b)
Rn—1 Rn—1
and

| v ) dy == (17130

Therefore, the desired formulas (17.5) follow from three formulas (17.4),
(17.12b) and (17.13) if we take x,, = 0.

Furthermore, since ((y') € CZ(R"!) we can differentiate formulas
(17.12) once again to obtain that

1 1 ., / o
= (zo) T —xny ) Dij d
(o) Tn, /Rn_l pla’ = any')DijC(y") dy

for1 <i,5<n-—1;

Dijd)(x/a l'n)
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1—-n 1 _
Ding(2', 20) = m; /R -1 P2 —xny")DiC(y') dy’
11 B
" 07 (zo) T /R A" =2y )VI(DiO) -y dy’

for1 <i<n-—1;

2 — 1-— 1 ., / o
Don(a! ) = W%/Rn_lm () dy
2n—3 1 (o / / A ’
mﬂ /}}p*lso(x 2y )V'CW) -y dy
1 1 (! _ / /! ! AN ANN, ’
WE/RH (' =2y )V (VW) - y) -y dy'.

Hence, by combining these three formulas and formulas (17.13) we obtain
that

Di;p(x, xy) (17.14a)

L —1 o(x! / (! / ’
= () —TnY ) — D, d
0 (x0) T /Rn_l [p(a" = zny’) — (2)] DijC(y') dy
for1 <4, <n-—1,;

Dind(z', 2n) (17.14b)

1-n 1 S , ., o
e o B~ ma) = B DSl d

and
_(z_n)(l_n)l ~ ! / ~( ! / /
SB[ B — e — B ) dy
L [ )~ B V) o
11

(o) T /RH [6(2" = zny’) = &)V (V') - y) -y dy'.

Here it should be noticed that the integrals in formulas (17.14) are all
of the type

V(@) = yla’ en) = — /R PG —2ay) - @@ uy) dy, (17.15)
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where p(y’) is (modulo a constant multiplier) one of the functions ((y’),
Di¢(y'), y' - V'C(y'), Dij¢(y') and V' (V'C-yf) - o

However, we can find a positive constant C3 such that

[o(=") — ()P
/ [ ()P de < Cs /FR /FR 2 7y|p+n o oy doy. (17.16)

The proof of estimate (17.16) will be given in the next Section 17.2; due
to its length.

In view of definition (17.1), we obtain from formulas (17.14) and
(17.15) that, for some positive constants Cy and Cj,

R(V0] s < CoBI ooty < O3B 1851 mmqr

This proves the desired estimate (17.11).

Step 3: Finally, our main estimate (17.6) follows by combining esti-
mates (17.8) and (17.11).

The proof of Lemma 17.1 is now complete, apart from the proof of
estimate (17.16). O

17.2 Proof of Estimate (17.16)

The proof is divided into five steps.
Step (I): First, we can rewrite formula (17.15) in the form

van) = = [ B~ a) — B )
1 Sl — 2 — G2 i/ !
o [ - - B (£
1 Sl — 2 — (2! il S
-5 [ e =) - (=) e

since we have the assertion
supppu C {z/ e R" ' 1 [2/| < 1}.

Therefore, we obtain that

(@', )

IA

1
[[pell oo (re-1) on (17.17)

- = B’ — ') - Fla)] d='.

n
Tn J|z'|<zn

Step (II): Now, if we let

w(y) = [2( = y) = GO Lo@n—r) fory’ € R*,
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then, by applying Minkowski’s inequality for integrals (Theorem 3.18)
to inequality (17.17) we obtain that

1
(- xn)ll Lo mn-1) < |0l Loe -1y — w(z')dz’. (17.18)

n
Ty |z <xp

Therefore, we obtain from inequality (17.18) that

p
1
MNP iy < CP — NYdy | dpb, 7.
W(, )llLF(R+) S 1 {/O ppn (/y’gpw(y> y) p} (1 19)

where
¢y = ”U”Lw(Rn*l)-

Step (III): We estimate the last integral of inequality (17.19). To do
this, we rewrite the integral in the form

p
o 1 / / /
— w(y')dy' | dp
/0 P ( ly'I<p )
/ T / ’ / d 2d pd
= — w(ro)do | r"~“dr
o P |Jo EoN (ro) P
0o 14 p
:/ (p—n-i-l/ rn—2 h(T) d’l") dp,
0 0 pe

where X,,_1 is the unit sphere in R*~! and

h(r) := /2 w(ro) do.

n—1

Since we have, for 0 < r < p,

IN
S| =

I

it follows that

P

* 1
/0 o </ . w(z/)dy’> dp (17.20)
y'[<p

[e%s} P p

:/ <pn+1/ ,r,n72 h(r)dT) d,O
0 0 P
[ele] P p

§/ (p_"+1+1/p/ yn3 h(r)dr) @
0 0 P
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By applying Hardy’s inequality (Theorem 3.20) with
1
yi=-n+14—,
b

£(r) =" (),

we can estimate the last integral of inequality (17.20) as follows:

e’} P p dp
/ (p‘”“““’/ "3 h(r) dr) — (17.21)
0 0 p
o0 P
< 1 </ h(r) dr> '
ErESERvFTAV T

Step (IV): Moreover, we estimate the last integral of inequality
(17.21). Since we have, by Hélder’s inequality (Theorem 3.14),

h(r) = /2" 1w(ra) do

( [ oo dg) " ( [ d) v

1/p
= w,ll/fl / w(ro)? do ,
Z‘7171
it follows that

[e%) P oo 1
/ MO 4y < il / s / w(ro)P do | dr (17.22)
o TP o ™\Jz,,
00 p
) / / <w(”’)2> 2 dr do
o 5oy rnt+p—

_ _w@)?
=W, /1%"71 ‘y"n+p*2 dya

where w,_1 is the surface area of the unit sphere X, _1

IN

o (n—1)/2
1= Y| = /-
e N N (CES17)

Step (V): By combining inequalities (17.19) through (17.22), we ob-
tain that

P
<1
¢ pp n Scp/ e / wy/ dyl dp
oz (RY) Yoo oo ly'I<p W)

00 P p dp
<c? / (p”“““’/ "3 h(r) dr) -
0 0 P
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< Cf /OO L(T)p dr

ST v 1oP Jo

< waﬁ/_ql / w(y')? dy’
STn 1+ U S P2

However, we have, by Fubini’s theorem (Theorem 3.10),

)P 190 =9 = POILrn-
/ w(y') dy' :/ LP(R"—1) dy’
Rn—1 Rn—1

|y/|n+p—2 |yl|n+p—2

= / / l{bi(x/ - y/) B @(x/ﬂp dxl dyl.
Rn—1 JRn-1 |y | tp=2

Summing up, we have proved that

19/l Le ) (17.23)
oW A NN o 1/p
<0, / / lp(z" —y') — o) a'dy )
R-1 JRr1 ly'|n P2
where
¢y Gl
2T - 1/p'

The desired estimate (17.16) follows from inequality (17.23).
The proof of estimate (17.16) (and hence that of Lemma 17.1) is now
complete. O

17.3 Notes and Comments

The results of this chapter are adapted from Di Fazio—Palagachev [22]
and Maugeri—Palagachev—Softova [47].
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Boundary Representation Formula for
Solutions

In this chapter we prove boundary representation formulas for solutions
of problem (16.4), by using the half space Green function for the uni-
formly elliptic differential operator

n . 82
L= sz:l a” () D0z,

The first step is to derive a boundary representation formula (18.4) for
the solution of problem (16.4) with the constant coefficients differential
operator L and the constant coefficients boundary operator By (Lemma
18.1). The second step is to derive integral representation formulas

(18.8) for the second derivatives of solutions of the oblique derivative
problem for the variable coefficients differential operator £ and the con-
stant coefficients boundary operator By (Theorem 18.3). The third step
for the general couple (£, B) will be carried out in the next Chapter 19
(Lemma 19.1).

18.1 Integral representation formulas for the oblique
derivative problem

Now we take an arbitrary point xg = (z(,0) of the hyperplane {z,, = 0}
and r > 0, and we let (see Figure 18.1 below)

B, :=B,(zg) ={z e R" : |z —xo| <1},
B := By (x0) N {zn > 0}
={z=(z1,22,...,2,) E R" |z — x| <7, T, >0},
and

Cy := B,(x9) N {x, =0}
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={z = (z1,22,...,2p-1,0) E R" : |2/ —xp| < r}.
"'E’L
B,
Bf
of C, >
\ /
\\ //

Fig. 18.1. The semi-ball B in R’} and the ball C, = B, N{z, =0} in R !
We consider the second-order, elliptic differential operator

n y 92
Lo := Z a J(wo)axiaxj

ij=1

with constant coefficients, and the first-order boundary operator

_L Y - 7 ! 8 /
BO T ag(xé)) +0'(330) - ;g ('/'I"O)axZ + U(‘rO)

prescribed by a directional derivative with respect to the constant vector
field
U(p) = (€ (), (), - - L7 (x))-
Here we assume that
o(zy) <0, £*(xg) > 0. (18.1)

In the following we shall denote the matrix (a% (2¢)) by a(zo) and its
inverse matrix (A% (zg)) by A(zg), respectively. Then the fundamental
solution T'(zg, &) of Ly is given by the formula

l (2—n)/2
1 LI
[(z0,&) = A (20)&&; ;
(2 = n)wp/det a(zo) Uzz:l
where
27.rn/2




18.1 Integral representation formulas for the oblique derivative probld)n

is the surface area of the unit sphere X, in R™. By arguing just as in [33,
Section 6.7], we can verify that the half space Green function G(z,x,y)
for the constant coefficients elliptic differential operator Ly is given by
the formula (cf. [33, Section 6.7, formula (6.62)])

G(z0,x,y) (18.2)
=D(xg, 2 —y) — D(xo, T (z;20) — y) + 0(x0, T (z;20) — y),

where
x1 — 27 a'™ (o)
" arn (o) 1
2%, Ty — 2, & (@0) )
T(wimo) =~ sa(@o) = | IO L e
—Tp Ln
and
0(x0,€) (18.3)
_ 2 0" (xp)
wn+/det a(zg) a™ (o)
x/oo eo(mé)S(§n+STn(€(az6))) - s,
O (S A o) (& + s T + s T (E(ap))))
with

&1+ sTi(l(xp))

2+ST2€II
E+sT(U(x})) = ¢ .((0))

b+ s To(E(zh))

n at™ (0(z),
1 -+0(at) = 250" al) i)
€2 + 5 2(xf) — 250" (wf) St

En — s (xp)
More precisely, we can prove the following lemma (see [22, Lemma
3.1], [47, Chapter 2, Lemma 2.2.5]):

Lemma 18.1. Assume that condition (18.1) is satisfied. If a function
u € C§°(Ba,), with suppu C By, is a solution of the oblique derivative
problem (see Figure 18.2 below)

Lou=f in By,
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Bou=0 on Csy,,
then we have, for all x € B,

u(z) (18.4)

G(zo,7,y)f(y)dy

+
B,

/B T, % — ) — T(wo, T3 0) — ) + 00, T3 70) — 1)) £ (¥)dly.

2r

By,
B!
\ \ Cy,. ' B

Fig. 18.2. The semi-ball B;‘T in R} and the ball C2, = B2, N {z, =0} in
Rnfl

Let B, be an open ball of radius r, and we assume that the functions
a¥(x) € VMO NL>™(Q) satisfy the following two conditions (i) and (ii):

(i) a¥(x) = a’*(z) for almost all z € B, and 1 <i,j < n.
(ii) There exists a positive constant A such that

|£|2 < Z z)€i&; < N

,j=1
for almost all x € B, and all £ € R"™.

If B, is the subset of B, where conditions (i) and (ii) hold true, then
we let

(2—n)/2

1 1

for all z € B, and all ¢ € R™\ {0},
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B 2 (2!
B det a(z) a"™ ()
></oo e”(z')s(gn+sTn(€(x/))) : e
O (S0 AT (@) (E + ST + 5T ()

Here:

(A;j(z)) = the inverse matrix of a(z) = (a" (z)),

wp = |2 = 13(7://22) (the surface area of the unit sphere X, in R"),
and
SEEIHUCH)
e+ sty = | 2T

En + 8Ty (L(2))
&+ sti(a') — 2sen(x/)a,m<(§<(§ >)>)
& + sl?(x)) — 280" (") (U ))))

_ ann( ( ’

En — 82"(.%‘/)

The next lemma states an important property of the function 6(z, &)
(see [22, Remark 3.1]):

Lemma 18.2. The function 0 (x,T(x;x0) — y) satisfies the estimate

Co
D26 (2, T(23.20) — y)| <

S Mlorao) —gprmer (185)

with a positive constant Co = C(n,|al, ¢, a).

Proof. The proof is divided into three steps.
Step 1: First, we let

U(z;7,1m)
2 (2"
det a(z) a"™(z)
X/oo eU(II)Tt(nn‘f'tTn(e(l‘/))) 0
. n/2 "7
O (0o AT (@) (0 T (@) + T3 ("))
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where

&i )
N =——— forl1<i<n.
|T (5 x0) —

Then it is easy to see that
/OO e” @3 (&, + sT,(((a)))
"

szzl A (z)(& + sTi(f(x’)))(gj + T (E(gc’))))w2
1
T (w5 20) — y[n2

x/w o (T o) w1t (i + 1T (0(a"))

n B n/2
O (S0 AT @) s + T EN) 1y + 1T (0@))) )
This proves that the function 6(x, &) is expressed in the form

1
|T (a5 20) —

ds

dt.

0(9375) =

y|n_21/’ (z; |T(x;20) —yl,m) (18.6)

with

_ £
"= ) gl (18.7)

Step 2: Secondly, by condition (18.1) it follows that the angle between
the vectors n and T'(€(z')) is less than 7 for all n € R™ = {x,, < 0} (see
Figure 18.3 below). Hence we have, for some constant 0 < dy < 1,

(. T(EE))) > —nl [T,
and so
0+ AT = P+ 2 (o, T) + 21T
> nf? — 2] [T(0)I60 + 21T ()
uwwaGé°mf+a%mF
)]
> (1 8) .

Moreover, we have, for all ¢ > 4|n|dy/|T(£(z"))|,
[+ ¢T(¢(2"))?
= [n* + 2t (n, T(£(x"))) + 2|7 (¢(2"))]?
> [nf* = 2tnl| T (E(a"))|60 + 2T (¢(z"))
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Tn

n 77
R% T(t(a"))

Fig. 18.3. The angle between the vectors T'(¢(z')) and n € R* = {z, < 0}

2
= 1l + 5 ({7 — lso 7)) + ST
2

> nf? + ST P,

By the positivity of A, we obtain that, for some positive constant cg,

S A @)+ 1T (0)) (o + ¢T3 (1))

1,7=1
> coln + 4T ("))
co(1—63)|n|* forallt>0,
2 [
co (Inf? + SIT(@@))P)  for all ¢ > A,

Therefore, we find that ¢ (x;7,7) is a smooth function of (r,7) for
7 > 0 and nn € R™, since the denominator of the integrand is bounded
away from zero and since n > 3.

Step 3: Finally, it is easy to see that, for some positive constant

Co =C'(n,lal, ¢, a),

T(x;70) —y )‘ /
Doy | x; |T(x;20) — y|, —=———— || < CL.
iw (im0~ 25 =
This proves the desired estimate (18.5), since we have, by formulas (18.6)
and (18.7),

1 Dpap (x5 | T (x5 20) — yl, 1) -

Dgo =
£0(z,¢) T(x; 20) — y|lelFn—2"7

The proof of Lemma 18.2 is complete. O
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In the following we shall use the notation

32

and

0(2.6) = 0. 1<i<n,
0? .
92](;675) = afzafj 0(377 )7 1 S 1,7 S n.

The next theorem gives integral representation formulas for the second

derivatives of solutions of the oblique derivative problem for the variable
coefficients elliptic differential operator

n B 82
= Z‘]
£ Z.Jzz:l “ (x) (“)xzaxj

and the constant coeflicients boundary operator

0 AN = (Yo
By = m"’”(%) —ZZZ;E (7o)

0
g, T o0)-

Theorem 18.3. Let B, be the subset of B, where conditions (i) and

(ii) hold true, and let f € LP(B)) for 1 < p < oo. If a function

u € W2P(B}') is a solution of the oblique derivative problem
Lu=f in B},
Bou =0 on C,,

then we have, for all z € B := B, N {x, > 0},

0%u -
8$iaxj

=v. p./ Lij(zo,x —y)
B+

s

(18.8)

0%u
amhaxk

(y) + fy)| dy

+ cij(wo) f(x) — Lij(x; 20) + Jij(x;20)  for 1 <i,j <.
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Here:
cij(xo) ::/ T (2o, t)t;j do; (18.9)
l€l=1
and the terms I;;(x;x0) are defined respectively as follows:
o Iij(zsmo)  (1<d,j<n-—1) (18.10a)

Z:/+Fij(x07T(x§xO)_y)
B

T

k=1 6$hamk
o Iin(xi20) = Lni(ziz0)  (1<i<n-—1) (18.10b)
= [>Tl Twio) — ) BeCa)
B o

x [Z [a" (20) — a"* (y)] aigxk (y) +f(y)] dy.
k=

1
o In(z;20) (18.10c)

= /B+ Z Lom (2o, T(2;20) — y) Be(0) Bin (0)

T £m=1

X [Z [a"*(z0) — a™*(y)] 82“<y>+f<y>] dy.

6$hamk
The terms J;;(z;x0) are defined respectively as follows:
o Jij(zimo)  (1<d,j<n-—1) (18.11a)

= /+ oij(l’(),T(fE;xO) - y)

.

; 0%u
X L’k_l [a"* (z0) — a"*(y)] 020 n (y) + f(y)] dy.
o Jin(w;wo) = Jni(wizo)  (L<i<n—1) (18.11b)

= /B+ Z 0 (2o, T(z;20) — y)Bj(20)

roj=1
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- &%u
x| > [a" (@) — a™* (y)]

h,k=1

(y) + f(y)| dy.

8xh8xk

Jnn(x;xO) (18110)

= /B+ > 6ij(wo, T(w; ) — y) Bi(xo) Bj(w0)

< | S0 [0 (o) — at(y)] 2

h,k=1

(y) + f(y)| dy.

8mha$k

Moreover, the map T(x;x) is defined by the formula

" (z0)

T — 22, a7 () 1
—z, Ty
and the vector B(xg) is defined by the formula
B (a0) Rty
B(zg) = B2(:l"0) = %(x;zo) = _2‘1?”'(.93?))
B (z0) —.1

Proof. By a density argument, it suffices to prove formula (18.8) for all
u € C(B;}). Indeed, the general case can be proved by using Theorems
14.2 and 14.5 (and Remark 14.2). More precisely, we obtain the following
three assertions (I), (II) and (III):

(I) If we let
Rif(a) = [ Toj(eTlasan) =) /) dy.
+
then there exists a positive constant Cy = Cy(n,p, A\, M) such
that (Theorem 14.2)

1K fllere) < Cill floemy) for all f € LP(RY).
(IT) Let a € L>°(R™). If we let

Cla, Kijf () = /R Lij (2, T (5 0) — y)la(z) — aly)|f(y) dy,

n
+
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then there exists a constant Cy = Cy(n,p, A\, M) > 0 such that
(Theorem 14.5)

||5[G7Kij]f||Lp(R1) < Collallll fllze(mr) for all f € LP(RY).

(IIT) Let a € L>®(R™). If we let

Cla, 0] f (x) = N 0:(x, T (z;20) — y)lalz) — a(y)]f(y) dy,
¥

then there exists a constant C5 = C5(n,p, \, M) > 0 such that

ICa, OulfllLrwy) < Csllall«|fllemy) forall f € LP(RY).

Indeed, it suffices to note that we have, by Lemma 18.2 with
|a| ;== 2 and Lemma 19.2 in the next Chapter 19,

c c’

0;i(xo, T(x;20) — y)| < < = ;
1023 (@0, T(ws wo) =9 < oy =y S T—gl

with some positive constants C' and C’.

Let g be an arbitrary point of Er. Since we have the formula

=\ Pu

it follows that

- ij ij 0*u :
=2 [a¥(@0) ~ " @) g7 (@) + f@) in By,

and further that
Bou(z') =0 on C,.

However, we remark that the half space Green function G(xg,z,y) for
the operator Ly is given by formula (18.2)

G(Z'O,.T,y) = F(.Z'07.'I,' - y) - F($07T($7$0) - y) (182>
+ 0(1’07 T(’JZ’, .ZQ) — y)7
Hence we have the formula

u(z) (18.12)
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G(zo,,y) (Z [a" (x0) — a” (y)] aﬂi@xj (y) +f(y)) dy

1,j=1

L.
/ D@,z —y (anl [ (20) — a” (y)] ai;;j (y)+f(y)) dy
_/Br I'(zo, T(z: 20) — 9)

- /BT+ X (gn_:l [0 (20) — a¥ (y)] 8225; (v) +f(y)> dy

+/Bi 0(zo, T'(x;20) — y)

+/Bi X (Z [a (z0) — a” (y)] afjauxj (y) +f(y)> dy

i,j=1

= H(x;w0) — I(w;20) + J (25 70).
We can differentiate the first term

H(x;x0)

= /Bi T(zo,z —y) (Z [aij(zo) — aij(y)] 62?@ (y) + f(y)) dy

ij=1
in formula (18.12) twice to obtain that
0’H ( )
—(z;2
3£L'i8213j 0

=V. P/ Iij(xo,z —y)
B+

(18.13)

0%u

(hz )] gy W)+ f (y)) dy

n
k=1

( i(zo,t tdat> for 1 <i,5 <n.
[t|=1

As for the two terms

Hasan) = [ (Z i (a0) ()] o)+ f(y)) ,
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- y y 0%u
Hasao) = [ {32 7an) = o) 5t + 1) |

ij=1
in formula (18.12), we can differentiate them under the integral sign to
obtain that
0?1
o
8%83:]-

- /+ Lij(zo, T(z;20) — y)

r

(x;20) (18.14a)

=I;j(z;z0) for1<i,j<n-—1;

0?1
. m(x,xg) (18.14Db)
- oT,
= [ 3" Tulan, Tlaszo) ) g - (i)
B 2 n
- hk hk u
x| D2 [a"(wo) = "™ W)] 55— ) + f(v) | dy
1 ROTL
= Lin(z;29) for 1 <i<n-—1;
and
%I
el o) (18.14c)
— - . 6T€ . 8Tm .
= /B,j &;1 Tom (2o, T (x5 20) — y) D, (x;20) oz, (x;20)
- hk hk &u
| D2 [a" (o) — a"™ ()] 5o () + f(v) | dy
k=1 hO%k
= Lon (x5 20).
and
0%J
00, (x;20) (18.15a)
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- 0%
x| D [a"(@0) —a" ()] 5o — ) + F(v) | dy
hk=1 h&Lk
= Jij(x;20) for 1 <i4,j<n—1;
9%J
- oT,
=/ Zew(ﬂCo,T(ﬂC;xo) —Q)TK(QJWO)
B 7= Tn
- 0%
x| D [a"(x0) —a" ()] 5o — ) + F(v) | dy
hk=1 hOLk
= Jin(z;20) for 1 <i<n-—1;
and
. ﬂ(mx ) (18.15c¢)
Oxndzy 0 '
" oT, oT,,
= /Bj Z%;lHem(xo,T(w;xo) - y)aji(x;wo)ai%(x;xo)
- 0%u
x| D " (@) = "™ W)] 55— W) + () | dy
hk=1 h&Lk
= Jpn(T; x0).

Therefore, the desired formula (18.8) follows from formulas (18.13),
(18.14) and (18.15).
The proof of Theorem 18.3 is complete. O

18.2 Notes and Comments

The results of this chapter are adapted from Gilbarg—Trudinger [33,
Section 6.7] and Di Fazio—Palagachev [22].
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Boundary Regularity of Solutions

The purpose of this chapter is to prove boundary Sobolev regularity
of the solutions of problem (16.4) towards the proof of Theorem 16.1
(Lemma 19.1). A combination of this regularity result with the interior
regularity (Theorem 12.1) will prove the main result in the next Chapter

20.

Tn

B = B, N {z, > 0}

Fig. 19.1. The semi-ball B, in R’ and the ball C, = B, N{z, =0} in R

19.1 Boundary regularity of the solutions of problem (16.4)

Without loss of generality, we may assume (see Figure 19.1) that
Zo = 07

and we let

B,:=B,(0)={zeR":|z| <7},
Bf = B.Nn{z, >0} ={x = (v1,22,...,2,) € R" : [z| <71, 7, >0},

519
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and
Cr:=B.N {mn = O} = {Z‘ = ($1,$2,-..,Jf”_1,0) eER": |1‘/| < ’I"}.

As in the previous chapter, we assume that the boundary 0f2 is locally
flattened near a point xg € 92 such that

QcR} ={z= (2, 2,) e R" : 2, > 0}

(see Figure 17.2). The following result implies the boundary regularizing
property of the couple (£, B) in the framework of Sobolev spaces:

Lemma 19.1. Let 1 < ¢ < p < 0o, and assume that conditions (16.1)
and (16.3) are satisfied. If r > 0 and uw € W24(B;") is a solution of the
non-homogeneous oblique derivative problem

Lu=f inB, (19.1a)
Bu=¢ onC,, (19.1b)

with f € LP(B;F) and ¢ € B'~'/PP(C,), then there exists a constant
0 < R < r sufficiently small so that u € W*P(B}) (see Figure 19.2).
Moreover, we have the boundary a priori estimate

2
H O"u (19.2)

8951-8%-

Lr(B})
<C (”U“LP(B;) + 1Al e sy + ||90||Bl—1/p»p(cR)) Jor1<i4,j<mn,

with a positive constant C' = C(n,p, \,n, ¥, 0, 00).

B} = Brn{z, >0}

Fig. 19.2. The semi-ball BY; in R’} and the ball Cr = BgN{z, =0} in R""!
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Proof. We make use of the explicit representation formula (18.7) of the
second derivatives V2u. The proof is divided into four steps.

Step 1: Without loss of generality, we may assume that the ball B,
is centered at the origin. Let zg = (x{), To,) be an arbitray point of B,
with zj; € R"~!. Then we have the formulas

Lou(x) = ”2:21 a(xo) 82—81;]- (x) (19.3)
n y y 82u ) N
— 2 [a, J(.ro) —a J(x)] axiax]’ (aj) + f(x) in B,
and
Bou(a') = —2% (& o u(a’ 19.4
o) = Sy (a') + olepu(e) (19.9)
= Y EEh) P @) + olapu)
=1 v
= Y [£ab) — 6] @)+ folah) — o(a!) uls'
+p(z') on C,.
Now we let
F) = Bl = 3 [Fla) — 06 @) (199

+[o(20) — o (@] u(@’) + ¢(a’),

and define a function ¢(z) = ¢(z,u) by formula (17.4), that is,
8(2) = 6z, ) (19.6)
= s [ B —mc) dy

_xy n i/_ix/_x,auz,x,_x/

T o) — o0’ — o) ule’ — ny’) + @<x’>)<<y'> dy,

where ((z') is a bell-shaped function on R"~! which satisfies the four
conditions (17.2).
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Then, by formulas (17.5) it follows that

Bui(a') = 53 (') + o(a)0(a') (19.7

=Y fla) g @) + o))

=¢(z') on C,.

Hence, by combining formulas (19.3), (19.4) and (19.7) we find that the
function u(z) — ¢(x) satisfies the conditions

Lofu=o)x) = 3 o) D (19:)
Jn— ) .
— Z [au (z9) — a¥ (x)] Drsdie, (z) + f(x)
,J:i ;
— ijZ:1 a¥ (ggo) 82;:1;] (:C) m B;r,
and
Bulu—0)(a') = e o) ue) — o)) (199)
=0 onC,.

Therefore, by applying Lemma 18.1 to the function u(z) — ¢(z) we
obtain from formulas (19.8) and (19.9) that the solution of the non-
homogeneous oblique derivative problem (19.1) can be expressed as fol-
lows:

u(x) (19.10)

- 92
£ 1) = Y a(e0) 5

i,=1 J

(1. e

where G(zg, z,y) is the half space Green function for the elliptic operator
Lo given by the formula (18.2)

G(zo,2,y) = T(zo, 2 —y) — T'(zwo, T(x;70) — ) + O(x0, T(;20) — ¥).
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Here it should be emphasized that the function ¢(z,u) defined by for-
mula (19.6) depends affinely on u.

On the other hand, by applying Theorem 18.3 the function u(z)—¢(x)
we obtain from formulas (19.8) and (19.9) that

0%u
52,02, (19.11)
52
= 8%;;](%7@ + V. p./:r Tyj (20,7 — y)
- 0%u
X { > [ (o) — " (y)] DO (y) + fy) — /;0¢(y,u)}dy
hk=1

+ cij(wo) (f(2) = Lo(a, w) — Ly (w;.00) + Jij (; o)
for almost all z € B,

where the function ¢;;(z) is defined by the formula (18.8)
Cij (.’Eo) = / Pi(l'(), t)tj dO’t,
lel=1
and the terms I:vj (z; o) are defined respectively as follows (see formulas
(18.9)):
o Ij(w;mg) (1<i,j<n-—1) (19.12a)
= / N Fij (.’Eo, T(.’E, (E()) — y)

. {Z_ " (a0) = a*4(0)) g )+ £(0) — Ladly )

o Iin(zi20) = Ini(z320) (1<i<n—1) (19.12b)
= / ZFie(fcmT(I;ﬂﬂo) — y)Be(zo)
B 21
n 82u
x L;l [a"* (29) — a" (y)] oz, W) T W) — Lod(y,u) | dy.
o I (z;30) (19.12¢)

= /B+ Z Lom (20, T(w;20) — y) Be(wo) Bm (x0)

™ {m=1
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X [Z [a"*(20) — a"*(y)] aigxk () + fy) — Lood(y, u)|dy.

k=1

The terms J;j(x;x0) are defined respectively as follows (see formulas

(18.10)):

o Jij(zim)  (1<ij<n-—1) (19.13a)
= 0i(xo, T(x;x0) — y)
B
x {Zn: [a"* (z0) — a"*(y)] O (y) + fy) = Lod(y, u) |dy
hohe1 0 a.%‘h@a?k 0 ’ ’
o Jin(x;30) = Jni(m20) (1<i<n-1) (19.13Db)
= [ 00, T 0) — ) By o)
Bf i3
x {i [a"* (20) — a™*(y)] o (y) + f(y) = Lod(y,u) |dy
hoh=1 Bxhéxk ’ '
J, (19.13¢)

L4 Jnn(x; -TO)

= /B+ > bij(@o, T(x;20) — y)Bi(x0) Bj (o)

T i,j=1
* [ S [ (o0) — ()] g () + 1(0) — Lad(y )| d

h,k=1

Here recall that the vector B(zg) is defined by the formula

ool (@)
Bl(l'o) B a;"(a:o)
Bs(x0) or —22 . (z0)
B(l’o) = . = T(l’,xo) = a . (zo0)
: n
B (o) -1

Step 2: Now we assume that ¢ < p, and let ¢ < s < p. If wis a
function in W?2#(B;}), then we define a mapping S by the formula (cf.

formula (19.10))

Sw =¢(z,w) (19.14)
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+ [ Gtenan] 3 ) - a0 )

ij=1

I - Y (w20 w>}d
Y B 1 0 axlax] Y Y-

.9
Here the function ¢(z,w) is defined by formula (19.6), that is,

o) = s [ B~ ), (1915)
where
P2’ w) == Z [0 () — £ ()] gz’i (') (19.16)

We show that
S: W*5(Bf) — W*(B})

is a contraction mapping for each s € [g,p] provided 0 < R < r is
sufficiently small.
In the following we shall use the shorthand

0
Dizi, 1§§ )
813i 7 n

82
i = 1<7,5<n
I 6331033]4’ =hi=m

for derivatives on R™.
Step 2-1: Let w; and ws be two arbitrary functions in the Sobolev
space W25(B;"). By letting

w = w1, — wa,
we obtain from formula (19.14) that
Sw1 — Sw2 (19.17)

= ¢($7’U}) + /BJr G((E(any)

X {Z [aij(xo) —a" ()] Dijw(y) — Z a” (o) Dij¢(y, w) | dy.

ij=1 i=1
Then we have, for some positive constant C(n, \),

||S’LU1 — S'LUQ‘

Ls(BY)
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< [lo(-,w)
Ganay Z Zj .’£0 —a" ()]DZJw( )dy
=1 L*(Bf)
. A)H [ 6o Y Dystwa
B ij=1 Les(B})
However, by Lemma 18.2 it follows that
G(zo,2,y) = O(lz —y[*™") as |z —y| = 0.
Hence we find that the two integrals
G(zo,2,y) Z 0) —a”(y )] Dijw(y) dy,

B+

n
B*GIO,‘CE y E:: Z]¢ y,w
are Riesz potentials.
Now, we need potential estimates in the classical potential theory (see
Section 3.10).
Since a/(z) € L>(Q), it follows from an application of Theorem 3.32
with

Q=B pu==, p=q:=s 6:=0

that we have, for some positive constants C1(n, s, \) and Ca(n, s, \),

|/, 6t 35 st i) it

i,j=1 Ls(B;)

< Ci(n, s, \)r?| V2

(B)»
and

H/B+ G(zo,-,y) Z D;jo(-,w)dy

4,5=1

L#(BY)
< Co(n, s, \r?[V2o(, w)| o it
Therefore, we have proved that

[Swy —

< [lo(, w)

Le(BH) (19.18)

LS(Bi))

)+ Cns ) (192000l ) + 1920
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for all wq, we € W>*(B}}).
Step 2-2: Furthermore, we have, for almost all z € B;',

Dij (Sw1 — Sw2>(1‘)

- DHQZS(SC,’LU)
+v.p Lij(zo,z —y)
Bf
x Y {[a* (o) — a*(y)] Drew(y) — Lod(y, w)} dy

—cij(xo)Lo(x,w) + fij(x;xmw) + jij(x;xo,w) for 1 <i,j <n,

where the terms fij(x; Zo, w) and jij (z; o, w) are defined respectively as

in formulas (19.12) and (19.13) with u replaced by w and with f(y) =
Since the T';j(xo,&) are Calderén-Zygmund kernels in the variable &,

it follows from an application of Corollary 14.9 and Remark 14.1 that

n

V. p./+ ii(o, - —y) > [a*(z0) — a*(y)] Drew(y) dy

By k=1

Ls(B)
(19.19a)
< Ci(n,s, A, n, M,00Q)n HV2w|

Ls B+) 9

and that

(19.19b)

V. p. / . L (o, - — y)Lod(y, w) dy

r

L*(B})
< Ca(n, s, A,m, M, 09) || Log(-, w)
< Og(’l’b, S, )\7 m, Ma aQ) Hv2¢(7 U))

S(Bf) "
Here we recall that
0%l
aJ (’7 )
23

"= (Z 77“(7")2)1/2,

k=1

M := max max
1<i,5<n |a|<2n

)
Lo (QXXy,)

where 7%¢(r) is the VMO modulus of a**.
Step 2-3: Before the proof of Theorem 16.1, we need the following
geometric properties of the map T'(z;xo) analogous to Lemma 14.11:
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Lemma 19.2. For the map T(x;x0), there exist positive constants cy,
¢z such that, for ally € R and all x € R} for which T'(x;x0) is defined,
we have the inequalities

alt —y| < |T(z;x0) — yl < 2|7 -y, (19.20)
where
&= (2!, —a,) forx= (2 2,) € R}
Proof. The proof of Lemma 19.2 is divided into two steps.
(1) First, we have, for all y = (3, y,) € R,
T(z;20) —y
= (T1(z;20) — y1, To(@;20) — Y2, - -, Tu1(2;Z0) — Yn—1, —Tp — Yn)
= (T(w;20)" =y, —Tn — Yn),
and so
|T(x;20) — Y| = Tp + Yn = Tp.

Hence it follows that, for all y € R" and all z € R} for which T'(z) is
defined,

T (z;20) = 7| _ |T(x320) — 2|

19.21
T@zo)—yl = o (19.21)

1
——|

= 1(0",1) + A(zo)] ,

(@', 0) + zn A(xo) — (2, —n)]

where the vector A(zg) is defined by the formula

A(zo) = (2‘11”(%) o @"(20) 1>

ann(xo)’ ann(xo)’ !

However, we can find a positive constant Cy(n, ) such that
[(0',1) + A(zo)| < Ci(n,p) for all zp € R
Hence we have, for all y € R’} and all z € R} for which T'(z) is defined,
|T'(%; 20) — 2|
T (5 20) =y

Therefore, we obtain from inequalities (19.21) and (19.22) that, for
all y € R and for all 2 € R for which T'(z; %) is defined,

< Ci(n,p). (19.22)

|7 —y| < |T(x;20) — Z| + [T (25 70) — Yl
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< (L + Ci(n, w))|T(z;w0) — yl-

This proves the desired inequality (19.20) with

1
Cl = ——.
! 1+Cl(n7/’(')

(2) On the other hand, it follows that we have, for all y = (v, y,) € R/}
and for all x = (2, z,) € R,

17—yl = V]2 — '+ (@0 + yn)?,
T (25 20) — y| = VIT(520) — ¥'|2 + (0 + yn)2,

where

T(z;20) —y'
=1 —y -2z, (

We remark that, for some constant Cy(n, u) > 0,

aln(Io) a2n(1,0) anln(xo))

ann(xo) ? ann(xo) o ann(mo)

T (x;20) — 3| < |a" —y'| +2C2(n, p)zy,
<" =y |+ 202 (n, ) (zn + Yn)-

Hence we have, for all y € R’} and for all € R for which T'(z;x¢) is
defined,

T (w;20) =yl < |T(w;20)" =¥/ + (€0 + yn)
< 2’ = y/| + (14 2Ca(n, 1) (@ + yn)
< (2Ca(n, p) + 1) (|2" =yl + (@0 +yn))
<V2(2C3(n, 1) +1) VIa' =y + (20 + yn)?
= V2(2C3(n, p) + 1) & — y] .
This proves the desired inequality (19.20) with
co = V2 (205 (n, ) +1).

The proof of Lemma 19.2 is complete. O

Step 2-4: Therefore, by applying Theorems 14.2 and 14.5 (and Re-
mark 14.2) to our situation we obtain that

Iij('; SUOaw)

b
Le(B)

Le(B)



530 Boundary Regularity of Solutions

< Ci(n,s,0,m, M,00)|| Y C(a"™, Dpyw) + K (Lo (-, w))

hk=1 Ls(BY)
< C2(”a37)\777aMa aQ) (’I](’f’) Hva’ LS(B,T) + ||‘C¢(7w)| LS(Bi))
S C3(n353)‘777aMa aQ) (77(7”) ||v2w| LS(B:r) + ||v2¢(7w)‘ LS(B,T)) .

Indeed, it suffices to note that we have, by Lemma 18.2 with |a| := 2
and Lemma 19.2,

Cl
0;i(xo, T(x;20) —y)| < < — ,
130, T 20) =) < 2y ol < Tyl

with some positive constants C and C".
Finally, it follows that

lleij (o) LoC, )l gty < C3l V(- w)]

By combining inequalities (19.19), (19.23) and (19.24), we have proved
that

Le(BE): (19.24)

[ V2(Sw; — Swy)|

Ls(B)) (19.25)

<926, w)ll () + Cr (0(r) V2w

Loty T IV20( w) LS(Bﬁr))
+ Ca () [V20] o ) + IV26 ()]
+ Cs[|V26(, )| e -

Step 2-5: Therefore, we obtain from inequalities (19.18) and (19.25)
that

L)

ISwr = Swalljya.. ) (19.26)
= H8w1 — Sw2|

Loty TV (Swi — Swy))|

Le(Bf)

Loty T2V (wr —ws)|

Ls(Bi))

_c, (<n<r> )PV 0 = w2)ll g

Le(Bf)

< Cy (TU(T)|v2(w1 — wa)|

+r[[ V2o, w)|

L)t llo(w)l

+ V2 w)ll ey + |¢>(',w)IILs(Br>>

< {0+ o = vl
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with a positive constant Cy = Cy(n, s, A, n, M, 00).
Step 2-6: Now we estimate the last two terms of inequality (19.26)
in terms of the norm

+ 7|V, w)]

L) T o0 w)

fOI‘ all w1, W2 S Wz’S(B;r)a

”wHWz s(Bf) — ”wl w2||>{:V2,s(B:')‘

To do this, by applying Lemma 17.1 with p := s and R := r we obtain
that

16 W) Ty2. iy = N00 W) s (51 + V2o )| e gy (19:27)
<O 1B( ) | a-1/es (-

On the other hand, we find from formula (19.16) that

7"1/2 ||§Z('aw>||*Bl—l/s.s(CT) (1928)
< /2053 Gat) = ) Drwlncsrener
i=1

o (ah) - a<->>w||*31_1/s,s(c,.))-

Here we recall that the norm || - “731—1/s,s(c ) is given by the formula (see
the norm (17.1) and the norm (7.11) with m :=0 and p := s)

. N 1/s
50 = ( [ 1 ’>|de')
C,
1/s
Jr7,1/2 / / )|S dx /dy/
|$ -y |s+n 2 :

In order to estimate the first and second terms on inequality (19.29),
we make use of Rademacher’s theorem. Since the functions ¢!(z’) are
Lipschitz continuous, it follows from an application of Rademacher’s
theorem (Theorem 5.1) and the trace theorem (Theorem 7.4) that the
first term on inequality (19.28) is estimated as follows:

P23 (e — () Diw

< 06<T

(19.29)

—1/ss(Cr)
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s 1/s
1+1/S / / |‘D w D w( /)| dl‘/ dy/
ER

<y (7,3/2 Jr7,1+1/s) IVwllyie sy -

Moreover, by applying interpolation inequality (13.17) with ¢ := 71/2

(Theorem 13.4) we obtain that

VW ey <72 V20| @y o 1ol -
Hence we have the inequality
2 | Vwllypr,e gy (19.30)
<rCq <HV2w| Lesh T [Vl LS(Bf-r)>
<C, ( 3/2 & ey r? || v2 N ))

< Cprt/? ||1UHW2,S(B¢) for all w € W**(B7).
Similarly, we have, by interpolation inequality (13.17) with ¢ := r!/*,
r1+1/5||Vw||W1,s(B;r) 1931

TH_l/SCS (”VQU)HLs(Bi) 5 )
")

+ 712 VR0 L gy +
By combining inequalities (19.29), (19.30) and (19.31), we obtain that

< Cy (7177 w2

< OSTl/SHUJ”;:VzYS for all w € W*5(B;})..

(B)

ri/? Z 1€ (25) = £()) Diwllfys 1000 (19.32)
< (r1/2 +r1/5> |

—c <r1/2 + 7’1/8) lewr = w13y Tor all wn, wy € W2S(B).

|w|‘%2,5(3i)

On the other hand, since the function o(’) is Lipschitz continuous,
it follows from an application of Rademacher’s theorem (Theorem 5.1)
and the trace theorem (Theorem 7.4) that the second term on inequality
(19.28) is estimated as follows:

P2 (o) — ol (19.33)
< (r2/3+1||v2w||Ls(Bj) + R ))
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L (Bjr))
Hw”;[/z,s(B:r)

= C"r/* ||wy — wa [y gy for all wy, wy € W23(BF).

< C (v VRl gy 7
< C”Tl/s

Therefore, by combining inequalities (19.27), (19.28), (19.32) and
(19.33) we can estimate the last two terms of inequality (19.26) as fol-
lows:

H¢(vw)||§v2 (B (19.34)
= o w)ll sy + 7| V3e(,w )|l s (gt
< CT1/2||90(‘»w)||3171/s,s(cr)
<Gy (Crre 0 (52 4 ) Y ol

—CCs (Clrl/s +0" (7’1/2 —|—7‘1/S)> |wy — wQHWZS(BJr)
for all wy, we € W2*(B;).

Step 2-7: By combining estimates (19.26) and (19.34), we obtain
that

ISw1 = Swallya. ey < Ol = wallja e,
for all wy, wy € W**(B;1),
with a positive constant
C(r) = Ca(n(r) +7) + CCs (C'r'/* 4 €7 (12 417
=o(1) as 1 | 0.
Hence we can take r := R so small that
C(R) < 1.
This proves that S is a contraction mapping of W2 (B;g), equipped with

the norm || - H*W%s(B;)’

Step 3: Now we assume that a function u € W4(B}) with ¢ < p is
a solution of problem (19.1). Then we obtain from formulas (19.10) and
(19.14) that u € W29(B}) is a fixed point of S, that is,

into itself, for each s € [g, p].

u = Su,

and that
W2P(B}) ¢ W29(B).
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Hence, by the uniqueness of fixed points of S it follows that
u € WP (Bg).

Step 4: To prove estimate (19.2), it suffices to take the LP-norm of
the both sides of formula (19.10), just as in the proof of estimate (19.26).
More precisely, taking wy := v and ws := 0 we obtain that

||V2U||LP(B;) = ||v2(SU)HLp(B;) (19.35)
< V(S — S0 1oty + IV (SO 1o (2
for all u € W*P(B}).

Step 4-1: In order to estimate the first term on inequality (19.35),
we remark that the term

Su — S0

~ow+ [ Gl
x {Z [a% (20) — a (y)] Dijuly) — > aij(xo)DiM(y,U)]dy
1,5=1 i,j=1

is estimated exactly as in estimate (19.25) with w = w; := w and wy := 0
as follows:

HVZ(SU - SO)HLp(B;;) < <RU(R)V2U||LP(B§) + RZHVZUHLP(B;)

+ BRIV ) gy + 196 0lsrco )
for all u € W2P(B}),

with some positive constant Cy; = Cy(n, s, A\,n, M, 0Q).
Therefore, by applying inequality (17.6) we obtain that

I92(St — SOl gy < C1 (R(R) + B2) V2l ) (19.36)
+ 02R1/2||<5('7U)”*Bl—l/p,p(cR)-
However, by formula (19.16) with w := u it follows that
$(2',u) = Bou(a') — Bu(a') = Bou(a') — ¢(a'),
so that, by the trace theorem (Theorem 7.4),
1B ) srmmen

< 1Botuls-s/mmen) + lelssmnien)
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< Cs (Ilullwansg) + I9llsr-vercn))
<Cs (HU”LP(B;) + IVull o) + HV2U||LP(B;))

+ C3||<P||BI*1/PYP(CR)-
Hence, we have, by interpolation inequality (13.17) with € :=1/2,

||¢5('7u)||gl—1/p,p(CR) (1937)
< Cs (Jull o sy + 1900 oy + 1920l o 53 )
+ Csllol| pr-1/p (0
< Ca (Jlull o gy + 1920l oy + Nl mr-smsony ) -
By combining inequalities (19.36) and (19.37), we have proved that
IV2(St— 80| o 51 (19.38)
<Cy (RW(R) + RQ) ||V2U||Lp(3;)
+ CoCaRM (|[ull o s + 1V%0ll o ) + 0l 51-1/mm(c) )
< (Cl (RW(R) + Rz) + C2C4R1/2) ||V2U||LP(B;)
+Cs (Il oty + 19112 smm(cr) )
for all u € Wz’p(BE).

Step 4-2: In order to estimate the second term on inequality (19.35),
we remark that the term

S0 = /Bi G(zo,2,y) f(y) dy

is estimated as follows:

||v2(80)HLP(B§) < CQ”JCHLP(B;): (19.39)

with some positive constant Cy = Cy(n, s, A, n, M, 99).
Step 4-3: Summing up, we obtain from inequalities (19.35), (19.38)
and (19.39) that

||V2u||LP(B§) = ||v2(SU)HLp(B§)
<V (Su — SO)HLP(BIJ;) + ||V2(SO)||LP(B;5)
< C(R)HVQUHLP(B;)

+Cs (HUHLP(B;) + ||‘P||BI*1/PaP(CR) + ||fHLp(B$)>
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for all u € W2P(B}),
with a positive constant
C(R) := C1 (Ry(R) + R?) + C2C4RY? = 0(1) as R 0.
Therefore, if we take R so small that

C(R) < 5

then we have the desired boundary a priori estimate (19.2)
1920 sy < € (lallogisy + 1l ogsy + 10511 )
for u € W2P(B}).

Now the proof of Lemma 19.1 is complete.

19.2 Notes and Comments

This chapter is adapted from Maugeri-Palagachev—Softova [47].



20
Proof of Theorems 16.1 and 16.2

This chapter is devoted to the study of the following non-homogeneous
oblique derivative problem

Cu(w) =50, az‘j(x)%;xj = f(z) for almost all z € €, (16.4)
Bu(z') = 2% + o(2')u = p(a') on O |

Concerning the operator £, we assume that the following three con-
ditions (1), (2) and (3) are satisfied:

(1) a¥(x) € VMONL>®(Q) for 1 <i,j < n.
(2) a¥(x) = a’*(z) for almost all z € Q and 1 <i,j < n.
(3) There exists a positive constant A such that

1 o
TP < D7 a (@6 < Mgl (16.1)
i,j=1

for almost all z € Q2 and for all £ € R™.

Concerning the boundary operator B, we assume that the following
three conditions (16.3a), (16.3b) and (16.3c) are satisfied:

¢i(2") and o (') are Lipschitz continuous functions on 9.  (16.3a)
(0(2'),n(a’)) == £i(z")ni(2') >0 on OQ. (16.3Db)
i=1

o(z') <0 on 9. (16.3c)

We prove the regularity, existence and uniqueness theorems (Theo-
rems 16.1 and 16.2) for problem (16.4). By Lemma 17.1, for any given
function ¢ € B'~Y/P?(9Q) we can construct a function

v € WHP(Q)

937
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such that
Bv=¢ on 0N

and further that
[vllw2r@) < Cllollpr-1/ppa0) for some positive constant C. (20.1)
Hence, by letting
w=u-—uv,

we are reduced to the study of the following homogeneous oblique deriva-
tive problem:

Lw=Lu—Lv=f—Lv inQ, (20.2a)
Bw = Bu—Bv=0 on 0. (20.2b)

Our proof is based on some interior and boundary a priori estimates
for the solutions of the homogeneous oblique derivative problem (20.2)
(Theorem 12.1 and Lemma 19.1). Both the interior and boundary
a priori estimates are consequences of explicit representation formu-
las (19.10) and (19.11) for the solutions of problem (19.2) and also of
the LP-boundedness of Calderéon-Zygmund singular integral operators
and boundary commutators appearing in those representation formulas
(Theorems 14.2 and 14.5). It should be emphasized that the VMO as-
sumption on the coefficients a® is of the greatest relevance in the study
of singular commutators.

20.1 Proof of Theorem 16.1

The purpose of this section is to prove Theorem 16.1. The proof of
Theorem 16.1 is divided into two steps (see [18], [19], [47]).

Step 1: First, in view of Lemma 19.1, we obtain that if a function
w e W?24(Q), 1 < g<p< oo, is a solution of problem (20.2) with

f—Lve LP(Q),
then it follows that
w=u—ve€W»P(Q).
This proves that if a function u € W24(Q2), 1 < ¢ < p < o0, is a solution

of problem (16.4) with f € L?(Q) and ¢ € B'~Y/P2(9Q), then it follows
that

u=v+we WP(Q).
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Step 2: Secondly, we prove the global a priori estimate (16.5). How-
ever, by estimate (20.1) we may assume that u € W2P(Q) is a solution
of the homogeneous oblique derivative problem

{Euf in Q,

(20.3)
Bu=0 on 0N.

Therefore, it suffices to prove the following global a priori estimate:

lllwer) < e1 (oo + Nulloiey) forallue s, (204)

Here
B = {ue W (Q): Bu=0on o0},

and ¢; > 0 is a constant depending on the coefficients a*/ only through
the ellipticity constant A, the bound on the norms [a||1»(q) and the
VMO moduli of the a”. The proof of estimate (20.4) is carried out in
a standard way from the interior a priori estimate (Theorem 12.1) and
the boundary a priori estimate (Lemma 19.1) by a covering argument,
by flattening the boundary 02 and by using interpolation inequalities
(Theorem 13.4), just as in the proof of Theorem 12.2.

Step 2-1: Now we choose a finite covering {U; }é\'zl of the boundary
99 by open subsets of R™ and C'"!-diffeomorphisms G; of U; N Q onto
Bt in each of which the boundary a priori estimate (19.2) holds true
(see Figure 20.1 below). Furthermore, we choose an open subset Uy of
Q, bounded away from 99, such that (see Figure 20.2 below)

QcCcUyU (Uévlej).

Tn

Fig. 20.1. The covering {U;} of 99 and the C'**!-diffeomorphism G, of U; NQ
onto B,

Step 2-2: We take a partition of unity {ak}szo subordinate to the
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Fig. 20.2. The open covering {U;} of Q2 and the open set Uy bounded away
from 9

open covering {Uk}szo of Q. Then, by applying the interior a priori
estimate (12.2) to the function ayu we obtain that

[ullwzr(a) (20.5)
N

<Y llaullwzr o)
k=0

< llaoullw2.r (o)

N
+ ) IV ()l Lo () + [V (k)| o) + llawul o))
k=1

< Co (lullpr) + I1fllr @)
N
+ 3 (IV* ()| o(uengy + 1V (@) | ongy + lullzosy) -
k=1

(I) In order to estimate the terms V(agu) for 1 < k < N, we recall
the interpolation inequality (Theorem 13.4)

C
Vol ey < e ||V2vHLp(Q)+; [0l o) for all v € W2P(Q). (13.17)
Since we have the formula
V(agu) = o Vu+u(Vay) for 1 <k <N,

by applying inequality (13.17) to the function u € W?P(Q), we obtain
that, for some positive constants C'; and Cs,
IV (axu)|| e @nn) (20.6)
< Nlax(Vu)| Lo, o) + lu(Var) || rvne)
< |Vullzr o) + CillullLe )
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C
<e ||V2U||LP(Q) + ?2||UHLP(Q) + Cillullpro) for 1 <k < N.

(IT) Moreover, by applying the boundary a priori estimate (19.2) to
the functions aju € Wz’p(Uk NQ) for 1 <k < N, we obtain that

||V2(aku)||Lr(UmQ) (20.7)

< C(larullLrwiney + I1£(arw)]l e ,na) + I1B(arw) | gre1/os @ non)) -

However, since u is a solution of the homogeneous oblique derivative

problem
Lu=f inQ
u=J ing, (20.3)
Bu=0 on 99,
it follows that
Lagu) = ap(Lu) +u L(ag) + 2 i a(x) dax Ou (20.8a)
ig=1 83% ij
= 2 g — Q
arf+ul(og) + ijZZIa (x) 92: O, in Q,
and further that
B(agu) = ax(Bu) + %u = %u on ON. (20.8b)
Hence, we have, by inequality (20.7) and formulas (20.8),
IV? (k) || e () (20.9)

< C (llawullzrw,ney + 1£(exu)| e w.na) + 1B(arw) | gr-1/mmwnon))

< c(nakfnmm) + uLlan)llr oy

)+a
Lr(UrN$)

Ooa
+2%° k
< Cy (If ey + llull o) + IVullLr@)) + Csllull pr-1/sm00)-

u—

ol

ij Ok Ou
(9:172‘ 313]‘

a

ij=1 B1=1/p.2(U,NO0)

On the other hand, by applying the trace theorem (Theorem 7.4) we

obtain that

lull gr-1/p.000) < Collullwrp(a) (20.10)
< C7 (llullreo) + VUl ey -
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Therefore, it follows from inequalities (20.9), (20.10) and (13.17) that

IV (au) || o () (20.11)
< Cy (1flze ) + lullze@) + VUl Lo o))
+ C5C7 ([ull e ) + VUl e )

Cy
< e |IVPull o) + ?HUHLP(Q) + Co (If e + lullLr (o))
for 1 <k <N.

(IIT) By combining inequalities (20.5), (20.6) and (20.11), we obtain
that

lullws @) < 2N [IV2ull oy + (Co+ NCo) (|1 (@) + llull (o)
N(Cy + Cy)
+ ————lullzs@) + (NC1 + 1) [ull o (e-

This proves the desired global a priori estimate (20.4), if we take

1

5:m.

The proof of Theorem 16.1 is now complete.

20.2 Proof of Theorem 16.2

This section is devoted to the proof of Theorem 16.2. More precisely,
we prove the following existence and uniqueness theorem for the homo-
geneous oblique derivative problem (20.3) due to Di Fazio-Palagachev
[22, Theorem 1.2]:

Theorem 20.1. Let n < p < oo and assume that conditions (16.1) and
(16.3) are satisfied. For any given function f € LP(Q), there exists a
unique solution u € W2P(Q) of problem (20.3). Moreover, we have the
a priori estimate

[ullwzr @) < CsllfllLe(e), (20.12)
with a positive constant C3 = Cs(n, p, A\, n, £, 0,00).

Proof. The proof of Theorem 20.1 is divided into three steps.
Step 1: First, the uniqueness result of problem (20.3) follows from an

application of the Bakel’'man and Aleksandrov maximum principle (see
[43, Corollary 2.4]):
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Theorem 20.2 (Bakel’'man—Aleksandrov). Assume that a function u €
W2P(Q), n < p < oo, satisfies the conditions

Lu <0 almost everywhere in 2,
Bu <0 on 0.

Then it follows that u(z) > 0 in Q.

Proof. First, it should be noticed that we have, by Sobolev’s imbedding
theorem (Theorem 7.4),

wr(Q) c ¢1(@Q),

since 2 —n/p>1forn <p < co.
(1) If u(x) is a constant function in €2, then it follows that

o(@)u=Bu<0 on .

This proves that u(z) > 0 in €, since o(2’) < 0 on S

(2) Now we consider the case where u(z) is not a constant function
in Q. We assume, to the contrary, that u(x) takes a negative minimum
at a point zp € Q. Then, by applying the weak maximum principle
(Theorem 8.5) to the function —u(x) we obtain that

0 < —u(zg) = max(—u) < max(—u)™.
Q o

Hence we have, for some point z{, € 99,

—u(zgy) = —u(xg) = mﬁax(—u) > 0.

Moreover, it follows from an application of Hopf’s boundary point lemma
(Lemma 8.7) that

2 gy = X ) <0,
so that
g—z(xg) > 0.
However, by conditions (16.3b) and (16.3c) this implies that
0> Bu(ah) = 22 (xh) + olah)ulzh) > 0.

o

This contradiction proves that w(z) > 0 in .
The proof of Theorem 20.2 is complete. O
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By applying Theorem 20.2 to the functions tu(x), we obtain from
condition (16.3c) that

Lu =0 almost everywhere in €,
{Bu =0 on 0N
= u=0 in Q.
Namely, the mapping
A= (L,B): W*P(Q) — LP(Q) ® B'=V/PP(5Q)

is injective for n < p < co. This proves the uniqueness of solutions of
the homogeneous oblique derivative problem (20.3).

Step 2: In order to prove the existence result of problem (20.3), we
make use of the method of continuity (Theorem 2.14). We shall apply
Theorem 2.14 with

B = {ueW>(Q): Bu=0},

V= LP(Q),
n B 82
= = v
L1:=L Z a (x)axiaxj’
1,7=1
£0 =A

Here it should be noticed that the space B is a closed subspace of
W?2P(Q), since the trace theorem (Theorem 7.4) asserts that the bound-
ary operator
3]
B=o,+ o(z') : WHP(Q) — BVPP(9Q)

is continuous.

Step 2-1: The essential step in our proof is how to show inequality
(2.12) for a family of elliptic differential operators

Lo=tL+(1-1)A

noo 02
= (ta(z) + (1 —1t)6") s—— for0<t<1.
=1 axzax]

More precisely, we consider, instead of the original oblique derivative
problem (20.3)

Lyu=f inQ,
Bu =0 on 09,
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a family of oblique derivative problems

Liu=0L+(1—t)AD)u=f inQ,
Bu =20 on O0f2.

By the uniqueness result of problem (20.3), we can get rid of the term
|u||Lr(oy on the right-hand side of estimate (20.4). Namely, we shall
prove the a priori estimate (corresponding to inequality (2.12))

llullwzr@) < col|Leullpr) for all u € B. (20.13)

Here ¢, > 0 is a constant depending on the coefficients '/ only through
the ellipticity constant A, the bound on the norms [|a”||1r(q) and the
VMO moduli of the a¥. First, it should be noticed that the coefficients

aéz)(ac) =ta(x)+ (1 —1)6Y, 0<t<1,
satisfy the following three conditions (i), (i) and (iii): ,

(1) ag)(x) € VMO NL>*(R™). Indeed, we have, for all 0 <¢ <1,

Hal(i)”Lx(R") < [la™ | oo gy + 1,
and
lagh Il < tla |l < [|a”|]..
(i) az{)(x) = a?f) (z) for almost all x € Q and 1 < i,j < n.
(iii) We have, for almost all x € Q and all £ € R™,

n

€2 < D af (@)&g < A+ DI,

i,j=1

b
A1

where A is the same constant as in condition (16.1).

To prove estimate (20.13), we assume, to the contrary, that estimate
(20.13) does not hold true. Then we can find a sequence of elliptic
differential operators

oo 2
(m) _ i -
L —AZ a(m)(ac)amiamj7 m=12,...,
i,j=1
and a sequence of functions
u™ e B ={ueWH(Q): Bu=0}, m=12,...,

such that the coefficients aifﬂ » and the functions u(™) satisfy the follow-
ing four conditions (i), (ii), (iii) and (iv):
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(i) a ( )( x) € VMONL>®(R") for 1 <i,5 < n and

lagd ) Il ey < lla | ooy + 1, (20.14a)
nid () < o (). (20.14b)
Here we recall that
S
ij =su / a” ‘ dy,
) =sup e | a”) | dy

where the supremum is taken over all balls B with radius p < r.
(ii) azjm)(m) = a%:n)(x) for almost all z € Q and 1 < 4,5 < n.
(iii) We have, for almost all z € Q and all £ € R,
6P < D ag, (@)&g < A+ D (20.15)

/\ +1 52

(iv) u™ € W2P(Q) and

Bul™ =0 on 09, (20.16a)
||U(m)||w2»P(Q) =1, (20.16b)
L™ | o) — 0. (20.16¢)

Step 2-1a: First, it follows that the sequence {( )B} is bounded
for every 1 <i,7 < n. Indeed, we have, by inequality ( 5 9a),

@) < Nl oo ey < o looe ey + 1
Moreover, we have the following lemma:
Lemma 20.3. For any ball B in R", every sequence
fally@) = (a,),) 1<id<n,
is compact in the space LI(B).

Proof. First, we take a bell-shaped function p(z) on R™ which satisfies
the following four conditions:

p(x) € G (R™).
p(z) >0 on R™.
suppe C B(0,1) :={x e R": |z| < 1}.
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/n o(x)de = 1.

For each € > 0, we let

Then it is easy to verify that
pe(z) € C5°(R").
ve(x) >0 on R".
supp e C B(0,¢) :={x € R": |z]| < ¢},

/” we(x)de = 1.

The functions {¢.} are called Friedrichs’ mollifiers.
(1) For simplicity, we write
a(m) () := aéin)(x),
and let

fomy (@) = agmy (2) = (agm)) 5 »
Fomy (@) 1= agm) * 0=(2) = (agm) * 02)
where

Gy * e () = /R Ay (@ — )02 () dy

is a mollification of a ).

547

(20.17a)
(20.17D)

Then we can prove the following two claims 20.1 and 20.2 (see Claims

15.1 and 15.2):

Claim 20.1. The sequence {f(em)} is uniformly bounded and equicontin-

uous in B, for each € > 0.

Proof. (a) The uniform boundedness of {f(,}: First, we have, for all

r € B,

) * e ()] < /R g (@ — 9)] 02(9) dy < llagml =)

< lallzeo(mry + 1,

and

1
| (agm) * ¢e) 5| < ] /R laim) (@ — y)| v (y) dy < llagm) Lo ®rn)
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S ||aHLoc(Rn) + 1.
Hence it follows that
B (@] < lamy * 9e@)] + | (agm) *02) |
<2(llallpe@mn) +1) forallze B.

(b) The equicontinuity of {f¢, }: It suffices to show that {V f7, } is
uniformly bounded in B, for each £ > 0.
We have, for all x € B,

IV Gy (@) (20.18)

oy v ()
< — Vo | — ||dy
gntl B(z,e) €

1
v d
en+1 (Slgl?| 90|) /B(Z’E) Y

1
< i (s 1961 ) 18, o 2

A(m) (y) - (a(m))B(m,E)

A(m) (y) - (a(m))B(a:,E)

1 n
— ot (5001701 ) (") 1 9

Wn
— (sup |V<p|> n(e).
9 R»

Here we recall that

IN

27'('"/2
T T(w2)
n(m)( r) = ﬁ(m) SUP ;n))B‘ dy,
1/2
(Z ) -
1,7=1

Thus, we obtain from inequality (20.14) that {Vf{ )} is uniformly
bounded in B, for each € > 0. O

Claim 20.2. There exists a positive constant C, independent of €, such
that

/B ’f(gm> () = f(m)(w)‘ dz < C|Bln(e). (20.19)

Proof. First, by Fubini’s theorem (Theorem 3.10) it follows that

(a(m) * 4108 |B| / QA(m) * 905 (2020)
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- ﬁ/ (/B(O 5 agm) (T =)@ (y) dy) da
B(Os (Ill?l /Ba —y)dx) ve(y)dy
oo (553

a(m)(z) d2> ve(y) dy

|B y| B—y

=/B(05 (@0m) g 0

where B — y is the translation of the ball B by y-units
B-—y={zx—y:xz€ B}.
Hence we have, by formulas (20.17) and (20.20),

/B ‘ffm) (z) — f(m)(:c)‘ dzx (20.21)
- /B |agm) * () = (agn) * we) 5 = (am) (@) = (am) )| dz

~ L1 (e =)= am(@)
(0.2)
— ((aem) 5y = (@pm) ) 2= 0) dy

S// (a
B JB(0,¢)

~ ((am) 5, = (aem) 5) |-

< /B(O,E) Pe(y) (/B

~ ((aem) 5, = (a0m) )

However, we have the formula

1
(am) =15 m d am
(m)) B—y B—y| /5 a(m) (w0 \B\ (m) (2

= () (- — y)B~

dxr

(m) (& =) = agm) (@)

(y) dy dx

(agm) (@ — ) — agm) (2))

dx) dy.

Hence it follows from an application of inequality (4.9) with f := ay,
that

ﬁ /B (@ = 9) = aen @) = ((aem) 5_, = (a0m) 5 )| dz (20.22)
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- ﬁ /B | (@m) (@ = 9) = agm)(2) = (a@m) (- = ¥) = aem) p| do

< lamy (- = ¥) = agm) ()|«
< Cnmy(e),  lyl <e.

Therefore, by combining inequalities (20.21) and (20.22) we obtain

that
/.

Ty (@) = oy )| dr < € ( /{ e @ dy> B

= C’I’](m)(é‘) |B|
< C|B|n(e) for all e > 0.

This proves the desired inequality (20.19). O

(2) By combining Claims 20.1 and 20.2 and the Ascoli-Arzeld theorem,
we find that the sequence {f(,,)} is totally bounded in L'(B), so that it
is compact in L'(B).

The proof of Lemma 20.3 is complete. O

Step 2-1b: By using Lemma 20.3 and the Bolzano—Weierstrass the-
orem, we can choose a subsequence of the sequence

azfﬂ)(x) = (al(in)(:t) — (azin))3> + ((lgn))]g, m=1,2...,
which converges almost everywhere in B. Therefore, by considering
an exhaustive sequence olflballs of R™ we can choose a subsequence of
azjm » denoted again by azzn » which converges to a function a' almost
everywhere in R", as m — oo:
aézn) () — a(x) almost everywhere in R", as m — co.  (20.23)
Then it is easy to verify the following three assertions (i), (ii) and (iii):
(i) a¥(z) € VMO NL>®(R") for 1 <i,j < n. Indeed, since we have
the inequality
@y |y < la" || oo mn) + 1,
it follows that
[0 oo () < [la™ || Lo ey + 1.

Moreover, since we have, for all balls B with radius p < r,

1 b i ij .y
1B] /B o) (@) = (@) Bl do < 15, () < 77 (1),



20.2 Proof of Theorem 16.2 551

and since we have, by the Lebesgue dominated convergence the-
orem (Theorem 3.9),

() B/ ) (¥ dy%w/

as m — 09,

it follows that, for all balls B with radius p <,

\B|/ 0% (z) — (o) | dz = lim |B|/ |a(m) (m))B|da:
< n'(r).

This proves that the VMO modulus of a%/ is dominated by 1% (r):

sup 5 [ 1% (e) = (@)l do < ' (r),

p<r

(i) o (z) = a’i(z) for almost all z € Q and 1 < i,j < n. Indeed, we
have, for almost all z € €,

(iii) We have, for almost all x € Q and all £ € R™,

— P < > @ (@)&g < A+ DE
4,j=1

)\+1

These inequalities can be obtained by passing to the limit in in-
equalities (20.15).

We introduce a new second-order, uniformly elliptic differential oper-
ator A by the formula

n i 82
A= Z aj(a:)ax'ax_.
. A

Step 2-1c: By using the Eberlein—Shmulyan theorem (Theorem 2.5)
and the Rellich-Kondrachov theorem (Theorem 7.6), we can obtain the
following two assertions (A) and (B):

(A) Let X be a reflexive Banach space, and let {z,} be any sequence
which is norm bounded. Then there exists a subsequence {z,}
which converges weakly to an element of X.

(B) The injection W2P(Q) — WLP(Q) is compact.
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Therefore, we can find a subsequence of {u(™}, denoted again by
{u{™}, which converges weakly to a function

v € WP (Q)
in the space WP () and also converges strongly to v in the space LP(€2):
u™ — v weakly in W2P(Q) as m — oo,
uw™ — v in LP(Q) as m — co.
We shall prove that v = 0, that is,
u™ — 0 weakly in W2P(Q) as m — oo, (20.24a)
u™ — 0 in LP(Q) as m — oc. (20.24b)
(I) First, we prove that
Bv=0 on 9. (20.25)
To do this, it should be noticed that the set
B = {ueW>P(Q): Bu=0on 00N}

is balanced, convex and strongly closed in WP (). Indeed, it suffices
to note that if {u;} is any sequence in B which converges strongly to a
function u in W?2P(Q), then we have, by the continuity of B : W2P () —
B'=1/PP(9Q) (Theorem 7.4),

Bu= lim Bu; =0 in B*~Y/PP(90).
j—oo
Hence, it follows that the set B is weakly closed in W2P (), by applying
Mazur’s theorem (Theorem 2.25) with
X = W?P(Q), M :=B.
Therefore, we obtain assertion (20.25), that is,
v € B.

Indeed, it suffices to note by assertion (20.16a) that u(™ € 9B and
further that {u(™)} converges weakly to v € W2P(Q).

(IT) Next, let ¢ be an arbitrary function in L?(Q2) with ¢ = p/(p — 1).
Then we have, by Holder’s inequality (Theorem 3.14) and condition
(20.16b),

/ (E(m)u(m) — .Av) pdx (20.26)
Q
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- g Putm d%v
— i N
Z /Q <a(m) (IE) 8513283?J @ (I) 8:528:133 ) L4 du

7,7=1
n 9z a2y
< ) R ¥ [
- Z /Q <a(m)(x)8zi8zj “ (m)axia%‘) @dx’
i,7=1
n L » 92(m)
) _ Y
<> /Q(“(m(l') a'i(z) o0, ¥
1,7=1
o g %™ 0%v
¥ —

ij=1

< 3" 7]

)=

i g
LP(Q) H (a(m) @ ) @‘ La(Q)

~ g 52u(m) 9%
17 . _ d
> [ a@et (axiawj Bxiaxj> .
ij g
- mz‘::l H <a(m) “ ) (p‘ La(Q)
n .. aZu(m) 321}
+ /aw$¢m.< _ )dz.

However, by assertions (20.14a) and (20.23) it follows from an appli-
cation of the Lebesgue dominated convergence theorem (Theorem 3.9)
that the first term on the last inequality (20.26) tends to zero as m — oo:

> | (afy = a) ]
ij=1

Moreover, we recall that {u(m)} converges weakly to a function v €
W2P(Q). Since a¥(x)p(z) € L1(), we find that the second term on
the last inequality (20.26) tends to zero as m — oc:

. §2u (™) 0%v
v . _

Hence we have, by inequality (20.26),

— 0.
La(Q)

n

>

i,j=1

— 0.

/ﬁ(m)u(m)~godx—>/Av-<pdx as m — 00.
Q Q

On the other hand, by Hélder’s inequality (Theorem 3.14) and assertion
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(20.16¢) it follows that

/ L0y gy
Q

This proves that

< ||£(m)u(m)||LP(Q) : ||<,0||Lq(g) — 0 asm — oo.

/ Av-podr = lim [ L0u™ . pde =0 for all p € LI(Q).
Q

n—oo Q

Summing up, we have proved that

v e WP(Q),
Av =0 1in Q,
Bv=0 on 9.

By applying the uniqueness result of problem (20.3) to the operator A
(Step 1), we obtain that

v=0 1in Q.
This proves the desired assertions (20.24).
Step 2-1d: By combining assertions (20.16¢) and (20.24b), we have
proved that
L£ry(™ 50 in LP(Q),
u™ — 0 in LP(Q).

Therefore, by applying estimate (20.4) to the operators { L™} we obtain
that

el < e (10 ooy + Nu™ o)
so that
uw™ — 0 in W2P(Q).
However, this assertion contradicts condition (20.16b):
[u™ lw2p () = 1.

This contradiction proves the desired a priori estimate (20.13).

Step 2-2: By virtue of estimate (20.13), we can apply Theorem 2.14
to obtain that the oblique derivative problem is uniquely solvable for
the operator L if and only if it is uniquely solvable for the operator L;.
However, it is known (see [93, Theorem 3.29]) that the oblique derivative
problem is uniquely solvable for the Laplace operator Ly = A: More
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precisely, for any f € LP(Q) there exists a unique solution u € W?2P(£2)
of the oblique derivative problem

Au=f in Q,
Bu=0 on 9.

This proves that Lo = A maps B := {u€ W*P(Q): Bu=0} onto
Lr(Q).

Therefore, it follows from an application of Theorem 2.14 (the method
of continuity) that £; := £ maps B onto LP(2). Namely, for any f €
LP(Q) there exists a unique solution u € W2P(£) of problem (20.3).

Step 3: Finally, the a priori estimate (20.12) follows from the a priori
estimate (20.13) with ¢ := 1.

Now the proof of Theorem 20.1 (and hence that of Theorem 16.2) is
complete. O

20.3 Notes and Comments

Section 20.1: The proof of Theorem 16.1 is adapted from Chiarenza—
Frasca—Longo [18], [19] and Maugeri-Palagachev—Softova [47]).

Section 20.2: The proof of Theorem 16.2 (Theorem 20.1) is essentially
due to Di Fazio—Palagachev [22, Theorem 1.2].






Part VI

Construction of Feller Semigroups with
Discontinuous Coefficients






21

Markov Processes and Feller Semigroups

This chapter is devoted to the functional analytic approach to the study
of Markov processes.

In Section 21.1, we summarize the basic definitions and results about
Markov processes, and formulate Markov processes in terms of transi-
tion functions. From the viewpoint of functional analysis, the transition
function is something more convenient than the Markov process itself
(Theorem 21.1). Indeed, we can associate with each transition function
in a natural way a family of bounded linear operators acting on the space
of continuous functions on the state space, and the so-called Markov
property implies that this family forms a semigroup. The semigroup ap-
proach to Markov processes can be traced back to the pioneering work
of Feller [26] and [27] in early 1950s.

Transition functions and their associated semigroups are studied in
Section 21.2 (Theorem 21.8). These semigroups are called Feller semi-
groups.

In Section 21.3, by using the Hille—Yosida theory of semigroups we
characterize Feller semigroups in terms of their infinitesimal generators.
In particular, we prove a version of the Hille-Yosida theorem adapted
to the present context (Theorem 21.9), which forms a functional ana-
lytic background for the proof of Theorem 1.1 (Theorem 21.1). The
construction of Feller semigroups will be carried out in Chapter 25.

21.1 Markov Processes and Transition Functions

In this section, we summarize the basic definitions and results about
Markov processes, and formulate Markov processes in terms of transi-
tion functions. From the viewpoint of functional analysis, the transition
function is something more convenient than the Markov process itself,

559



560 Markov Processes and Feller Semigroups

21.1.1 Definition of a Markov Process

Let K be a locally compact, separable metric space and B the o-algebra
of all Borel sets in K, that is, the smallest o-algebra containing all open
sets in K. Let (2, F, P) be a probability space. A function X defined
on () taking values in K is called a random wvariable if it satisfies the
condition

XY E)={X€eFE}={weQ: X(w)eE}eF forall EcB.

We express this by saying that X is F/B-measurable. A family {z;}:>0
of random variables is called a stochastic process, and it may be thought
of as the motion in time of a physical particle. The space K is called
the state space and €2 the sample space. For a fixed w € €2, the function
2¢(w) for t > 0 defines in the state space K a trajectory or path of the
process corresponding to the sample point w.

Now we introduce a class of Markov processes which we will deal with
in this book.

Definition 21.1. Assume that we are given the following;:

(1) A locally compact, separable metric space K and the o-algebra
B of all Borel sets in K. A point 0 is adjoined to K as the point
at infinity if K is not compact, and as an isolated point if K is
compact. We let

Ky = K U {0},
Bs = the o-algebra in Ky generated by B.

(2) The space Q2 of all mappings w: [0, 00] — Kj such that w(oco) = 0
and that if w(t) = 0 then w(s) = 0 for all s > ¢. Let wy be the
constant map wy(t) = 9 for all ¢t € [0, oo].

(3) For each t € [0,00], the coordinate map z,; defined by z;(w) =
w(t), we .

(4) For each t € [0, 00|, a pathwise shift mapping 6; : Q@ — 2 defined
by the formula 6;w(s) = w(t + s) for w € Q. We remark that
Ooow = wy and that z; 0 6, = x44, for all ¢, s € [0, o0].

(5) A o-algebra F in Q and an increasing family {F; }o<i<oo Of sub-
o-algebras of F.

(6) For each = € Ky, a probability measure P, on (€2, F).

We say that these elements define a (temporally homogeneous) Markov
process X = (xy, F, Ft, P;) if the following four conditions are satisfied:
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(i) For each 0 < ¢ < oo, the function z; is F;/Bs- measurable, that
is,

{zr, e E} € F;, forall E € Bs.

(ii) For each 0 <t < oo and F € B, the function
pi(z, E) = Py {x, € E}

is a Borel measurable function of z € K.
(iil) Po{w € Q: 2o(w) =2} =1 for each z € Ky.
(iv) For all ¢, h € [0,00], z € Ky and E € By, we have the formula

P, {xiin € E| Ft} =pp(ze, E)  a. e,

or equivalently
P.(AN{zin € E}) = / pr(x¢(w), E)dP,(w) for all A € F;.
A

Here is an intuitive way of thinking about the above definition of
a Markov process. The sub-o-algebra F; may be interpreted as the
collection of events which are observed during the time interval [0, ¢].
The value P,(A), A € F, may be interpreted as the probability of the
event A under the condition that a particle starts at position x; hence
the value p;(x, F) expresses the transition probability that a particle
starting at position x will be found in the set F at time t. The function
pi(x, ) is called the transition function of the process X. The transition
function p;(x,-) specifies the probability structure of the process. The
intuitive meaning of the crucial condition (iv) is that the future behavior
of a particle, knowing its history up to time ¢, is the same as the behavior
of a particle starting at z;(w), that is, a particle starts afresh.

A Markovian particle moves in the space K until it “dies” or “dis-
appear” at the time when it reaches the point 9; hence the point 0 is
called the terminal point or cemetery. With this interpretation in mind,
we let

((w) = inf{t € [0,00] : z¢(w) = 9}.

The random variable ( is called the lifetime of the process X. The
process X is said to be conservative if it satisfies the condition

P{(=oc}=1 foralzeK.
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21.1.2 Transition Functions

Our first job is to give the precise definition of a transition function
adapted to the Hille-Yosida theory of semigroups:

Definition 21.2. Let (K, p) be a locally compact, separable metric
space and B the o-algebra of all Borel sets in K. A function p:(z, E),
defined for all t > 0, € K and F € B, is called a (temporally homoge-
neous) Markov transition function on K if it satisfies the following four
conditions (a) through (d):

(a) pe(z,-) is a non-negative measure on B and p;(z, K) < 1 for each
t >0 and each z € K.

(b) pe(+, E) is a Borel measurable function for each ¢ > 0 and each
EeB.

(¢) po(z,{z}) =1 for each z € K.

(d) (The Chapman—Kolmogorov equation) For any ¢, s > 0, any x €
K and any E € B, we have the formula

Pra(e, B) = /K pe(, dy)pa(y, B). (21.1)

It is just condition (d) which reflects the Markov property that a
particle starts afresh. Here is an intuitive way of thinking about the
above definition of a Markov transition function. The value p;(z, E)
expresses the transition probability that a physical particle starting at
position z will be found in the set E at time t. Equation (21.1) expresses
the idea that a transition from the position z to the set E in time
t + s is composed of a transition from x to some position y in time
t, followed by a transition from y to the set E in the remaining time
s; the latter transition has probability ps(y, F) which depends only on
y. Thus a physical particle “starts afresh”; this property is called the
Markov property.

A Markov transition function p;(x,-) is said to be normal if it satisfies
the condition

pio(z, K) = ltig)lpt(x7K) =1 forallz € K.

The next theorem, due to Dynkin [24, Chapter 4, Section 2], justfies
the definition of a transition function, and hence it will be fundamental
for our further study of Markov processes:
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Theorem 21.1. For every Markov process, the function ps, defined by
the formula

pi(z,E) =P, {xy € E} forze K,EeBandt>0,

is a Markov transition function. Conversely, every normal Markov tran-
sition function corresponds to some Markov process.

21.1.3 Feller Transition Functions

Let (K, p) be a locally compact, separable metric space. Let C(K) be
the space of real-valued, bounded continuous functions on K; C(K) is
a Banach space with the supremum norm

[flloc = sup [f ()]
reK

We say that a function f € C(K) converges to 0 as z — 9 if, for each
€ > 0, there exists a compact subset ¥ of K such that

|f(z)| <e forallze K\E,

and write

lim f(z)=0.
z—0
Let Cy(K) be the subspace of C'(K) which consists of all functions satis-
fying lim, 5 f(2) = 0; Co(K) is a closed subspace of C(K). We remark
that Cy(K) may be identified with C'(K) if K is compact.
Now we introduce some condition on the measures p¢(x, ) related to
continuity in z € K for every fixed t > 0.

Definition 21.3. A transition function p; is called a Feller function if
the function

T,f(x) = /K P dy) ()

is a continuous function of z € K whenever f is bounded and continuous
on K, that is, C'(K) is an invariant space for the operators T;. We say
that p; is a Co-function if Cy(K) is an invariant subspace of C(K) for
the operators T;.

Remark 21.1. The Feller property is equivalent to saying that the mea-
sures p;(x,-) depend continuously on z € K in the usual weak topology,
for every fixed ¢t > 0.
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21.1.4 Path Functions of Markov Processes
A Markov process X = (xy, F,Fy, Pr) is said to be right-continuous
provided that, for each z € K,
P, {w € Q : the mapping ¢ — z;(w) is a right-continuous

function from [0, 00) into Kp} = 1.
Furthermore, we say that X is continuous provided that, for each = € K,

P, {w € Q : the mapping ¢ — z;(w) is a continuous

function from [0, ¢) into Kp} = 1.

Here ( is the lifetime of the process X.
Now we give some useful criteria for path-continuity in terms of tran-
sition functions (see Dynkin [24, Chapter 6], [25, Chapter 3, Section 2]):

Theorem 21.2. Let p; be a normal transition function on K.

(i) Assume that the following two conditions (L) and (M) are satis-
fied:

(L) For each s > 0 and each compact E C K, we have the
assertion

lim sup pi(z, E)=0.
z—0 0<t<s

(M) For each € > 0 and each compact E C K, we have the
assertion

lim sup p¢(z, K \ Us(x)) = 0,
t10 zeE
where Us(z) = {y € K : p(y,x) < €} is an e-neighborhood
of x.
Then there exists a Markov process X with transition function
pt whose paths are right-continuous on [0,00) and have left-hand
limits on [0,C) almost surely.
(ii) Assume that condition (L) and the following condition (N) (re-
placing condition (M)) are satisfied:

(N) For each € > 0 and each compact E C K, we have the

assertion

1
lim — K\U —0.
;igtiggpt(% \ Ue())
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Then there exists a Markov process X with transition function p; whose
paths are almost surely continuous on [0, ().

Remark 21.2. Some remarks are in order:

(1) Condition (L) is trivially satisfied if the state space K is compact.

(2) It is known (see Dynkin [24, Lemma 6.2]) that if the paths of a
Markov process are right-continuous, then the transition function
p; satisfies the condition

ltilrglpt(x, Ue(z)) =1 forevery z € K.

21.1.5 Strong Markov Processes

A Markov process is called a strong Markov process if the “starting
afresh” property holds not only for every fixed moment but also for
suitable random times.

We formulate precisely this “strong” Markov property. Let

X = (:Eta]_—v]:hpz)

be a Markov process. A mapping 7 : Q — [0,00] is called a stopping
time or Markov time with respect to {F;} if it satisfies the condition

{r<t}eF foralltel0o0).

Intuitively, this means that the events {r < ¢} depend on the process
only up to time ¢, but not on the “future” after time ¢. It should be
noticed that any non-negative constant mapping is a stopping time.

If 7 is a stopping time with respect to {F;}, we let

Fr={AeF:An{r <t} eF forallte[0,00)}.

Intuitively, we may think of F. as the “past” up to the random time 7.
It is easy to verify that F, is a o-algebra. If 7 = ¢, for some constant
to > 0, then F; reduces to Fi,.

For each t € [0, o0], we define a mapping

D1 [0,1] x Q@ — Kp

by the formula
Py(s,w) = x5 (w).
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A Markov process X = (x4, F, Ft, P;) is said to be progressively measur-
able with respect to {F;} if the mapping ®; is By 4 x F;/Bs-measurable
for each t € [0, o], that is, if we have the condition

;1 (E) ={®; € E} € By x F; forall E € By.

Here By is the o-algebra of all Borel sets in the interval [0,¢] and By
is the o-algebra in K generated by B. It should be noticed that if X is
progressively measurable and if 7 is a stopping time, then the mapping
Tr:w = Try(w) is Fr/Bs- measurable.

Definition 21.4. We say that a progressively measurable Markov pro-
cess X = (xy, F, F, P;) has the strong Markov property with respect to
{F:} if the following condition is satisfied:

For all h > 0, z € Ky, E € By and all stopping times 7, we have the
formula

PI {.’L‘T+h S | ]:7—} = ph(x'mE)v

or equivalently,
P.(An{z;4h € E}) = / Ph(Tr(w) (W), E) dPy(w) for every A € Fr.
A

This expresses the idea of “starting afresh” at random times.
The next result gives a useful criterion for the strong Markov property
(see [24, Theorem 5.10)):

Theorem 21.3. FEvery right-continuous Markov process has the strong
Markov property if its transition function has Cy-property.

We state a simple criterion for the strong Markov property in terms
of transition functions. To do this, we introduce the following:

Definition 21.5. A transition function p; on K is said to be uniformly
stochastically continuous on K if it satisfies the following condition:

For each € > 0 and each compact ¥ C K, we have the assertion
lim sup [1 — pi(2, Us(2))] = 0, (21.2)
HO zcE

where U.(z) = {y € K : p(y,x) < €} is an e-neighborhood of z.

It should be emphasized that every uniformly stochastically continu-
ous transition function is normal and satisfies condition (M) in Theorem
21.2. By combining part (i) of Theorem 21.2 and Theorem 21.3, we ob-
tain the following (see [24, Theorem 6.3]):
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Theorem 21.4. If a uniformly stochastically continuous, Cy-transition
function satisfies condition (L), then it is the transition function of some
strong Markov process whose paths are right-continuous and have no
discontinuities other than jumps.

We remark that Theorem 21.4 can be visualized as follows:

‘uniformly stochastically continuous‘ + ‘ Cp property + (L) ‘

‘ right-continuous Markov process |4>‘ strong Markov process |

Fig. 21.1. A functional analytic approach to strong Markov processes in The-
orem 21.4

A continuous strong Markov process is called a diffusion process.
The next result states a sufficient condition for the existence of a
diffusion process with a prescribed transition function:

Theorem 21.5. If a uniformly stochastically continuous, Cy-transition
function satisfies conditions (L) and (N), then it is the transition func-
tion of some diffusion process.

This is an immediate consequence of part (ii) of Theorem 21.2 and
Theorem 21.4.

21.2 Transition Functions and Feller Semigroups
In this section we study the semigroups associated with Feller transition
functions.
Let (K, p) be a locally compact, separable metric space and let C'(K)
be the Banach space of real-valued, bounded continuous functions on K.

Then we have the following:

Theorem 21.6. If p; is a Feller transition function on K, then the
associated operators {T; }1>0, defined by the formula

1@ = [ mdf) forfec). Ly
form a non-negative and contraction semigroup on C(K):

(i) Tiys =Ty - Ts, t, s > 0 (the semigroup property); To = 1.
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(ii)) feCK),0< f(z)<1lonK = 0<Tif(z)<1onK.

Conversely, if {Ti}+>0 is a non-negative and contraction semigroup
on the space Co(K), then there exists a unique Co-transition function p;
on K such that formula (21.3) holds true.

It should be emphasized that the Cy-property deals with continuity
of a transition function p;(z, E) in x, and does not, by itself, have no
concern with continuity in ¢.

Now we give a necessary and sufficient condition on p;(z, F) in order
that its associated semigroup {7} }¢>0 is strongly continuous in ¢ on the
space Cy(K) (cf. [25, Lemma 2.6]):

liﬁ)l |Tixsf —Tifllo =0 for every f € Co(K). (21.4)

Theorem 21.7. Let p; be a Cy-transition function on K. Then the
associated semigroup {Ti}i>o0, defined by formula (21.3), is strongly con-
tinuous in t on Co(K) if and only if p; is uniformly stochastically con-
tinuous on K and satisfies condition (L) of Theorem 21.2.

Remark 21.3. Since the semigroup {7};};>0 is a contraction semigroup,
we find that the strong continuity (21.4) of {73} in t for ¢ > 0 is equiv-
alent to the strong continuity at ¢ = 0:

ltingth — flloo =0 for every f € Co(K). (21.4")

Definition 21.6. A family {T}};>o of bounded linear operators acting
on Cy(K) is called a Feller semigroup on K if it satisfies the following
three conditions (i), (ii) and (iii):

(i) Tiys =Ty - Ts, t, s > 0 (the semigroup property); Ty = I.
(ii) {T}} is strongly continuous in ¢ for ¢ > 0:

lsifol |Titsf —Tifllo =0, f € Co(K).

(iii) {7} is non-negative and contractive on Cy(K):
feCHK), 0<f(z) <1 onK = 0<T;f(z) <1 onK.
By combining Theorems 21.6 and 21.7, we obtain the following:

Theorem 21.8 (Dyunkin). If p; is a uniformly stochastically continuous,
Co-transition function on K which satisfies condition (L) of Theorem
21.2, then its associated operators {I}}i>0, defined by formula (21.3),



21.8 Feller Semigroups and their Infinitesimal Generators 569

form a Feller semigroup on K. Conversely, if {T;}1>0 is a Feller semi-
group on K, then there exists a uniformly stochastically continuous, Cop-
transition p: on K, satisfying condition (L), such that formula (21.3)
holds.

21.3 Feller Semigroups and their Infinitesimal Generators

Let K be a locally compact, separable metric space. If {T}};>0 is a
Feller semigroup on K, we define its infinitesimal generator 2 by the

formula
Tiu —u

Au = lim (21.5)

10 t

provided that the limit (21.5) exists in Cy(K). More precisely, the gen-
erator 2 is a linear operator from Cy(K) into itself defined as follows.

(1) The domain D(2) of 2 is the set
D(A) = {u € Cp(K) : the limit (21.5) exists} .

Tiu—u

(2) Au = limyyo for every u € D(A).

The next theorem is a version of the Hille—Yosida theorem adapted to
the present context:

Theorem 21.9 (Hille-Yosida). (%) Let {T}};>0 be a Feller semigroup on
K and let A be its infinitesimal generator. Then we have the following

four assertions (a), (b), (¢) and (d):

(a) The domain D(2L) is dense in the space Co(K).

(b) For each a > 0, the equation (ol —)u = f has a unique solution
u in D(A) for any f € Co(K). Hence, for each o > 0, the Green
operator (al — )71 : Co(K) — Co(K) can be defined by the
formula

u=(al —A)"f, feCo(K).
(¢c) For each o > 0, the operator (ol — A)~! is non-negative on
Co(K).'
feCK), f(z)>0 onK = (al—A)"'f(z)>0 onK.
(d) For each o > 0, the operator (ol — 2A)~1 is bounded on Co(K)
with norm

I —2)71| <

Q|
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(i) Conversely, if A is a linear operator from Co(K) into itself satis-
fying condition (a) and if there is a constant ag > 0 such that, for all
a > g, conditions (b) through (d) are satisfied, then U is the infinites-
imal generator of some Feller semigroup {T;}1>0 on K.

Now, let K be a compact metric space. We remark that the space
Co(K) may be identified with C'(K). Then we have the following:

Corollary 21.10. Let K be a compact metric space and let 2 be the
infinitesimal generator of a Feller semigroup on K. Assume that the
constant function 1 belongs to the domain D(2) of A and that we have,
for some constant c,

Al < —c on K. (21.6)

Then the operator A’ = A + cl is the infinitesimal generator of some
Feller semigroup {T;}1>0 on K.

Although Theorem 21.9 tells us precisely when a linear operator 2 is
the infinitesimal generator of some Feller semigroup, it is usually difficult
to verify conditions (b) through (d). So we give useful criteria in terms
of the mazimum principle which have evolved from the ideas of Bony—
Cowrrege—Priouret[11], Dynkin [25] and Sato—Ueno [62] (cf. [57]):

Theorem 21.11 (Hille-Yosida—Ray). Let K be a compact metric space.
Then we have the following two assertions (i) and (ii):

(i) Let B be a linear operator from C(K) = Cy(K) into itself, and
assume that the following two conditions are satisfied:

(o) The domain D(B) of B is dense in C'(K).

(8) There exists an open and dense subset Ko of K such that if u €
D(B) takes a positive mazimum at a point xg of Ky, then we
have the inequality

Bu(zg) <0

Then the operator B is closable in C(K).

(ii) Let B be as in part (i), and further assume that the following two
conditions are satisfied:

(8') If u € D(B) takes a positive maximum at a point ' of K, then
we have the inequality

Bu(z") <0.
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(v) For some ag > 0, the range R(agl — B) of agl — B is dense in
C(K).

Then the minimal closed extension B of B is the infinitesimal gener-
ator of some Feller semigroup on K.

Corollary 21.12. Let M be a bounded linear operator on C(K) into
itself. If A generates a Feller semigroup {T;};>0 on K and if either
M or A" = A+ M satisfies condition (8') of Theorem 21.11, then the
operator A" is the infinitesimal generator of some Feller semigroup on
K.

21.4 Notes and Comments

For more leisurely treatments of Markov processes and Feller semigroups,
the reader is referred to Blumenthal-Getoor [8], Dynkin [24], [25], Lam-
perti [41], Revuz—Yor [59] and also Taira [79].



22
Feller Semigroups with Dirichlet Condition

In this chapter we consider the Dirichlet problem for the diffusion oper-
ator with VMO coeflicients in the framework of LP Sobolev spaces, and
prove an existence and uniqueness theorem for the Dirichlet problem
(Theorem 22.2). The uniqueness result in Theorem 22.2 follows from a
variant of the Bakel’'man—Aleksandrov maximum principle in the frame-
work of Sobolev spaces due to Bony [9] (Theorem 8.5). Moreover, we
construct a Feller semigroup associated with absorption phenomenon at
the boundary (see Theorem 1.3 and Figure 1.7).

22.1 Formulation of the Dirichlet Problem

Let €2 be a bounded domain in Euclidean space R"™, n > 3, with bound-
ary 0Q of class OV If 1 < p < oo and if k = 1 or k = 2, we define the
Sobolev space

WHP(Q) =the space of (equivalence classes of) functions
u € LP(Q)) whose derivatives D%u, |a| < k, in the

sense of distributions are in LP(2),
and the boundary space
BF=1/PP(5Q) = the space of the traces you of functions u € W2 ().
In the space B*~1/P?(9Q), we introduce a norm
|0l gr1/m.0(00) = f {|[ullwrr@) 1 u € WHP(Q), you = ¢ on 90} .

We recall that the space B¥~1/P2(9Q) is a Besov space (see the trace
theorem (Theorem 7.4)).

072



22.1 Formulation of the Dirichlet Problem 573

Let A be a second-order, elliptic differential operator with real dis-
continuous coefficients of the form

n B 82 n ) a
Au= 3" a (@) som + Y b(2) a;;- + ().

i=1

Here the functions a¥ (), b*(z) and c(x) satisfy the following three con-
ditions (1), (2) and (3):
(1) a¥(z) € VMONL®™(Q), a¥(z) = a/*(z) for almost all z € Q and
1 <14,5 < n, and there exist a constant A > 0 such that
1 <
TP < Y eV (@)gg; < Mg
ij=1

for almost all z € Q and all £ € R™.

(2) bi(z) € L=(Q) for 1 <i < n.
(3) c(x) € L*(2) and ¢(z) < 0 for almost all = € Q.

In this section we consider the following non-homogeneous Dirichlet
boundary value problem: Given functions f(z) and ¢(z') defined in Q
and on 012, respectively, find a function u(z) in © such that

{Au:f in Q,

22.1
You = on I ( )

The first main result of this chapter is stated as follows (cf. Vitanza
[95, Theorem 2.2]):

Theorem 22.1 (the regularity theorem). Let 1 < p < co. Assume that
conditions (16.1) and (16.3) are satisfied. If a function u € W24(Q),
1 < ¢ < p < oo, is a solution of the Dirichlet problem (22.1) with
f € LP(Q) and ¢ € B>~YPP(9Q), then it follows that u € W?P(Q).
Moreover, we have the global a priori estimate

[ullw2r) < C1 ([lullr) + 1fllr@) + @l pe-1mm(o0)) »  (22:2)
with a positive constant C1 = C1(n, p, \,n, £, 0,00).

The second main result of this chapter is a generalization of Bony [9,
Théoreme 3] to the VMO case (cf. [95, Theorems 2.3 and 2.4]):

Theorem 22.2 (the existence and uniqueness theorem). Let 1 < p <
00. Assume that

c(x) <0 for almost all x € .
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Then, for any f € LP(Q) and any ¢ € B>~YPP(9Q) there exists a
unique solution u € WP (Q) of the Dirichlet problem (22.1).

Remark 22.1. Theorem 22.2 plays an essential role in the study of the
existence of positive solutions of semilinear Dirichlet eigenvalue prob-
lems for diffusive logistic equations with discontinuous coefficients which
model population dynamics in environments with spatial heterogeneity
(see [76]).

If we associate with problem (22.1) a linear operator
Ay = (A7) W2P(Q) — LP(Q) & B>~ 1/P7(0Q),

then we obtain from the trace theorem (Theorem 7.4) and Theorem 22.2
that the operator A, is continuous and bijective for all 1 < p < oo.

22.2 Proof of Theorem 22.1

The proof of the regularity theorem for the Dirichlet problem (Theorem
22.1) is divided into three steps.

Step 1: For any ¢ € B2 '/PP(9Q), we can find a function v €
W2P(Q) such that vov = ¢ on 052, and further that the mapping

B2YPP(90) 3 p — v € WHP(Q) (22.3)

is continuous (see Stein [67, Theorem]). On the other hand, it should
be noticed (see [2, Theorem 5.37]) that the closure Wy*() of C§°(9Q)
in W1P(Q2) may be characterized as follows:

Wy ?(Q) = {ue W"P(Q) : you=00n 00} foralll<p< oco.

Therefore, we have only to prove Theorem 22.1 in the case where
p:=0and 1 <qg<p<oo:

{u CWRH@OWNQ). ey (224)

Au=f e LP(Q)

Step 2: In order to prove assertion (22.4), we need the Sobolev imbed-
ding theorems (Theorem 7.4):

L/ (n=24)(Q) if1<q<n/2,
W2P(Q) C A L"(Q) foralln/2<r<oo ifq=n/2, (22.5)
L>(Q) ifn/2 < q<oo.
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Lna/(n=a)(Q) if1<gq<n,
Wh(Q) C S L7 (Q) foralln<r<oo ifqg=n, (22.6)
L>(0) ifn <gq<oo.

We consider the following three cases (A), (B) and (C).
(A) The case where 1 < ¢ < n/2: By assertions (22.5) and (22.6), it
follows that

w e W2a(0) ¢ Lr/in-20) (),
% e Whi(Q) L/ (n=a)(Q) for all 1 <i < n.

Hence we have the assertion

L 0%u
Lu Z a” () duidz,;

ij=1

n ) a
=f=> b(x) aﬁ_ + e(z)u € LM/ (=9 (Q).
i=1 ¢

By applying the global regularity theorem (Theorem 12.2), we obtain
that

u € LP*(Q),
where
. { nq }
p1 = min 4 p, .
n—q
It is easy to see that
pP1>q,
and further that
< 1
p1—4q n—1

Therefore, by making use of a standard “bootstrap argument” we can
conclude that

u e LP(Q).
(B) The case where n/2 < g < n: By assertions (22.5) and (22.6), it
follows that
{u € W24(Q) C LP(Q),

du ¢ wra(Q) ¢ L/ (Q) forall 1< i< n.
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Hence we have the assertion
Lu=f— Xn:bl(x)@ + ¢(x)u € LMY (=9 (Q),
i=1 9z

Therefore, by making use of a standard “bootstrap argument” we can
conclude that

we Q).
(C) The case where n < ¢ < oo: By assertions (22.5) and (22.6), it
follows that
u € W2(Q) C L*>(9Q),
Du e Wha(Q) c IP(Q) forall 1 <i<n.

Hence we have the assertion

Lu=f— zn: b (z) gﬁ, +e(z)u € LP(Q).
i=1 v

By applying the global regularity theorem (Theorem 12.2), we obtain
that

u € LP(Q).
Summing up, we have proved the desired assertion (22.4).

Step 3: Finally, it remains to prove the global a priori estimate (22.2).
First, by using the global a priori estimate (12.3) we obtain that

[ullw=r@) < C1 (llullze@) + [LullLre) + 10l B2-1mr(00)) » - (22.7)

with a positive constant C';. Indeed, it suffices to note that the mapping
(22.3) is continuous.
On the other hand, we have the inequality

[ Lull e (o) (22.8)
"L Ou
<= rwgt +
i=1 i Lr(Q)
< Wflzrier + YW emiey [+ el alznco
i=1 vIILr(Q)

Hence, by combining two inequalities (22.7) and (22.8) we obtain that

[ullwzr (o) (22.9)
< Oy (lull ey + I fllze ) + 1@l B2-1/00(00) + VUl o))
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with a positive constant Cs.
However, recall the interpolation inequality (13.17)

C
IVull Loy < € |V2ull Loy + ?3 [ull Loy foralle >0. (22.10)

Therefore, the desired estimate (22.2) follows from inequalities (22.9)
and (22.10) if we take

1
€= —.
205
Now the proof of Theorem 22.1 is complete. O

Let A, be a continuous linear operator defined by the formula

A, = (A, 70): WHP(Q) — LP(Q) @ B>~ V/PP(9Q) for 1 < p < oo.
Then we have the following:
Corollary 22.3. The null space

N (Ap) ={ueW?P(Q): Au=0in Q, you=0}
= {ue W@ WP Q) Au=0in 0}
of A, is independent of p for 1 < p < oco.
Proof. If 1 < p1 < pa < 00, then it follows that
N (A,,) CN(Ap,).

Conversely, if u € N (A,,), then we have, by assertion (22.4),

W2P1(Q) N Wy (Q
{UE ( ) 0 ( )a — ue W2’p2(Q).

Au=0¢€ LP(Q)
This proves that
N (Ap,) C N (Ap,) -

The proof of Corollary 22.3 is complete. O

22.3 Proof of Theorem 22.2

The proof of the unique solvability theorem for the Dirichlet problem
(Theorem 22.2) is divided into four steps.

Step 1: Our proof is based on the following existence and uniqueness
theorem for the homogeneous Dirichlet problem (see Theorem 15.1):
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Theorem 22.4. Let 1 < p < oo and

LI 0%u
— ij
Lu E a’(x) 00,

ij=1

Then, for any f € LP(Q) there exists a unique solution u € WP () N
W, P() of the Dirichlet problem

Lu= in €,
w=Jf i (22.11)
You=0 on 0N.
Moreover, we have the a priori estimate
lullw2s0) < Cllfllze @), (22.12)

with a positive constant C = C(N,p, \,n, M,00).

Now, for any ¢ € B2>~1/PP(9Q) we can find a function v € W?2P?(Q)
such that vov = ¢ on 092 (see Theorem 7.4). Hence we have the following
existence and uniqueness theorem for the non-homogeneous Dirichlet
problem:

Corollary 22.5. Let 1 < p < co. For any f € LP(Q) and any ¢ €
B2~YPP(9Q), there exists a unique solution u € W2P(Q) of the Dirichlet

problem

{Eu =/ (22.13)

You =@ on IN.

We recall (see Section 2.7) that a linear operator T from a Banach
space X into a Banach space Y is called a Fredholm operator if it satisfies
the following five conditions (i), (ii), (iii), (iv) and (v):

(i) The domain D(T') of T is dense in X.
(ii) T is a closed operator.
(iii) The null space N(T) = {x € D(T) : Tz = 0} of T has finite di-
mension in Y; dim N(T') < cc.
(iv) The range R(T) = {Tx:x € D(T)} of T is closed in Y.
(v) The range R(T) of T has finite codimension in Y; codim R(T) =
dim Y/R(T) < oc.

Then the index of T is defined by the formula

ind7T := dim N(T) — codim R(T).
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If we associate with problem (22.13) a continuous linear operator
Ao = (L,70): WHP(Q) — LP(Q) @ B>~1/PP(09),

then Corollary 22.5 asserts that the mapping A is an algebraic and
topological isomorphism for all 1 < p < oco. In particular, we have the
assertion

ind Ay = 0. (22.14)
Step 2: If we let

T
Bu := Z bl(x)axi + c(z)u,
i=1

then it is clear that the operator
B: W*P(Q) — WhP(Q)

is continuous for all 1 < p < oo. Moreover, it follows from an application
of the Rellich-Kondrachov theorem (Theorem 7.6) that the injection
WLP(Q) — LP(Q) is compact. Hence we find that the mapping

B: W*P(Q) — LP()

is compact for all 1 < p < co.
Therefore, we obtain that the mapping

Ap = Ag + (B,0): WHP(Q) — LP(Q) @ B2~1/PP(9Q)

is a Fredholm operator with index zero for all 1 < p < oo, since we have,
by Theorem 2.55 and assertion (22.14),

indA, =ind Ay =0 forall 1 <p < 0. (22.15)
Step 3: In order to prove that
dimN (A4,) =0 foralln<p< oo, (22.16)

we need the weak maximum principle (Theorem 8.5) due to Bony [9],
By applying Theorem 8.5 to the functions +u(x), we obtain that

u€ W2P(Q) forn <p< oo,
Au=0 in Q, — u=0 in Q.
You = 0 on 0f)

This proves the desired assertion (22.16).
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In view of Corollary 22.3, we have proved that
dimN (A4,) =0 foralll<p< oo,

that is, the mapping A, is injective for all 1 < p < oo.
Therefore, it is also surjective for 1 < p < oo, since we have, by
assertion (22.15),

ind A, = dim N(A) — codim R(A) = 0.
Step 4: Summing up, we have proved that the mapping
A, = (A,7): WHP(Q) — LP(Q) @ B>~ V/PP(9Q)

is an algebraic and topological isomorphism for all 1 < p < oo. In-
deed, the continuity of the inverse of A, follows immediately from an
application of Banach’s open mapping theorem (Theorem 2.39).

Now the proof of Theorem 22.2 is complete. O

22.4 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. To do so, we shall
apply a version of the Hille-Yosida theorem (Theorem 21.9).

22.4.1 The Space Cy(Q)

First, we consider a one-point compactification Ky = K U {9} of the
locally compact space K = ). We say that two points = and y of © are
equivalent modulo 99 if = y or x, y € 2. We denote by Q/0Q the
totality of equivalence classes modulo 9. On the set Q/9Q we define
the quotient topology induced by the projection

q: Q — Q/09.

Then it is easy to see that the topological space Q/0Q is a one-point
compactification Ky of the space € and that the point at infinity 0
corresponds to the boundary 09 (see Figure 22.1):

Ko = /09,
0 = 09.

Furthermore, we have the following two assertions (i) and (ii):
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0

Fig. 22.1. The one-point compactification /9 and the point at infinity 0

(i) If @ is a continuous function defined on /99, then the function
%o q is continuous on Q and constant on 5.

(ii) Conversely, if u is a continuous function defined on { and constant
on 99, then it defines a continuous function % on Q/99.

In other words, we have the isomorphism
C(Ky) = {ue C(Q): uis constant on 9Q} . (22.17)
Now we introduce a closed subspace of C(Kjp) as follows:
Co(K) = {u € C(Ky) : u(d) = 0}
Then we have, by assertion (22.17),
Co(K)=Co(Q) ={uecC(Q):u=0o0nd0}.

22.4.2 End of Proof of Theorem 1.3

Now it remains to verify all conditions (a) through (d) in Theorem 21.9
with

K :=Q,
CO(K) = Co(ﬁ),
A= Q[D.

Recall that Ap: Co(2) — Cp(Q) is a linear operator defined as follows:
(a) The domain D(p) is the set

Dp) = {ue W>P(Q)NCy(Q) : Au € Cy(Q)} for n < p < oc.
(1.6)
(b) Apu = Au for every u € D(p).
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The proof is divided into four steps.
Step 1: (b) For each a > 0, the equation

(al —Ap)u=f

has a unique solution u € D(2p) for any f € Co(Q).
Since we have the inequality

c(x) —a < —a for almost all x € Q,

by applying Theorem 22.2 to the operator A — o we obtain that the
Dirichlet problem

(a — A)u= f almost everywhere in (,
You =0 on O}

has a unique solution u € W2P(Q) for any f € LP(Q) with n < p < oo.
In particular, for any f € Co(2) there exists a unique function u €
W2P(Q) N Co(Q) such that

(a—Au=f inQ.
Hence we have the assertion
Au=au— f € Co(Q).

By formula (1.6), this proves that

{u € D(Ap),
(ol —Ap)u = f.

Step 2: (c) For each o > 0, the Green operator G% = (ol —p)~! is
non-negative on the space C(€):

F€CQ), flz) >0 inQ = wu(x)=G2f(x) >0 inQ.
Indeed, if we let
v(x) = —u(z) = —Gq f(2),
then it follows that

(A—a)v=f>0 inQ,
Yov =0 on 0f).

Therefore, by applying Theorem 8.5 to our situation we obtain that
v(z) <0 in Q,
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so that
u(z) = —v(z) >0 in Q.

Step 3: (d) For each @ > 0, the Green operator G% = (al — p)~!
is bounded on the space C(Q) with norm 1/a: [|G2]| < 1/a.
Let f(x) be an arbitrary function in Cy(Q). If we let

us () = £aGo f(@) = | flom € WP(Q),
it, suffices to show that
us(z) <0 in Q. (22.18)
Indeed, it follows that
(A= aus(z) = Faf (@) + (o —c@) | flo@
= a(lfllc@ F (@) + (@) flcm
>0 inQ.

Thus, by applying Theorem 8.5 to the operator A — a we obtain that
the function ug (z) may take its positive maximum only on 9. This
proves assertion (22.18), since we have the inequality

Yo(ux) = =[Ifllo@ <0 on 6.

Step 4: (a) The domain D(2p) is dense in Cy(£2). More precisely,
we prove that we have the assertion

lim HaG u— =0 for each u € Co(Q). (22.19)

a—+0o0 u”C(ﬁ)

To do this, we introduce an extension GO of the Green operator G2
the space L>=(Q2): By Theorem 22.2, we find that the Dirichlet problem

(a — A)u= f almost everywhere in ,
You =0 on 02

has a unique solution u € W2P(Q) N Cy(R) (n < p < o0) for any
feL> ). If we let

ui=Gof,

then it is easy to verify that the operator C:’g is an extension of G to
L (). Moreover, just as in Steps 2 and 3, we can prove the following
two assertions (A) and (B):

(A) The operator é@: L>(Q) — Cp(Q) is non-negative.
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(B) The operator @g: L>*(Q) — Cp(2) is bounded with norm 1/a:
IGall < 1/a.

The operators GY and évg can be visualized as follows:

D(GY) = L=(Q) —2 Co(@)

I l

D(G%) = Co(@) —= D(ap)

Fig. 22.2. The operators G, and 6:01

Since the space CZ(Q) := C?(Q) N Cy(9) is dense in Cp(Q), it suffices

to prove assertion (22.19) for any u € C3(Q).
First, since a (z), b'(z), c(z) € L>(Q), it follows that

N 0%u "L Ou o
Au=Y"a J(x)m + ) bi(x) ;T clz)u e L®(Q)  (22.20)
i,j=1 i=1

for all u € CZ(Q).
Now, if we let
w=aG%u — (f}'vg(AuL
then we have the assertions
w € W2P(Q) N Co(Q),
(A-—a)w=—-au+Au=(A—a)u inQ,
and so
w—u € W2P(Q) N Cy(Q),
(A—a)(w—u)=0 1in Q.

By Theorem 22.2, this implies that w — u = 0 in §2, that is,
u=w=aG% — CTgé(Au).

Therefore, assertion (22.19) for any u € C3() follows from an applica-
tion of assertion (B) and assertion (22.20), since we have, for all « > 0,

—~ 1
le = aGoulle@ = 1Ga(Au)llom) < — [[Au] L= (q).

Now the proof of Theorem 1.3 is complete. O
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22.5 Proof of Remark 1.3

Finally, we prove that the domain
D(QlD) = {u € Co(ﬁ) n W2’p(Q) :Au € Oo(ﬁ)}

is independent of p, for n < p < .
We let

Dy = {ue W*P(Q)NCo(Q) : Au € Co(Q)} .
In order to prove Remark 1.3, it suffices to show that
Dy, =Dy, forn <p <ps <oo.

First, it follows that
D;Dz C Dpl?

since we have LP2(Q) C LP1(Q) for py > p;.
Conversely, let v be an arbitrary element of D, :

v e WP (Q)NCy(Q), Av e Cy(Q).
Then, since we have the assertions
v, Av € Co(Q) C LP*(Q),

it follows from an application of Theorem 22.2 with p := py that there
exists a unique function u € W2P2(Q) such that

Au= Av in Q,
You =0 on 0f.

Hence we have the assertions

u—v € W2P1(Q),
Alu—v)=0 in €,
Yo(u—v)=0 on Of).

Therefore, by applying again Theorem 22.2 with p := p; we obtain that
u—v =0, so that v = u € W%P2(Q). This implies that

v € Dy,.

The proof of Remark 1.3 is complete. O
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22.6 Notes and Comments

Section 22.1: Theorem 22.1 is inspired by Vitanza [95, Theorem 2.2] and
Theorem 22.2 is inspired by Bony [9, Théoreme 3], respectively.

Section 22.4: The proof of Theorem 1.3 is adapted from [77, Theorem
1.2).
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Feller Semigroups with Oblique Derivative
Condition

In this chapter we study the oblique derivative problem in the frame-
work of LP Sobolev spaces, and prove an existence and uniqueness theo-
rem for the oblique derivative problem with VMO coefficients (Theorem
23.2). The uniqueness result in Theorem 23.2 follows from a variant of
the Bakel’'man—Aleksandrov maximum principle in the framework of LP
Sobolev spaces due to Lieberman [43] (Theorem 23.5). Moreover, we
construct a Feller semigroup associated with absorption, reflection and
drift phenomena at the boundary (Theorem 1.2 and Figure 1.6).

23.1 Formulation of the Oblique Derivative Problem

Let A be a second-order, elliptic differential operator with real discon-
tinuous coefficients of the form

Au = Z ail 83@183:] Zbl

i,j=1 i=1

(z)u. (1.1)

Here the functions a (), b’(x) and c(x) satisfy the following three con-
ditions (1), (2) and (3):

(1) a¥(x) € VMONL™®(Q), a¥(x) = a/(x) for almost all x € Q and
1 <4,7 < n, and there exist a constant A > 0 such that

1 n .
TP < Y e (@)sig; < Mg
i,j=1
for almost all z € Q and all £ € R".
(2) bi(x) € L=(Q) for 1 <i < n.
(3) ¢(x) € L*™(Q2) and c¢(x) < 0 for almost all z € Q.

987
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In this chapter, we consider an oblique derivative boundary operator
of the form

Bu = u(x')g—z + B(z") - u+y(2)u. (23.1)

Here the functions p(z’

), B(z') and ~y(z') satisfy the following three
conditions (4), (5) and (6):

(4) p(a") is a Lipschitz continuous function on 992 and u(z’) > 0 on
onN.

(5) B(x") is a Lipschitz continuous vector field on 9S).

(6) v(z') is a Lipschitz continuous function on 9 and ~(z') < 0 on
onN.

(7) n = (n1,n2,...,ny,) is the unit interior normal to the boundary
0N (see Figure 23.1).

The purpose of this section is to prove an existence and uniqueness
theorem for the following non-homogeneous oblique derivative problem
in the framework of LP Sobolev spaces:

Au=f inQ
u=f i (23.2)
Bu = on 09

[%9]

Fig. 23.1. The vector field 8 and the unit interior normal n

The first main result of this chapter is the following regularity theorem
for the oblique derivative problem (23.2) (cf. [47, Theorem 2.2.1]):

Theorem 23.1 (the regularity theorem). Let 1 < p < co. Assume that
the functions p(x') and v(x') satisfy the conditions

pu(x') >0 on 09, (H.1)

and

y(@') <0 on IR (H.2)

If a function u € W29(Q), 1 < q < p < 00, is a solution of the oblique
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derivative problem (23.2) with f € LP(Q)) and ¢ € B'~Y/PP(9Q), then it
follows that u € W2P(2). Moreover, we have the global a priori estimate

ullw2r) < C1 ([ulle@) + 1 fllze) + €llpi-1mp0)) »  (23.3)
with a positive constant C1 = C1(n, p, \,n, , 8,7, 00).
The second main result of this chapter is the following existence and

uniqueness theorem for the oblique derivative problem (23.2) (cf. [46,
Theorem 4.1], [47, Theorem 2.2.2]):

Theorem 23.2 (the existence and uniqueness theorem). Let 1 < p <
o0, and assume that conditions (H.1) and (H.2) are satisfied. Then, for
any f € LP(Q) and any p € B'=YPP(9Q) there exists a unique solution
u € W2P(Q) of the oblique derivative problem (23.2). Moreover, we have
the global a priori estimate

ullw2r @) < Co (Ifllze) + l@ll B1-1/00(50)) » (23.4)
with a positive constant Co = Co(n, p, \,n, 1, 8,7, 00).
If we associate with problem (23.2) a continuous linear operator
A, = (A,B): W?P(Q) — LP(Q) @ B"1/PP(90Q),

then we obtain from the trace theorem (Theorem 7.4) and Theorem 23.2
that the operator A, is continuous and bijective for all 1 < p < oo.

23.2 Proof of Theorem 23.1

The proof of the regularity theorem for the oblique derivative problem
(Theorem 23.1) is divided into three steps.

Step 1: For any ¢ € B YPP(9Q), we can find a function v €
W2P(Q) such that Bv = ¢ on 99, and further that the mapping

BYYPP(90) 5 o — v € WHP(Q) (23.5)

is continuous (see Lemma 17.1).
Therefore, we have only to prove Theorem 23.1 in the case where
p:=0and 1 <g<p<oo:

u € W),

Au = f € LP(Q), (23.6)
Bu =0 on 9N
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= uec WP(Q).

Step 2: In order to prove assertion (23.6), we need the Sobolev imbed-
ding theorems (Theorem 7.4):

Lral(n=29)(Q) if1<q<n/2,
W2P(Q) C A L"(Q) foralln/2<r<oo ifq=n/2, (22.5)
L>(Q) ifn/2 < q<oo.
Lra/(n=a)(Q) if1<q<n,
Wh(Q)c{L'(Q) foralln<r<oo ifg=n, (22.6)
L>(Q) ifn <q<oo.

We consider the following three cases (A), (B) and (C).
(A) The case where 1 < ¢ < n/2: By assertions (22.5) and (22.6), it
follows that

u € W21(Q) c L™/ (n=29)(Q),
Du g La(Q) ¢ L/ (-0(Q) forall 1 <i < n.

Hence we have the assertion

LI 0%u
Lu .Za (x)axiaxj
i,j=1
~ - SR e ),

By applying the global regularity theorem (Theorem 16.1), we obtain
that

u € LP*(Q),

where

. ng

p1=min{p, —— .
n—q

It is easy to see that

P1 > q,
and further that

p1—q>

n—1"
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Therefore, by making use of a standard bootstrap argument we can
conclude that

ue LP(Q).

(B) The case where n/2 < q < n: By assertions (22.5) and (22.6), it
follows that
u € W>Q) C LP(Q),
2u ¢ yyia(Q) ¢ Lo/ (-0(Q) forall 1<i<n.

Hence we have the assertion

Lu=f— Z b () 66; + e(z)u € LMY (=D (Q).
i=1 '

Therefore, by making use of a standard bootstrap argument we can
conclude that

u € LP(Q).
(C) The case where n < ¢ < oco: By assertions (22.5) and (22.6), it
follows that
u € W21(Q) C L>=(Q),
9u e Whi(Q) C LP(Q) forall 1 <i<n.

Hence we have the assertion

Lu=f— z;bl(x)gzz + c(x)u € LP(Q).

By applying the global regularity theorem (Theorem 16.1), we obtain
that

u € LP(Q).
Summing up, we have proved the desired assertion (23.6).
Step 3: Finally, it remains to prove the global a priori estimate (23.3).
First, by using the global a priori estimate (16.5) we obtain that
lullwzr(@) < C1 (lull o) + |1 Lull Lo (@) + 10l r-1/roa0)) ,  (23.7)

with a positive constant C';. Indeed, it suffices to note that the mapping
(23.5) is continuous.
On the other hand, we have the inequality

| Lull L) (23.8)
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< Hf - ;bz(x)gz + c(z)u

Lr(Q)

< fllzre) + Z 16 )| L (02) B

i=1

’8u

+ lell o @) 1wl e (o)
LP(Q)

Hence, by combining two inequalities (23.7) and (23.8) we obtain that
[ullwe.r(0) (23.9)
< Cy (llullr) + IflLr ) + el Br-1smo0) + IVUllLo)) ,
with a positive constant Cj.
However, we recall the interpolation inequality (13.17)

C
HVuHLp(Q) <e ||V2uHLp(Q) + ?3 ||uHLp(Q) for all € > 0. (22.10)

Therefore, the desired estimate (23.3) follows from inequalities (23.9)
and (22.10) if we take

1
€= —.
205
Now the proof of Theorem 23.1 is complete. O

Let A, be a continuous linear operator defined by the formula

A, = (A,B): W2P(Q) — LP(Q) @ BI7/PP(9Q) for 1 < p < oc.
Then we have the following:
Corollary 23.3. The null space

N (Ap) = {ue W?P(Q): Au=0 in Q, Bu=0 on 9Q}
of A, is independent of p for 1 < p < oco.
Proof. If 1 < p1 < p2 < 00, then it follows that
N (Ay,) € N (A,,).

Conversely, if u € N (A, ), then we have, by assertion (23.6),

u € W2P1(Q),
Au=0¢€ LP(Q),
Bu =0 on 9N

= u € WP2(Q).

This proves that
N (Ap,) C N (Ap,)-
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The proof of Corollary 23.3 is complete. O

23.3 Proof of Theorem 23.2

The proof of Theorem 23.2 is divided into four steps. First, since n is
the unit inward normal to the boundary 02, it follows that (see Figure
23.1)

(u(@')n + B(a’),n) = p(a’) (o) = p(a’), o' € O

Therefore, we find that condition (H.1) is equivalent to condition (16.3b)
for B, and further that condition (H.2) is equivalent to condition (16.3c)
for B.

Step 1: Our proof is based on the following existence and uniqueness

theorem for the non-homogeneous oblique derivative problem (Theorem
16.2):

Theorem 23.4. Let 1 < p < oo and

LI 9%y
Lu E a’(x) udz;”

i,5=1

Assume that conditions (H.1) and (H.2) are satisfied. Then, for any
f € LP(Q) and any ¢ € B*7Y/PP(0Q) there exists a unique solution
u € W2P(Q) of the oblique derivative problem

Lu=f 1inQQ,
(23.10)
Bu=¢ on Jf.
Moreover, we have the global a priori estimate
lullwzr@) < C2 (IfllLe(o) + 1@l p1-1/r000)) - (23.11)

with a positive constant Co = Co(n, p, \,n, 1, 8,7, 00).
If we associate with problem (23.10) a continuous linear operator
Ay = (L£,B): W*P(Q) — LP(Q) & B'~1/PP(5Q),

then we obtain from the trace theorem (Theorem 7.4) and Theorem 23.4
that the mapping Ag is an algebraic and topological isomorphism, for
all 1 < p < co. In particular, we have the assertion

ind Ag = dim N(Ay) — codim R(Ap) =0 foralll <p<oo. (23.12)
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Step 2: If we let

o Ou
Bu := Z b (x)ﬁx + c(x)u,
i=1 ¢

then it follows that the operator
B: W*P(Q) — WhP(Q)

is continuous for all 1 < p < co. Moreover, it follows from an application
of the Rellich-Kondrachov theorem (Theorem 7.6) that the injection
WhP(Q) — LP(Q) is compact for all 1 < p < oo. Hence we find that the
mapping

B: W*P(Q) — LP(Q)
is compact for all 1 < p < co. It should be noticed that
A, = (A,B) = (L,B) + (B,0) = Ay + (B,0).
Therefore, we obtain that the mapping
A, = Ao + (B,0): W?P(Q) — LP(Q) @ B~V/PP(9Q)

is a Fredholm operator with index zero for all 1 < p < oo, since we have,
by Theorem 2.55 and assertion (23.12),

ind A, = ind Ay = 0. (23.13)
Step 3: In order to prove that
dimN (A4,) =0 foralln <p< oo, (23.14)

we need the following Bakel’'man and Aleksandrov maximum principle
(see [43, Corollary 2.4], [94]):

Theorem 23.5 (Bakel’'man—Aleksandrov). Let n < p < oo. Assume
that conditions (H.1) and (H.2) are satisfied. If a function u € W2P(Q)
satisfies the conditions

Au <0 almost everywhere in €,
Bu <0 on 09,

then it follows that either u(x) is a non-negative constant function or

u(z) >0 on Q.
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Proof. First, it should be noticed that we have, by Sobolev’s imbedding
theorem (see [2, Theorem 4.12, Part II]; [80, Chapter 4]),

wr(Q) c ¢1(@Q),

since 2 —n/p > 1 for n < p < occ.

We have only to consider the case where u(z) is not a constant func-
tion in Q. We assume, to the contrary, that u(x) takes a non-positive
minimum at a point zo € Q. If we let

o(x) = —u(a),

then we have the assertions

v e W2P(Q) for 1 < p < o0,
Av=—(Au) >0 inQ,
Bv>0 on 0f).

Hence, by applying the strong maximum principle (Theorem 8.9) to the
function v(x) we obtain that, for some boundary point xj, € 92,

v(zg) = v(zg) = mﬁax(—u) > 0.

Moreover, it follows from an application of Hopf’s boundary point lemma
(Lemma 8.7) that

ov, ,

By conditions (H.1) and (H.2), this implies that
Ou Ou
0 < Bo(zg) = plwo) 5 (o) +v(wp)ulp) < plwo) 5 (wo) < 0.

This contradiction proves that u(x) > 0 on .
The proof of Theorem 23.5 is complete. O

By applying Theorem 23.5 to the functions +u(z), it follows that

u € W2P(Q) forn <p< o,
Au =0 in Q,

Bu =10 on 0f2

= u=0 in Q.

This proves the desired assertion (23.14).
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In view of Corollary 23.3, we have proved that
dimN (A4,) =0 foralll<p< oo,

that is, the mapping A, is injective for all 1 < p < oo.
Therefore, it is also surjective for 1 < p < oo, since we have, by
assertion (23.13),

ind A, = dim N(A,) — codim R(A,) = 0.
Step 4: Summing up, we have proved that the mapping
A, = (A, B): W2P(Q) — LP(Q) @ B'~Y/P?(5Q)

is an algebraic and topological isomorphism for all 1 < p < oco. In-
deed, the continuity of the inverse of A, follows immediately from an
application of Banach’s open mapping theorem (Theorem 2.39).

The proof of Theorem 23.2 is complete. O

23.4 Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. To do so, we have
only to verify all conditions (a) through (d) in Theorem 21.9 with

K :=Q,
CO(K) = 0(6)7
A:=%2,.

The proof is divided into four steps.

Step 1: First, we prove that, for each o > 0, the equation (al —A)u =
f has a unique solution u € D(2,) for any f € C(Q).

By applying Theorem 23.2, we obtain that the oblique derivative prob-
lem

(e — A)u= f almost everywhere in ,
L,u=0 on 0N

has a unique solution
u € W2P(Q)

for any f € LP(Q) with n < p < co. In particular, for any f € C(Q)
there exists a function u € W2P(Q) such that

(a—Au=f inQ.
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Hence we have the assertion
Au=au— feC(Q).
By formula (1.5), this proves that
u€ D),
{(OJ —A)u=f.
Step 2: Secondly, we prove that, for each a > 0, the Green operator
GY, = (al —2A,)~! is non-negative on the space C(9):
feCc@), f(z)>0 inQ = u(z)=G%f(z) >0 in Q.
More precisely, we prove the following assertion:

feCc®), f(x)>0, f(x) 20 inQ (23.15)
= u(xr) =G%f(x) >0 onQ.

Since we have the assertions

u € W2P(Q) for n < p < oo,
(A—a)u=—f <0 almost everywhere in Q,
L,u=0 on 012,

by applying Theorem 23.5 we obtain that either u(x) is a non-negative
constant function or u(z) > 0 on Q. However, if u(z) = 0 in €, then it
follows that

f(x)=(a—Au(x) =0 in Q.

This contradiction proves that either u(z) is a positive constant function
or u(x) > 0 on Q; that is,
G¥f(z) >0 on .

Step 3: Thirdly, we prove that, for each o > 0, the Green operator
G = (aI—2A,)~ ! is bounded on the space C(Q2) with norm 1/a: ||G%| <
1/a.

By assertion (23.15), it suffices to show that

aG%1(x) <1 on Q.

If we let
v(z) == aGh1(z) — 1,
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then we have the assertions
ue€ W2P(Q) forn < p < oo,
(A—a)v=0 1inQ,
L,v=0 on 0f).
By applying Theorem 23.5 to the function —v(z), we arrive at a contra-
diction that

maxv >0 = v(z)=0 in Q.
Q

This proves that

that is,
aG¥1(z) <1 on Q.

Step 4: The closedness of %, is an immediate consequence of the
boundedness of G4 = (aI—2l,)~!. Indeed, it suffices to note the formula

A, =l — (GY) 7",
Step 5: Finally, we prove that the domain D(2(,) is dense in C(Q).

More precisely, we prove that

lim [[aGgu —ullgg =0 forany u € C(Q). (23.16)

a—+oo

Step 5-1: It suffices to prove assertion (23.16) for any v € C?(Q2) such
that L,v = 0 on 9. In fact, we have the following density theorem (see
[4, Lemma 3.2]):

Lemma 23.6. Let u € C(Q). For any given ¢ > 0, we can find a
function v € C*(Q) such that

Ju = vl << o)
L,o=0 on 0.

Proof. First, it follows from an application of the Weierstrass approxi-
mation theorem that there exists a polynomial g(z) such that

€
- o < =
[u gHC(Q) 9

Secondly, we can construct a function h(z) € C?(Q) such that (see

Lemma 17.1)
h=0 on 09,
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oh 1

on  p(x
1Pl

) L,g on 09,
<&
2

This implies that

Oh

Luh = pa') g+ B(') - b+ 2 = ')

=1L,g on 0.

Therefore, it is easy to verify that the function v(z) = g(x) — h(z)
satisfies the desired conditions (23.17).
The proof of Lemma 23.6 is complete. O

Step 5-2: To prove assertion (23.16) for any v € C?(Q) such that
L,v = 0, we introduce an extension é\’;’é of the Green operator G, to
the space LP(Q2) for N < p < co. By applying Theorem 23.2, we obtain
that the oblique derivative problem

(a — A)u = f almost everywhere in Q,
L,u=0 on 0f)

has a unique solution u € W2?(Q) for any f € LP(Q). If we let
ui=G¥%f,

then it is easy to verify that the operator @:; is an extension of G¥ to
LP(€2). Moreover, just as in Steps 2 and 3 we can prove the following
two assertions (A) and (B):

(A) The operator G¥: LP(Q) — C(%) is non-negative.

(B) The operator Gg: L>(Q) — C(9Q) is bounded with norm 1/a:
1GEll < 1/a.

The operators G¥, and GTQ can be visualized as follows:
First, since a¥ (), b*(x), c(x) € L>(Q) and v € C2(Q), it follows that

o v "~ Ov
17 i 0o
Av = E a(x) 07 + E b*(x) z +c(x)v € (). (23.18)

Thus, if we let

w = aG%v + G%(Av),
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D(@Y) = L7(Q) —Z C(@)

D(Gy) =C(Q) —— D)

Fig. 23.2. The operators G, and évg

then we have the assertions
weW2P(Q)NCHQ) forn < p< oo,
(A—a)w=(A—a)v almost everywhere in ,
L,w=0 on 01,
and so
w—ve€W?2P(Q)NC(Q) forn <p< oo,
(A—a)(w—v)=0 almost everywhere in (2,
L,(w—v)=0 on 0f).

By applying Theorem 23.2 to the function w(x) — v(z), we obtain that

w—ov =0 1in Q. This implies that
v=w=aGLv+ @(Av).

Therefore, the desired assertion (23.16) for any v € C%(Q) such that
L,v = 0 follows from an application of assertion (B) and assertion

(23.18), since we have, for all a > 0,
. —~ 1
lv = aGvllo = 1Ga(AV) @) < S llAvlL= ().

Now the proof of Theorem 1.2 is complete.

23.5 Proof of Remark 1.2

Finally, we prove that the domain
DR,) = {ueW>P(Q): Au € C(Q), Lyu=0on 00}

is independent of p, for n < p < co.
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We let
Dy = {u e W*?(Q): Au € C(Q), L,u=0on 00} .
In order to prove Remark 1.2, it suffices to show that
Dy, =Dp, forn < pi <ps <oo.
First, it follows that
Dp, C Dy,
since we have the assertion
LP2(Q) C LPr(Q) for pa > p1.
Conversely, let v be an arbitrary element of D,, :
veWP(Q), AveC(Q), L,u=0on Q.
Then, since we have the assertions
v, Av e C(Q) C LP2(Q),
it follows from an application of Theorem 23.2 with p := p, that there
exists a unique function u € W2P2(2) such that
(A-—a)u=(A—a)v inQ,
{Ll,u =0 on 0f).
Hence we have the assertions
u—v € WP (Q),
(A—a)(u—v)=0 in
L,(u—v)=0 on Of.

Therefore, by applying again Theorem 8.5 with p := p; we obtain that
u—v =0, so that v = u € W?P2(Q). This implies that

v € Dy,.

The proof of Remark 1.2 is complete. O

23.6 Notes and Comments
Section 23.2: Theorem 23.1 is inspired by Maugeri—Palagachev—Softova
[47, Theorem 2.2.1].

Section 23.3: Theorem 23.2 is adapted from Maugeri-Palagachev [46,
Theorem 4.1] and Maugeri-Palagachev—Softova [47, Theorem 2.2.2].
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Section 23.3: The proof of Theorem 1.2 is adapted from Taira [78,
Subsection 4.3].



24

Feller Semigroups and Boundary Value
Problems

The purpose of this chapter is to prove a general existence theorem for
Feller semigroups in terms of boundary value problems (Theorem 24.9),
following the main idea of Taira [73, Section 9.6] and [79, Chapter 10]
(cf. Bony—Courrége—Priouret [11], Sato—Ueno [62]). Intuitively, Theo-
rem 24.9 asserts that we can “piece together” a Markov process on the
boundary 02 with A-diffusion in the interior {2 to construct a Markov
process on the closure Q = QU 9N (see Remark 24.5).

Let ©Q be a bounded domain in Euclidean space R™, n > 3, with
boundary 9 of class C1'!. Let A be a second-order, elliptic differential
operator with real discontinuous coefficients of the form

Au = Z a’(z 530 8:3] ;bl &rl (x)u. (1.1)

ij=1

We assume that the coefficients a/ (z), b*(x) and c(z) of the differential
operator A satisfy the following three conditions (1), (2) and (3):

(1) a¥(xz) € VMONL*>®(Q), a¥(x) = a/(x) for almost all x € Q and
1 <i4,5 < n, and there exist a constant A > 0 such that
1 n .
FIEP < > a(@)gg; < Mgl
i,j=1
for almost all x € Q and all £ € R™.

(2) bi(z) € L=(Q) for 1 <i < n.
(3) ¢(x) € L™(Q2) and c(x) < 0 for almost all z € Q.

Let L be a first-order, Ventcel’ boundary condition of the form

L= () % 4 Ba’) ot Ay — ) (Aulon) (1)

603
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= Lyu — §(2')(Aulsq) on 9.

We assume that the coeflicients u(z’), 8(z'), y(z') and §(z) of the
boundary operator L satisfy the following four conditions (4), (5), (6)
and (7):

(4) p(z') is a Lipschitz continuous function on 9 and u(z’) > 0 on
1793

(5) B(a') is a Lipschitz continuous vector field on 9f.

(6) y(«') is a Lipschitz continuous function on 92 and ~v(z') < 0 on

0.

(7) 0(2") is a Lipschitz continuous function on 92 and §(z’) > 0 on
0.

(8) n = (n1,na,...,ny,) is the unit interior normal to the boundary

09 (see Figure 1.2).

Now we are interested in the following functional analytic problem of
construction of Markov processes with boundary conditions in probabil-

ity:

Problem. Given a differential operator A and a Ventcel’ boundary con-
dition L, can we construct a Feller semigroup {7}};>o on Q whose in-
finitesimal generator 2 is characterized by the data (A, L) 7

24.1 Green Operators and Harmonic Operators

Let n < p < 0o and a > 0. Since we have the inequality
c(z) —a < —a for almost all z € Q,

by applying Theorem 23.1 to the operator A — o we obtain that the
Dirichlet problem

{ — A)u = f almost everywhere in €, (24.1)

U= on 02
has a unique solution
u € WP(Q)

for any f € C(Q) and any ¢ € C?(9Q), since C(Q) C LP(Q2) and
C?(0Q) ¢ B> Y/Pr(9Q). Therefore, we can introduce two linear op-
erators

GO 0@) — C(Q),
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and
H, : C*(09Q) — C(Q)
as follows:

(a) For any f € C(Q), the function GO f € WP (Q) N W, (Q) is the
unique solution of the problem

{(aA)Ggff in Q,

24.2
Gf=0 on 0f. (24.2)

(b) For any ¢ € C?(92), the function H,p € W2P(Q) is the unique
solution of the problem

{(a —A)Hyp =0 inQ,

(24.3)
Hyp=0¢ on 0.

The operators GY and H, can be visualized as follows:  Here it

(@)

—

Fig. 24.1. The operator G

c(©Q)

I

B2Yrr(pQ) —He o, wre(Q)

I

D(H,) = C?*(69Q)

Fig. 24.2. The operator H,
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should be noticed that we have, by Sobolev’s imbedding theorem (see
[2, Theorem 4.12, Part II]; [80, Chapter 4]),

W2P(Q) c C1(Q) forn < p< oo,
and, by an imbedding theorem for Besov spaces (see [2, Theorem 7.34]),
C2(99Q) c B> V/PP(90) ¢ CH(9Q) for n < p < oo,

since2—n/p>1land (1-1/p)p=p—1>n—1forn<p < 0.

The operator G is called the Green operator and the operator H, is
called the harmonic operator, respectively.

Then we have the following fundamental results for the operators G,
and H,:

Theorem 24.1. Letn < p < oo and a > 0. Then we have the following
two assertions:

(i) (a) The Green operators G° are non-negative and bounded with

norm
1
e = e8] o < -

(24.4)
(b) For any f € C(Q), we have the assertion
GOf=0 onoQ.
(¢) For all o, 8 > 0, the resolvent equation holds true:
Gof —Ghf +(a—=PB)Go(GYf) =0 for feC(Q). (24.5)
(d) For any f € C(Q2), we have the assertion

lim oG f(xo) = f(xo) for every point xg € Q. (24.6)

a—+oo

Furthermore, if flaq = 0, that is, if f € Co(Q), then this conver-
gence is uniform in x € Q. In other words, we have the assertion

. 0, . =
agr}rloo aGof=f 1in Co(2). (24.7)

(ii) (e) The harmonic operators H,, a > 0, can be uniquely extended
to mon-negative, bounded linear operators on C(0Q) into C(Q),
denoted again by H,, with norm ||H,| = 1.

(f) For any ¢ € C(9R), we have the assertion

Hypo=¢ on 0.
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(g9) For all o, B > 0, we have the equation
Hop — Hpp+ (a— B)GY (Hgp) =0 for o € C(9Q). (24.8)

Proof. (i) Assertion (a): First, we show that the operators GY are non-
negative for all o > 0:

feCc@), flx)>0 inQ = G%f(z) >0 inQ.
If we let
v(z) = ~Go f(x),
then it follows that

(A—a)v=f>0 inQ,
Yov =0 on 0f).

Therefore, by applying the weak maximum principle (Theorem 8.5) with
A = A — a we obtain that

v(z) <0 in Q,
so that
GO f(x) = —v(x) >0 in Q.

Secondly, we show that the operators G¥ are bounded with norm 1/«
for all & > 0. To do this, it suffices to show that

1 _

Go1(x) < on Q. (24.4")

a
since GO are non-negative on C(Q).
If we let

u(z) == aG21(x) — 1 € W?P(Q),
then it follows that
(A—a)u(z) = —a+ (a—c(z)) = —c(z) >0 in Q,
and that

u=—1 on 0.
Thus, by applying Theorem 8.5 with A := A — o we obtain that
aG21(z) =1 =wu(x) <0 on Q.

This proves the desired assertion (24.4").
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Assertion (b): Tt suffices to note that the function
GOf € WHP(Q) N W7 ()

is the unique solution of the Dirichlet problem (24.2).

Assertion (c¢): This is an immediate consequence of the uniqueness
theorem for problem (24.1) (Theorem 23.1). Indeed, it follows that the
function

wi=Gof = Ghf + (a— B)GR(GRf) € W2P(Q)
satisfies the equation
f=(a=A)Gf + (a—B)Gif
=f-(B-A+a—-PB)Gyf + (a—B)GYSf
f
0

— [ = (a=B)G3f + (= PGy f
in Q,

and the boundary condition

u=0 on 0.
By applying Theorem 23.1 to the operator A — «, we obtain that
u=0 in .

This proves the resolvent equation (24.5) for f € C(9Q).

Assertion (d): First, let f(z) be an arbitrary function in C(Q) sat-
isfying f = 0 on 992. Then it follows from the uniqueness theorem for
problem (24.1) that we have, for all «, 8 > 0,

f—aGof =Go((B—A)f)—BGaf.
Thus we have, by estimate (24.4),
1 B
If = aGofllom < SN =Afle@ + I lcm
so that

lim ||f = aGofl| o =0

a—r 400

To prove assertion (24.6), let f(x) be an arbitrary function in C(€2)
and let g be an arbitrary point of Q. Take a function (z) € C(Q2) such
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that
0<¢(xz)<1l onQ,
P(x) =0 in a neighborhood of xzq,
Y(x)=1 near the boundary 992.
Then it follows from the non-negativity of G and estimate (24.4) that
0 < aG%(x0) +aG2 (1 — ) (z0) = aG21(z0) < 1. (24.9)

However, by applying assertion (24.7) to the function 1 —1(x) we obtain
that

lim aGO(1—)(w0) = (1 )(0) = 1.

a—r+o00

In view of inequalities (24.9), this implies that
lim oGy (xg) = 0.

a—r+00

Thus, since we have the inequality
N fle@? < fo < flle@? on,
it follows that
@G (f) (@o)| < | fllo@y aGav(xo) =0 as a — +oo.

Therefore, by applying assertion (24.7) to the function (1 — ¢(x))f(x)
we obtain that

f(zo) = (1 =) f) (x0)
lim aGY ((1—1)f) (20)

a— 400

= lim aG?f(vg) for every point zg € Q.
a—r—+00

This proves the desired assertion (24.6).
(ii) Assertion (e): First, let ¢(2) be an arbitrary function in C2(992)
such that ¢ > 0 on 0€). Then we have the assertions

(A—a)(~Hap) =0 inQ,
—Hy,p=—-p<0 on 0f.

Therefore, by applying Theorem 8.5 with A := A — « to the function
u := —H,p we obtain that

H,p>0 on Q.

This proves the non-negativity of H,.
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In order to prove the boundedness of H,
[Holl =1,

it suffices to show that

since H, is non-negative.
To do this, we remark that the function H,1—1 satisfies the conditions

(A—a)(Hal—1)=—c(x)+a>0 inQ,
H,1-1=0 on 0.

Therefore, by applying Theorem 8.5 with A := A —«a and v := H,1 -1
we obtain that

H,1(z)—1<0 in Q.
Since the space C?(992) is dense in C(99), it follows that the operator
H,: C*(09Q) — C(Q)

can be uniquely extended to a non-negative, bounded linear operator,
denoted again by H,,

Hey: C(0Q) — C(9).

Assertion (f): This assertion follows from formula (24.3), since the
space C%(9R) is dense in C(99) and since the operator H,: C(99) —
C(Q) is bounded.

Assertion (g): We find from the uniqueness theorem for problem (24.3)
(Theorem 23.1) that the desired equation (24.8) holds true for all ¢ €

C?(09). Hence it holds true for all ¢ € C(dR), since the space C?(9Q)
is dense in C(01) and since the operators G% and H, are bounded.
The proof of Theorem 24.1 is now complete. O

Summing up, we have the following diagrams for the Green operators
G%: C(Q) — C(Q)
and the harmonic operators
H,: C(0Q) — C(Q).

The operators G and H,, can be visualized as follows:
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c@)

I

0
C@) —Z2 W2P(Q) N WEP(Q)

Fig. 24.3. The operator G%,

cQ) —Hey @

I I

B> V/rr(pQ) —Ho s w2e(q)

Fig. 24.4. The operator H,

24.2 General Boundary Value Problems

Now we consider the following general boundary value problem in the
framework of the spaces of continuous functions:

{(a—A)u:f in Q,

(24.10)
Lu=0 on 0f2.

To do this, we introduce three linear operators associated with problem
(24.10).
Step (I): First, we introduce a linear operator

A 0@Q) — C(Q)

as follows:
(a) The domain D(A) of A is the space
DA) ={ueW??(Q): Aue C(Q)} (n<p<oo).
(b) Au = Au for every u € D(A).
Then we have the following;:

Lemma 24.2. The operator A is a densely defined, closed linear oper-
ator in the space C(Q).
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Proof. First, by the definition of A and %I, it follows that (see Table
24.5)
A, C A

This proves the density of the domain D(A) in C(Q), since the domain
D(2L,) is dense in C(f2) (see assertion (23.7)).

DA) —2 c@)

T Ay

DR,) —=— C(Q)

—~

Fig. 24.5. The operators 2, and A

Now, let (u,v) be an arbitrary element of the product space C(Q) @

C(£2) such that there exists a sequence {u,} C D(A) which satisfies the
conditions

up, — u in C(Q),
Au, — v in C(Q).
Then we have, by the boundedness of G,
G2 (Au,) = aGOuyp — uy, — aGu —u in C(Q),
and also
G%(Au,) — G2 in C(Q).
This proves that
u=aGlu— Gov € W*P(Q). (24.11)

Thus, by applying the operator o« — A to the both hand sides of for-
mula (24.11) we obtain that

(@ — A)u=ala—A)Gu — (a — A)G%v = au — v,
so that
Au=v € C(Q).
Summing up, we have proved that

u € D(A),
Au = v.
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This proves the closedness of A.
The proof of Lemma 24.2 is complete. O

Remark 24.1. The domain D(A) does not depend on p, for n < p < oo
(see Section 24.4).

The extended operators GO : C(Q2) — C(Q) and H,: C(992) — C(Q)
(o > 0) still satisfy formulas (24.2) and (24.3) respectively in the follow-
ing sense:

Lemma 24.3. (i) For any f € C(Q), we have the assertions

a3 € D(A), .

(ol — A)GO.f = f. |
(i) For any ¢ € C(9RQ), we have the assertions

Hop € D(A), (24.13)

(al — A)Hyp = 0. '

Proof. Assertion (i): If f € C(Q), then it follows from the definition of
GY that

Gof € W»P(Q),

A(GoLf) = aGof — f e C(Q).
This proves the desired assertions (24.12).

Assertion (i) If ¢ € C(09), we can find a sequence {¢;} in the space
C?(09) such that

©; — ¢ in C(09).
Hence, we have, by the boundedness of H,,
Hypj — Hap  in C(Q).
However, it follows that
Hapj € W2P(Q),
A(Hupj) = aHypj € C(),

so that

Hatpj € D(.A)

Therefore, we have proved that

Ha(pj € D(-A)v



614 Feller Semigroups and Boundary Value Problems
H,p; — Hyp in C(Q),
A(Hopj) — aHyp  in C(9).

This proves the desired assertions

Hap € D(A),
Z(HQSO) =aHyp,

since the operator A is closed.
The proof of Lemma 24.3 is complete. O

Corollary 24.4. Every function u in D(A) can be written in the form
u=GY ((al — A)u) + Ho(uloq) for each o> 0. (24.14)
Proof. We let
w=u—GY ((al —A)u) — Ho(ulsn).

Then it follows from Lemma 24.3 that the function w is in D(A) and
satisfies the conditions

(al = Aw=0 inQ,
w=20 on Of.

Therefore, we can apply Theorem 23.1 to the operator A — « to obtain
that

0=w=u—GY ((aI — A)u) — Hy(ulse).

This proves the desired formula (24.14).
The proof of Corollary 24.4 is complete. [

Step (II): Secondly, we introduce a linear operator

LGY: C(Q) — C(09)

as follows:

(a) The domain D (LG% of LGY is the space C(9).

(b) ICLf = L(GLS) = ule!) - (GO.1) + () (flo) for every f €

on
D (Tc;g)
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0
LP(Q) ey W) n WP Q) —E s C(09)

Fig. 24.6. The operator LGY

The operator LGY, can be visualized as follows: Here it should be empha-
sized that we have, by Sobolev’s imbedding theorem (see [2, Theorem
4.12, Part IIJ; [80, Chapter 4]),

GOf e W?P(Q) c C'(Q) forn <p< oo,

since 2 —n/p>1forn <p < co.
Then we have the following:

Lemma 24.5. The operators LGY: C(Q) — C(9S) are non-negative
and bounded for all a > 0.

Proof. Let f be an arbitrary function in D(LGY) = C(f2) such that
f(x) >0 on Q. Then we have the assertions

Gof € CH(Q),

GYf>0 on ©,

GYf=0 on 01,
and so

LG f(2') = L(Ga.f)()
0
= n(@) 5 (Gaf)(@') +8(2) f(a')
>0 on 0.

This proves that the operator LGY is non-negative.
By the non-negativity of LGY, we have, for all f € D(LGY),

LG\ flle@ < LGAf < LG fllo@m) on 09.

This implies the boundedness of LGY with norm
ILGS| = [IL(GED) | oo0)-

The proof of Lemma 24.5 is complete. O
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Remark 24.2. Similarly, we can prove that the operators
LGY: L*™(Q) — C(09Q)

are non-negative and bounded for all & > 0, with norm
ILGL = IL(Ge D) | oon)-

The operator LGY can be visualized as follows:

0
LP(Q) e W) nWEP(Q) —E s C(89)

Fig. 24.7. The operator LG,

The next lemma states a fundamental relationship between the oper-
ators LGY and LG% for a, g > 0:

Lemma 24.6. For any «, 8 > 0, we have the equation

LGYf —LGYf + (a— B)LGY, (G f) =0 for f € C(Q).  (24.15)
Proof. We have, by the resolvent equation
GOf— G%f + (o — B)Gg(G%f) =0. (24.5)

Therefore, the desired formula (24.15) follows by applying the operator
L to the both hand sides of equation (24.5).
The proof of Lemma 24.6 is complete. O

Remark 24.3. The equation (24.15) remains valid for f € L*>(Q):
LGYf — LGRf + (o — B)LGY, (G%f) =0, feL>(Q). (24.15)
Indeed, it suffices to note that the function
ui=GYf = GYf + (a — B)Go(GRf) € W?P(Q)
is a unque solution of the Dirichlet problem

(o« — A)u=0 almost everywhere in 2,
u=0 on 0N.
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Step (III): Finally, we introduce a linear operator

| LH,: C(09) — C(09)|

as follows:
(a) The domain D (LH,) of LH, is the space B2~'/P?(9%).

(b) LHat) = u(w’)%(Haw) +8(2") -9 +(2")y — ad(a') for every
v € D(LH,).

The operator LH, can be visualized as follows:

C(09) ey wreQ) —£ 5 c(09)

I

D(LH,) = B> ?/1P(5Q)

Fig. 24.8. The operator LH,

Then we have the following:

Lemma 24.7. For any « > 0, the operator LH,, has its minimal closed
extension LH, in the space C(05).

Proof. We apply part (i) of Theorem 21.11 with
K :=0Q, B:=1LH,.

To do this, it suffices to show that the operator LH,, satisfies condition
(8') with K := 9 (or condition (8) with K := Ky = 99) of the same
theorem.

Assume that a function ¢ in the domain D(LH,) = B>~Y/P2(9Q)
takes its positive maximum at some point x{, of 9. Since the function

H,p € W*P(Q)
satisfies the conditions

(A—a)Hap =0 inQ,
Hop=¢ on 0§,

by applying the weak maximum principle (Theorem 8.5) with A := A—a«
to the function H,v, we find that the function H,y takes its positive
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maximum at a boundary point x € 9. Thus we can apply Hopf’s
boundary point lemma (Lemma 8.7) to obtain that

(%(Hagp)(xg) <0. (24.16)

However, it should be noticed that the coefficients of the boundary con-
dition L satisfy the conditions

wu(z") >0 on 99,

y(z') <0 on 09,

§(z') >0 on 0.

Hence we have the inequality

LH(zh) = p(rh) 5= (Hap) ah) + 5(zh) - o(ah)

+ () p(wp) — ad(xg)e (o)

This verifies condition (5’) of Theorem 21.11.
The proof of Lemma 24.7 is complete. O

Remark 24.4. The closed operator LH, enjoys the following property:

If a function ¢ in the domain D (LH,) takes its positive  (24.17)
maximum at some point zj, of I, then we have the inequality
LHap(z() < 0.

The operators LH,, and LH, can be visualized as follows:

C(69)

LHq

D(LH.) ey c(o0)

I H

D(LHa) = B> 7/17(90) —— C(09)

o

Fig. 24.9. The operators LH, and LH,
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The next lemma states a fundamental relationship between the oper-
ators LH, and LHg for a, 8 > 0:

Lemma 24.8. The domain D(LH,) of LH, does not depend on a > 0;
so we denote by D the common domain. Then we have, for all o, B > 0,

LH,p — LHzp + (o — B)LGY (Hpp) =0 for every p € D.  (24.18)
Proof. Let ¢ be an arbitrary function in D (L7H5)
€D (LHp),
and choose a sequence {p;} in D(LHg) = B>~'/PP(9Q) such that

w; — @ in C(09),
LHg(pj — LHQQD in C’(@Q)

Then it follows from the boundedness of Hg and LGY that
LGY(Hpp;) — LGO(Hgyp) in C(0Q).
Therefore, by using formula (24.8) with ¢ := ¢; we obtain that
LHapj = LHsp; — (o= B)LGY,(Hpyp;)
— LHgp — (o = B)LGY(Hpyp) in C(99).
Since the operator LH, is closed, it follows that

{<p €D (IH,),
LHap = LHgp — (oo — B)LGO(Hpp).

This proves the desired equation (24.18).
Conversely, we have, by interchanging « and S,

D (L) < D (TH;).

and so

D(LH,) =D (LHg) forall a, 8> 0.

The proof of Lemma 24.8 is complete. O

24.3 General Existence Theorem for Feller Semigroups

Now we can give a general existence theorem for Feller semigroups on 0f2
in terms of boundary value problem (24.10). The next theorem asserts
that the closed operator LH,, is the infinitesimal generator of some Feller
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semigroup on 99 if and only if problem (24.10) is solvable for sufficiently
many functions ¢ in the space C(90Q):

Theorem 24.9. Letn < p < oo and a > 0. Then we have the following
two assertions:

(i) If the closed operator LH, for a > 0 is the infinitesimal generator
of a Feller semigroup on 0X), then, for each constant X > 0 the
boundary value problem

{(a—A)uzO in Q,

(24.19)
A=Lu=¢ ondfd

has a solution u € W2P(Q) for any ¢ in some dense subset of
C(09).

(ii) Conversely, if, for some constant X\ > 0, problem (24.19) has
a solution u € W2P(Q), n < p < oo, for any ¢ in some dense
subset of C(00), then the closed operator LH,, is the infinitesimal
generator of some Feller semigroup on 0S).

Proof. Assertion (i): If the operator LH,, generates a Feller semigroup
on 09, by applying part (i) of Theorem 21.11 with K := 9 to the
operator LH, we obtain that

R (M — LH,) = C(0%) for each A > 0.

This implies that the range R (A — LH,) is a dense subset of C(0f2)
for each A > 0. However, if ¢ € C(99) is in the range R (N — LH,),
and if o = (\I — LH,) 1 with ¢ € B2~1/PP(99Q), then the function

u= Hyp € WHP(Q)

is a solution of problem (24.19). This proves the desired assertion (i).
Assertion (i1): We apply part (ii) of Theorem 21.11 with K := 99 to
the operator LH,. To do this, it suffices to show that the operator LH,
satisfies condition () of the same theorem, since it satisfies condition
(8"), as is shown in the proof of Lemma 24.7.
By the uniqueness theorem for problem (24.1) (Theorem 23.1), it fol-
lows that every function u € W?2P(Q) which satisfies the equation

(¢ —A)u=0 in
can be written in the form

w=H, (u|sa), ulsg € B YPP(0Q) =D (LH,).
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Thus we find that if there exists a solution u € W?2P(Q2) of prob-
lem (24.19) for a function ¢ € C(99), then we have the formula

(M — LH,) (ulon) = ¢,
and so
p€eR(N —-LH,).

Therefore, if there exists a constant A > 0 such that problem (24.19) has
a solution u in W?2P(Q) for any ¢ in some dense subset of C(9), then
the range R (A — LH,) is dense in C'(99). This verifies condition ()
of Theorem 21.11 with ag := A. Hence the desired assertion (ii) follows
from an application of the same theorem.

The proof of Theorem 24.9 is complete. O

Remark 24.5. Intuitively, Theorem 24.9 asserts that we can “piece to-
gether” a Markov process on the boundary 9f) with A-diffusion in the
interior € to construct a Markov process on the closure = Q U 0.
The situation may be represented schematically by Figure 24.10.

Markov process on 952

Fig. 24.10. A Markov process on 952 can be “pieced together” with A-diffusion
in Q

We conclude this section by giving a precise meaning to the boundary

conditions Lu for functions u in the domain D(.A).
We let

D(L) = {u € D(A) : ulpq € D}
={ueW??(Q): Aue C(Q), ulso € D},
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where D is the common domain of the operators LH,, for all « > 0 (see
Lemma 24.8):

D=D (LHa) for all o > 0.

It should be noticed that the domain D(L) contains W2P?(Q) for n <
p < oo, since B>~Y/P?(9Q) = D (LH,) C D. Moreover, Corollary 24.4

asserts that every function w in D(L) C D(A) can be written in the
form

u=G? ((ad — A)u) + Hy (ulpn)  for a > 0. (24.14)

Then we define the boundary condition Lu by the formula

Lu = LGY, ((af — A)u) + LH, (ulsg) - (24.20)

The next lemma justifies the definition (24.20) of Lu for every u €
D(L):

Lemma 24.10. The right-hand side of formula (24.20) depends only on
u, not on the choice of expression (24.14).

Proof. Assume that
u=G" ((al — A)u) + Hy (ulon)
=Gy ((BI = A)u) + Hp (ulon)

where @ > 0 and 8 > 0. Then it follows from formula (24.15) with
f = (al — A)u and formula (24.18) with 1 := u|sq that

LGY, (ol — Ayu) + LH, (ulog) (24.21)
= LGY (ol — A)u) — (o = B)LGEG} (o — A)u)

+ LHp (uloe) — (o — B)LGY Hp (ulon)
= LGy ((BI — A)u) + LHg (uloe)

+ (a—pB) {TG%U — LGYGY (o — A)u — TGgHﬁ(ubQ)} .

However, the last term of formula (24.21) vanishes. Indeed, it follows
from formula (24.14) with a := § and formula (24.15) with f := u that

LG%u - LGY, (G%(OJ — A)u) — LGY Hp (u]aq)
= LG%u — LGS, (GZ(BI — A)u+ Hg (uloq) + (o — B)Gu)
= LGY%u — LGYu — (a — B)LGYGRu
=0.
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Therefore, we obtain from formula (24.21) that
LGY, (ol — Ayu) + LH, (ulo) = LGS ((B1 — A)u) + LHg (uloq) -
This proves Lemma 24.10. [

24.4 Proof of Remark 24.1

Finally, we prove that the domain
D(A) ={ueW>?(Q): Auc C(Q)}

is independent of p, for n < p < co.
We let

& ={ueW?*(Q): Aue C(Q)}.
In order to prove Remark 24.1, it suffices to show that
Epy =&p, forn < pp <py <oo.

First, it follows that
Epy CEpy,

since we have the assertion
LP2(Q)) C L1 () for pa > p1.
Conversely, let v be an arbitrary element of &, :
veWPH(Q), Ave C(Q).
Then, since we have the assertions
v, Av e C(Q) C LP2(Q),

it follows from an application of Theorem 22.1 with p := py and ¢ := 0
that

G ((a — Aw) € W2P2(Q). (24.22)
Moreover, we can find a sequence {p;} in C?(992) such that
©; — v]p in C(09).
Then we have the assertions
Hapj € W2P2(Q),
Hupj — Ha(v]oa) in C(9),
A(Hopj) = a Hop; — a Hy(v]oa) in C(Q).
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However, since the operator A: £,, — C(Q) is closed, it follows that

{Ha(vaﬂ) € &,, C W2P2(Q),

_ (24.23)
AHa(U|(’)Q) =« Ha(v‘ag).

Therefore, by applying Corollary 24.4 with u := v we obtain from asser-
tions (24.22) and (24.23) that
v =G%((a — Aw) + Hy(v]pq) € W2P2(Q).
This implies that
v € Ep,.

The proof of Remark 24.1 is complete. O

24.5 Notes and Comments

This chapter is adapted from Bony—Courrége—Priouret [11], Sato-Ueno
[62] and Taira [73, Section 9.6] and [79, Chapter 10].



25
Proof of Theorem 1.1

This Chapter 25 is devoted to the proof of Theorem 1.1. Let L be a
first-order, Ventcel’ boundary condition of the form

Lu = M(I')% +B(") - u+y(2)u — 0(z") (Aulog) (1.3)
= Lyu—6(2') (Aulspq) on 9.

Here the functions p(z’), 8(z'), y(«') and 6(z') satisfy the following four
conditions (4), (5), (6) and (7):

(i) p(z’) is a Lipschitz continuous function on 92 and p(x’) > 0 on
o0N.
(ii) B(z) is a Lipschitz continuous vector field on 0f2.
(iii) (') is a Lipschitz continuous function on 99 and y(z') < 0 on

onN.

(iv) d(2") is a Lipschitz continuous function on 99 and §(z’) > 0 on
o0.

(v) n = (n1,n9,...,n,) is the unit interior normal to the boundary

09} (see Figure 1.2).

The crucial point in the proof is that we consider the term
d(2") (Aulog)
of sticking phenomenon in the Ventcel’ boundary condition
Lu= L,u—4(z') (Aulsn) on 09

as a term of “perturbation” of the oblique derivative boundary condition

Lyu = p(x )% + B(x") - u+y(x')u  on ON.

625



626 Proof of Theorem 1.1

More precisely, we make use of a generation theorem for Feller semi-
groups with oblique derivative boundary condition L, (Theorem 1.2) to
verify all the conditions of a version of the Hille-Yosida theorem adapted
to the present context (Theorem 21.11) for the operator 2 defined by
formula (1.4).

25.1 End of Proof of Theorem 1.1

In this section we shall prove Theorem 1.1. To do so, we apply part (ii)
of Theorem 21.11 to the operator 2 defined by formula (1.4). The proof
is divided into eight steps.

Step 1: First, we prove that

The closed operator L, H,, is the generator of some Feller semigroup
on Jf) for any sufficiently large o > 0.
To do this, we apply Theorem 24.9 with L := L,,.

By applying Theorem 23.1, we obtain that the oblique derivative prob-
lem

(A—a)u=0 inQ,
Lyu=¢ on 90

has a unique function v € W2P(Q) for any function ¢ € B'=Y/PP(99),
if n < p < co. Here it should be noticed that we have, by an imbedding
theorem for Besov spaces (see [2, Theorem 7.34]),

CL(09) c BITYPP(90) c C(89),

since (1—1/p)p=p—1>n—1forn <p< .
Therefore, it follows that, for any function ¢ € B'~1/7P(99) there
exists a unique function ¢ € D (L, H,) = B>~Y/P?(9Q) such that

L, (Haz/]) =¢.

This implies that the range R (L, H,) is a dense subset of C(0)). Hence,

by applying part (ii) of Theorem 24.9 with A := 0 we obtain that the

operator L, H, generates a Feller semigroup on 90X for any o > 0.
Step 2: Next we prove that

The closed operator LH, generates a Feller semigroup

on 0N for any a > 0.

To do this, we apply Corollary 21.12 with K := 99 to the operator LH,,
for a > 0.
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By formula (24.13), it follows that the operator LH, can be written
as

LH, =L, Ho+ M =L, H, — ad(2'),

where
M = —aé(2'): C(0Q) — C(0N)

is a bounded linear operator. However, we find that the operator M
satisfies the following condition (') of Theorem 21.11:

(8') If ¢ € C(0f) takes a positive maximum at a point z{, of €2, then
we have the assertion

Myp(xg) = —ad(zh)P(zg) < 0.
Therefore, it follows from an application of Corollary 21.12 with
A:=L,H,, M :=—adiz),

that the closed operator LH, also generates a Feller semigroup on 0f2.
Step 3: Now we prove that

The equation (25.1)
LHy¢=¢

has a unique solution ¢ in D(LH,) for any ¢ € C(99Q); hence the

inverse m_l of LH, can be defined on the whole space C(952).

Furthermore, the operator —LHQ_1 is non-negative and bounded
on C(09Q).

Since the function H,1 takes its positive maximum 1 only on the
boundary 0f2, we can apply Hopf’s boundary point lemma (Lemma
8.7) to obtain that

%(HQI) <0 on Q. (25.2)

However, it should be noticed that the coeflicients of the boundary con-
dition L satisfy the conditions

p(z') >0 on 99,
y(z') <0 on 09,
§(z') >0 on 0.
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Hence it follows from inequality (25.2) that

LH,1(z") = u(m’)%(}[al)(m’) +y(z') —ad(z’) <0 on 09,

so that

lo =— sup LH,1(z") > 0.
/€90

Furthermore, by using Corollary 21.12 with
K:=0, 2A:=LH, M:=>1/,,

we obtain that the operator LH,, + ¢, is the infinitesimal generator of
some Feller semigroup on 9f). Therefore, since ¢, > 0, it follows from
an application of part (i) of Theorem 21.9 with 2 := LH,, + £, that
the equation

~LHy ) = (lal — (LHy + D))t = ¢

has a unique solution ¥ € D(LH, ) for any © € C(09), and further
that the operator —LH, ! ( o+ EQI)) ! is non-negative
and bounded on the space C(9%2) 1th norm

|2 = (et = (THa + )| < ei

Step 4: By assertion (25.1), we can define the Green operator G, for
a > 0, by the formula

Gof =GF — H, (THC[1 (LGg f)) for f € C(%). (25.3)
We prove that
Go = (al —20)"" for a >0, (25.4)

where 2l is a linear operator from C(Q) into itself defined as follows (see
formula (1.4)):

(a) The domain D(2) is the set

D) = {u e W*P(Q) : u € D(A), ulsg € D, Lu =0 on 9Q}.
(25.5)
(b) u = Au for every u € D(21).

Here D is the common domain of the operators LH,,, « > 0 (see Lemma
24.8).
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In view of Lemmas 24.3 and 24.8, it follows that we have, for any
fec@),
Gof =GOf — Ho (TH, ' (IGDF)) € DA),
Gafloo = ~LH, ' (LGYf) € D (LH,) =D,
LGof =LGOf — LH, (LH(X ' (LGg f) —0,

and also
(oI — A)Gof = f.
This proves that
Gof € D),
{(al —A)Gaf =,
that is,
(al —A)Gy =1 on C(Q).

Therefore, in order to prove formula (25.4) it suffices to show the
injectivity of the operator al — 2 for o > 0.
Assume that

ue D) and (ol —2A)u=0.
Then, by Corollary 24.4 it follows that the function u can be written as
u= H,(uloq) ulon € D=D (m) .
Thus we have the assertion
LH,(ulpq) = Lu=0 on o).
In view of assertion (25.1), this implies that
ulgo =0 on 09,

so that
u=Hy, (ulpg) =0 in Q.

Step 5: The non-negativity of G, (a > 0) follows immediately from
formula (25.3), since the operators G%, H,, —LH, ! and LGY are all
non-negative.

Step 6: We prove that the operator G, is bounded on the space C(£2)
with norm

—_

G|l < for all a > 0. (25.6)

«
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To do this, it suffices to show that
1 _
Gol < — on @, forall a>0, (25.7)
@

since G, is non-negative on C'(Q).
First, it follows from the uniqueness property of solutions of problem
(25.1) (Theorem 23.1) that

aGo1 + Hy1 =1+ G%(z) on Q. (25.8)

Indeed, it suffices to note that the both hand sides of formula (25.8) are
the (unique) solution of the Dirichlet problem

(a—A)u=a inQ,
ulyo = 1. in 90

By applying the operator L to the both hand sides of formula (25.8), we
obtain that

—LH,1=—L(Hal)=—L1—L(G%)+aL (G21)

= () = 3 )ele') ~ ((a") 3 G20) + 8 el

+aLlGY1
= (') pla’) (C) + LG
> aLGgl on 0f,

since Gocloq = 0 anld G% < 0 on Q. Hence we have, by the non-
negativity of —LH,

TH, (e < L on oo (25.9)
«

By using formula (25.3) with f := 1, inequality (25.9) and formula
(25.8), we obtain that

Gal = GO+ H, (-TH, ' (L(G21))
1
<G4 — Hul
o
1 1
=~ + ~Goela)
(0% «
1 _
<— on$,forall >0,
«

since both the operators H, and GY are non-negative.
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Step 7: Finally, we prove that
The domain D(2A) is dense in the space C(€2). (25.10)

Step 7-1: Before tlhe proof, we need some lemmas on the behavior of
G%, H, and —LH, as a — +oc:

Lemma 25.1. Let a > 0. Then we have, for all f € C(Q),
lim [aGYf + Hy (flon)] = f in C(Q). (25.11)

a——+o00

Proof. Choose a constant 5 > 0 and let

9:=f—Hg(flon)-

Then, by using formula (25.8) with ¢ := f|sq we obtain that
Gl — g = [aGAf + Ha (floa) — ] — BCLH (flo) . (25.12)
However, we have, by estimate (25.4),
L GoHs(floa) =0 in C(9),
and, by assertion (25.7),
lim aG% =g inC(Q),

a——+o00

since glgpa = 0. Therefore, the desired assertion (25.11) follows by letting
a — +oo in formula (25.12).
The proof of Lemma 25.1 is complete. O

Lemma 25.2. The function

% (Ho1) (2')  for a’ € 09,

diverges to —oo uniformly and monotonically as o — +o0.
Proof. First, formula (25.8) with ¢ := 1 gives that
H,1 = Hgl — (a— B)GY Hpl.
Thus, in view of the non-negativity of G% and H, it follows that
a>pB = H,1<Hzl onQ.

Since Hyl|oq = Hpllaq = 1, this implies that the functions

(,;%(Hal)(x’) for ' € 09,
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are monotonically non-increasing in «. Furthermore, by using formula
(25.6) with f := Hgl we find that the function

H,1(x) = Hgl(z) — <1 - i) GO Hpl(x)

converges to zero monotonically as @ — 400, for each interior point =
of Q.

Now, for any given constant K > 0 we can construct a function u €
W2P(Q) such that

u=1 on 09, (25.13a)
Oou

— < - . .

I = K on 002 (25.13Db)

Indeed, if m is a positive integer, by applying Theorem 23.1 to our
situation we obtain that the function

belongs to the space W2P(Q) for n < p < oo and satisfies condition
(25.13a), since we have the formula

u=(H11)" =1 on 99,
and also the assertions

u=(H1)™ € LP(Q),

S;L = m(Hll)m—l (Hll)a:i €LP(Q) forl<i<n,
0%u 4
=m (H,1)""" (H1l

+m(m—1) (Ho1)" " (H11),, (Hi1), € LP(Q) for 1 <i,j <n.

Moreover, we obtain that

ou 0

0
< — (H11) (2.
_m;gggan( 11) (27)

In view of inequality (25.16) with ¢ := 1, this implies that the function
u = (H;1)™ satisfies condition (25.13b) for m sufficiently large.
Finally, it is easy to verify that

Au = A((H11)™) € L¥(Q). (25.13c¢)
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Indeed, since we have the assertions

(A—1)H11=0 in €,
HileCHQ),

it suffices to note that

Au =m (H11)m_1 Z aij(x) (Hll)wLwJ
i,j=1

n

+m(m— 1) (HD)™ 2 S ¥ (@) (Hi1),, (Hi1),,

i

Fm (HD)™ S b @) (1), + e(e) (Hi )™

=m (N 1)" ™" (= (H11) = ¢(x) (1))
Fmlm — 1) ()™ S (@) (F01),, (L),
ij=1
=-—m (H;1)" —me(x) (H1)™ + c(x) (H )™

+m(m—1) (B )" Y a¥(x) (H11),, (Hil),, € L®(Q).

ij=1 i
We take a function u € W2P(£) which satisfies conditions (25.13a),
(25.13b) and (25.13c), and choose a neighborhood U of 99, relative to
the closure Q, with smooth boundary AU such that (see Figure 25.1)

u > on U. (25.14)

DO | =

We recall that the function H,1 converges to zero in {2 monotonically
as a — +oo. Since we have the formula

u|aQ = Ha1|aQ =1 on 89,

by using Dini’s theorem we can find a constant a > 1 (depending on u
and hence on K) such that

H,1<wu ondU\dQ, (25.15a)
a > 2||Au||Loo(Q) (2515b)

It follows from inequalities (25.14) and (25.15b) that

(A—a) (Hol —u) = au— Au
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Thus, by applying the weak maximum principle (Theorem 8.5) with
A := A — « to the function H,1 — u we obtain that the function
H,1 — u may take its positive maximum only on the boundary OU.
However, conditions (25.13a) and (25.15a) imply that

Hyl—u<0 ondU=(0U\ 00) U oK.
Therefore, we have the inequality

H,1<u onU=UUJU,

and so
0 Ju
—(Hyl) < — < —-K Q,
8n( )< Oon — on 9
since u|pa = Hallon = 1 on 0.
The proof of Lemma 25.2 is complete. O

Corollary 25.3. We have the assertion

lim -2 =o.
a— 400

Proof. Since u(z’) > 0 on 99, it follows from an application of Lemma

25.2 that the function

LH,1(2') = u(x’)a% (H,1) (z) +v(2') — ad(z’) for 2’ € 09,
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diverges to —oo monotonically as &« — 400. By Dini’s theorem, this
convergence is uniform in z’ € 9€). Hence we obtain that the function

1
LH,1(z")
converges to zero uniformly in 2’ € 9 as @ — +o00. This implies that
|-z = -
Cc(09)
1
LH,1

— 0 as a— +oo,

<|
C(09)

since we have the assertion

—LH,1(z") H 1 ,
1= < (=LH,1(z")) for all 2’ € 0.
|LH, ()] LHo1||cp0)
The proof of Corollary 25.3 is complete. O

Step 7-2: Proof of Assertion (25.10)
In view of formula (25.4) and inequality (25.6), it suffices to prove
that

. B o 210y
agrfoo laGaf = fllo@ =0 forall f e C*(Q), (25.16)

since the space C?(Q) is dense in C(Q).
First, we remark that

laGaf = Flle = |06 s — afla (T, (ZG2F)) — /|
< [|aGof + Ha (flow) = £l @)

oo (7 7285)) - |

c@)

c@)
< | aGof + Ha(floo) — fHC@)
SR
* H—aLHa <LGg‘f) B f|8QHC(aQ) '
Thus, in view of assertion (25.11) it suffices to show that
Jim [—aLTra_l (f%f) - f\ag] =0 in C(09). (25.17)

Take a constant 8 such that 0 < 8 < «, and write

f=GRg+ Hgop,
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where (cf. formula (25.14)):
g=(B—A)feL>7Q),
© = floaa € C?(09).
Then we have the assertion
LG%g=L(GY(B—A)f)=LfeC0O),
and, by Lemma 24.6 and Remark 24.3,
LGYg = LGYg — (o — B) LGY, (G}g)
=Lf — (o= B)LG(LS) € C(09).

Moreover, by using the resolvent equation (25.5) with f := g € L>®()
and the equation (25.8) we obtain that

1
GO f =G (Gh) + GAHgp = g (GRg9 — Gog+ Hpp — Hap) .

o —
Therefore, it follows that
7_1 R
~aLH, ' (IG3f) - H 25.18
o of) = floo o) ( )
@

——1 «
“lla=3 (*LHa ) (LGRg — LGog + LHsp) ta Y
B

_||_@ (_m*1)<(Lf+LH@@)—LGgg)+ﬁ

a—p
!

a—p

!

+ o

By Corollary 25.3, it follows that the first term on the last inequality

(25.18) converges to zero as o — 400. For the second term, by using

the resolvent equation (25.5) with f := 1 and the non-negativity of G%
and LGY (Remark 24.2) we find that

C(09)

2
C(09)

IN

-
H_LHa H NILf + LHppl o o0

|-ZE [ G - gl o) + a’%ﬁusoumm.

HLGg” = HL(Ggl)HC(aQ)
= e - (o~ mTGg(G%nHCW
= HL(G%I)HC(m) = ILG}]I-

Hence the second term on the last inequality (25.18) also converges to
zero as o — +oo. It is clear that the third term on the last inequality
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(25.18) converges to zero as o — +oo. This completes the proof of
assertion (25.17) and hence of assertion (25.16).

Step 8: Summing up, we have proved that the operator 2, defined
by formula (25.5), satisfies conditions (a) through (d) in Theorem 21.11.
Hence it follows from an application of the same theorem that the op-
erator 2 is the infinitesimal generator of some Feller semigroup on Q.

The proof of Theorem 1.1 is now complete. O

25.2 Notes and Comments

Section 25.1: The proof of Theorem 1.1 is adapted from [78, Section 6].
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Concluding Remarks

This book is devoted to a careful and accessible exposition of the func-
tional analytic approach to the problem of construction of Markov pro-
cesses with Ventcel’ boundary conditions in probability. More pre-
cisely, we prove existence theorems for Feller semigroups with Dirichlet
boundary condition, oblique derivative boundary condition and first-
order Ventcel’ boundary condition for second-order, uniformly elliptic
differential operators with discontinuous coefficients. Our approach here
is distinguished by the extensive use of the ideas and techniques charac-
teristic of the recent developments in the theory of Calderén and Zyg-
mund of singular integral operators with non-smooth kernels. It should
be emphasized that singular integral operators with non-smooth kernels
provide a powerful tool to deal with smoothness of solutions of partial
differential equations, with minimal assumptions of regularity on the
coefficients.

Analytically, a Markovian particle in a domain of Euclidean space is
governed by an integro-differential operator W, called Waldenfels oper-
ator, in the interior of the domain, and it obeys a boundary condition
L, called Ventcel” boundary condition, on the boundary of the domain.
The Waldenfels operator W takes the form of the sum of a differential
operator A and an integro-differential operator S. The operator A is
called a diffusion operator which describes analytically a strong Markov
process with continuous paths in the interior of the domain, while the
operator S is called a Lévy operator which is supposed to correspond to
the jump phenomenon in the interior of the domain. Probabilistically, a
Markovian particle moves both by jumps and continuously in the state
space and it obeys the Ventcel’ boundary condition which consists of six
terms corresponding to the diffusion along the boundary, the absorption
phenomenon, the reflection phenomenon, the sticking (or viscosity) phe-

638
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nomenon and the jump phenomenon on the boundary and the inward
jump phenomenon from the boundary.

For general results on generation theorems for Feller semigroups, we
give the following two overviews:

Diffusion operator A Lévy operator S proved by
Smooth coefficient case Null [73]
Smooth coefficient case General case [79]
Smooth coefficient case =~ Holder continuous case [74], [80]
VMO coefficient case General case [75], [77]
VMO coefficient case Null [75], [83]

Table 26.1. Generation theorems for Feller semigroups via the theory
of pseudo-differential operators

Ventcel’ condition L using the theory of proved by
Second-order case Pseudo-differential [73]
operators
General case Pseudo- [79]
differential
operators
Degenerate Robin Pseudo- [83], [80]
condition L, differential
operators
Dirichlet case Singular [77]
integral
operators
first-order case Singular [83]
integral
operators

Table 26.2. Generation theorems for Feller semigroups via the theory
of singular integral operators

Here the boundary condition L, of Robin type is given by the formula

Lyu:= u(x’)—z +v(2)u  on 99,
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where the coefficients u(2’) and y(a') satisfy the following three condi-
tions (i), (ii) and (iii):

(1) w(z') is a smooth function on 99 and p(z") > 0 on ON.

(ii) (") is a smooth function on 9Q and v(z’) < 0 on 99.
(iii) p(z") + |y(z")] > 0 on ON.

It should be emphasized that L, becomes a degenerate boundary con-
dition from an analytical point of view. This is due to the fact that
the so-called Shapiro—Lopatinskii complementary condition is violated
at the points 2’ € 9Q where p(z’) = 0 (see [3], [35], [44], [80], [98]).
The intuitive meaning of hypothesis (iii) is that either the reflection
phenomenon or the absorption phenomenon occurs at each point of the
boundary 9. More precisely, condition (iii) implies that absorption
phenomenon occurs at each point of the set

M = {2 € 0Q : u(z") = 0},
while reflection phenomenon occurs at each point of the set
IO\ M ={2' € 9Q : u(z') > 0}.

In other words, a Markovian particle moves continuously in the space
Q\ M until it “dies” at the time when it reaches the set M (see Figure
26.1).

M = {pu(z") = 0}
Fig. 26.1. A Markovian particle dies at the time when it reaches the set M

We give a simple example of the functions u(z’) and (z') in the three
conditions (i), (ii) and (iii) in Euclidean plane R?:

Example 26.1. Let

Q= {(z1,22) eER*: 27 + 23 < 1}
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be the unit disk with the boundary
00 = {(z1,22) ER* 12} + 23 =1}.

For a local coordinate system z; = cosf, x5 = sinf with 6 € [0,27] on
the unit circle 92, we define two functions p(z1,x2) and y(x1,z2) as
follows:

puwy, w2) = pu(cosf,sin0)

2 1
e (1—e”+93> for 6 € [0,%],

[
_ )1 forﬂe[%,w],
e%+"‘137” (1 — e%fﬁ) for 0 € [7r, 37’1,
0 for 6 € [3F, 2],

and

Y(z1,22) = p(x1,22) —1 on I
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Appendix 1

A Short Course to the Potential Theoretic
Approach

In this appendix, follwing faithfully Gilbarg-Trudinger [33] we present
a short introduction to the potential theoretic approach to the Dirichlet
problem for Poisson’s equation. The approach here can be traced back to
the pioneering work of Schauder [65] and [65] on the Dirichlet problem for
second-order, elliptic differential operators. This appendix is included
for the sake of completeness and most of the material will be quite
familiar to the reader and may be omitted.

A1l.1 Hoélder Continuity and Holder Spaces

Let Q be an open set in Euclidean space R”. First, we let
C(2) = the space of continuous functions on €.
If k is a positive integer, we let
C*(Q) = the space of functions of class C* on Q.
Furthermore, we let

C(Q2) =the space of functions in C'(Q) having continuous extensions
to the closure Q of €.

If k is a positive integer, we let

C*(Q) = the space of functions in C*(£2) all of whose derivatives

of order < k have continuous extensions to ).

Let 0 < a < 1. A function u defined on 2 is said to be uniformly

645
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Hélder continuous with exponent « in Q if the quantity

is finite. We say that u is locally Holder continuous with exponent «
in Q if it is uniformly Hoélder continuous with exponent a on compact
subsets of 2.
If 0 < o < 1, we define the Holder space C*(€2) as follows:
C(€Q) =the space of functions in C'(2) which are locally Holder

continuous with exponent « on €.
If £ is a positive integer and 0 < a < 1, we define the Hélder space
Ck*+(Q) as follows:
C*re(Q) = the space of functions in C*(Q) all of whose k-th order

derivatives are locally Holder continuous with exponent «

on €.
Furthermore, we let

C*(Q) = the space of functions in C(Q) which are Holder

continuous with exponent a on €2,
and

C*+(Q) = the space of functions in C*(Q) all of whose k-th order
derivatives are Holder continuous with exponent «
on Q.
Let k£ be a non-negative integer and 0 < a < 1. We introduce various
seminorms on the spaces C*(2) and C*+%(Q2) as follows:

[u]k,O;Q = }Dku|0AQ = sup sup |Dﬁu(x)| , (A.1.2a)
’ z€Q |B|=k

[y 00 = [DFu] . = sup [Du] . (A.1.2b)

T 1Bl=k ’
We can define the associated norms on the spaces C*(Q) and C*+(Q)

as follows:
k

lull or oy = luly,g = Z ‘Dju|0;ﬂ, (A.1.3a)
3=0
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||UHck+a(Q) = |u|k,a;Q = |u|k;Q + I:Dku}a;ﬁ' (A.1.3b)
Moreover, if 2 is a bounded domain in R™ with the diameter

d :=diam Q = sup |z —y],
x,y€en)

then we can inroduce non-dimensional norms |[ul|cr () and [[ul|cr+a o)
equivalent respectively to the norms [|u|ck (o) and [[ul|cr+a () as follows:

k
j=0
k . .
[ullersaiy =D & [D7uly g+ d* [DFu] . (A.1.4b)
§=0

Then we have the following claims:
Claim 1.1. If Q is bounded, then the space C*(Q) is a Banach space
with the norms || - ||cr o) and || - ||/ck(sz)'
Claim 1.2. Tf Q is bounded, then the Holder space C¥+(Q)) is a Banach
space with the norms || - [|cr+a(q) and || - ||’Ck+ﬂ(Q).
Claim 1.3. Let Q be a bounded domain in R™ with smooth boundary
09). Let k, j be non-negative integers and 0 < «, 8 < 1. Assume that

j+B8<k+a.

Then the injection
Crre(Q) c CIHR(Q)

is compact (or completely continuous) ([33, Chapter 6, Lemma 6.36]).

A1.2 Interior Estimates for Harmonic Functions

First, by differntiating the Poisson integral we can obtain the follow-
ing interior derivative estimates for harmonic functions ([33, Chapter 2,
Theorem 2.10]):

Theorem 1.1. Let Q be an open set in R™ and let Q' be open subset of
Q that has compact closure in :

Q e .
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If u(zx) is harmonic in §2, then we have, for any multi-index a,

lev]
n
sup [D*u(o)] < (“51) " sup uto). (A.15)
e €N
where
d = dist (',00).
Proof. We only prove the case where |a| = 1. We assume that (see

Figure A1.1)
B:=B(y,R) c Q' € Q.

Fig. A1.1. The domains Q and Q'

First, we recall the mean value theorem for harmonic funtions (The-
orem 5.5). Since u is harmonic in €, it follows that

A(Dju)=D; (Au) =0 in Q.

Hence, by applying the mean value theorem (Theorem 5.5) to D;u we
obtain from the divergence theorem (Theorem 5.2) that

R”wn / D;u(x wnR u(z) v;do(z).

Then we have the inequality

D;u(y

D) € g [ () ldo(z) < e sup [u(z)|- [ do()
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n n

= — sup |u(z)| < = sup |u(x
& sup fu(z)| <  sup fu(a)|

< = sup u(=)|
< —sup|u(x)].
RmEQ

By letting R 1 d,, = dist (y, 0f2), we obtain that
IDiu(y)| < — sup |u(z)| for all y € Q.
dy e
We remark that

< for all z € &',

.1
d. ~d

Hence we have the inequality

|Diu(z)] < n sup |u(z)| for all z € Q.
d e

This proves the desired interior estimate (A.1.5) for |a| = 1.
The proof of Theorem 1.1 is complete. O

A1.3 Holder Regularity for the Newtonian Potential

We consider the fundamental solution I'(x — y) for the Laplacian in the
case n > 3:

Fle—y)=T(lz—yl) = mkwyf*". (A.1.6)
Here
- 2rm/2
N CYE)

is the surface area of the unit ball in R"™.
Then we have the following formulas for the fundamental solution

Iz —y):

or 1 n
Dil'(z —y) = G (z,y) = o (i —yi) lv —yl ", (A.1.7a)
o*r
D;D;I'(x —y) = ———(z,9) (A.1.7b)
J 83@(’)%
1

= {lz — y|*6ij — n(xi —yi) (x5 —y;) e —y| "2,

We remark that the fundamental solution I'(x—y) is harmonic for x # y:

— 0°T
AIF(x—y):Z@(ﬂc—y):O for x # y.
i=1 0
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By formulas (A.1.7), we have the following estimates for the funda-
mental solution I'(z,y):

1 —n
|DiI'(x — y)| < wfla?fyl1 , (A.1.8a)
|DiD;INz — y)| < wi lz—y|™". (A.1.8D)

Claim 1.4. Let Q be a smooth domain with boundary 9. If u € C?(Q),
then we have the Green representation formula

w(y) (A.1.9)
or ou
= [ (405w~ 3o w) dote) + [ Ky duteas
for y € Q.
Here
vV = (V17...,l/n)

is the unit outward normal to 0.

Proof. We shall apply Green’s formula (5.4b) for the fundamental solu-
tion I'(z,y).

Let y be an arbitrary point of 2. We replace the domain ) by the
punctured domain Q\ B, where B, = B(y, p) is a sufficiently small open
ball of radius p about y (see Figure A1.2). By applying Green’s formula

B, =B(y,p)

N

Fig. A1.2. The punctured domain Q \ B,

(5.4b) to our situation, we obtain that

/ I'(z,y)Au(z) dx (A.1.10)
O\B,
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ou or
= Ia Gy 9L
[ (rea e - s ) doto

+ /aBp (F(x,y)g:j(a:) - u(x)gi(%y)) do (z).

However, we have, as p | 0,

@
aB, 31/

P> 1
< P L D
S @ nw, P Sgpl ul

P

= (Sup |Du|> — 0.
2—n B,

On the other hand, since we have the formula

[ rengemdet =ri) [ @)
9B,

n

Z (yi — x3) % on the sphere 0B, = 0B(y, p),

i=1 v

0 1
ow  p
it follows that

ar
%(1’7y)

_wnpn—l
Hence we have, as p | 0,

or 1
|, 1) g ot = -

Wn, pn— 1

Indeed, by the continuity of u it suffices to note that

1
wyp T /aBp ) dota) = ul)
1
= G |y, () 0

651

/ u(z)do(x) — —u(y).
0B,



652 Appendiz A

S / () — u(y)| do(z)
OB

P

1
o (o =) [, aeto

= sup |u(z)—u(y)]— 0 asplO.
lz—yl=p

IN

Therefore, by letting p | 0 in formula (A.1.10) we obtain the desired
Green representation formula

u(y)
= /BQ <u(w)gf:(x7y) - F(x,y)?jj(x)) do(z) +/QF(:v,y)Au(x) dx.

The proof of Claim 1.4 is complete. O

Now we study some differentiability properties of the Newtonian po-
tential of a function f(z)

w(z) == (% f) (z) = / F(x—y) f(y) dy

in an open subset Q of Euclidean space R".
First, we obtain the following ([33, Chapter 4, Lemma 4.1]):

Lemma 1.2. Let f(x) be a bounded and integrable function in Q). Then
it follows that

w(@) = [ I =y) fw)dy € C'(@),
Q
and we have, for any x € Q,
Dw(z) = / D;I'z—y) f(y)dy, 1<i<n. (A.1.11)
Q

Secondly, we obtain the following ([33, Chapter 4, Lemma 4.2]):

Lemma 1.3. Let f(x) be a bounded and locally Holder continuous func-
tion with exponent 0 < a < 1 in Q). Then it follows that

w(z) = [o Iz —y) f(y)dy € C*(Q),
Aw = f in Q.

Moreover, take an arbitrary smooth domain Qg that contains €2, and let
v = (v1,va,...,Vs) be the unit outward normal to 0Qy and let do be
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the surface measure on 09y (see Figure A1.3). Then we have, for any
T € Q,

DiDsw(x) = | DD, —y) (1) - £) dy (A.1.12)

— f(x) . Dil’(z —y)vi(y)do(y), 1<ij<n,

where fV is the zero-extension of f outside €):

0 B flz) inQ,
)= {o in Qo \ Q.

Fig. A1.3. The domains 2 and Qg

A1l.4 Holder Estimates for the Second Derivatives
We start with the following basic estimate ([33, Chapter 4, Lemma 4.4]):

Lemma 1.4. Let By = B(xzg, R) and B2 = B(xzg,2R) be concentric balls
in R™ (see Figure A1.4). For a function f € C*(Bg) with 0 < a < 1,
we let w(xz) be the Newtonian potential of f in Bay:

Then it follows that
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and we have the interior estimate

|D2w|:),oc;Bl S c |f

s (A1.13)
that is,
|D2w|0731 +(2R)* [D*w], , <C (|f|o,B2 + (4R)" [f]a;Bg) ,

with a constant C' = C(n,a) > 0.

Fig. A1.4. The concentric balls By and B2

We can prove the following interior Holder estimate for solutions of
the Poisson equation ([33, Chapter 4, Theorem 4.6]):

Theorem 1.5. Let Q be a domain in R™ and let f € C*(Q) with
0 < a < 1. If a function u € C?(Q) satisfies the Poisson equation

Au=f inQ,
then it follows that
u € C?T(Q).
Moreover, for any two concentric balls (see Figure A1.5)
B; = B(zg,R), Bs = B(z0,2R) € ,
we have the estimate
[0l s, < € ([ulogs, + 4R 1Flf o) - (A114)
that is,
|ulg. 5, + (2R) | Duly. 5, + (2R)* | D? + (2R)** [D?]

u’O;Bl a; By
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< O (luls, + AR [flo 5, + AR)* [flo,)

with a constant C' = C(n,a) > 0.

Fig. A1.5. The concentric balls By and Bs in 2

Let Q be an open set in R"™. For z, y € ), we let
d, = dist (x,09),
dy,y = min (dg, dy) .

If k£ is a non-negative integer and 0 < o < 1, then we introduce various
interior seminorms and norms on the Holder spaces C*(2) and C*T(Q)

as follows:
[}, 0.0 = [0, = sup sup df |DPu(z)], (A.1.15a)
. T weQ|Bl=k
k
Ul =D U0 (A.1.15b)
j=0

« DB _ DB
[u} .o = SUp sup df,za| u(z) u(y)|’ (A.1.15¢)

T cyeqp=k |z =yl
Ul 00 = lulio + [k ao - (A.1.15d)

Claim 1.5. (i) If Q is bounded with d = diam €, then we have the
inequality

|ul} qs0 < max (1,dF) Jul, . - (A.1.15')
(i) If Q' € Q with o = dist (2, 01), then we have the inequality

min (1,0°*) Jul, o0 < [ul} 0 - (A.1.15")
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Moreover, we introduce a seminorm on the Holder space C*(Q) as
follows:

f@) = fw)l

|z — y[>

F18) 0 = sup d¥ | f(a)] + sup dite (A.1.16)
e €

z,y

Then, by using Theorem 1.5 we can obtain a Schauder interior esti-
mate for a general domain Q ([33, Chapter 4, Theorem 4.8]):

Theorem 1.6. Assume that a function u € C%(Q) satisfies the equation
Au=f inQ

for a function f € C*(Q). Then we have the interior estimate

* 2
[l .02 < C (Iulog + 1/15h0) (A.1.17)
with a constant C' = C(n,a) > 0.
Proof. We have only to consider the case where
(2)

lulg,, < 00, 1526 < oc.

The proof is divided into two steps.
Step 1: For each point z of Q, we let (see Figure A1.6)

R:=-d, = é dist (z, 0Q) ,
1),

Bl = B(!L‘
By := B(z,2R).

1
3

Q

Fig. A1.6. The concentric balls B; and Bs in {2

Then we have, by estimate (A.1.14),

dy |Du(z)| + dZ | D*u(z)| < 3R |Duly. 5, + (3R)* |D? (A.1.18)

“|0,31
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<C <|U‘o;32 + R? ‘f|6,a;32>
< C (Julog + 11130,) -
However, we have the estimate
B2 flh iy = B (1l + AR) [flus,) < CUAACLG (A119)
Indeed, since we have the inequality
R = %dm <d, forall z € B>,
it follows that

R? sup |f(2)| < sup d2|f(2)| < supd; |f(z)|.
z2EB>o z2EB> zeN

Similarly, since we have the inequality
1
R= §dz <d,w =min(d,,dy,) forall z, we By,
it follows that

el = F@) _ aalf(2) = )

< sup
|z — w|* sweBy L |z —wl|®
<y e 2 = fW)
z,y€QN oy |z — w|®

Hence we have the inequality

2
R2|fl s, < C 150 -

Therefore, by combining inequalities (A.1.18) and (A.1.19) we obtain
that

[uly.q = |ulg.q + sup dy |Du(z)| + sup d2 |D2u(:c)| (A.1.20)
’ ’ zEQ rEQ

<C <|“‘o;sz + ‘f|£)2iﬂ> .
Step 2: We assume that d, < d, for z, y € Q, so that
dy =dyy =3R forz, yecQ.
Then it follows that

|D*u(z) - D*u(y)| _ [[D*],p, if y € By,
|z —ylo A (|D?u(2)| + [D?u(y)]) ify € Q\ By.
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Hence we have, for x, y € €,

|D?u(z) — D*u(y)|
|z =yl
< (3R)** [D*u]

2+
diy

(A.1.21)
wp, T3 (BR) )? (|D?u(x)| + | D*u(y)]) .

However, by using inequalities (A.1.14) and (A.1.19) we can estimate
the first term on the right-hand side of inequality (A.1.21) as follows:

(3R [D%u], . < C (lulgys, + B |1 o, )
< C (lulyo + 11500 -

On the other hand, by using inequality (A.1.20) we can estimate the
second term on the right-hand side of inequality (A.1.21) as follows:

3R)? (|D?u(z)| + |D?uly)|) < Gsup d2 | D*u(z)| < 6 Jul;, o

<C(‘U|OQ+|f|OaQ)

Summing up, we obtain that

o |D?u(x) — D?u(y
sup 2% x) e Wl < C (Julgo +1f100) - (A122)

The desired interior estimate (A.1.17) follows by combining inequali-
ties (A.1.20) and (A.1.22).
The proof of Theorem 1.6 is complete. O

Corollary 1.7. Let Q be an open set in R™ and let Q' be open subset
of Q that has compact closure in §:

e
Assume that a function u € C?(Q) satisfies the equation
Au=f inQ
for a function f € C*(Q). Then we have, for any 0 < d < dist (', 99Q),
+ d*t [D?u]

d|Duly.q, +d* |D? (A.1.23)

u|O;Q’

<C (|U|O;Q + |f‘((12<)19) ’

with a constant C = C(n,a) > 0.

a; QY
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Proof. For all z, y € £, we have the asertions

dy >d, dy,>d,
dyy > d.

Hence, by using estimate (A.1.17) we obtain that

d|Dulgq, +d* [ DPuly g +d*T [D%u], o,
D? — D?

< sup d |Du(z)| + sup d2 |D*u(z)| + sup di'za‘ u(z) uw)l
e e zye |l‘ - y|a

< |U‘;,a;sz/ < |U|;,a;sz
< C (Julgq + 15
— uO;Q 0,0;Q ) °

This proves the desired estimate (A.1.23).
The proof of Corollary 1.7 is complete. O

This corollary ([33, Chapter 6, Corollary 6.3]) provides a bound on
the seminorms |Dulo.qr, |D?ulo.or and [D?u]a.00 in any subset ' of
for which dist (2/,09Q) > d (see Figure A1.7).

Fig. A1.7. The domains Q and Q'

A1.5 Holder Estimates at the Boundary

The purpose of this section is to generalize Theorem 1.10 for a general
domain §2.
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First, we introduce some notation (see Figure A1.8):

R} = {(2,z,) € R" : 2, > 0},
T ={(z',2,) € R" : z,, = 0},
By = B(zg,R) ={z € R" : [z — x| < R}, z0€RY,
By = B(z0,2R) = {z € R" : |z — mo| < 2R}, =z € RY,
B = BiNR" = B(zo, R) NRY,
Bf = B, NR" = B(zo,2R) NR.

Tn

Fig. A1.8. The domains B, By and T in R
The next lemma is a generalization of Lemma 1.4 to the half space
R’ ([33, Chapter 4, Lemma 4.10]):

Lemma 1.8. If f € CQ(F;), we let w be the Newtonian potential of f
in By :

wie) = [ Ty fw)dy
By

Then it follows that

w e C*(BY),
and we have the boundary a priori estimate

!

|D2w|0,a;Bl+ <C |f|g’a;B; , (A.1.24)
that is,
‘DQw’();Bfr + R® |:D2/w:|o¢;Bl+ < c (|f|O,B; + R Lﬂa;B;) )

with a constant C' = C(n,a) > 0.



A1.5 Hélder Estimates at the Boundary 661
Proof. First, by applying Lemma 1.3 with
Q:=B{, Q:=B],
we obtain that

D) = [ DD =) ()~ ) dy

— f(z) D,I'(x —y)vj(y)do(y) in Bf.
dBF

However, it follows from an application of the divergence theorem that

Dil'(z —y)vi(y) do(y) = D;D;I'(x —y)
OB Bf

B

= [ Dil(z—y)vi(y)do(y).
oBj]

Since we have the formula
v=(0,...,0,—-1) onT,

we have, for i # n or j # n,

DiDjw(x) = - DiD;I'(z —y) (f(y) = f(2)) dy

@ [ Dyl doty) in B
OBIN\T
We remark that (see Figure A1.9)
R<|r—y| <3R forxz e Bf andy € OB \T.

Hence we can estimate the derivatives D;D;w for ¢ # n or j # n as
follows:

|DiDjw|E),a;Bf' S ¢ |f|:),a;B;r :

Moreover, it follows from an application of lemma 1.3 that the function

w@) = [ Tw—u) fs)dy
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Ty
R} OB \T

BY

0 T

Fig. A1.9. The domain By and the boundary B \ T

satisfies the equation
n—1
D, D,w(z) = f(z) — Z Dy.Dyw(r) in B .
k=1

Therefore, we can estimate the derivatives D,, D, w as follows:

n—1

|l)nl)n'w|£)7a;3;r S ‘f|i)7(y;B; + Z |l)kl)’f’w|6,a;3fr
k=1

<C |f|6,a;33' .

The proof of Lemma 1.8 is complete. O

The next theorem is a generalization of Theorem 1.5 to the half space
R’ ([33, Chapter 4, Theorem 4.11]):

Theorem 1.9. Assume that a function u € C%(By) N C’(Bi;) is a so-
lution of the Dirichlet problem

Au=f inQ,
u=20 onT

for a function f € C¢ (Bigr) Then it follows that
ue C*e(BY),
and we have the a priori estimate

[l o < C (ulogg + B |1 i) (A.1.25)

with a constant C = C(n,a) > 0.
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Proof. The proof of Theorem 1.9 is divided into five steps.

Step (I): In the proof we make use of a method based on reflection.
Namely, for each point = = (2, x,) € Bf we define the point (see Figure
A1.10)

" = (2, —z,) € By := B(z9,2R)NR".

n
R+

Fig. A1.10. The mapping z — =~

Then we have the following;:

Claim 1.6. For a function f € C* B7;r>, we consider a function f*(z)

defined on the domain (see Figure A1.11)
D =DB; UB; U(ByNT)
as follows:

faSt(:L‘) _ f*(x’,:z:n) _ {f(x/,l‘n) for xz,, > 0,

fl@', —x,) for z, <0.
Then it follows that
frec*(D),
and we have the estimate
10,050 < 4 1f1o,0:m5 -
Proof. Indeed, it suffices to note that

|f* EJ,a;D = |f*|6;D + (diam D)a [f*]o,a;p
= |f"lo.p + (diam D)* [f*] ..
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D=BfUB; U(B.NT)

Fig. A1.11. The domains B;C, T and D in R"

< | flopy + (2 diam BY)"2[f*],. 5
<4 (|f|0;32+ + (diam By )" [f*]a;B;)
=4 ‘f|i),a;Bz+ .
The proof of Claim 1.6 is complete.
Stpe (II): We let
ww) = [ (Pla=y) =T =) Fw)dy
2
Since we have the formula
2" =yl = (@' =y, 20 +yn)| = [z =y,
it follows that

w@) = [ (=)= I =3") f) do

Moreover, we have the following:

Claim 1.7. The function w(z) is a solution of the Dirichlet problem

Aw=f in By,
w =0 in T.

Proof. (1) First, we have the assertion
('@ —y) =Tz —y") [f(v)

1 1 1
T (n—2)w, (|3:—y|" N |x*_y|n> [f(@)] — 0 aszy L 0.
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Moreover, we have the inequality

[ =) - 1=y i)l

| ra=wla+ [ re —y)dy] .

2 2

< sup |f(2)]
ZEBZ,+

However, we have, for z, y € By,

| —y| <4R, |z* —y| <8R.
Hence we have the inequality

[ (0=~ 1= )y

1 1 1
d
< (n—2)wn /B;' <|$_y|n + ‘SL‘* _y|n> |f(y)‘ Yy

4R 8R
n—2 n—1 n—2, n—1
< —+— sup z T r dr—|—/ T T dr| w

~ 40R?
n—2
Therefore, by applying Beppo-Levi’s theorem we obtain that

‘f|0;32+-

lim sup / (L(x — ) - Tz — ")) f(y) dy
z,40 |JBF

<lim [ (P —y) = T =) [f@)]dy = 0.
Ty B;’

This proves that
wi@) = [ (M=) ==y fly)dy =0 on T = {a, =0}

(2) Secondly, we show that
A I(x* —y) =0 fora,ye By

Indeed, we have the formulas

2 (o oi)
=

2 —n—2
n=2) [n (22 +92) — |o* = | 2" =917,
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and

82 * 2—n

87? <|33 —y )

=(n—2) {n (-Tj _ yj)2 —|z* — y|2} |z — y|7n72

1<j<n-1.

This proves that
Al (z" —y)

= (=2 [nlz* = yl* —n o — | 2" =y
=0 forz,y€ B,

since we have the formula
n—1
o —yl? = ( — ) + () +02) -
j=1

(3) Summing up, we find from Lemma 1.3 that
Aw(z)

=A; (/]3+F(x—y)f(y)dy> -4, (/]3+F(x—y*)f(y)dy>
— 4, (/B+F(x—y)f(y)dy>

= f(x) in BS.
The proof of Claim 1.7 is complete.
Step (III): Since we have the assertion
yEBS <=y €By, fly)=f"W")

we have the formula

(z)
— /B+ (I'(x—y) —(z" —y)) f(y)dy

=2/ (x—y) f(y) dy

+
BZ

- (/f(x—y)f*(y)dw/ F(:c—y)f(y)dy>
B2

2
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~2(0 @)= [ Ia=) 7o)
However, it follows from Claim 1.6 that
f*ec*D).
If we let

w*(z) = /D Iz —y) 1*(y) dy,

667

then it follows from an application of Lemma 1.4 that (see Figure A1.12)

/

| D2 b <C |£16,0:p < 2C |f\g7a;32+ )

Therefore, by combining this inequality with Lemma 1.8 we obtain that

! ! !
|1’U|2,()¢;Bl+ <2 |F * f|27(,y;BlJr + ‘1’U*|2,(,Y;Bl+
<C <|f|o,B; + R® [f]a;B,j)
=C |f|6,(,;32+ :

Tn
N D=BfUB; U(ByNT)
RY |
Bf
Bf /
0 BanT v
By

Fig. A1.12. The domains By, B and D

Step (IV): If we let

it follows that v is a solution of the Dirichlet problem

Av=Au—Aw=0 in B,
v=20 onT.

Moreover, we have the following:

(A.1.26)
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Claim 1.8. The function
v(z', T, for x,, > 0,
Viz) =V (2, x,) = ( )
—v(z', —x,) for z, <O0.
is harmonic in D:
AV =0 in D.
Moreover, we have the estimate
|V|O;D < |U|0;B;r :
Proof. First, it follows that

AV =0 in By,
AV =0 in By,

and that
V=v=0 onByNT.
Hence we have the assertion
V e C(D)NC>(By)NC™(By).
Secondly, we show that V' is harmonic near 7" in D. To do so, let
B, :=B((«,0),r) € D

be an arbitrary small open ball of radius r about (2/,0) € T. Then we
have the formula

V(y)do(y)
a8,
= V(Y yn) do(y) — ) V(2 —z,) do(2)
8B, OB
= / V(' yn) do(y) — / V(Y yn) do(y)
OB} OBt

0.

Hence there exists a constant ¢ > 0 such that
/ V(y)do(y) =0 foralld<r <e.
9B,

Therefore, by using Green’s identity (5.4a) with Q := B, and v :=1 we
obtain that

d 1

0=~ (r”—lwn -~ V(y) dU(?J))
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d {1 ,
= (wn /5(0,1) V((z',0) 4+ rz) do(z))

1
=— z-VV ((2',0) +r2) do(z)
Wn J5(0,1)
1
=— [ LoV (@,0)+y) r'do(y)
Wn Jso,r) T
1 Yy /
— g, d
i [, LIV 0 ) dot)
1 v
= /S(O,r) 5y (@ 0) +y)do(y)
1
= m 5 AV (z) dx,

where
S0,r) ={z€eR":|z| =7}.

Since the integral of AV over any ball near 7" in D vanishes, it follows
that

AV =0 near T in D.

Summing up, we have proved that V' is harmonic in D.
The proof of Claim 1.8 is complete. O

Step (V): It remains to prove estimate (A.1.25).
(1) For the function v = v — w, we have the estimate

vlo,pr < lulo, g+ + [wly, g+
1 1 1
< |u‘o;B; +CR? |f|0;B§r :

(2) By Theorem 1.1, we have the estimate
n

R

m\? om\?
2
}D U|O;Bl+ S <R> WVlo;p, < (R) |U|O;B§'

(3) By Theorem 1.5, we have the estimate

|D’U|0;Bf <= |V

n
0;Bs < R |U‘0;B; :

[D%0] gy < CRT T Wlgp, < CRT* ol -
(4) By Theorem 1.5, we have the estimate

‘w|o;3; <CR’ ‘f|o;B; :
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For the function v = u — w, we have the estimate
Wlo,py < lulo,sy + [wlo,p}
< |U‘O;B; +CR? |f|o;B§r :
Summing up, we obtain the estimate
. 24+«
‘U‘;,Q;Bf = |U|/2;BIr + (dlam Bfr) [D2U] a;BT
< Clolopy

< C (Julg,ps + B2 [flospy )

<C (|u\0”92+ + R |f|67a;B2+) .

(A.1.27)

Therefore, the desired estimate (A.1.25) follows by combining esti-

mates (A.1.26) and (A.1.27).
The proof of Theorem 1.9 is complete.

O

Let © be an open set in R’} with open boundary portion 7" on the

boundary
{(@',z,,) e R" : x, = 0}

(see Figure A1.13). For z, y € Q, we let

d, = dist (z, 00\ T),

dy,y = min (Ex,ay) .

n
R}

Fig. A1.13. The open set 2 with an open boundary portion T'

If k is a non-negative integer and 0 < a < 1, then we introduce various
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interior seminorms and norms on the Holder spaces C*(§2) and C*T<(Q)
as follows:

* * —k
[uli 0.00r = [Wo0ur = sup sup d, |[D7u(z)|, (A.1.28)
z€Q | 8=k
k
|U|Z;QuT = Z [u]j;QUT ) (A.1.28b)
§=0

—ta | DPu(z) — DPu(y)|

[u], .. = sup sup d ) (A.1.28¢)
k,a;QUT vyeQ \B|:k T,y ‘I — y|a
|u|z7a;QUT = |U|Z;QUT + [U]Zﬂ;gu:m (A.1.28d)
and
k =k —k+ao |U(T) —uly
[l our = sup d, [u(@)] + sup dz,yaw (A.1.28¢)
o zeQ z,yeN |:L' - y|

The next theorem is a generalization of Theorem 1.6 to the half space
R’ ([33, Chapter 4, Theorem 4.12]:

Theorem 1.10. Let Q2 be an open set in R} with a boundary portion
T on {(2',x,) € R" : z,, = 0}. Assume that a function u € C*(Q) N
C(QUT) is a solution of the Dirichlet problem

Au=f inQ,
u=20 onT

for a function f € C*(QUT). Then we have the boundary estimate
[0l v < € (Julo + 115 gur ) (A1.29)
with a constant C' = C(n,a) > 0.

Proof. The proof of this theorem is similar to that of Theorem 1.6.
Step 1: For each point x of 2, we let (see Figure Al1.14)

1—
R = -d,,

3
B; := B(z, R),
By := B(z,2R),

and

B = B(z,R)NRY,
Bf = B(x,2R) NR".
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RY Bf = B,NRY

Fig. A1.14. The domains B; and B in R}

Then we have, by estimate (A.1.25),
d, |Du(x)| + d,, |D*u(x)| < 3R|Dul,p, + (3R)* [D%ul, . (A.1.30)
<C <|U‘o;32 + R? ‘f|/0,a;32> .

Moreover, if we assume that d, < Ey for z, y € Q, then it follows that

dy =dg, =3R forx, yeQ.

Hence we have the inequalities

1-2 1
R |f(@)] = 5@ |f(@)] < § 1/1Ehaur

9
and
o - Loatalf(z) = fy)] 1 @
R2d 1f(@) = ful _ i anae VAR AP R B
T |$ _ y|a 9 Y |Z‘ _ y|a -9 |f 0,a;QUT
This proves that
B |flo,0:, < C Wl - (A131)

Therefore, by combining estimates (A.1.30) and (A.1.31) we obtain
that

* 2
[ulsaur < C (Julog + 115 haur) (A1.32)

Step 2: Similarly, we assume that d, < Ey for z, y € Q, so that

dy :E%y =3R forz,ye.



A1.5 Hélder Estimates at the Boundary 673
Then it follows that

Due) — Du(y)| _ [ D], ity € B
|z —y|* 2= (|D?u(z)| + |D?u(y)]) ify e Q\ Bi.

Hence we have, for z, y € 2,

Ez-i-a |D?u(z) — D?u(y)]

2 A1.33
" |z —yl* ( )

(BR)*™ [D?u] . ps +3% BR)* (| D?u(x)| + |D?u(y)])

IN

IN

(3R)2+a [DQU}Q;BT +6 |u|;QUT.
Moreover, by using estimates (A.1.25) and (A.1.32) we obtain that

82-‘1—& |D?u(x) — D?u(y)|
oy

<C (‘“|0;B2 +R? |f|6,a;B2> +6 ‘UE;QUT

2 *
<C (‘u|0;£2 + |f|((),g¢;QUT) + 6 uly.qur
so that
—2+a |D?u(x) — D?u(y)|

su d
syt Y eyl

2 *
<C <|U‘O;Q + ‘f|é,i;32) + 6 [uly.qur -
Therefore, the desired boundary estimate (A.1.29) follows by combin-

ing estimates (A.1.32), (A.1.33) and (A.1.34).
The proof of Theorem 1.10 is complete. O

(A.1.34)

Let © be an open set in R™ with C?T® boundary portion 7. For z,
y € Q, we let (see Figure Al1.15)
d, = dist (z, 00\ T),
E%y = min (El,ay) .

If k is a non-negative integer and 0 < « < 1, then we introduce various
boundary seminorms and norms on the Holder spaces C*(Q2 U T) and
CF(QUT) as follows:

* * =k
[u]k,O;QUT = [u]O;QUT = sup sup d,, ‘Dﬂu(x)| , (A.1.35a)
©€Q | 8=k

k
|U|Z;QuT = Z [u]j;QUT ) (A.1.35b)
=0



674 Appendiz A

*

[ul} . = sup sup d ) (A.1.35¢)
k,o;QUT 2WEQ |Bl=k T,y ‘I — y|a
|U|Z7Q;QUT = |U|Z7QUT + [U]Z7Q;QUT7 (A.135d)
and
(k) a7 - =kta |u(@) — u(y))
[ulp.a.0ur = sup d, [u(x)| + sup dyy ST P— (A.1.35¢e)
o z€Q z,y€Q |z —yl

Then we can prove the following Schauder local boundary estimate for
solutions of the Dirichlet problem for curved boundaries ([33, Chapter
6, Lemma 6.5)):

Lemma 1.11. Let Q be a C*® domain in R™ with boundary 0. As-
sume that a function u € C*T*(Q) is a solution of the Dirichlet problem

Au=f inQ,
u=20 on 082

for a function f € C*(Q). Then, at each boundary point o € OQ there
is a ball B = B(xg,0) of radius § > 0, independent of xq, such that we
have the boundary estimate

[ulasmre < C (Ilo + o) (A.1.36)
with a constant C = C(n, o) > 0.

Proof. The proof of Lemma 1.11 is divided into three steps.
Step (1): First, we consider the case where

x € B'(x0) = B(zg,p) N Q.
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Fig. A1.16. The domain B’(z0) and the boundary B’ (zo) \ T

Since we have the inequality (see Figure A1.16)
d, = dist (x,0B(z0) \ T) < diam €2,

it follows that

2
1520 B oyt (A.1.37)
—2 oy x) —
= sup d,|f(x)]+ sup dx,yaiv( ) fiy)|
z€B’(z0) z,y€B’(z0) |5L‘ - y|
) —
<C s |f@)+ sp TDIW oy
z€B’(z0) z,y€B’(x0) |'T - y|
< C |f|0,o¢;Q .

On the other hand, by applying Theorem 1.10 we obtain that
|u‘;,a;B’(zo)uT <cC (|u|0;B/(rg) + |f|§2;B/(m0)UT)
<C (|“|o;ﬂ + |f|$r)x;B’(zo)UT) :
Therefore, we have, by inequality A.1.37,
[0l a5 (amyor < C1 ([l + o ) (A.1.38)
with a positive constant
C1 = Cy (n,a, B (x0)) .
Step (2): Secondly, we consider the case where

x € B"(zg) = B (xg,p/2) N .
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Fig. A1.17. The open neighborhoods B’(zo) and B"(zo) of zo in

However, we remark that (see Figure A1.17)
d, = dist (z,0B' (o) \ T) > g for all = € B” (z0),
dyy > g for all z, y € B"(xo).

Hence we have the inequality

‘ulz,a;B/(Io)UT (A139)
= sup |u(z)|+ sup d.|Du(x)|+ sup 3325 | Dau(z)|
@€ B’ (z0) z€B' () z€B’ (x0)

2+a|D?u(z) — D?
s 2 |D>u(x) ’ u(y)|
z,yEB (z0) ‘SL‘ - y|

24«
Zmin(l,p, (B> >
2°\2

><< sup |u(z)|+ sup |Du(x)|+ sup |D2u(a:)|>
zE€B'(x0) z€B’(z0) zE€B’(x0)

. P[P\
= min 1, 5, (5) |u|07a;B”(w0) :

Therefore, by combining inequalities (A.1.38) and (A.1.39) we obtain
that This proves that

[Wlo 050y < C2 (8logs + 1 Flo.ar) (A.1.40)

with a positive constant

CQ == CQ (n, a, .BI(LE())7 BN({)S())) .

Step (3): Since the boundary 9 is compact, we can find a finite
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number of boundary points {z;}}¥, and positive numbers {p;}X; such
that (see Figure A1.18)

0 T
) \-.B(@i; pi/4)

Fig. A1.18. The subdomain Q, and the ball B(x;, p;/4) about x;

We let

§:= min =,
1<i<N 4

and

— . "eo.
C:= 12525\[ Cs (n, a, B' (), B" (24)) -

then, for each boundary point xg € 92 we can find some ball B(x;, p;/4)
such that
x9 € B (%701/4) .
Hence we have the inequality
Pi _ Pi

|x—xi|§\x—x0|—|—|x0—xi|§5+z 5 for all x € B,

and so
BNOC B(xi,pi/Q) nQ = BN(LEZ').

By using inequality (A.1.40), we obtain that

|u|0,a;BﬁQ < ‘u|0,a;B”(mi) < C (|u|0;Q + I-ﬂO,a;Q) :

This proves the the desired estimate (A.1.36).
The proof of Lemma 1.11 is complete. O

Then, by using Lemma 1.11 we can obtain a Schauder global estimate
for a general domain Q ([33, Chapter 6, Theorem 6.6]):
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Theorem 1.12. Let Q be a C?T® domain in R™ with boundary 0. For
given functions f € C%(Q) and ¢ € C?*T*(Q), assume that a function
u € C*T(Q) is a solution of the Dirichlet problem

Au=f inQ,
U= on 09.

Then we have the global estimate

[ulz i < C (It + €300 + 1 Flo.asn) (A.1.41)
with a constant C' = C(n,a) > 0.

Proof. The proof of Theorem 1.12 is divided into two steps.
Step I: The homogeneous case where ¢ = 0. We show that every
solution u € C?*%(Q) of the Dirichlet problem

Auy=f in €,
u =0 on 0f2

satisfies the global estimate

[l 0060 < € (Jtlo s + o) - (A1.42)

with a positive constant C = C(n, ).
(1) First, we consider the case where

x € B(xp,6) NQ.

Here § is the positive constant in Lemma 1.11. Then it follows from an
application of Lemma 1.11 that

|D’LL(.’17)| + ‘D2U(.’IJ)‘ S |u|2,a;B(x0,5)ﬁQ (A143)
< Cs (lulgsa + 1 lyae)  for all @ € Blwo,8) N2,

with a positive constant Cs = C'(n, a, J).
(2) Secondly, we consider the case where

x € Qy:={xeQ:dist(z,00) >0}, o0:= g
Then it follows from an application of estimate (A.1.23) that
o |Dulgq, + 02Dy < C (Julog + 11
< C (Julgq +1/

)
).

0,0;9
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This proves that
|Du(z)| + | D*u(z)| < C, (|u|0;Q + |f|01a;9> for all x € Q,, (A.1.44)

with a positive constant C, = C(n, «, o).
Therefore, by combining estimates (A.1.43) and (A.1.44) we obtain
that

[uls < Csio (Il + 1Flocusr) (A.1.45)
with a positive constant Cs5, = C(n,a, 9, 0).

(3) It remains to estimate the quantity [DQu]a
(a) First, we consider the case where

Q0

z,y € B(x0,9) N Q.
Then it follows from an application of estimate (A.1.36) that
|D2u(x) — D*u(y)|

< |u|2,a;B($o,5)ﬂQ < Cl (|u|0;ﬂ + |f‘0,a;$2) .

|z —y|*
(A.1.46)
(b) Secondly, we consider the case where
z,y € Qp.
It follows from an application of estimate (A.1.23) that
D2 _ D2
oo D =D < ¢ ((uly 11) (AT
T —y ; s

<O (‘U|O;Q + |f|o,a;9) .
(¢) Finally, we consider the case where
|z —y| >0, eitherz ¢ Q, ory¢ Q.
Then it follows from estimate (A.1.45) that

|D*u(x) — D*u(y)]
|z — yl|*

S o ¢ (}D2u($)| + |D2U(y)’) g o9 |U‘2;Q
(A.1.48)
< Cs (Julgso + /om0 -

Therefore, we obtain from estimates (A.1.46), (A.1.47) and (A.1.48)
that

(A.1.49)

D2 _ D2
[Dzu] o= Sup | D u(x) u(y)|
o ERTSY |z — y[*
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Cy G )
S (Cl + O'2+a + 0’0‘) <|U|O’Q + |f|0)a;ﬂ> 9 g = 5

The desired global estimate (A.1.42) follows by combining estimates
(A.1.45) and (A.1.49).
Step II: The non-homogeneous case where ¢ € C?%(Q). Assume

that a function u € C?7%(Q) is a solution of the Dirichlet problem

Au=f in Q,
u=¢  on .

If we let
vi=u—p € C*THQ),

then the function v is a solution of the homogeneous Dirichlet problem

Av=f—Ap inQ,
v=20 on 0f).

Hence, by applying estimate (A.1.42) to the solution v = u—¢ we obtain
that

1= Pl ey < C (1t = Plosq + 1 = Aly ) - (A.1.50)
However, we have the inequalities
|A¢‘o,a;§z <C |<P|2,a;Qa
and
|u — ‘P|0,a;ﬂ < |“‘0,a;9 + |%0|o,a;Q < |u|0,a;Q + |<P|2,a;Q :
Therefore, we obtain from estimate (A.1.50) that
[ = ¢l < C (= Plogy + 1o, + Pl 0
< C (lulg s + floie + [Pl -
This proves that
|“|2,Q;Q <lu— W‘Q,Q;Q + |80‘2,a;9
< C (Julog + o a + #ls.00) -

Now the proof of Theorem 1.12 is complete. O





