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Elements of Singular Integrals

The Calderén-Zygmund theory of singular integral operators is a very
refined mathematical tool whose full power is yet to be exploited. This
chapter is devoted to a careful and accessible exposition of the most el-
ementary part of the Calderén—Zygmund theory. We present a straight-
forward treatment of the Calderén-Zygmund theory necessary for the
study of elliptic boundary value problems, assuming only basic knowl-
edge of real analysis and functional analysis.

In Section 9.1 we formulate precisely the notion of singular integrals of
Calder6n and Zygmund (Lemma 9.1). In Section 9.2 we study the case
where the integral kernel K (z) is a bounded function that satisfies as-
sumption 9.2 (Theorem 9.2). In Section 9.3 we study the case where the
integral kernel K (x) is a continuous function that satisfies assumption
9.3 (Theorem 9.5). The proof of Theorem 9.5 is based on a version of
the Calderén-Zygmund decomposition adapted to the present context
(Lemma 9.3). In Section 9.5, we introduce a non-negative, measurable
function f*(¢) defined on the interval [0,00) for a given non-negative,
measurable function f(x) on R™ such that

- f(z) dx:/o fr()P dt.

The function f*(t) is called an equimeasurable function of f(z) (Lemmas
9.8 and 9.9).

Sections 9.4 and 9.6 are devoted to the basic theory of the Hilbert
transform H that is a special case of the singular integral of a single
independent variable (Theorems 9.6 and 9.14):

Hf(x)::llim f(t)dllelim/| f(x—s)ﬁ.
s|>e

T ell Jp t|>e T —t T €l0 S
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The proofs of Theorems 9.6 and 9.14 are flowcharted in two diagrams

below.

Theorem 9.3

(bounded kernels)

Theorem 9.6

(continuous kernels)

inequality (9.29)

inequality (9.30)

Theorem 9.7

(Hilbert transform)

| Fourier transform FK ‘
(formula (9.9))

Theorem 9.3

(bounded kernels)

Parseval’s formula

Table 9.1. A flowchart for the proof of Theorem 9.6

Theorem 9.3

(bounded kernels)

Theorem 9.7

(Hilbert transform)

Theorem 9.6

(continuous kernels)

Theorem 9.15

(Hilbert transform)

Lemma 9.10
Lemma9.11

Lemma 9.13
Corollary 9.14

Lemma 9.10
Lemma9.12

Table 9.2. A flowchart for the proof of Theorem 9.1}

In Section 9.7 we study the case where the integral kernel K(z) is an
odd function that satisfies assumption 9.4 (Theorem 9.15). The proof of
Theorem 9.15 can be reduced to the study of the Hilbert transform H
(Theorem 9.14). More precisely, we have the following formula for the
odd kernel K (x) (see formula (9.83)):

K * f(x) ::liﬂr)l K(z—vy) fy)dy
€ lz—y|>e
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1/ . dt
== K(o) | lim flx —to)— | do.
2/)s, ) (‘EW |t]>e ( i )

Section 9.8 is devoted to the study of Riesz kernels (Theorem 9.16)

L((n+1)/2) =z .
(@) = —— G i 1SJsn

It is easy to see that the Riesz kernels R;(x) satisfy assumption 9.3 and
assumption 9.4.

In Section 9.9 we study the case where the integral kernel K (z) is an
even function that satisfies assumption 9.5 (Theorem 9.24). The case of
even kernels can be reduced to the case of odd kernels. In fact, we have
the following decomposition formula:

Kxf==> Rj*(R;«K)xf,

j=1
where the operators ; and R; * K have respectively the odd kernels
I((n+1)/2) =z,
Rj(z) = — r(nFD/2 [yt

I'((n+1)/2) =z;
rAD2 gt

Rj*K(iL’):—

This decomposition formula may be rephrased as follows:
{Even kernels} = {Riesz kernels} * {Odd kernels} .

In the final Section 9.10 we prove the existence of the singular inte-
gral in the general case (Theorem 9.25). The proof of Theorem 9.25 is
flowcharted as follows:

9.1 Singular Integrals of Calderén and Zygmund

Let K(x) be a real-valued, Lebesgue measurable function defined on
R™. If f(z) € LP(R™) with 1 < p < oo, then it follows that the usual
Lebesgue integral

N Kz —y)f(y)dy (9-1)
does not exist. However, under suitable conditions on the integral kernel
K (z), we can prove that the principal value of the integral (9.1)

v.p. | K(zr—y)f(y)dy =lim K(z —y)f(y)dy (9.2)
R el0 |lz—y|>e
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Theorem 9.15

(Hilbert transform)

Theorem 9.16

(odd kernels)

[Lemma.1]
Hoélder’s inequality

Theorem 9.27

(general case)

Theorem9.17

(Riesz kernels)

Theorem 9.26

(even kernels)

Lemma 9.22
Lemma 9.23

Table 9.3. A flowchart for the proof of Theorem 9.25

exist. The integrals defined as formula (9.2) are called singular integrals.
In what follows we shall use the notation

K« f(z) = lim K(z—y)f(y)dy.

el0 |z—y|>e

Throughout this chapter, we consider the case where the integral ker-
nel K(x) in formula (9.2) satisfies the following assumption:

Assumption 9.1. The integral kernel K (x) is positively homogeneous of
degree —n, that is,

K(\z) =A""K(z) forall A\ >0 andall z € R", (9.3)
and further it is integrable on the unit sphere
Ypo1i={zeR":|z| =1}

and satisfies the cancellation property

/ K(o)do =0, (9.4)
Yno1

where do is the surface measure on X,,_1.

In this chapter we shall denote the Lebesgue measure of a subset A
of R™ by |A| and the norm of the space L?(R"™) by || - ||, respectively.
We begin by proving the following fundamental result:

Lemma 9.1. Let K(z) be an integral kernel satisfying Assumption 9.1.
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If f(x) € LP(R™) for 1 < p < oo and € > 0, then the Lebesque integral

Jolw) = /| K-S (9.5)

exists for almost all x € R™.

Proof. First, we have, by a suitable change of variables,

fe(z) = K(y)f(z —y)dy

ly|>e

:/ (/ K (to)f(x — to )t 1dt>d
o ([ e

Hence it suffices to show that, for any bounded measurable subset S of
R", the integral

/s </>:n K ()] (/:O |[f (@ — to)] d) do) dx

is finite. More precisely, we show that there exists a positive constant
C. s such that

/S </Z K (o) (/OO |f(z —to)] dt) do—> dr  (9.6)
<C.slfl, (/E |K (0)] da) .

By using Hoélder’s inequality (Theorem 3.14), we obtain that

[ ([ 1= ) o (9.7)
e [ ([ |f<m)|pdt)”” "
< I8P /(// fa—to |pdtdx>1/p7

where C; , is a positive constant given by the formula
C.pi=(p— 1)(1)—1)/195—1/19_
For each o € X,,_1, we make a change of variables

r:=z—s0, z€R" seR,
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with
(z,0) =z101+ ...+ 2,05, = 0.

Moreover, we choose a subset S’ of R"~! and two real numbers a, b such
that

Sc{z=z—s0:2€8,a<s<b}.

Then the last term on inequality (9.7) can be estimated as follows:

00 1/p
C. | S|P (// |f(a:—to')|pdtdx>
S J—oo
b S
< CeplS|PHP (/ // |f(z—(t+s)o)pdtdzds>

1/p
<Coplst = (0-a) [ sl a)

=Cep ISP (0= )7 || £, -

1-p

Here it should be noticed that the two numbers a, b can be chosen
independent of o € X, _1.
Therefore, we obtain that

/ (/E K ([ 1) T d0> “
< Cep S (0= )7 £, </2

This proves the desired inequality (9.6) with
C..5:=C.p|S|*~P(b - a)/P.

|K (o) da) .

n—1

The proof of Lemma 9.1 is complete. O

Remark 9.1. We remark that the cancellation property (9.4) is not used
in the proof of Lemma 9.1.

9.2 The Case of Bounded Kernels

In this section we consider the case where the integral kernel K (x) sat-
isfies the following assumption:

Assumption 9.2. The integral kernel K (x) satisfies Assumption 9.1 and
is bounded on the unit sphere X, ;.
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The purpose of this section is to prove the existence of the singular
integral (9.2) in the space L?(R") in the case of bounded kernels:

Theorem 9.2. Let K(x) be an integral kernel satisfying Assumption
9.2. If f(x) € L*(R™) and if ¢ > 0, we let

F@= [ Ke-wiwa

Then we have the following four assertions (i) through (iv):

(i) There exists a constant C, independent of €, such that

(i) The sequence fg converges strongly to a function K x f in the
space L*(R™) as € | 0. Namely, the singular integral

f-

< .
< Clfl,

K * f(x) =lifg Kz —y)f(y)dy
0 Jjg—y|>e

exists in the strong topology of L*(R).

(iii) The mapping f — Kx*f is a bounded linear operator from L?(R™)
into itself.

(iv) The Fourier transform F(K * f) of K * f is given by the formula

F(K * f)(§) = FK(E) - Ff(8), (9-8)

where FK (&) is an essentially bounded, measurable function de-
fined by the formula

fe’e] o d
FK(€) = / K(o) </ (e*“ﬁ - e*S) 8) do (9.9)
Zno1 0 S
Jor € #0,
and is a positively homogeneous function of degree 0.

Proof. For 0 < € < p, we introduce two functions

K(x) ife<|z| < p,
K, ,(x):= 9.10
() {0 otherwise, (9.10)
and
K(x) if |z| > ¢,
K.(x):= 9.11
<) {o if x| < e. (©-11)
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Then it follows that

fel) = | Ke(x—y) fly)dy = (K. = f)(z).

R"

The proof of Theorem 9.2 is divided into four steps.
Step (I): First, we show that the sequence K., converges strongly
to the function K. in L2(R™) as u 1 oo. Indeed, it suffices to note that

/ Ko () — Ko(2) da
- / K (2) da
|z|>p
:/ / |K(r<7)|27“”_1 dr do
Iz Y1

|
= K(o) > do / —dr
([, i) [

—1</ |K(0)2d0>1—>0 as T oo.
n\Jz, . I

Therefore, it follows from an application of Parseval’s formula that the
sequence F K., converges strongly to the function FK. in L?(R") as

wtoo:
liTm FK., =FK. in L*(R"). (9.12)
ptoo

Step (II): Secondly, we calculate explicitly the Fourier transform of
K. ,(x), which is an essential step in the proof of Theorem 9.2.

To do this, we remark that K. ,(z) € L'(R™). We write, for z € R"
and £ € R™,

x=ro, |x|=r, o€X,_1,
‘€|:p7 $§:<$,§>:7’pCOS¢, 57&0

Then, by using two conditions (9.3) and (9.4) (the cancellation property)
we obtain from formula (9.10) that

(FKe ) (6) (9.13)

= K. (z)e ™ do = / K(z)e ¢ dx
R e<|z|<p

" - d
_ / K(O_)e—zrpcos¢ do l
3 Yna r
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_ /HP (/ K(U)e_iscos¢ d0> @
ep Yn—1 S
_ /NP ( K( )< —iscos ¢ —6_3) dJ) @
Zn-1 S
; d
[ ([T S an o= 0

We decompose the integral
e —15 Cos —s ds
R G R K A
ep s
into the two terms:
1p . ds
/ (77 —e7%) = :=Ty(e, p) + i1a(e, p), (9.14)
s
ep

where

Li(e,p) == /W (cos (scos¢) —e™) ﬁ,

o s

1p d
Io(e, p) == 7/ sin (s cos @) ?S

p

Step (1): First, we have, for 0 < a < b,

/b coss o _ /b+”/2 cos(s —7T/2 /b+”/2 sin s ds  (9.15)

s 4n/2  S—T/2 +7T/2 s—m/2
btm/2 sms b+7'r/2
:/ < )smsds
atn/2 S +7r/2 §— 7T/2 s

Since the improper integral

sin x

dx

lim
btoo Jo x

exists, it follows from formula (9.15) that the improper integral

b COS s

ds

lim
btoo J, S
exists. Hence, we find that the improper integral
wp 4 ds

li —iscos¢p _ _—s) 7 0
dm e )~ (r#0)

exists for cos ¢ # 0.
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Step (2): Secondly, we prove an estimate on integral (9.14) indepen-
dent of € and p.

To do this, we choose a positive constant A such that we have, for all
a >0,

/ et dm‘ < A (9.16)
0

For example, we may take

A :=sup
a>0

Then it is easy to see that

1p
/ Sin(scos¢)ds‘ =
R s

p

HPCOS D gin ¢
/ Sl < 94,
1>

p Ccos ¢

Ta(e, )| =

On the other hand, by combining formula (9.15) and inequality (9.16)

we obtain that
b b+7/2 1 1

/ 85 4| < 24 +/ ( - ) ds (9.17)
. wrry \5— 72 3

bla+ 7/2)
a(b+ m/2)

§2A+log<1+l).
2a

Step (2-a): We consider the case where cos¢ > 0. In this case, we

=2A + log

have the inequality

1
/ |cos(s cos @) — e~ ds (9.18)
0 S
1

< [ costseomnan @t (1o 2

1 1
d d
§/ (1—6055)—8—1—/ (1—6_5)—8.
0 & 0 s
(i) If up < 1, it follows that
pp d
/ (cos (scosg) —e™®) s‘ < B,
s
€

p

Lie, w)| =

where

1 1
B::/ (1—Coss)§+/ (1—678)@.
0 8 0

S
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(i) If ep > 1, it follows from inequality (9.17) that

HPCOSP (g g we ds
/ ds — / e’ —
£pcos ¢ 8 ep 8§
T . ds
<2A+log (14— | + e —
2ep cos ¢ 1 s

<2A+log |1+ T +/ 6_3@.
2cos ¢ 1 S

(iii) If ep < 1 < pp, then, by combining two inequalities (9.17) and
(9.18) we obtain that

1 ep ds

Li(e, p)| = ‘(/ +/ ) (cos(scos¢) —e™®) —
ep 1 s

HPCOS D (og g o ds
/ ds +/ e —
cos ¢ s 1 S

<B424+log(1+ " +/ e 95
2cos ¢ 1 S

Step (2-b): The case where cos ¢ < 0 can be estimated similarly.
Summing up, we can find a positive constant C, independent of ¢ and
1, such that

/Mf (e—iscosqﬁ _ e—s) @
e S

€]

(e, w)| =

<B+

1

=C’+log(|0|€.|£|), €4 0.

Therefore, by combining formula (9.13) and inequality (9.19) we ob-
tain that

[(FKeu)(©)]

wlél )
< / K(O’)/ (6—zscos¢ o e—s) ﬁ
En71 €

€] S

< <a§§fl K(a)|> /E <C+log <|0|5|£>> do, €#0.

This proves that there exists a positive constant M such that we have,
for 0 < e < u,

do

[(FE )@l <M, £#0. (9.20)
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On the other hand, it follows from formula (9.13) and inequality (9.19)
that we have, for all £ # 0,

im = o b e iscosd _ o ds o,
i (PR = [ K ></€5( ") S)d

and

> e—iscos¢ e~ ) ds
el€l

<C’+log< |£|£|> E40.  (9.21)

By assertion (9.12), this proves that we have, for almost all £ € R™\ {0},

(FK)(E) = iiggo(ff(a,u)(ﬁ) (9.22)

_ L K(o) (/j (5 o) dj) do.

Moreover, it follows from inequality (9.21) and formulas (9.22) and (9.9)
that we have, for almost all £ € R™\ {0},

_isZE ds
lim(FK) (& /K (/ (7% —e )s)da (9.23)
— FK(¢

It should be noticed that the Fourier transform FK () of the kernel
K (x) is a positively homogeneous function of degree 0 and that we have,
by inequality (9.18),

(FE)@I <M, £#0, (9.24a)
|[FEE)| <M, &#0. (9.24b)

Step (III): If f(z) € L*(R"), then it follows from an application of
Theorem 3.23 with p :=1 and ¢ = r := 2 that

K.+ f € L*(R"),
since K, ,(z) € L'(R"). However, we have, by formula (9.22),
F(Kep(§) — FK:(§) for almost all £ € R™\ {0} as p1 1 o0,
and also, by inequalities (9.20) and (9.24),

|F (Keu(€) — FE(€) FFE)
<AM?|FfEF for £ #0.
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Therefore, by applying the Lebesgue dominated convergence theorem
(Theorem 3.8) we obtain from Parseval’s formula that

[Kep e f— Kex fll,

= W IF (Kep# f) = F (Ko * f)ll,
_ ﬁ ((F(Kep) = F(K)) Fll, — 0 as i1 oc.

Step (IV): Moreover, by using formulas (9.23) and (9.9) we find
that the sequence K. * f is a Cauchy sequence in the space L?(R") as

€ J 0. This implies that K. * f converges to some function g, denoted
by g:= K * f,in L?*(R") as ¢ |, 0

K f=lmK.«f inL*R")
Hence, by Parseval’s formula and formula (9.21) it follows that
F(K + ) (§) = lim F (K. + ) (€) = im F (K2) (&) - I (€)
=FK(&)- - Ff(&), £#0.

Therefore, by using the Parseval formula we obtain from inequality
(9.24b) that

1
K = fll, = W||]:(K*f)||2 = WH]:K']:sz
M 2 n
SW”]:fHQ:M”fHQ for all f € L*(R").
Now the proof of Theorem 9.2 is complete. O

9.3 The Case of Continuous Kernels
In this section, we make the following assumption:
Assumption 9.3. In addition to Assumption 9.2, the integral kernel K (x)

satisfies the following conditions (i) and (ii):

(i) There exists a positively homogeneous function Q(z) of degree 0
defined on R™ \ {0} such that

K(z) = Q (é) ‘;'n for all = € R™ \ {0}. (9.25)
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(ii) The function Q(x) satisfies the condition
0(x) — QW) <w(z—yl) forallz,ye Ty, (9.26)

where w(t) is a non-negative, increasing continuous function de-
fined on the interval [0, 00) that satisfies the conditions

1

/ —w(t) dt < oo, (9.27a)
o ¢t
t

wi ) >co forallt>0, (9.27b)

with some constant cg > 0.

The next lemma is another version of the Calderén—Zygmund decom-
position adapted to the present context (cf. Theorem 4.10):

Lemma 9.3 (the Calderén-Zygmund decomposition). Let f(z) be an
arbitrary non-negative function in the space LP(R™) with 1 < p <
oo. Then, for any positive number s, there exists a sequence of mon-
overlapping cubes {I} such that

s < b (z)dx < 2"s. (9.28)
(k| J1,
If we let
oo
D, = J I,
k=1

then it follows that
f(x) <s almost everywhere outside the set D,

and that

1

s < D1 /DS f(z)dx < 2"s. (9.29)

Proof. Let I be a cube. Since we have, as |I| — oo,

1 1/ 1lp

we can find a positive number v such that, if |I| > v, we have the
inequality

|}l/If(x)alx<s.
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We let

R" = | Iox
k=1

to be the decomposition of R" into a sum of cubes I of volume v.
Then we have, for each k,

1

okl J1q,

(x)dx < s.

First, we denote by {I1 x} the sequence of cubes obtained by dividing
each Iy into 2™ equal parts. We classify the cubes {1} as follows:

{hoe} = {11, U {17},
1

7 (x)dx > s,
| LEl I

1
Tl (x)dx < s.
Ykl

Secondly, we denote by {I2 1} the sequence of cubes obtained by di-
viding each 7, into 2" equal parts, and we classify the cubes {3} as
follows:

{Iok} = {I5, } U{T5 4},
1

— (x)dx > s
.0 ), ’
! (x)dx <

— x)dx < s.
170 )iy,

Repeating this process, we obtain a sequence of cubes {I,,, ;} such that
we have, for each integer m,

{Im} = {1 1} U{T0 i}

1
—_ (x)dx > s,
|Im1k| Iv/n,k:

1
= (x)dz < s.
Ll g,

Then we have the decomposition

R" = (UI{ ;) U (UI{}) U---U (U}, ) U (UL, ).

m,k

Moreover, if m > 1, then each cube I;mk is obtained by dividing some
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I//

m—1,0°

where I(’)'J = Ip,;. This implies that

1
il = 5ol

Hence we have the inequalities

! f@)de < -2

f(z)dz < 2"s.

"
I 1 l| I” 1

Tl ),

Now, we let {I;} be the totality of the cubes I/

ms M= 1, 2, ...,
k=1,2,..., and let

C8

k=1

Then it follows that inequalities (9.28) hold true for all &:

x)dr < 2"s.

Since we have, by Holder’s inequality (Theorem 3.14),

1/p
e f(x)dxsluk“/p( f(x)”da:> 7
S Iy S I

we obtain that

|]k|<s— f( )pdl’,

so that

o0

\D|7Z|Ik\<—/ F(@)P dz < o,

k=1

Moreover, it is easy to verify that inequalities (9.29) hold true. Indeed,
we have, by inequalities (9.28),

> 1 & 1
|DS|=I§|Ik§s];/ka(x)dx=S /Dsf(x)dx

Similarly, we have the inequality

dr = d g =2" S| -
/Dsf(x) v ;/ka(x) EOMIEREE R

Finally, let o be an arbitrary Lebesgue point of the function f(z)
which does not belong to the set Dy (see Definition 4.1). Then, for any
integer m > 1, there exists an integer k(m) such that zo € I ;. .
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Since {I" Ak(m)} is a sequence of regular closed sets converging to xg, it
follows from an application of Corollary 4.6 that

1
s> 7/1” f(z)de — f(z0),

|If/7/%k(m)| m,k(m)
so that

flzo) < s.

Therefore, we have proved that f(z) < s almost everywhere outside the
set D;.
The proof of Lemma 9.3 is complete. O

The next lemma is an essential step for the proof of existence of the
singular integral (9.2) in the space LP(R™) for 1 < p < oo:

Lemma 9.4. Let K(x) be an integral kernel satisfying Assumption 9.5.
Assume that f(x) is a non-negative function in LP(R™) for 1 < p < 2.
Let K () be the function defined by formula (9.11) and let Ji(x) =
K. x f(x) be the function defined by formula (9.5). Moreover, if s is a
positive number, we let

E, = {x:|f-(z)] > s}.
Then we can find two positive constants Cp and Cs, independent of
and s, such that
C
B< S [ Ueids+ i) (930
R’Vl

where Dy is the set as in Lemma 9.3, and [f(z)]s is a function defined
by the formula

f@) if fl@)<s
[f ()]s == )
s if f(x)>s.
Proof. In the following we shall denote by C' a generic positive constant,
independent of ¢ and s.

Let {I}} be the sequence of cubes as in Lemma 9.3, and let g(z) and
h(z) be functions defined respectively by the formulas

h(z) == {11,4 [ fly)dy ifx € I,
f(x) if x ¢ Dy,

and
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Then it follows that

s < h(z) <2"s in D, (9.31a)
h(z) = f(x) = [f(z)]s outside Dq, (9.31b)
g(x) =0 outside Ds. (9.31¢)
We remark that we have, for each k € N,
[ swav=[ tway- [ mway=o. )
I Iy, I,
If we let
EE(:E) = K, * h(x),
ge(w) := Ke x g(x),
and

Ey = {x 2 ge(x) >
then we have the inclusion
E, C E1 U Es. (9.33)

However, by arguing just as in the proof of Theorem 9.2 we obtain from
Parseval’s formula and inequality (9.24a) that

| el ar = s [ o ae
~ o L R © - e ae
< oo [ W ©Fde =87 [ hw)?ae
This proves that
Sipis [ hPdes [ P o

§M2/ h(z)? d.

On the other hand, it follows from inequalities (9.31a) and formula
(9.31b) that

/nh(x)dez/D h(g;)de+/Rn\Ds h(x)? dx

s
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<92(D,| + / [ () dee

n

Therefore, by combining this inequality with inequality (9.34) we ob-
tain that

S

4M?
B < 2D+ S [ (e (039)

If Sy, is the ball centered at the center of I, and of radius the diameter
of Iy, we let

58 = U Sk,
k=1
and also
D¢:=R"\ D,
Sg:=R"\ 5.
Then it follows that
|D,| < C|Dy|. (9.36)

Since we have, by assertion (9.31c),

Gu(z) = /D K=y =3 /I Ko =)o) dy

we obtain that

/5;' |9< ()] d < kz::l /~L A K. (z —y)g(y) dy| dx (9.37)
<> [ |[ e vowm]an

Now, let z be a fixed point of S¢ = R™\ Sj, and denote the center of
I}, by yr. We consider the following two cases:

(I) The set {y : |y — z| < e} NI is empty.
(IT) The set {y : |y — z| < e} NI is not empty.

Case I: First, we consider the case where {y : |y — x| < e} NIy =0,
In this case, it follows from formula (9.32) that

: K (x —y)g(y) dy = ’ K(z —y)g(y) dy (9-38)
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=/<K@—m—Ku—m»mm@.

Iy

However, we have, by formula (9.25),
|K(z —y) — K(z — yr)] (9.39)
1 — 1 —
2 (5=3) - e ()|
lz—yl™ \lz—yl/) lz—wl™ \lz—ul
()
[z —y[" oyl |z -yl
mad =R =]
|z —yl |z — yil

|z — k[
We estimate each term on the right hand side of inequality (9.39).
(a) Since we have the inequality

ly — yr| < % for all y € I,

it follows that

3|$—Z/k|
oy < IR
B yl

- 2
Hence we obtain that

1 1

[z —y|n |z —ykI”

: z
m—m"1Wx—%v

z—y| Ix—ykl

|y_yk|
<
I:Jcau\lfffyklZ |z — yl

Cly—yl _ CILV"
- |m_yk‘n+1 - |x—yk|"+1

(9.40)

n—1—1 7
|$*yd

(b) On the other hand, since we have the inequality

r—y Tk
lz—yl |z -yl
r—y T —y
lz =yl |z — ykl
2|y—yk|<c\fk|1/"
VA R A VA

T—y -y
|z —yk| |2 — yil
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it follows from condition (9.26) that

— _ 1/n
‘Q<H>_Q<$ yk>’<w<0|fkl>, (9.41)
|z —y |z — Y| |z — Yl

By combining three inequalities (9.39), (9.40) and (9.41) and by using
condition (9.27b), we obtain that

|K(x —y) — K(z — yx)|
C ||/ 1 (Cukl/n)
I e T L L VA |z — Y

1 (C|Ik1/”> 1 (le/n)
< Cow + w
|z — yr|™ |z — Y| |z — yr|™ |z — Y|
C (C|Ik|1/">
< w .
|z — yx|™ |z — Y|

Therefore, it follows from this inequality and formula (9.38) that

[ Koo -0 dy\ (0.42)

< ’ |K(z—y) — K(z—yi)| g(y) dy

C <C|Ik|1/"
Tz =yl |z — Y|

) 9] dy.
Iy,

Case II: Secondly, we consider the case where {y : |[y—z| < e}nI; # 0.
It should be noticed that, in this case, we have the inclusion

I, C{y: ly— x| < 3e}. (9.43)

Let v(t) be the characteristic function of the interval [0, 3]:

v(t) =

1 ifo<t<3,
0 otherwise.

If y € I, then it follows from condition (9.43) that

(£

Moreover, since we have the inequality

C
Kee -yl < =,
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it follows that

Ko=) < [ (B ) ol o

Iy,

Therefore, by combining the inequalities (9.42) and (9.44) we obtain
that, for z € S{ = R"™\ Sk,

C C|I;|M™
Ko=)y < = (T2 [y 049

C xr —
SR ( y') l9(y)| dy.
Iy €

Iy

En

By inequalities (9.37) and (9.45), it follows that

[ ) ds (9.46)
De

> C C I, |M/™
SZ/ nw( s ) ( g(y)dy) dzx

= Jse |z — ykl |z — | I

s C T —

+Z/ — (/ 7("1/') Ig(y)ldy> da
—17/5s € I €
= C C | I |M™

->(/ nw( s )da: 9] dy
= \Usg [ — uil |7 — yil I

+ Cg 8 l9(y) (;n /sk g (@) dx) dy.

However, since we have, by condition (9.27a),

L (250
w dzx
se |z =yel™ \ |z =yl
0o 1/n
:/ / gw (C|Ik| )rn_l dr | do
Y1 Cllk‘l/n rn T
00 1/n
:/ / gw <C|Ik| )dr do
Y1 Cllk‘l/n r r
1
:C/ da-/ ﬂdt
Sy o t
1

=Cuwy, @dt<oo,
0 t




9.8 The Case of Continuous Kernels 293

and the inequality

_ 1 ",
ks V(M)d:ﬂé/ 7(|x|>dx/ A(jal) dz = 22,
en s¢ € " Jrn € R» n

it follows from inequality (9.46) that

/~ G- (2)] dz < Ca, (/:‘”f)du?):)g/lk 9@y (9.47)

<C/ y)| dy.

Wn, = |En71| =

Here
27Tn/2

I'(n/2)
is the surface area of the unit sphere X, 1 in R".
Moreover, we have the inequality

/ |dy</f dy+/h dy_Z/f

_22 dx<2<2|lk>2”

k=1
:2"+1S|Ds\.

By combining this inequality with inequality (9.47), we obtain that
[, F@lar < [ o)y < csipi)
This implies that
*|Ben | </ |§E(g;)|da;g/~ 6. (2)| dz < Cs| Dy,
DenEs De

so that
DenB| < CID,|.
Hence, we have, by this inequality and inequality (9.36),
|Ea| < |DSN Ea| + Dy N Ey| < C|Dyl. (9.48)

Therefore, by combining two inequalities (9.35) and (9.48) we obtain
from inclusion (9.33) that

4M?

|Bs| < |Br| + |Bs| < 22"F2MP|D,| + / [f (@))% dz + C| D]
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- 4"{2 /n[f(x)]gd:r—k (2>"2M? + C) |Dy|.

S

This proves the desired inequality (9.30) with
Cr:=4M?, Oy :=2"""2M2 4 C.
Now the proof of Lemma 9.4 is complete. O

The next theorem asserts the existence of the singular integral (9.2)
in the space LP(R™) for 1 < p < oo in the case of continuous kernels:

Theorem 9.5. Assume that K(x) is an integral kernel satz’sfying~As—
sumption 9.3. Let f(x) € LP(R™) for 1 <p < oco. Ife > 0, we let f-(x)
be the function defined by formula (9.5)

f@= [  Ke-fw

Then we have the following three assertions (i), (ii) and (iii):

(i) There exists a positive constant Cp, independent of e, such that
| %

(i) The sequence Ji converges strongly to a function K x f in the
space LP(R™) as e | 0. Namely, the singular integral

<Glifll,- (9.49)

K*f(ﬂﬁ)zliﬁ)1 K(z —y)f(y)dy
0 Jjz—y|>e

exists in the strong topology of LP(R™).
(iti) The mapping f — Kxf is a bounded linear operator from LP(R™)
into itself. More precisely, we have the inequality

1K * fll, < Cpllfll, -
Proof. We write, for € > 0,
T.f = ]?5

By applying Theorem 9.2 to our situation, we can find a positive constant
C, independent of €, such that

ITeflly < Cllflly  forall f € L*(R™).

This proves that the operator Ty is of type (2,2) uniformly with respect
to e.
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(1) If f(x) is a non-negative function in L!'(R™), then we have the
inequality
[f(@)? <sf(z) foralls>0.
Hence it follows from two inequalities (9.29) and (9.30) that

C
M for all s > 0.
s

{z: [(Tef) (@) > s} <

If f(x) is an arbitrary function in L!'(R"™), then, by decomposing it
into the positive part fi(x) and the negative part fo(x) as

f(x) = fi(z) — fa(z),
(z) := max{f(x),0},
(

h
fa(x) := max{—f(x), 0},

we obtain that

{a (T f)(@)] > s}
< Ha (T f)@)] > s/2} + [z = (T f2) (2)| > 5/2}]
< 2C0AlL | 2C0 R0 _ 2C £l

= for all s > 0.
s s

This proves that the operator T; is of weak type (1,1) uniformly in e.
Therefore, by arguing just as in the proof of Marcinkiewicz’s interpola-
tion theorem (Theorem 3.30) we can find a positive constant C, such
that the desired inequality (9.49) holds true for 1 < p < 2:

ITefll, < Collfll, (1<p<2).

Furthermore, by passing to the adjoint operator T we obtain that the
desired inequality (9.49) holds true for 2 < p < oc:

ITefll, < Cpllfll, (2 <p<o0).

(2) Secondly, let f(z) € LP(R") for 1 < p < 0. If g(z) € CH(R"), i.e.,
if g(x) is a continuously differentiable function with compact support in
R"™ and if €, § > 0, then we have, by inequality (9.49),

IT-f = Tsfll, (9.50)
<NT-f = Tegll, + 1T59 — T £, + 1729 — Tsgll,
<2C, |If = gll, + |Tz9 — Tsgll, (1 <p<o0).
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If 0 < e < 1, it follows from the cancellation property (9.4) that
Tow)= [ K- y)g)dy (0:51)
lz—y|>1
b K@) o) - gt) d
e<|z—yl<1

Since K(x) € LP({z : |z| > 1}) and g(x) € L*(R"), it follows from an
application of Theorem 3.23 with ¢ := 1 and r = p that the first term
on the right hand side of formula (9.51) belongs to LP(R"™):

/ e K(z —y)g(y)dy € LP(R").

On the other hand, we remark that the second term on the right
hand side of formula (9.51) is a function with support contained in a
fixed compact set, so that it converges uniformly as € | 0, since g(x)
is uniformly Lipschitz continuous. Hence we find that the second term
on the right hand side of formula (9.51) converges strongly in the space
LP(R™):

limn . KlK(x—y) (9(y) — g(z)) dy € LP(R™).

This implies that
|T.g — Tsgll, — 0 ase, §40.

However, Corollary 3.27 tells us that Cj(R™) is dense in LP(R").
Hence, we obtain from inequality (9.50) that the sequence T.f = f.
converges strongly to some function K « f in the space LP(R"™) as ¢ |, 0:

li = lim f. = P(R™).
lim T..f = lim . K« feLP(R")

Therefore, by letting € | 0 in inequality (9.49) we obtain from Lebesgue’s
dominated convergence theorem (Theorem 3.8) that

K fll, < Cpll I, -

This proves that the mapping f — K * f is bounded from LP(R™) into
itself.
The proof of Theorem 9.5 is complete. O
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9.4 The Hilbert Transform

In the case where n = 1, we can apply Theorem 9.5 with

K(z):=—
(@) = —
to obtain that the singular integral K« f reduces to the following formula:

Kx f(x) = 1 lim /) dt.
el Jiggj>e T — 1t

Moreover, it should be noticed that this formula is also expressed as

1 1
— (V.p. ) * f,
™ x
where v.p.(1/z) is a distribution defined by the formula

1 . o(x)
Py =1 4 for all p € CLH(R).
<Vp - s0> lim e @ z  for all p € C5(R)

The function H f(x), defined by the formula

1 1 1
Hf(z)=— (V.p. ) x f = —lim 1) dt (9.52)
s x T el0 Jlzt|>e T — t
1 d
= = lim flx—s) &
T €l0 |s|>e S

is called the Hilbert transform of f(x).
The purpose of this section is to prove the following basic results for
the Hilbert transform:

Theorem 9.6. Let H be the Hilbert transform defined by formula (9.52).
Then we have the following three assertions (i), (ii) and (iii):

(i) The Hilbert transform H is a bounded linear operator from LP(R)
into itself for 1 < p < oo.

(ii) If g = Hf is the Hilbert transform of f € LP(R) for 1 < p < oo,
then its inverse transform is given by the formula

flz)=—hx*g(x)= _1 lim g(t)

T €l0 |z—t|>e r—t

dt. (9.53)

Furthermore, the singular integrals (9.52) and (9.53) exist in the
strong topology of LP(R).
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(iti) If f € LP(R) and fe LP (R) with p' = p/(p— 1) and if g = Hf

and g = Hf are the Hilbert transforms of f and f, respectively,
then the formula

/?3ﬂx)f@ﬂww:/?aHf@)Jiﬂ@dx (9.54)

holds true. In particular, the Hilbert transform H is a unitary
operator in the Hilbert space L?(R), and the formula

gl = IIH NIy = [1£1l (9.55)
holds true if g = H f is the Hilbert transform of f € L*(R).

Proof. The proof of Theorem 9.6 is divided into four steps.

Step (I): First, we consider the case where p = 2. Following the
proof of Theorem 9.2, we calculate explicitly the Fourier transform of
the distribution (formula (9.57) below)

1 1
h = —V.p. —.
(z) —Vp.

To do this, we let, for 0 < e < p,

and

1 .
= ife<|z| <y,
he p(x) =< 7™
en(@) {0 otherwise,

Lif 2] >
he() :{ ifzl > e,

0 if|z|<e

Then it follows that

e—ix{
dx

Fhe,)© = |

e<|z|<p TX

2i (Fsin(z-§)
=-= | =4
7r/5 x v

B {—fj JiE e dy if € >0,

B e ife<0

92; [HIEl g
-2 il -signé&  for £ #£ 0,
T Jelg %
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so that we have, as u 1T oo,

Fh)© = -2 [T g gne fore£0. (956)

T Jelg) T

Therefore, by letting € | 0 in formula (9.56) we obtain that

(Fh)(&) = —% </0 Si;lx d;v) sign £ = —% g sign & (9.57)

= —isigné for £ # 0.
If f(x) € L*>(R), then we have, by formula (9.56) and inequality (9.16),

(Fra©) < 22,

and so, by Parseval’s formula,

1 1
|he * fll, = @nie | F(he * f)ll, = @i | Fhe - F £l
1 4A

4A
> W7 H]:fHQ - 7 ||f||2

Step (II): On the other hand, Theorem 9.2 asserts that the singular
integral

g(z)=Hf(x) = % <v.p. i) x f = 1 lim 1®) dt  (9.58)

T el0 Jig—t)>e T — 1t
exists in the strong topology of L?(R) (p = 2):
H:L*(R) — L*(R).
By combining two formulas (9.8) and (9.57), we obtain that
(F9) (&) = (FR)(&) - (Ff)(&) = —isigng - (Ff)(E) for & #0. (9.59)
Therefore, by Parseval’s formula we have the desired formula (9.55)
lglly = I1H flly = [Ifllz
and also the formula
(FN)(E) = isign - (F)(€) = —(FR)E) - (Fg)(€) for € £0. (9.60)

By formulas (9.58) and (9.60), it follows from an application of the
Fourier inversion formula that the singular integral (9.53) exists in the
strong topology of L?(R) (p = 2).

Step (ITII): We consider the general case where 1 < p < oco. By
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applying Theorem 9.5, we obtain that the Hilbert transform H is a
bounded linear operator from LP(R) into itself:

H:I’R) — L’(R) (1<p< o).

Let f € LP(R) and let g = H f be its Hilbert transform. If we take a
sequence f, € LP(R) N L?(R) such that

fo— f in LP(R) as n — oo,

then it follows that the Hilbert transform g, = Hf, of f, belongs to
LP(R) N L*(R) and further that

gn=Hf, —g=Hf in LP(R) as n — 0.

By assertion (9.53), we remark that

dt

)= Lt [ 90

T el Jig_tj>e T— 1

in the strong topology of L?(R) and further that the right hand side
of this formula is the Hilbert transform of g,. Hence it follows from
an application of Theorem 9.5 that the above limit exists also in the
strong topology of LP(R). Moreover, by letting n — oo we obtain from

Theorem 9.5 that formula (9.53) holds true also in the strong topology
of LP(R):

1 g(t)
=—h = — = lim dt (1 <p < o0).
f(z) *g(r) = —— Sl S (1 <p<oo)

Step (IV): It remains to prove formula (9.54).

Now, let f € LP(R) and f € L (R) with p' = p/(p — 1), and let
g=Hfandg=H f be the Hilbert transforms of f and f, respectively.
By using Friedrichs’ mollifiers (Subsection 3.7.2), we can choose two
sequences f, € LP(R) N L2(R) and f, € L? (R) N L%(R) such that

fn—f in LP(R) as n — oo,
fo—f in L (R) as n — oc.
Then we have the assertions
9, = Hf, € LP(R) N L*(R),
Gn = Hf, € I’ (R) N L*(R),
and

gn=Hfy, —g=Hf ian(R),
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Go=Hf, —G=Hf inLF(R).

However, it follows from formula (9.55) that the Hilbert transform H is

a unitary operator in L?(R). Hence we have the formulas
/ Fu(@) - Fu(2) dz = / Hfo(2) - H folw) da
:/ In () + Gn(x) dz.

Therefore, by letting n — oo in these formulas we obtain the desired
formula (9.54)

o0

/O:Of(x)'J?(x)dx_/ZHf(x)'Hf(x)dx—/ 9(z) - §(x) dz.

— 00

The proof of Theorem 9.6 is now complete. O

9.5 Equimeasurable Functions
Let f(z) be a non-negative, measurable function defined on R™. For
each 7 > 0, we let
m(r) = {z e R": f(z) > 7}|. (9.61)
In this section we consider only functions such that m(7) < co for any
7 > 0 and that

liTm m(7) = 0.

It should be emphasized that non-zero functions f(z) in LP(R"™) with
1 < p < oo satisfy this condition.

Let f(x) be a non-negative, measurable function defined on R™. A
non-negative, measurable function f*(t) defined on the interval [0, cc)
is called an equimeasurable function of f(x) if it satisfies the condition

m* (1) = |{t: f*(t) > 7} =m(r) forallT>0. (9.62)
We begin by proving the following elementary result:

Lemma 9.7. The function m(7) defined by formula (9.61) is monotone
decreasing and right-continuous.

Proof. Tt is clear that m(7) is monotone decreasing. If 75, | 7, then it
follows that

{z: f(z)>71}= U{x:f(x)>7k},
k=1
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so that m(7) = limg_, oo m(7%). This proves the right-continuity of m(7).
The proof of Lemma 9.7 is complete. O

We let
to :=m(0), 7o :=sup{r:m(r)> 0}.

It is easy to see that 0 < g < oo and 0 < 19 < o0.
The next lemma proves the existence and uniqueness of the equimea-
surable function:

Lemma 9.8. The function f*(t), defined by the formula
f @) :=inf{r:t >m(r)}, [f*(0):=1,

18 a unique monotone decreasing, right-continuous equimeasurable func-

tion of f(x).

Proof. The proof of Lemma 9.8 is divided into two steps.

Step (1): We prove that the non-negative function f*(¢) is a mono-
tone decreasing, right-continuous equimeasurable function of f(z).

(a) First, we show that

T > f*(t) <=t > m(7).

Indeed, we remark that ¢t > m(7) implies that 7 > f*(¢). Conversely,
if 7 > f*(t), then, by the definition of f* it follows that ¢ > m(7).
Assume that 7 = f*(¢). If 7 | 7, then it follows that ¢ > m(7y). Since
the function m(7) is right-continuous, by letting k — oo we obtain that

t > m(r).
Therefore, we have, for all 7 > 0,

{t:f(t) > 7} = [0,m(r)).

Hence, if m*(7) is the function defined by formula (9.62), then it follows
that m*(7) = m(7). Namely, the function f*(¢) satisfies the condition
(9.62).

(b) Secondly, it is clear that f*(t) is monotone decreasing.

(¢) Thirdly, we show that f*(t) is right-continuous. Since either ¢y =
m(0) > m(7) or 7 > f*(to) for all 7 > 0, it follows that f*(t9) = 0. If
to < oo, then f*(t) = 0 for all ¢ > ¢,.

We show that f*(t) > 0 for 0 < t < ¢y for all t < tg = m(0). Indeed,
there exists a number 7 > 0 such that ¢ < m(7). This proves that
0 <7 < f*(t). Let {tx} be an arbitrary sequence such that ¢ | ¢. For
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any given number 7 < f*(t), it follows that ¢ < m(7). In particular, we
have the assertion

tr <m(r) 1if k is sufficiently large,
or equivalently
T < f*(tg) < f7(t) if k is sufficiently large.
This proves that
£ = lim (1),

since 7 < f*(t) is arbitrary.
Therefore, we have proved the right-continuity of f*(¢).
Step (2): We prove the uniqueness of the equimeasurable function.
Let ¢g*(t) be another monotone decreasing, right-continuous equimea-
surable function of f(z). If ¢; is a positive number, then we let 7 :=

f*(t1) and
to :=min{t: f*(t) =7} =inf{t: f*(t) =1}
We recall that f*(t) is right-continuous. Since we have the formula
{t: f7(t) > 7} = [0, 2),
it follows that
{t:g"() > 7} =m(r) = [{t: [*(t) > T} = t2.

Moreover, since g*(t) is monotone decreasing and right-continuous, it
follows that {t : ¢g*(t) > 7} = [0,t2). This proves that g*(t2) < 7 =
f*(t1). Hence we have, for ¢t < tq,

g (t) < g*(t2) <7 = f*(t).

Similarly, we can prove that f*(¢;) < ¢g*(¢1) for any positive number
t1.

Summing up, we obtain that f*(¢1) = g*(¢1) for any positive number
t1. This proves the uniqueness of the equimeasurable function of f(x).

The proof of Lemma 9.8 is now complete. O

Lemma 9.9. If f*(t) is an equimeasurable function of f(x), then we
have, for 1 <p < oo,

- f(x) dx:/o fr()P dt.
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Proof. By formula (9.61), it follows that

- (I)pdxAmTpdm(T)/OooTpdm*(T)/Ooof*(t)Pdt.

The proof of Lemma 9.9 is complete. O

Lemma 9.10. Let f(z) be a non-negative, measurable function defined
on R™. If A is a measurable subset of R™ of finite measure, then we
have the inequality

|A]
/ f(z)de < fr () de.
A 0
Proof. We let

) f(x) ifze A
file) = {0 if ¢ A.

Since f1(z) < f(x), it follows that
my(7) = [z : filz) > 7} < {z: f(z) > 7} = m(7).

Hence, if f;(t) is the monotone decreasing, right-continuous equimea-
surable function of fi(z), then we have the inequality

fi@) =inf{r:t >mq(7)} < f*(¢).
Since we have, for all 7 > 0,
{z: fi(z) > 7} c{z: fi(z) >0} C 4,

it follows that m(7) < |A|. This proves that f;(t) =0 for t > |AJ.
Therefore, we obtain from Lemma 9.9 with p := 1 that

S |Al
[ f@do= [ p@de= [ pwas [ e
A R" 0 0
|Al
< fr(t)dt.
0
The proof of Lemma 9.10 is complete. O

From now on, we assume that f(x) is a non-negative function in
LP(R™) for 1 < p < oo, and let f*(t) be the monotone decreasing,
right-continuous equimeasurable function of f(z). If t > 0, we let

Br(t) == %/0 f*(s)ds. (9.63)
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By Lemma 9.9, it follows that f*(¢) € LP(0,00) for 1 < p < oo. Hence it
follows from an application of Holder’s inequality (Theorem 3.14) that
the right hand side of formula (9.63) is finite. Moreover, we remark that

o0 =5 [ (O reda<o

If B%(t1) = 0 for some ¢; > 0, then it follows that f*(t) = f*(1) in the
interval (0,t1), and so f(t) = f*(t1) there. Hence it is easy to see that
f*(t) — 0 as t T oo. This proves that By — 0 as t 1 co.

Therefore, we obtain that either

(a) Bf(t) is strictly decreasing in (0, c0)

or

(b) there exists a positive number t; such that S¢(t) is constant in
(0, 1] and strictly decreasing in [t1, 00).

In the case (a), we let t1 := 0, and let 87(0) := sy if 51 = limy—, 5y (2).
Then it is easy to see that 0 < s1 < co and that s1 = B¢(t1) = 57(0).

We denote the inverse function of s = B;(t) by t = 3/ (s).

(1) If t; = 0 and s; = oo, then it follows that 37/(s) is uniquely
determined in 0 < s < co.

(2) If t; = 0 and s; < oo, then we let 37 (s) := 0 for s > s;.

(3) If t; > 0, then we let 87 (s1) :=t; and Bf(s) := 0 for s > s1.

Then we have the following lemma:

Lemma 9.11. If f(z) € LP(R") for 1 < p < oo, then we have the
inequality

(/OOO Br(t)” dt>1/p < ﬁ ( - (z)P dz)l/p, (9.64)

Proof. By Lemma 9.9, it follows that f*(t) € LP(0,00). Let 0 < a < b.
Then we have, by integration by parts,

/abﬁf(t)”dt = /abt—f? (/Ot £(s) ds>p dt (9.65)
([ reas)

al”
p—1
b t p—1
p 1—p gx *
+ E‘/a t f (t) (/0 f (S) d8> dt

<
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However, we obtain that the first term on the right hand side of in-
equality (9.65) tends to 0 as a | 0. Indeed, it suffices