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Introduction and Main Results

This book provides a self-contained account of the functional analytic

approach to the problem of construction of Markov processes with Vent-

cel’ (Wentzell) boundary conditions in probability. More precisely, we

prove existence theorems for Feller semigroups with Dirichlet boundary

condition, oblique derivative boundary condition and first-order Vent-

cel’ boundary condition for second-order, uniformly elliptic differential

operators with discontinuous coefficients (Theorems 1.1, 1.2 and 1.3).

Our approach here is distinguished by the extensive use of the ideas and

techniques characteristic of the recent developments in the Calderón–

Zygmund theory of singular integral operators with non-smooth ker-

nels. It should be emphasized that singular integral operators with

non-smooth kernels provide a powerful tool to deal with smoothness of

solutions of elliptic boundary value problems, with minimal assumptions

of regularity on the coefficients.

1.1 Formulation of the Problem

Now, let Ω be a bounded domain in Euclidean space Rn, n ≥ 3, with

boundary ∂Ω of class C1,1. We consider a second-order, elliptic differ-

ential operator A with real discontinuous coefficients of the form

Au :=
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u. (1.1)

In the case of continuous coefficients aij(x), an Lp Schauder theory has

been elaborated for second-order, uniformly elliptic differential opera-

tors (see [33]). However, the situation becomes rather difficult if we

try to allow discontinuity on the aij(x). In fact, it is known (see [49],
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[88]) that arbitrary discontinuity of the aij(x) breaks down as the Lp

Schauder theory, except for the two-dimensional case (n = 2). In order

to handle with the multidimensional case (n ≥ 3), additional conditions

on the aij(x) should be required. Here we shall see that the relevant con-

dition is that the coefficients aij(x) belong to the Sarason class VMO of

functions with vanishing mean oscillation. We remark that VMO con-

sists of the John–Nirenberg class BMO of functions with bounded mean

oscillation whose integral oscillation over balls shrinking to a point con-

verge uniformly to zero (see Chapter 4 for the precise definitions and

references).

Throughout this book, we assume that the coefficients aij(x), bi(x)

and c(x) of the differential operator A satisfy the following three condi-

tions (1), (2) and (3):

(1) aij(x) ∈ VMO∩L∞(Ω), aij(x) = aji(x) for almost all x ∈ Ω and

there exist a constant λ > 0 such that

1

λ
|ξ|2 ≤

n∑
i,j=1

aij(x)ξiξj ≤ λ |ξ|2 (1.2)

for almost all x ∈ Ω and all ξ ∈ Rn.

(2) bi(x) ∈ L∞(Ω) for 1 ≤ i ≤ n.

(3) c(x) ∈ L∞(Ω) and c(x) ≤ 0 for almost all x ∈ Ω.

The differential operator A is called a diffusion operator which describes

analytically a strong Markov process with continuous paths in the inte-

rior Ω such as Brownian motion (see Figure 1.1).
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Fig. 1.1. A Markovian particle moves continuously

Moreover, we consider a first-order, boundary operator of the form

Lu := µ(x′)
∂u

∂n
+ β(x′) · u+ γ(x′)u− δ(x′)(Au|∂Ω) on ∂Ω. (1.3)
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Throughout this book, we assume that the coefficients µ(x′), β(x′), γ(x′)

and δ(x′) of the boundary operator L satisfy the following four conditions

(4), (5), (6) and (7):

(4) µ(x′) is a Lipschitz continuous function on ∂Ω and µ(x′) ≥ 0 on

∂Ω.

(5) β(x′) is a Lipschitz continuous vector field on ∂Ω (see Figure 1.2).

(6) γ(x′) is a Lipschitz continuous function on ∂Ω and γ(x′) ≤ 0 on

∂Ω.

(7) δ(x′) is a Lipschitz continuous function on ∂Ω and δ(x′) ≥ 0 on

∂Ω.

(8) n = (n1, n2, . . . , nn) is the unit inward normal to the boundary

∂Ω (see Figure 1.2).

∂Ω
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Fig. 1.2. The unit inward normal n to ∂Ω and the vector field β on ∂Ω

The boundary condition L is called a first-order Ventcel’ boundary con-

dition (cf. [97]). The four terms of L

γ(x′)u, µ(x′)
∂u

∂n
, β(x′) · u, δ(x′)(Au|∂Ω)

are supposed to correspond to the absorption phenomenon, the reflection

phenomenon, the drift phenomenon along the boundary and the sticking

(or viscosity) phenomenon, respectively (see Figures 1.3 and 1.4).

Let C(Ω) be the Banach space of real-valued, continuous functions on

the closure Ω = Ω ∪ ∂Ω, equipped with the maximum norm

∥f∥C(Ω) = max
x∈Ω

|f(x)|, f ∈ C(Ω).

A strongly continuous semigroup {Tt}t≥0 on the space C(Ω) is called a

Feller semigroup if it is non-negative and contractive on C(Ω), that is,

f ∈ C(Ω), 0 ≤ f(x) ≤ 1 on Ω =⇒ 0 ≤ Ttf(x) ≤ 1 on Ω.

It is known (see [25], [79, Chapter 3]) that if Tt is a Feller semigroup on
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Fig. 1.3. The absorption phenomenon and the reflection phenomenon
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Fig. 1.4. The drift phenomenon along ∂Ω and the sticking (or viscosity) phe-
nomenon

C(Ω), then there exists a unique Markov transition function pt(x, ·) on
Ω such that

Ttf(x) =

∫
Ω

pt(x, dy)f(y) for all f ∈ C(Ω).

Furthermore, it can be shown (see [24, Section 6.3], [79, Chapter 9]) that

the function pt(x, ·) is the transition function of some strong Markov pro-

cess whose paths are right-continuous and have no discontinuities other

than jumps; hence the value pt(x,E) expresses the transition probability

that a Markovian particle starting at position x will be found in the set

E at time t.

The third purpose of this book is devoted to the functional analytic

approach to the problem of existence of strong Markov processes in

probability. More precisely, we consider the following problem:

Problem. Conversely, given analytic data (A,L), can we construct a

Feller semigroup {Tt}t≥0 whose infinitesimal generator A is characterized

by (A,L)?
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1.2 Statement of Main Results

The next generation theorem for Feller semigroups ([83, Theorem 1.1])

asserts that there exists a Feller semigroup corresponding to such a dif-

fusion phenomenon that a Markovian particle moves continuously in the

state space, with absorption, reflection, drift and sticking phenomena at

the boundary (see Figure 1.5):
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Fig. 1.5. The intuitive meaning of Theorem 1.1

Theorem 1.1. If n < p <∞, we define a linear operator A from C(Ω)

into itself as follows:

(a) The domain D(A) is the set

D(A) =
{
u ∈W 2,p(Ω) : Au ∈ C(Ω), Lu = 0 on ∂Ω

}
. (1.4)

(b) Au = Au for every u ∈ D(A).

Here Au and Lu are taken in the sense of distributions.

Assume that the functions µ(x′) and γ(x′) satisfy the conditions

µ(x′) > 0 on ∂Ω, (H.1)

and

γ(x′) < 0 on ∂Ω. (H.2)

Then the operator A is the infinitesimal generator of a Feller semigroup

on C(Ω).

Remark 1.1. The domain D(A) does not depend on p, for n < p <∞.
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The crucial point in the proof of Theorem 1.1 is that we consider the

term δ(x′)(Au|∂Ω) of sticking phenomenon in the boundary condition

Lu = µ(x′)
∂u

∂n
+ β(x′) · u+ γ(x′)u− δ(x′)(Au|∂Ω) on ∂Ω

as a term of “perturbation” of the oblique derivative boundary condition

(δ(x′) ≡ 0)

Lνu := µ(x′)
∂u

∂n
+ β(x′) · u+ γ(x′)u on ∂Ω.

To do this, we prove the following generation theorem for Feller semi-

groups with oblique derivative boundary condition ([83, Theorem 1.2],

[86, Theorem 1.1.]):

Theorem 1.2. If n < p <∞, we define a linear operator Aν from C(Ω)

into itself as follows:

(a) The domain D(Aν) is the set

D(Aν) =
{
u ∈W 2,p(Ω) : Au ∈ C(Ω), Lνu = 0 on ∂Ω

}
, (1.5)

where

Lνu := µ(x′)
∂u

∂n
+ β(x′) · u+ γ(x′)u on ∂Ω.

(b) Aνu = Au for every u ∈ D(Aν).

Here Au and Lνu are taken in the sense of distributions.

Assume that the functions µ(x′) and γ(x′) satisfy the conditions

µ(x′) > 0 on ∂Ω, (H.1)

and

γ(x′) < 0 on ∂Ω. (H.2)

Then the operator Aν is the infinitesimal generator of a Feller semigroup

on C(Ω).

Remark 1.2. The domain D(Aν) does not depend on p, for n < p <∞.

Rephrased, Theorem 1.2 asserts that there exists a Feller semigroup

corresponding to such a diffusion phenomenon that a Markovian particle

moves continuously in the state space, with absorption, reflection and

drift phenomena at the boundary (see Figure 1.6).

Moreover, we construct a Feller semigroup associated with absorption

phenomenon at the boundary, which we shall formulate precisely.
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Fig. 1.6. The intuitive meaning of Theorem 1.2

We introduce a subspace of C(Ω), which is associated with Dirichlet

boundary condition (µ(x′) ≡ 0, β(x′) ≡ 0, γ(x′) ≡ 1, δ(x′) ≡ 0), by the

formula

C0(Ω) =
{
u ∈ C(Ω) : u = 0 on ∂Ω

}
.

A strongly continuous semigroup Tt on the space C0(Ω) is called a Feller

semigroup if it is non-negative and contractive on C0(Ω), that is,

f ∈ C0(Ω), 0 ≤ f(x) ≤ 1 on Ω =⇒ 0 ≤ Ttf(x) ≤ 1 on Ω.

It is known that if Tt is a Feller semigroup on C0(Ω), then there exists

a unique Markov transition function pt(x, ·) on Ω such that

Ttf(x) =

∫
Ω

pt(x, dy)f(y) for all f ∈ C0(Ω).

Furthermore, it can be shown (see [24, Section 6.3]) that the func-

tion pt(x, ·) is the transition function of some strong Markov process

whose paths are right-continuous and have no discontinuities other than

jumps; hence the value pt(x,E) expresses the transition probability that

a Markovian particle starting at position x will be found in the set E at

time t.

The next generation theorem for Feller semigroups ([77, Theorem 1.2])

asserts that there exists a Feller semigroup associated with absorption

phenomenon at the boundary (see Figure 1.7):

Theorem 1.3. If n < p < ∞, we define a linear operator AD from

C0(Ω) into itself as follows:

(a) The domain D(AD) is the set

D(AD) =
{
u ∈W 2,p(Ω) ∩ C0(Ω) : Au ∈ C0(Ω)

}
. (1.6)
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Fig. 1.7. The intuitive meanig of Theorem 1.3

(b) ADu = Au for every u ∈ D(AD).

Here Au is taken in the sense of distributions.

Assume that

c(x) ≤ 0 for almost all x ∈ Ω.

Then the operator AD is the infinitesimal generator of a Feller semigroup

on C0(Ω).

Remark 1.3. The domain D(AD) does not depend on p, for n < p <∞.

The semigroup approach to Markov processes can be traced back to

the pioneering work of Feller [26], [27] in early 1950s. Our presentation

here follows the book of Dynkin [25] and also part of Lamperti’s [41].

For more leisurely treatments of Markov processes and Feller semi-

groups, the reader is referred to Blumenthal–Getoor [8], Dynkin [24],

[25], Itô–McKean [36], Lamperti [41], Revuz–Yor [59] and also Taira

[79].

1.3 Summary of the Contents

This introductory chapter 1 is intended as a brief introduction to our

problem and results in such a fashion that a broad spectrum of read-

ers could understand. The contents of the book are divided into five

principal parts.

The first part (Chapters 2–4) provides the elements of measure theory,

functional analysis and real analysis. The material in these preparatory

chapters is given for completeness, to minimize the necessity of con-

sulting too many outside references. This makes the book fairly self-

contained.

-
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Chapter 2 is devoted to a review of standard topics from functional

analysis. In Section 2.5 we formulate three pillars of functional analy-

sis – Banach’s open mapping theorem (Theorem 2.36), Banach’s closed

graph theorem (Theorem 2.37) and Banach’s closed range theorem for

closed operators (Theorem 2.40). Section 2.8 is devoted to the Riesz–

Schauder theory for compact operators (Theorem 2.47). In Section 2.9

we state important properties of Fredholm operators (Theorems 2.48

through 2.53). In Section 2.10 we formulate the Riesz representation

theorem for bounded linear functionals on a Hilbert space (Theorem

2.58). In the last Section 2.11 we formulate two fundamental theorems

concerning spaces of continuous functions defined on a metric space –

the Ascoli–Arzelà theorem (Theorem 2.67) and the Stone–Weierstrass

theorem (Theorem 2.70). These topics form a necessary background for

what follows.

In Chapter 3 we set forth the basic concepts of measure theory and

develop the theory of integration on abstract measure spaces, paying

particular attention to the Lebesgue integral on the Euclidean space

Rn. In particular, we give a complete proof of Minkowski’s inequality

for integrals (Theorem3.16) and Hardy’s inequality (Theorem 3.18) in Lp

spaces. In Section 3.9, we prove the Marcinkiewicz interpolation theorem

(Theorem 3.30) that plays an important role in the proof of Theorem

9.5 in Section 9.3. In Section 3.10, as an application of Marcinkiewicz’s

interpolation theorem we study Riesz potentials in the classical potential

theory (Theorem 3.31).

Chapter 4 is devoted to the precise definitions and statements, with

some detailed proofs, of real analytic tools such as BMO and VMO

functions, the Calderón–Zygmund decomposition (Theorem 4.7), the

Hardy–Littlewood maximal function (Theorem 4.4), the John–Nirenberg

inequality (Theorem 4.10), sharp functions (Theorem 4.14) and spherical

harmonics (Theorem 4.31).

In the second part (Chapters 5–8) we study Sobolev spaces, Besov

spaces and maximum principles in the framework of Sobolev spaces of

Lp type that are used throughout the book.

The purpose of Chapter 5 is to study harmonic functions in the half-

space in terms of Poisson integrals of functions in Lp spaces ((Theorems

5.8, 5.9 and 5.10)). In particular, we establish fundamental relationships

between means of derivatives of Poisson integrals u(x, y) taken with

respect to the normal variable y and those taken with respect to the

tangential variables xi (Theorems 5.14 and 5.19).

In Chapter 6 we develop the theory of Besov spaces Bα
p,q(R

n) on the
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Euclidean space Rn, paying particular attention to Poisson integrals.

Besov spaces are functions spaces defined in terms of the Lp modulus of

continuity. We prove a variety of equivalent norms for the Besov spaces

on Rn via Poisson integrals (Theorems 6.3, 6.5 and 6.6).

Chapter 7 is devoted to the precise definitions and statements of func-

tion spaces with some detailed proofs. The function spaces of Lp type we

treat are the generalized Sobolev spacesW s,p(Ω) andHs,p(Ω) and Besov

spaces Bs,p(∂Ω) on the boundary of a Lipschitz domain. It should be em-

phasized that Besov spaces enter naturally in connection with boundary

value problems in the framework of Sobolev spaces of Lp type. Indeed,

we need to make sense of the restriction u|∂Ω to the boundary ∂Ω as an

element of a Besov space on ∂Ω when u belongs to a Sobolev space on

the domain Ω. In particular, we formulate an important trace theorem

(Theorem 7.5) that will be used in the study of boundary value problems

in Part IV. In the last Section 7.4 we prove that

W θ,n/θ(Rn) ⊂ VMO for 0 < θ ≤ 1

(Proposition 7.7).

In Chapter 8 we prove various maximum principles for second-order,

elliptic differential operators with discontinuous coefficients such as the

weak and strong maximum principles (Theorems 8.5 and 8.9) and the

Hopf boundary point lemma (Lemma 8.8) in the framework of Sobolev

spaces of Lp type that plays an essential role in the proof of uniqueness

theorems for the Dirichlet problem in Part IV.

The third part (Chapters 9–11) is the heart of the subject. The

Calderón–Zygmund theory of singular integral operators is a very re-

fined mathematical tool whose full power is yet to be exploited.

Chapter 9 is devoted to a concise and accessible exposition of the

most elementary part of the Calderón–Zygmund theory of singular inte-

gral operators. We present a straightforward treatment of the Calderón–

Zygmund theory necessary for the study of elliptic boundary value prob-

lems, assuming only basic knowledge of real analysis and functional anal-

ysis. In particular, we present the basic theory of the Hilbert transform

H that is a special case of the singular integral of a single independent

variable (Theorems 9.6 and 9.14):

Hf(x) :=
1

π

(
v.p.

1

x

)
∗ f

=
1

π
lim
ε↓0

∫
|x−t|>ε

f(t)

x− t
dt
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=
1

π
lim
ε↓0

∫
|s|>ε

f(x− s)
ds

s
.

The proof of Theorems 9.6 and 9.14 are flowcharted.

Moreover, we study bounded kernels (Theorem 9.2), continuous ker-

nels (Theorem 9.5), odd kernels (Theorem 9.15) and Riesz kernels

Rj(x) = −Γ((n+ 1)/2)

π(n+1)/2

xj
|x|n+1

for 1 ≤ j ≤ n

(Theorem 9.16) in great detail. The proof of the continuous kernel case

is based on a version of the Calderón–Zygmund decomposition (Lemma

9.3). The study of odd kernels K(x) and Riesz kernels Rj(x) is reduced

to that of the Hilbert transformH. More precisely, we have the following

formula for the odd kernel K(x) (see formula (9.83)):

K ∗ f(x) := lim
ε↓0

∫
|x−y|>ε

K(x− y) f(y) dy

=
1

2

∫
Σn−1

K(σ)

(
lim
ε↓0

∫
|t|>ε

f(x− tσ)
dt

t

)
dσ.

On the other hand, singular integral operators with even kernelK(x) can

be expressed as a finite sum of products of singular integral operators

with odd kernel (Theorem 9.24). we have the following decomposition

formula:

K ∗ f = −
n∑

j=1

Rj ∗ (Rj ∗K) ∗ f, (1.7)

where the operators Rj and Rj ∗ K have respectively the odd kernels.

This decomposition formula (1.7) may be rephrased as follows:

{Even kernels} = {Riesz kernels} ∗ {Odd kernels} .

In this way, we can prove the existence of the singular integral in the

general case (Theorem 9.25). The proof of Theorem 9.25 is flowcharted.

The results discussed in Chapter 9 are adapted from the original paper

of Calderón–Zygmund [15] and also Tanabe [89] and [90].

The first main result in Chapter 10 (Theorem 10.1) asserts the exis-

tence of singular integral operators and the second main result (Theorem

10.2) concerns commutators of BMO functions and singular integral op-

erators. It should be emphasized again that singular integral operators

with non-smooth kernels provide a powerful tool to deal with smoothness

of solutions of partial differential equations, with minimal assumptions

of regularity on the coefficients.
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In Chapter 11 we consider singular integrals with kernels depending on

a parameter, and prove theorems about singular integrals and commu-

tators of L∞ functions and singular integral operators (Theorems 11.1

and 11.2), generalizing Theorems 10.1 and 10.2. The main idea of proof

is to reduce the variable kernel case to the constant kernel case. This is

done by expanding the kernel into a series of spherical harmonics, each

term defining a constant kernel operator treated in Chapter 10. Theo-

rems about singular integrals and commutators are usually formulated

in the whole space Rn. However, our application to the theory of elliptic

equations with discontinuous coefficients will require a local version of

Theorems 11.1 and 11.2 (Theorems 11.3 and 11.4 and Corollary 11.5).

Our subject proper starts with the fourth part (Chapters 12–15).

Chapter 12 is devoted to the study of the homogeneous Dirichlet prob-

lem {
Lu =

∑n
i,j=1 a

ij(x) ∂2u
∂xi∂xj

= f in Ω,

γ0u = 0 on ∂Ω

in the framework of Sobolev spaces of Lp type. We state interior and

global a priori estimates for the Dirichlet problem (Theorems 12.1 and

12.2) that plays an essential role in the proof of the unique solvability

theorem of the Dirichlet problem in Chapter 15. The proofs of Theorems

12.1 and 12.2 are flowcharted. Our approach can be traced back to the

pioneering work of Schauder [64] and [65] on the Dirichlet problem for

second-order, elliptic differential operators.

Chapter 13 is devoted to the proof of Theorem 12.1 (Theorem 13.3)

that is based on some local interior a priori estimates for the solutions

of the Dirichlet problem (Lemma 13.2). The main idea of proof may

be considered as an integral perturbation about the constant coefficient

case, which goes back to Eugenio Elia Levi [42] (Theorem 13.1). The

VMO assumption on the coefficients is of the greatest relevance in the

study of an error term expressed by singular commutators (Corollary

11.5). The desired interior a priori estimate (12.2) follows in a standard

way from Lemma 13.2 by a covering argument if we make use of Sobolev’s

imbedding theorem (Theorem 7.3), the contraction mapping principle

(Theorem 2.1) and the interpolation inequality (Theorem 13.4).

In Chapter 14, we prove the global a priori estimate for the homo-

geneous Dirichlet problem stated in Theorem 12.2. The desired global

estimate is consequences of the following two facts (I) and (II):

(I) The explicit representation formula (14.2) for the solutions of the

---
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homogeneous Dirichlet problem, which is obtained from the half

space Green function, involves the same integral operators as in

the interior case.

(II) An Lp boundedness of the singular integral operators and bound-

ary commutators appearing in formula (14.2) (Theorems 14.2 and

14.5).

The results of Chapter 14 are flowcharted.

Chapter 15 is devoted to the study of the homogeneous Dirichlet prob-

lem for a second-order, uniformly elliptic differential operator with VMO

coefficients in the framework of Sobolev spaces of Lp type. We prove an

existence and uniqueness theorem for the homogeneous Dirichlet prob-

lem (Theorem 15.1). Our proof is based on some interior and boundary

a priori estimates for the solutions of problem (15.2) (Theorem 12.1 and

Theorem 12.2). Both the interior and boundary a priori estimates are

consequences of explicit representation formulas (12.1) and (13.1) for the

solutions of the homogeneous Dirichlet problem (Theorem 13.1 and The-

orem 14.1) and also of the Lp-boundedness of Calderón–Zygmund sin-

gular integral operators and boundary commutators appearing in those

representation formulas (Theorem 14.2 and Theorem 14.5). It should

be emphasized that we make use of the method of continuity (Theo-

rem 2.14) in order to prove the existence theorem for the homogeneous

Dirichlet problem.

The fourth part (Chapters 16–20) is devoted to the study of the reg-

ular oblique derivative problem for a second-order, uniformly elliptic

differential operator with discontinuous coefficients{
Lu(x) =

∑n
i,j=1 a

ij(x) ∂2u
∂xi∂xj

= f(x) for almost all x ∈ Ω,

Bu(x′) = ∂u
∂ℓ + σ(x′)u = φ(x′) in the sense of traces on ∂Ω

in the framework of Sobolev spaces of Lp type. More precisely, we con-

sider a second-order, uniformly elliptic differential operator with VMO

coefficients and an oblique derivative boundary operator that is nowhere

tangential to the boundary.

In Chapter 16 we state global regularizing property of the oblique

derivative problem in the framework of Sobolev spaces of Lp type (The-

orem 16.1). Furthermore, we state an exsitence and uniqueness theorem

for the oblique derivative problem in the framework of Sobolev spaces

of Lp type (Theorem 16.2).

In Chapter 17, for a given boundary function, we construct a special

auxiliary function that satisfies an oblique derivative boundary condi-
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tion (Lemma 17.1). This result will allow us to represent, locally near

the boundary, the solution of the non-homogeneous oblique derivative

problem in Chapter 19 (see formula (19.10)). In this way, we are reduced

to the study of the homogeneous oblique derivative problem.

In Chapter 18 we prove boundary representation formulas for solutions

of the homogeneous oblique derivative problem, by using the half-space

Green function. The first step is to derive a boundary representation

formula for the solution of the homogeneous oblique derivative problem

with constant coefficients operators and homogeneous boundary condi-

tions (Lemma 18.1). The second step is to derive integral representa-

tion formulas for the second derivatives of solutions of the homogeneous

oblique derivative problem for variable coefficients differential operators

and constant coefficients boundary operators (Theorem 18.3).

The purpose of Chapter 19 is to prove boundary Sobolev regularity

of the solutions of the non-homogeneous oblique derivative problem to-

wards the proof of Theorem 16.1 (Lemma 19.1). A combination of this

regularity result with the interior regularity (Theorem 12.1) will prove

the main result in the next Chapter 20.

Chapter 20 is devoted to the study of the non-homogeneous oblique

derivative problem. We prove an existence and uniqueness theorem

(Theorem 20.1). By Lemma 17.1, we are reduced to the study of the

homogeneous oblique derivative problem. Our proof is based on some

interior and boundary a priori estimates for the solutions of the homoge-

neous oblique derivative problem (Theorem 12.1 and Lemma 19.1). Both

the interior and boundary a priori estimates are consequences of explicit

representation formulas (19.10) and (19.11) for the solutions of homo-

geneous oblique derivative problem and also of the Lp-boundedness of

Calderón–Zygmund singular integral operators and boundary commuta-

tors appearing in those representation formulas (Theorem 14.2 and The-

orem 14.5). We make use of the method of continuity (Theorem 2.14)

in order to prove the existence theorem for the homogeneous oblique

derivative problem.

The fifth and final part (Chapters 21–25) is devoted to the functional

analytic approach to the problem of construction of Markov processes

with first-order Ventcel’ boundary condition for second-order, uniformly

elliptic differential operators with discontinuous coefficients. Our ap-

proach is distinguished by the extensive use of the ideas and techniques

in the Calderón–Zygmund theory of singular integral operators with non-

smooth kernels developed in Parts II and III.

Chapter 21 provides a brief description of the basic definitions and
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results about a class of semigroups (Feller semigroups) associated with

Markov processes in probability, which forms a functional analytic back-

ground for the proof of Theorem 1.1. In particular, we formulate a ver-

sion of the Hille–Yosida theorem adapted to the present context (The-

orem 21.9). Moreover, we give two useful criteria in order that a linear

operator be the infinitesimal generator of a Feller semigroup (Theorem

21.11 and Corollary 21.12).

In Chapter 22 we consider the Dirichlet problem for the diffusion

operator with VMO coefficients in the framework of Sobolev spaces of

Lp type, and prove an existence and uniqueness theorem for the Dirichlet

problem (Theorem 22.2). The uniqueness result in Theorem 22.2 follows

from a variant of the Bakel’man–Aleksandrov maximum principle in the

framework of Sobolev spaces due to Bony [9] (Theorem 8.1). Moreover,

we construct a Feller semigroup associated with absorption phenomenon

at the boundary (Theorem 1.3).

In Chapter 23 we study the oblique derivative problem in the frame-

work of Sobolev spaces of Lp type, and prove un existence and uniqueness

theorem for the oblique derivative problem with VMO coefficients (Theo-

rem 23.2). The uniqueness result in Theorem 23.2 follows from a variant

of the Bakel’man–Aleksandrov maximum principle in the framework of

Sobolev spaces due to Lieberman [43] (Theorem 23.5). Moreover, we

construct a Feller semigroup associated with absorption, reflection and

drift phenomena at the boundary (Theorem 1.2).

The purpose of Chapter 24 is to prove a general existence theorem for

Feller semigroups with Ventcel’ boundary condition in terms of bound-

ary value problems (Theorem 24.9). Intuitively, Theorem 24.9 tells us

that we can “piece together”a Markov process on the boundary with a

diffusion in the interior to construct a Markov process on the closure of

the domain.

Chapter 25 is devoted to the proof of Theorem 1.1. The crucial point

in the proof is that we consider the term of sticking in the boundary

condition as a term of “perturbation”of the oblique derivative boundary

condition. More precisely, we make use of a generation theorem for Feller

semigroups with oblique derivative boundary condition to verify all the

conditions in a version of the Hille–Yosida theorem (Theorem 21.9).

In the last Chapter 26 we give two overviews for general results on

generation theorems for Feller semigroups based on the theory of pseudo-

differential operators [73], [74], [83], [79] and [80] and based on the theory

of singular integral operators [75], [76], [77] and [83], respectively.

Bibliographical references are discussed primarily in Notes and Com-
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ments at the end of each chapter. These notes are intended to supple-

ment the text and place it in better perspective.

1.4 A Bird’s Eye View of the Contents

The following diagram gives a bird’s eye view of Markov processes, Feller

semigroups and boundary value problems and how these relate to each

other:

Probability Functional analysis Boundary

value

problems

Strong Markov

process

(Xt)

Feller semigroup

{Tt}
Infinitesimal

generator

A

Markov transition

function pt(x, ·)
Ttf(x) =

∫
pt(x, dy)f(y) Tt = exp[tA]

Chapman–

Kolmogorov

equation

Semigroup property

Tt+s = Tt · Ts

Diffusion

operator

A

Various diffusion

phenomena

Function spaces

C(Ω), C
0

(Ω)

Ventcel’

condition L

Table 1.1. A bird’s eye view of Markov processes, Feller semigroups

and boundary value problems

The paper [85] is devoted to the functional analytic approach to the

problem of construction of Feller semigroups in the characteristic case

via the Fichera function. Probabilistically, our result may be stated

as follows: We construct a Feller semigroup corresponding to such a

diffusion phenomenon that a Markovian particle moves continuously in

the interior of the state space, without reaching the boundary (see [85,

Theorem 1.2]). We make use of the Hille–Yosida–Ray theorem (Theorem

21.11) that is a Feller semigroup version of the classical Hille–Yosida

theorem in terms of the positive maximum principle. Our proof is based
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on a method of elliptic regularizations essentially due to Olĕınik and

Radkevič [55].
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2

Elements of Functional Analysis

This chapter is devoted to a review of standard topics from functional

analysis such as quasinormed and normed linear spaces and closed and

continuous (bounded) linear operators between Banach spaces. Most of

the material will be quite familiar to the reader and may be omitted.

This chapter, included for the sake of completeness, should serve to settle

questions of notation and such.

Section 2.5 is devoted to the three pillars of functional analysis – Ba-

nach’s open mapping theorem (Theorem 2.36), Banach’s closed graph

theorem (Theorem 2.37) and Banach’s closed range theorem for closed

operators (Theorem 2.40). Section 2.8 is devoted to the Riesz–Schauder

theory for compact operators (Theorem 2.47). In Section 2.9 we state

important properties of Fredholm operators (Theorems 2.48 through

2.53). In Section 2.10 we formulate the Riesz representation theorem for

bounded linear functionals on a Hilbert space (Theorem 2.58). In the last

Section 2.11 we formulate two fundamental theorems concerning spaces

of continuous functions defined on a metric space – the Ascoli–Arzelà

theorem (Theorem 2.67) and the Stone–Weierstrass theorem (Theorem

2.70).

2.1 Metric Spaces and the Contraction Mapping Principle

A set X is called a metric space if there is defined a real-valued function

ρ on the Cartesian product X ×X such that

(D1) 0 ≤ ρ(x, y) < +∞;

(D2) ρ(x, y) = 0 if and only if x = y;

(D3) ρ(x, y) = ρ(y, x) (symmetry);

(D4) ρ(x, y) ≤ ρ(x, z) + ρ(y, z) (the triangle inequality).

21
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The function ρ is called a metric or distance function on X.

If x ∈ X and ε > 0, then B(x; ε) will denote the open ball of radius ε

about x, that is,

B(x; ε) = {y ∈ X : ρ(x, y) < ε} .

The countable family {
B

(
x;

1

n

)
: n ∈ N

}
of open balls forms a fundamental neighborhood system of x; hence

a metric space is a topological space which satisfies the first axiom of

countability.

A topological space X is said to be metrizable if we can introduce a

metric ρ on X in such a way that the induced topology on X by ρ is

just the original topology on X.

Two metrics ρ1 and ρ2 on the same set X are said to be equivalent if,

for each ε > 0 there exists δ > 0 such that{
ρ1(x, y) < δ =⇒ ρ2(x, y) < ε,

ρ2(x, y) < δ =⇒ ρ1(x, y) < ε.

Equivalent metrics induce the same topology on X.

If x is a point of X and A is a subset of X, then we define the distance

dist (x,A) from x to A by the formula

dist (x,A) = inf
a∈A

ρ(x, a).

Let (X, ρ) be a metric space. A sequence {xn} in X is called a Cauchy

sequence if it satisfies Cauchy’s convergence condition

lim
n,m→∞

ρ(xn, xm) = 0.

A metric space X is said to be complete if every Cauchy sequence in X

converges to a point in X.

Let (X, ρ) be a metric space. A map T from a subset X0 of X into

X is called a contraction on X0 if there exists a number 0 < θ < 1 such

that

ρ (T (x), T (y)) ≤ θ ρ(x, y) for all x, y ∈ X0. (2.1)

The next theorem is the basis of many important existence theorems

in analysis (cf. [30, Chapter 3, Theorem 3.8.2]):

-
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Theorem 2.1 (the contraction mapping principle). Let T be a map of

a complete metric space (X, ρ) into itself. If T is a contraction, then

there exists a unique point z ∈ X such that T (z) = z.

A point z for which T (z) = z is called a fixed point of T . Hence

Theorem 2.1 is also called a fixed point theorem.

2.2 Linear Operators and Functionals

Let X, Y be linear spaces over the same scalar field K. A mapping T

defined on a linear subspace D of X and taking values in Y is said to be

linear if it preserves the operations of addition and scalar multiplication:

(L1) T (x1 + x2) = Tx1 + Tx2 for all x1, x2 ∈ D.

(L2) T (αx) = αTx for all x ∈ D and α ∈ K.

We often write Tx, rather than T (x), if T is linear. We let

D(T ) = D,
R(T ) = {Tx : x ∈ D(T )} ,
N(T ) = {x ∈ D(T ) : Tx = 0} ,

and call them the domain, the range and the null space of T , respectively.

The mapping T is called a linear operator from D(T ) ⊂ X into Y . We

also say that T is a linear operator from X into Y with domain D(T ).

In In the particular case when Y = K, the mapping T is called a linear

functional on D(T ). In other words, a linear functional is a K-valued

function on D(T ) that satisfies conditions (L1) and (L2).

If a linear operator T is a one-to-one map of D(T ) onto R(T ), then it

is easy to see that the inverse mapping T−1 is a linear operator on R(T )

onto D(T ). The mapping T−1 is called the inverse operator or simply

the inverse of T . A linear operator T admits the inverse T−1 if and only

if Tx = 0 implies that x = 0.

Let T1 and T2 be two linear operators from a linear space X into a

linear space Y with domains D(T1) and D(T2), respectively. Then we

say that T1 = T2 if and only if D(T1) = D(T2) and T1x = T2x for all

x ∈ D(T1) = D(T2). If D(T1) ⊂ D(T2) and T1x = T2x for all x ∈ D(T1),

then we say that T2 is an extension of T1 and also that T1 is a restriction

of T2, and we write T1 ⊂ T2.
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2.3 Quasinormed Linear Spaces

Let X be a linear space over the real or complex number field K. A real-

valued function p defined on X is called a seminorm on X if it satisfies

the following three conditions (S1), (S2) and (S3):

(S1) 0 ≤ p(x) <∞ for all x ∈ X.

(S2) p(αx) = |α|p(x) for all α ∈ K and x ∈ X.

(S3) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

Let {pi} be a countable family of seminorms on X such that

p1(x) ≤ p2(x) ≤ · · · ≤ pi(x) ≤ · · · for each x ∈ X, (2.2)

and define

Vij =

{
x ∈ X : pi(x) <

1

j

}
, i, j = 1, 2, . . . .

Then it is easy to verify that a countable family of the sets

x+ Vij = {x+ y : y ∈ Vij}

satisfies the axioms of a fundamental neighborhood system of x; hence

X is a topological space which satisfies the first axiom of countability.

Furthermore, we have the following:

Theorem 2.2. Let {pi} be a countable family of seminorms on a linear

space X which satisfies condition (2.2). Assume that

For every non-zero x ∈ X, there exists a seminorm pi such that (2.3)

pi(x) > 0.

Then the space X is metrizable by the metric

ρ(x, y) =
∞∑
i=1

1

2i
pi(x)

1 + pi(x)
for all x, y ∈ X.

If we let

|x| = ρ(x, 0) =
∞∑
i=1

1

2i
pi(x)

1 + pi(x)
for x ∈ X, (2.4)

then the quantity |x| enjoys the following four properties (Q1), (Q2),

(Q3) and (Q4):

(Q1) |x| ≥ 0; |x| = 0 if and only if x = 0.

(Q2) |x+ y| ≤ |x|+ |y| (the triangle inequality).

(Q3) αn → 0 in K =⇒ |αnx| → 0 for every x ∈ X.
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(Q4) |xn| → 0 =⇒ |αxn| → 0 for every α ∈ K.

This quantity |x| is called a quasinorm of x, and the space X is called a

quasinormed linear space.

Theorem 2.2 may be restated as follows:

Theorem 2.3. A linear space X, topologized by a countable family {pi}
of seminorms satisfying conditions (2.2) and (2.3), is a quasinormed

linear space with respect to the quasinorm |x| defined by formula (2.4).

Let X be a quasinormed linear space. The convergence

lim
n→∞

|xn − x| = 0

in X is denoted by s − limn→∞ xn = x or simply by xn → x, and we

say that the sequence {xn} converges strongly to x. A sequence {xn} is

called a Cauchy sequence if it satisfies Cauchy’s condition

lim
m,n→∞

|xm − xn| = 0.

A quasinormed linear space X is called a Fréchet space if it is complete,

that is, if every Cauchy sequence in X converges strongly to a point in

X. If a quasinormed linear space X is topologized by a countable family

{pi} of seminorms which satisfies conditions (2.2) and (2.3), then the

above definitions may be reformulated in terms of seminorms as follows:

(i) A sequence {xn} in X converges strongly to a point x in X if

and only if, for every seminorm pi and every ε > 0, there exists

a positive integer N = N(i, ε) such that

n ≥ N =⇒ pi(xn − x) < ε.

(ii) A sequence {xn} in X is a Cauchy sequence if and only if, for

every seminorm pi and every ε > 0, there exists a positive integer

N = N(i, ε) such that

m, n ≥ N =⇒ pi(xm − xn) < ε.

Let X be a quasinormed linear space. A linear subspace of X is called

a closed subspace if it is a closed subset ofX. For example, the closureM

of a linear subspace M is a closed subspace. Indeed, since the elements

of M are limits of sequences in M , we have the assertions{
x = limn→∞ xn, xn ∈M,

y = limn→∞ yn, yn ∈M
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=⇒{
x+ y = limn→∞(xn + yn),

αx = limn→∞ αxn for all α ∈ K.

This proves that x+ y ∈M and αx ∈M for all α ∈ K.

2.3.1 Compact Sets

A collection {Uλ}λ∈Λ of open sets of a topological space X is called

an open covering of X if X = ∪λ∈ΛUλ. A topological space X is said

to be compact if every open covering {Uλ} of X contains some finite

subcollection of {Uλ} which still covers X. If s subset of X is compact

considered as a topological subspace of X, then it is called a compact

subset of X.

A subset of a topological space X is said to be relatively compact

(or precompact) if its closure is a compact subset of X. A topological

space X is said to be locally compact if every point of X has a relatively

compact neighborhood.

A subset of a topological space X is called a σ-compact subset if it is

a countable union of compact sets.

Compactness is such a useful property that, given a non-compact

space (X,O), it is worthwhile constructing a compact space (X ′,O′)

with X being its dense subset. Such a space is called a compactification

of (X,O). The simplest way in which this can be achieved is by adjoin-

ing one extra point ∞ to the space X; a topology O′ can be defined on

X ′ = X ∪{∞} in such a way that (X ′,O′) is compact and that O is the

relative topology induced on X by O′. The topological space (X ′,O′)

is called the one-point compactification of (X,O), and the point ∞ is

called the point at infinity.

Let X be a quasinormed linear space. A subset Y of X is called a

sequentially compact if every sequence {yn} in Y contains a subsequence

{yn′} which converges to a point y of Y :

lim
n′→∞

|yn′ − y| = 0.

Then we have the following criterion for compactness:

Theorem 2.4. A subset of a quasinormed linear space X is compact if

and only if it is sequentially compact.
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2.3.2 Bounded Sets

Let (X, | · |) be a quasinormed linear space. A set B in X is said to be

bounded if it satisfies the condition

sup
x∈B

|x| <∞.

We remark that every compact set is bounded.

A subset K of X is said to be totally bounded if, for any given ε > 0

there is a finite number of balls

B(xi, ε) = {x ∈ X : |x− xi| < ε} , 1 ≤ i ≤ n,

of radius ε about xi ∈ X that cover K:

K ⊂ ∪n
i=1B(xi, ε).

Example 2.1. Let (X, | · |) be a quasinormed linear space. Assume that

a subset A satisfies the following three conditions:

(a) For every h > 0, there exists a totally bounded subset Ah of X.

(b) For each point x ∈ A, there exists a point y ∈ Ah such that

|x− y| ≤ h.

(c) For each point z ∈ Ah, there exists a point w ∈ A such that

|z − w| ≤ h.

Then the subset A is totally bounded.

Proof. For any given ε > 0, we assume that

A ⊂ ∪x∈AB(x, ε).

Choose a number h0 such that

0 < h0 <
ε

3
.

Since we have the assertion

Ah0 ⊂ ∪y∈Ah0
B (y, ε/3) ,

it follows from condition (a) that there is a finite number of points

{y1, . . . , yN} of Ah0 such that

Ah0 ⊂ ∪N
i=1B (yi, ε/3) . (2.5)

Moreover, by condition (c) we can find a finite number of points

{x1, . . . , xN}

-
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of A such that

|xi − yi| ≤ h0, 1 ≤ i ≤ N.

Then we have the assertion

A ⊂ ∪N
i=1B (xi, ε) , (2.6)

which proves that A is totally bounded.

Indeed, if x is an arbirary point of A, by condition (b) we can find a

point y0 ∈ Ah0 such that

|x− y0| ≤ h0.

Moreover, by assertion (2.5), there exists a point yi ∈ Ah0 such that

|y0 − yi| ≤
ε

3
.

Hence we have the inequality

|x− xi| ≤ |x− y0|+ |y0 − yi|+ |yi − xi| ≤ h0 +
ε

3
+ h0

< ε.

This proves the desired assertion (2.6).

The proof of Example 2.1 is complete.

Finally, we have the following criterion for compactness:

Theorem 2.5. Let X be a complete quasinormed linear space. A closed

subset of X is compact if and only if it is totally bounded.

Throughout the rest of this section, let X and Y be quasinormed

linear spaces over the same scalar field K, topologized respectively by

countable families {pi} and {qi} of seminorms which satisfy conditions

(2.2) and (2.3).

2.3.3 Continuity of Linear Operators

Let T be a linear operator from X into Y with domain D(T ). By virtue

of the linearity of T , it follows that T is continuous everywhere on D(T )

if and only if it is continuous at one point of D(T ). Furthermore, we

have the following:

Theorem 2.6. A linear operator T from X into Y with domain D(T )

is continuous everywhere on D(T ) if and only if, for every seminorm qj
on Y , there exist a seminorm pi on X and a constant C > 0 such that

qj(Tx) ≤ Cpi(x) for all x ∈ D(T ).

□ 
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2.3.4 Topologies of Linear Operators

We let

L(X,Y ) = the collection of continuous linear operators on X into Y .

We define in the set L(X,Y ) addition and scalar multiplication of oper-

ators in the usual way:

(T + S)x = Tx+ Sx, x ∈ X,

(αT )x = α(Tx), α ∈ K, x ∈ X.

Then L(X,Y ) is a linear space.

We introduce three different topologies on the space L(X,Y ).

(1) Simple convergence topology: This is the topology of convergence

at each point of X; a sequence {Tn} in L(X,Y ) converges to an

element T of L(X,Y ) in the simple convergence topology if and

only if Tnx→ Tx in Y for each x ∈ X.

(2) Compact convergence topology: This is the topology of uniform

convergence on compact sets in X; Tn → T in the compact con-

vergence topology if and only if Tnx → Tx in Y uniformly for x

ranging over compact sets in X.

(3) Bounded convergence topology: This is the topology of uniform

convergence on bounded sets in X; Tn → T in the bounded con-

vergence topology if and only if Tnx → Tx in Y uniformly for x

ranging over bounded sets in X.

The simple convergence topology is weaker than the compact conver-

gence topology, and the compact convergence topology is weaker than

the bounded convergence topology.

2.3.5 Product Spaces

Let X and Y be quasinormed linear spaces over the same scalar field K.

Then the Cartesian product X × Y becomes a linear space over K if we

define the algebraic operations coordinatewise

{x1, y1}+ {x2, y2} = {x1 + x2, y1 + y2},
α {x, y} = {αx, αy} for α ∈ K.

It is easy to verify that the quantity

|{x, y}| =
(
|x|2X + |y|2Y

)1/2
(2.7)
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satisfies axioms (Q1) through (Q4) of a quasinorm; hence the product

space X×Y is a quasinormed linear space with respect to the quasinorm

defined by formula (2.7). Furthermore, if X and Y are Fréchet spaces,

then so is X × Y . In other words, the completeness is inherited by the

product space.

2.4 Normed Linear Spaces

A quasinormed linear space is called a normed linear space if it is topol-

ogized by just one seminorm that satisfies condition (2.3). We give the

precise definition of a normed linear space.

Let X be a linear space over the real or complex number field K. A

real-valued function ∥·∥ defined on X is called a norm on X if it satisfies

the following three conditions (N1), (N2) and (N3):

(N1) ∥x∥ ≥ 0; ∥x∥ = 0 if and only if x = 0.

(N2) ∥αx∥ = |α|∥x∥, α ∈ K, x ∈ X.

(N3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥, x, y ∈ X (the triangle inequality).

A linear space X equipped with a norm ∥ · ∥ is called a normed linear

space. The topology on X is defined by the metric

ρ(x, y) = ∥x− y∥.

The convergence

lim
n→∞

∥xn − x∥ = 0

in X is denoted by s − limn→∞ xn = x or simply xn → x, and we say

that the sequence {xn} converges strongly to x. A sequence {xn} in X

is called a Cauchy sequence if it satisfies the condition

lim
n,m→∞

∥xn − xm∥ = 0.

A normed linear space X is called a Banach space if it is complete, that

is, if every Cauchy sequence in X converges strongly to a point in X.

Two norms ∥ · ∥1 and ∥ · ∥2 defined on the same linear space X are

said to be equivalent if there exist constants c > 0 and C > 0 such that

c ∥x∥1 ≤ ∥x∥2 ≤ C ∥x∥1 for all x ∈ X.

Equivalent norms induce the same topology.
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If X and Y are normed linear spaces over the same scalar field K,

then the product space X × Y is a normed linear space by the norm

∥{x, y}∥ =
(
∥x∥2X + ∥y∥2Y

)1/2
.

If X and Y are Banach spaces, then so is X × Y .

Let X be a normed linear space. If Y is a closed linear subspace of

X, then the factor space X/Y is a normed linear space by the norm

∥x̃∥ = inf
z∈x̃

∥z∥. (2.8)

If X is a Banach space, then so is X/Y . The space X/Y , normed by

formula (2.8), is called a normed factor space.

2.4.1 Linear Operators on Normed Spaces

Throughout the rest of this section, the letters X, Y , Z denote normed

linear spaces over the same scalar field K.

The next theorem is a normed linear space version of Theorem 2.6:

Theorem 2.7. Let T be a linear operator from X into Y with domain

D(T ). Then T is continuous everywhere on D(T ) if and only if there

exists a constant C > 0 such that

∥Tx∥ ≤ C∥x∥ for all x ∈ D(T ). (2.9)

Remark 2.1. In inequality (2.9), the quantity ∥x∥ is the norm of x in

X and the quantity ∥Tx∥ is the norm of Tx in Y . Frequently several

norms appear together, but it is clear from the context which is which.

One of the consequences of Theorem 2.7 is the following extension

theorem for a continuous linear operator:

Theorem 2.8. If T is a continuous linear operator from X into Y

with domain D(T ) and if Y is a Banach space, then T has a unique

continuous extension T̃ whose domain is the closure D(T ) of D(T ).

As another consequence of Theorem 2.7, we give a necessary and suf-

ficient condition for the existence of the continuous inverse of a linear

operator:

Theorem 2.9. Let T be a linear operator from X into Y with domain

D(T ). Then T admits a continuous inverse T−1 if and only if there

exists a constant c > 0 such that

∥Tx∥ ≥ c∥x∥ for all x ∈ D(T ).

---
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A linear operator T from X into Y with domain D(T ) is called an

isometry if it is norm-preserving, that is, if we have the formula

∥Tx∥ = ∥x∥ for all x ∈ D(T ).

It is clear that if T is an isometry, then it is injective and both T and

T−1 are continuous.

If T is a continuous, one-to-one linear mapping of X onto Y and

if its inverse T−1 is also a continuous mapping, then it is called an

isomorphism of X onto Y . Two normed linear spaces are said to be

isomorphic if there is an isomorphism between them.

By combining Theorems 2.7 and 2.9, we obtain the following:

Theorem 2.10. Let T be a linear operator on X onto Y . Then T is an

isomorphism if and only if there exist constants c > 0 and C > 0 such

that

c∥x∥ ≤ ∥Tx∥ ≤ C∥x∥ for all x ∈ X.

If T is a continuous linear operator from X into Y with domain D(T ),

we let

∥T∥ = inf{C : ∥Tx∥ ≤ C∥x∥, x ∈ D(T )}.

Then, in view of the linearity of T we have the formula

∥T∥ = sup
x∈D(T )

x̸=0

∥Tx∥
∥x∥

= sup
x∈D(T )
∥x∥=1

∥Tx∥ = sup
x∈D(T )
∥x∥≤1

∥Tx∥. (2.10)

This proves that ∥T∥ is the smallest non-negative number such that

∥Tx∥ ≤ ∥T∥ · ∥x∥ for all x ∈ D(T ). (2.11)

Theorem 2.7 asserts that a linear operator T on X into Y is continuous

if and only if it maps bounded sets in X into bounded sets in Y . Thus

a continuous linear operator on X into Y is usually called a bounded

linear operator on X into Y . We let

L(X,Y )

= the space of bounded (continuous) linear operators on X into Y .

In the case of normed linear spaces, the simple convergence topology

on L(X,Y ) is usually called the strong topology of operators, and the

bounded convergence topology on L(X,Y ) is called the uniform topology

of operators. In view of formulas (2.10) and (2.11), it follows that the

quantity ∥T∥ satisfies axioms (N1), (N2) and (N3) of a norm; hence

---
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the space L(X,Y ) is a normed linear space by the norm ∥T∥ given by

formula (2.10). The topology on L(X,Y ) induced by the operator norm

∥T∥ is just the uniform topology of operators.

We give a sufficient condition for the space L(X,Y ) to be complete:

Theorem 2.11. If Y is a Banach space, then so is L(X,Y ).

If T is a linear operator from X into Y with domain D(T ) and S is

a linear operator from Y into Z with domain D(S), then we define the

product ST as follows:

(a) D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)},
(b) (ST )(x) = S(Tx) for every x ∈ D(ST ).

As for the product of linear operators, we have the following:

Proposition 2.12. If T ∈ L(X,Y ) and S ∈ L(Y, Z), then it follows

that ST ∈ L(X,Z). Moreover, we have the inequality

∥ST∥ ≤ ∥S∥ · ∥T∥.

We make use of the following theorem in constructing the bounded

inverse of a bounded linear operator:

Theorem 2.13. If T is a bounded linear operator on a Banach space

X into itself and satisfies ∥T∥ < 1, then the operator I−T has a unique

bounded linear inverse (I − T )−1 which is given by C. Neumann’s series

(I − T )−1 =

∞∑
n=0

Tn.

Here I is the identity operator: Ix = x for every x ∈ X, and T 0 = I.

2.4.2 Method of Continuity

In Chapter 15 we make use of the following method of continuity (see

[33, Chapter 5, Theorem 5.2]) in order to prove the existence theorem

for the Dirichlet problem:

Theorem 2.14 (the method of continuity). Let B be a Banach space

and let V be a normed linear space. If L0 and L1 are two bounded linear

operators from B into V, we define a family of bounded linear operators

Lt = (1− t)L0 + tL1 : B −→ V
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for 0 ≤ t ≤ 1. Assume that there exists a positive constant C, indepen-

dent of x and t, such that

∥x∥B ≤ C ∥Ltx∥V for all x ∈ B. (2.12)

Then the operator L1 maps B onto V if and only if the operator L0 maps

B onto V.

Proof. Assume that Ls is surjective for some s ∈ [0, 1]. By inequality

(2.12), it follows that Ls is bijective, so that the inverse L−1
s : V → B

exists. Here we remark that ∥∥L−1
s

∥∥ ≤ C.

Now let t be an arbitrary point of the interval [0, 1]. For any given

y ∈ V, the equation

Ltx = y

is equivalent to the equation

Lsx = Ltx+ (Ls − Lt)x = y + (s− t) (L1x− L0x) .

Hence we have the equivalent assertions

Ltx = y ⇐⇒ x = L−1
s (y + (s− t) (L1x− L0x))

⇐⇒
(
I − (s− t)L−1

s (L1 − L0)
)
x = L−1

s y.

However, if |t− s| is so small that

|s− t| < δ :=
1

C (∥L1∥+ ∥L0∥)
,

then it follows that∥∥(s− t)L−1
s (L1 − L0)

∥∥ ≤ |s− t|
∥∥L−1

s

∥∥ ∥L1 − L0∥

≤ C |s− t| (∥L1∥+ ∥L0∥) =
|s− t|
δ

< 1.

This proves that the operator(
I − (s− t)L−1

s (L1 − L0)
)

has, as a Neumann series (Theorem 2.13), the inverse

(
I − (s− t)L−1

s (L1 − L0)
)−1

=
∞∑

n=0

(s− t)
n (L−1

s

)n
(L1 − L0)

n
.
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Therefore, we obtain that, for all t ∈ [0, 1] satisfying |t− s| < δ,

Ltx = y ⇐⇒ x =
(
I − (s− t)L−1

s (L1 − L0)
)−1 L−1

s y.

By dividing the interval [0, 1] into subintervals of length less than δ,

we find that the mapping Lt is surjective for all t ∈ [0, 1], provided that

Ls is surjective for some s ∈ [0, 1]. In particular, this proves that L1

maps B onto V if and only if L0 maps B onto V.
The proof of Theorem 2.14 is complete.

2.4.3 Finite Dimensional Spaces

The next theorem asserts that there is no point in studying abstract

finite dimensional normed linear spaces:

Theorem 2.15. All n-dimensional normed linear spaces over the same

scalar field K are isomorphic to Kn with the maximum norm

∥α∥ = max
1≤i≤n

|αi|, α = (α1, α2, . . . , αn) ∈ Kn.

Topological properties of the spaceKn applies to all finite dimensional

normed linear spaces.

Corollary 2.16. All finite dimensional normed linear spaces are com-

plete.

Corollary 2.17. Every finite dimensional linear subspace of a normed

linear space is closed.

Corollary 2.18. A subset of a finite dimensional normed linear space

is compact if and only if it is closed and bounded.

By Corollary 2.17, it follows that the closed unit ball in a finite di-

mensional normed linear space is compact. Conversely, this property

characterizes finite dimensional spaces:

Theorem 2.19. If the closed unit ball in a normed linear space X is

compact, then X is finite dimensional.

2.4.4 The Hahn–Banach Extension Theorem

The Hahn–Banach extension theorem asserts the existence of linear func-

tionals dominated by norms (see [99, Chapter IV, Section 5, Theorem 1

and Corollary]):

□ 
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Theorem 2.20 (Hahn–Banach). Let X be a normed linear space over

the real or complex number field K and let M be a linear subspace of

X. If f is a continuous linear functional defined on M , then it can be

extended to a continuous linear functional f̃ on X so that

∥f̃∥ = ∥f∥.

Let X be a real or complex, normed linear space. A closed subset M

of X is said to be balanced if it satisfies the condition

x ∈M, |α| ≤ 1 =⇒ αx ∈M.

The next two theorems assert the existence of non-trivial continuous

linear functionals (see [99, Chapter IV, Section 6, Theorem 3]):

Theorem 2.21 (Mazur). Let X be a real or complex, normed linear

space and let M be a closed convex, balanced subset of X. Then, for

any element x0 ̸∈M there exists a continuous linear functional f0 on X

such that

f0(x0) > 1,

|f0(x)| ≤ 1 on M.

Proof. Since M is closed and x0 /∈M , it follows that

dist (x0,M) > 0.

If 0 < d < dist (x0,M), we let

B

(
0,
d

2

)
=

{
x ∈ X : ∥x∥ ≤ d

2

}
,

B

(
x0,

d

2

)
= x0 +B

(
0,
d

2

)
=

{
x ∈ X : ∥x− x0∥ ≤ d

2

}
,

U =

{
x ∈ X : dist (x,M) ≤ d

2

}
.

Then we have the assertions

U ∩B
(
x0,

d

2

)
= ∅,

B

(
0,
d

2

)
⊂ U,

since 0 ∈ M . Moreover, since M is convex and balanced, it is easy to

verify the following three assertions:

(a) U is convex.
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(b) U is balanced.

(c) U is absorbing, that is, for any x ∈ X, there exists a constant

α > 0 such that α−1x ∈ U .

Hence, we can define the Minkowski functional pU of U by the formula

pU (x) = inf
{
α > 0 : α−1x ∈ U

}
for every x ∈ X.

Since U is closed, it is easy to verify the following assertions:{
pU (x) > 1 if x /∈ U,

pU (x) ≤ 1 if x ∈ U.

Therefore, by applying [99, Chapter IV, Section 6, Corollary 1 to Theo-

rem 1] to our situation we can find a continuous linear functional f0 on

X such that

f0(x0) = pU (x0) > 1,

|f0(x)| ≤ pU (x) on X.

In particular, we have the assertion

|f0(x)| = pU (x) ≤ 1 on M,

since M ⊂ U .

The proof of Theorem 2.21 is complete.

Theorem 2.22. Let X be a normed linear space and let M be a closed

linear subspace of X. Then, for any element x0 ̸∈ M there exists a

continuous linear functional f0 on X such that{
f0(x0) > 1,

f0(x) = 0 on M.

Proof. Indeed, it suffices to note that

|f0(x)| ≤ 1 on M =⇒ f0(x) = 0 on M,

since M is a linear space.

The proof of Theorem 2.22 is complete.

Finally, the next theorem asserts that, for each point x0 ̸= 0 there

exists a continuous linear functional f0 such that f0(x0) ̸= f0(0) = 0:

□ 

□ 
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Theorem 2.23. Let X be a normed linear space. For each non-zero

element x0 of X, there exists a continuous linear functional f0 on X

such that {
f0(x0) = ∥x0∥,
∥f0∥ = 1.

2.4.5 Dual Spaces

Let X be a normed linear space over the real or complex number field K.

A continuous linear functional on X is usually called a bounded linear

functional on X.

The space L(X,K) of all bounded linear functionals on X is called

the dual space of X, and is denoted by X ′. We shall write

f(x) = ⟨f, x⟩

for the value of the functional f ∈ X ′ and the vector x ∈ X. The

bounded (resp. simple) convergence topology on X ′ is called the strong

(resp. weak*) topology on X ′ and the dual space X ′ equipped with this

topology is called the strong (resp. weak*) dual space of X.

It follows from an application of Theorem 2.11 with Y := K that the

strong dual space X ′ is a Banach space with the norm

∥f∥ = sup
x∈X\{0}

|f(x)|
∥x∥

= sup
x∈X
∥x∥≤1

|f(x)| .

We remark that

|⟨f, x⟩| ≤ ∥f∥ · ∥x∥ for all x ∈ X.

Theorem 2.23 asserts that the dual space X ′ separates points of X,

that is, for arbitrary two distinct points x1, x2 of X, there exists a

functional f ∈ X ′ such that f(x1) ̸= f(x2).

2.4.6 Annihilators

Let A be a subset of a normed linear space X. An element f of the dual

space X ′ is called an annihilator of A if it satisfies the condition

f(x) = 0 for all x ∈ A.

We let

A0 = {f ∈ X ′ : f(x) = 0 for all x ∈ A}

---
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be the set of all annihilators of A. This is not a one way proposition. If

B is a subset of X ′, we let

0B = {x ∈ X : f(x) = 0 for all f ∈ B}

be the set of all annihilators of B.

Here are some basic properties of annihilators:

(i) The sets A0 and 0B are closed linear subspaces of X and X ′,

respectively.

(ii) If M is a closed linear subspace of X, then 0(M0) =M .

(iii) If A is a subset of X andM is the closure of the subspace spanned

by A, then M0 = A0 and M = 0(A0).

2.4.7 Dual Spaces of Normed Factor Spaces

LetM be a closed linear subspace of a normed linear spaceX. Then each

element f of M0 defines a bounded linear functional f̃ on the normed

factor space X/M by the formula

f̃(x̃) = f(x) for all x̃ ∈ X/M.

Indeed, the value f(x) on the right-hand side does not depend on the

choice of a representative x of the equivalence class x̃, and we have the

formula

∥f̃∥ = ∥f∥.

Furthermore, it is easy to see that the mapping

π : f 7−→ f̃

of M0 into (X/M)′ is linear and surjective; hence we have the following:

Theorem 2.24. The strong dual space (X/M)′ of the factor space X/M

can be identified with the space M0 of all annihilators of M by the linear

isometry π.

2.4.8 Bidual Spaces

Each element x of a normed linear space X defines a bounded linear

functional Jx on the strong dual space X ′ by the formula

Jx(f) = f(x) for all f ∈ X ′. (2.13)
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Then Theorem 2.23 asserts that

∥Jx∥ = sup
f∈X′

∥f∥≤1

|Jx(f)| = ∥x∥,

so that the mapping J is a linear isometry of X into the strong dual

space (X ′)′ of X ′. The space (X ′)′ is called the strong bidual (or second

dual) space of X.

Summing up, we have the following:

Theorem 2.25. A normed linear space X can be embedded into its

strong bidual space (X ′)′ by the linear isometry J defined by formula

(2.13).

If the mapping J is surjective, that is, if X = (X ′)′, then we say that

X is reflexive.

For example, we have the following:

Theorem 2.26. The space Lp(Ω) is reflexive if and only if 1 < p <∞
(see [2, Theorem 2.46]).

2.4.9 Weak Convergence

A sequence {xn} in a normed linear space X is said to be weakly con-

vergent if a finite limn→∞ f(xn) exists for each f in the dual space

X ′ of X. A sequence {xn} in X is said to converge weakly to an el-

ement x of X if limn→∞ f(xn) = f(x) for every f ∈ X ′; we then write

w − limn→∞ xn = x or simply xn → x weakly. Since the space X ′

separates points of X, the limit x is uniquely determined. Theorem

2.25 asserts that X may be considered as a linear subspace of its bidual

space (X ′)′; hence the weak topology on X is just the simple convergence

topology on the bidual space (X ′)′ = L(X ′,K).

For weakly convergent sequences, we have the following:

Theorem 2.27. (i) s− limn→∞ xn = x implies w − limn→∞ xn = x.

(ii) A weakly convergent sequence {xn} is bounded:

sup
n

∥xn∥ < +∞.

Furthermore, if w− limn→∞ xn = x, then the sequence {xn} is bounded

and we have the inequality

∥x∥ ≤ lim inf
n→∞

∥xn∥.
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Part (ii) of Theorem 2.27 has a converse:

Theorem 2.28. A sequence {xn} in X converges weakly to an element

x of X if the following two conditions (a) and (b) are satisfied:

(a) The sequence {xn} is bounded.

(b) limn→∞ f(xn) = f(x) for every f in some strongly dense subset

of X ′.

For the strong and weak closures of a linear subspace, we have the

following (see [99, Chapter V, Section 1, Theorem 11]):

Theorem 2.29 (Mazur). Let X be a normed linear space. If M is a

closed linear subspace of X in the strong topology of X, then it is closed

in the weak topology of X.

Proof. Our proof is based on a reduction to absurdity. Assume, to the

contrary, that M is not weakly closed. Then there exists a point x0 ∈
X \M such that x0 is an accumulation point of the set M in the weak

topology of X. Namely, there exists a sequence {xn} of M such that

xn converges weakly to x0. However, by applying Mazur’a theorem

(Theorem 2.21) we can find a continuous linear functional f0 on X such

that

f0(x0) > 1,

|f0(x)| ≤ 1 on M.

Hence we have the assertion

1 < |f0(x0)| = lim
n→∞

|f0(xn)| ≤ 1.

This is a contradiction.

The proof of Theorem 2.29 is complete.

Finally, the next Eberlein–Shmulyan theorem gives a necessary and

sufficient condition for reflexivity of a Banach space in terms of sequen-

tial weak compactness (see [99, Appendix to Chapter V, Section 4, The-

orem]):

Theorem 2.30 (Eberlein–Shmulyan). A Banach space X is reflexive

if and only if it is locally sequentially weakly compact, that is, X is

reflexive if and only if every strongly bounded sequence of X contains a

subsequence which converges weakly to an element of X.

□ 
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2.4.10 Weak* Convergence

A sequence {fn} in the dual space X ′ is said to be weakly* convergent if

a finite limn→∞ fn(x) exists for every x ∈ X. A sequence {fn} in X ′ is

said to converge weakly* to an element f of X ′ if limn→∞ fn(x) = f(x)

for every x ∈ X; we then write w ∗ − limn→∞ fn = f or simply fn → f

weakly*. The weak* topology on X ′ is just the simple topology on the

space X ′ = L(X,K).

We have the following analogue of Theorem 2.27:

Theorem 2.31. (i) s− limn→∞ fn = f implies w ∗ − limn→∞ fn = f .

(ii) If X is a Banach space, then a weakly* convergent sequence {fn}
in X ′ converges weakly* to an element f of X ′ and we have the inequality

∥f∥ ≤ lim inf
n→∞

∥fn∥.

One of the important consequences of Theorem 2.31 is the sequential

weak* compactness of bounded sets:

Theorem 2.32. Let X be a separable Banach space. Then every bound-

ed sequence in the strong dual space X ′ has a subsequence which con-

verges weakly* to an element of X ′.

2.4.11 Dual Operators

The notion of the transposed matrix may be extended to the notion

of dual operators as follows: Let T be a linear operator from X into

Y with domain D(T ) dense in X. Such operators are called densely

defined operators. Each element g of the dual space Y ′ of Y defines a

linear functional G on D(T ) by the formula

G(x) = g(Tx) for all x ∈ D(T ).

If this functional G is continuous everywhere on D(T ) in the strong

topology on X ′, it follows from an application of Theorem 2.8 that G

can be extended uniquely to a continuous linear functional g′ on the

closure

D(T ) = X,

that is, there exists a unique element g′ of the dual space X ′ of X which

is an extension of G. So we let

D(T ′)

= the totality of those g ∈ Y ′ such that the mapping

---
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x 7−→ g(Tx)

is continuous everywhere on D(T ) in the strong topology on X ′,

and define

T ′g = g′.

In other words, the mapping T ′ is a linear operator from Y ′ into X ′ with

domain D(T ′) such that

g(Tx) = T ′g(x) for all x ∈ D(T ) and g ∈ D(T ′). (2.14)

The operator T ′ is called the dual operator or transpose of T .

Frequently, we write ⟨f, x⟩ or ⟨x, f⟩ for the value f(x) of a functional

f at a point x. For example, we write formula (2.14) as follows:

⟨Tx, g⟩ = ⟨x, T ′g⟩ for all x ∈ D(T ) and g ∈ D(T ′). (2.14′)

The next theorem states that the continuity of operators is inherited

by the transposes ([99, Chapter VII, Section 1, Theorem 2]):

Theorem 2.33. Let X, Y be normed linear spaces and X ′, Y ′ their

strong dual spaces, respectively. If T is a bounded linear operator on X

into Y , then its transpose T ′ is a bounded linear operator on Y ′ into X ′,

and we have the formula

∥T ′∥ = ∥T∥.

2.4.12 Adjoint Operators

We assume that a normed linear space X is equipped with a conjugation,

that is, with a continuous, unitary operation

X ∋ u 7→ u ∈ X

satisfying the following conditions:

u+ v = u+ v,

α u = αu,

(u) = u

for all u, v ∈ X and α ∈ K. For example, if X is a function space, then

u is just the usual pointwise complex conjugate:

u(x) = u(x) for all u ∈ X.
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A conjugation on X induces a conjugation on the dual space X ′ by

the formula ⟨
f, u

⟩
= ⟨f, u⟩ for all f ∈ X ′ and u ∈ X.

Hence we can define a bounded sesquilinear form (·, ·) on X ′×X by the

formula

(f, u) =
⟨
f, u

⟩
for all f ∈ X ′ and u ∈ X.

Now we consider the case where X and Y are each equipped with

a conjugation. The notion of the adjoint matrix may be extended to

the notion of adjoints as follows: Let A : X → Y be a linear operator

with domain D(A) dense in X. Each element v of Y ′ defines a linear

functional V on D(A) by the formula

V (u) = (Au, v) for every u ∈ D(A).

If this functional V is continuous everywhere on D(A) in the strong

topology on X ′, by applying Theorem 2.8 we obtain that V can be

extended uniquely to a continuous linear functional v∗ on D(A) = X.

So we let

D(A∗)

= the totality of those v ∈ Y ′ such that the mapping

u 7−→ (Au, v)

is continuous everywhere on D(A) in the strong topology on X ′,

and define

A∗v = v∗.

In other words, the mapping A∗ is a linear operator from Y ′ into X ′

with domain D(A∗) such that

(u,A∗v) = (Au, v) for all u ∈ D(A) and v ∈ D(A∗).

The operator A′ is called the adjoint operator or adjoint of A.

2.5 Closed Operators

Let X and Y be normed linear spaces over the same scalar field K. Let

T be a linear operator from X into Y with domain D(T ). The graph

G(T ) of T is the set

G(T ) = {{x, Tx} : x ∈ D(T )}
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in the product space X × Y . Note that G(T ) is a linear subspace of

X × Y . We say that T is closed if its graph G(T ) is closed in X × Y .

This is equivalent to saying that

{xn} ⊂ D(T ), xn −→ x in X, Txn −→ y in Y

=⇒ x ∈ D(T ), Tx = y.

In particular, if T is continuous and its domain D(T ) is closed in X,

then T is a closed linear operator.

We remark that if T is a closed linear operator which is also injective,

then its inverse T−1 is a closed linear operator. Indeed, this follows

from the fact that the mapping {x, y} 7−→ {y, x} is a homeomorphism

of X × Y onto Y ×X.

A linear operator T is said to be closable if the closure G(T ) in X×Y
of G(T ) is the graph of a linear operator, say, T , that is, G(T ) = G(T ).

A linear operator is called a closed extension of T if it is a closed linear

operator which is also an extension of T . It is easy to see that if T is

closable, then every closed extension of T is an extension of T . Thus the

operator T is called the minimal closed extension of T .

The next theorem gives a necessary and sufficient condition for a linear

operator to be closable ([99, Chapter II, Section 6, Proposition 2]):

Theorem 2.34. A linear operator T from X into Y with domain D(T )

is closable if and only if the following condition is satisfied:

{xn} ⊂ D(T ), xn −→ 0 in X, Txn −→ y in Y =⇒ y = 0.

The notion of adjoints introduced in Subsection 2.4.12 gives a very

simple criterion for closability. In fact, we can prove the following ([38,

Chapter 3, Section 5, Theorem 5.29]):

Theorem 2.35. Let X and Y be reflexive Banach spaces. If T : X → Y

is a densely defined, closable linear operator, then the adjoint T ∗ : Y ′ →
X ′ is closed and densely defined. Moreover, T ∗∗ = (T ∗)

∗
is the minimal

closed extension of T . Namely, we have the formula

G (T ∗∗) = G(T ).

Now we can formulate three pillars of functional analysis – Banach’s

open mapping theorem ([14, Theorem 2.6]), Banach’s closed graph the-

orem ( [14, Theorem 2.9]) and Banach’s closed range theorem for closed

operators ([14, Theorem 2.19]):

Theorem 2.36 (Banach’s open mapping theorem). Let X and Y be
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Banach spaces. Then every continuous linear operator on X onto Y is

open, that is, it maps every open set in X onto an open set in Y .

Theorem 2.37 (Banach’s closed graph theorem). Let X and Y be Ba-

nach spaces. Then every closed linear operator on X into Y is continu-

ous.

Corollary 2.38. Let X and Y be Banach spaces. If T is a continuous,

one-to-one linear operator on X onto Y , then its inverse T−1 is also

continuous; hence T is an isomorphism.

Indeed, the inverse T−1 is a closed linear operator, so that Theorem

2.37 applies.

We give useful characterizations of closed linear operators with closed

range ([14, Exercise 2.14]):

Theorem 2.39. Let X and Y be Banach spaces and T a closed linear

operator from X into Y with domain D(T ). Then the range R(T ) of T

is closed in Y if and only if there exists a constant C > 0 such that

dist (x,N(T )) ≤ C ∥Tx∥ for all x ∈ D(T ).

Here

dist (x,N(T )) = inf
z∈N(T )

∥x− z∥

is the distance from x to the null space N(T ) of T .

The key point of the next theorem is that if the range R(T ) is closed

in Y , then a necessary and sufficient condition for the equation Tx = y

to be solvable is that the given right-hand side y ∈ Y is annihilated by

every solution x′ ∈ X ′ of the homogeneous transposed equation T ′x′ = 0

([99, Chapter VII, Section 5, Theorem]):

Theorem 2.40 (Banach’s closed range theorem). Let X and Y be Ba-

nach spaces and T a densely defined, closed linear operator from X into

Y . Then the following four conditions are equivalent:

(i) The range R(T ) of T is closed in Y .

(ii) The range R(T ′) of the transpose T ′ is closed in X ′.

(iii) R(T ) = 0N(T ′) = {x ∈ X : ⟨x, x′⟩ = 0 for all x′ ∈ N(T ′)}.
(iv) R(T ′) = 0N(T ) = {x′ ∈ X ′ : ⟨x′, x⟩ = 0 for all x ∈ N(T )}.
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2.6 Complemented Subspaces

Let X be a linear space. Two linear subspaces M and N of X are said

to be algebraic complements in X if X is the direct sum of M and N ,

that is, if X = M ∔N . Algebraic complements M and N in a normed

linear spaceX are said to be topological complements inX if the addition

mapping

{y, z} 7−→ y + z

is an isomorphism of M ×N onto X. We then write

X =M ⊕N.

As an application of Corollary 2.38, we obtain the following:

Theorem 2.41. Let X be a Banach space. If M and N are closed

algebraic complements in X, then they are topological complements.

A closed linear subspace of a normed linear space X is said to be

complemented in X if it has a topological complement. By Theorem

2.41, this is equivalent in Banach spaces to the existence of a closed

algebraic complement.

The next theorem gives two criteria for a closed subspace to be com-

plemented ([14, Section 2.4]):

Theorem 2.42. Let X be a Banach space and M a closed subspace of

X. If M has either finite dimension or finite codimension, then it is

complemented in X.

2.7 Compact Operators

Let X and Y be normed linear spaces over the same scalar field K. A

linear operator T on X into Y is said to be compact or completely con-

tinuous if it maps every bounded subset of X onto a relatively compact

subset of Y , that is, if the closure of T (B) is compact in Y for every

bounded subset B of X. This is equivalent to saying that, for every

bounded sequence {xn} in X, the sequence {Txn} has a subsequence

which converges in Y .

We list some facts which follow at once:

(i) Every compact operator is bounded.

Indeed, a compact operator maps the unit sphere onto a bounded

set.
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(ii) Every bounded linear operator with finite dimensional range is

compact.

This is an immediate consequence of Corollary 2.18.

(iii) No isomorphism between infinite dimensional spaces is compact.

This follows from an application of Theorem 2.19.

(iv) A linear combination of compact operators is compact.

(v) The product of a compact operator with a bounded operator is

compact.

The next theorem states that if Y is a Banach space, then the compact

operators on X into Y form a closed subspace of L(X,Y ) ([14, Theorem

6.1]):

Theorem 2.43. Let X be a normed linear space and Y a Banach space.

If {Tn} is a sequence of compact linear operators which converges to an

operator T in the space L(X,Y ) with the uniform topology, then T is

compact.

As for the transposes of compact operators, we have the following ([14,

Theorem 6.4]):

Theorem 2.44 (Schauder). Let X and Y be normed linear spaces. If

T is a compact linear operator on X into Y , then its transpose T ′ is a

compact linear operator on Y ′ into X ′.

2.8 The Riesz–Schauder Theory

Now we state the most interesting results on compact linear operators,

which are essentially due to F. Riesz in the Hilbert space setting. The

results are extended to Banach spaces by Schauder:

Theorem 2.45. Let X be a Banach space and T a compact linear op-

erator on X into itself. Set

S = I − T.

Then we have the following three assertions (i), (ii) and (iii):

(i) The null space N(S) of S is finite dimensional and the range

R(S) of S is closed in X.

(ii) The null space N(S′) of the transpose S′ is finite dimensional

and the range R(S′) of S′ is closed in X ′.

(iii) dimN(S) = dimN(S′).
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By combining Theorems 2.40 and 2.45, we can obtain an extension

of the theory of linear mappings in finite dimensional linear spaces ([14,

Theorem 6.6]):

Corollary 2.46 (the Fredholm alternative). Let T be a compact linear

operator on a Banach space X into itself. If S = I − T is either one-to-

one or onto, then it is an isomorphism of X onto itself.

Let T be a bounded linear operator on X into itself. The resolvent

set of T , denoted ρ(T ), is defined to be the set of scalars λ ∈ K such

that λI − T is an isomorphism of X onto itself. In this case, the inverse

(λI − T )−1 is called the resolvent of T . The complement of ρ(T ), that

is, the set of scalars λ ∈ K such that λI − T is not an isomorphism of

X onto itself is called the spectrum of T , and is denoted by σ(T ).

The set σp(T ) of scalars λ ∈ K such that λI − T is not one-to-one

forms a subset of σ(T ), and is called the point spectrum of T . A scalar

λ ∈ K belongs to σp(T ) if and only if there exists a non-zero element

x ∈ X such that Tx = λx. In this case, λ is called an eigenvalue of

T and x an eigenvector of T corresponding to λ. Also the null space

N(λI − T ) of λI − T is called the eigenspace of T corresponding to λ,

and the dimension of N(λI − T ) is called the multiplicity of λ.

By using C. Neumann’s series (Theorem 2.13), we find that the resol-

vent set ρ(T ) is open in K and that

{λ ∈ K : |λ| > ∥T∥} ⊂ ρ(T ).

Hence the spectrum σ(T ) = K \ ρ(T ) is closed and bounded in K.

If T is a compact operator and λ is a non-zero element of σ(T ), then,

by applying Corollary 2.46 to the operator λ−1T we obtain that λI − T

is not one-to-one, that is, λ ∈ σp(T ). Also note that if X is infinite

dimensional, then T is not an isomorphism of X onto itself; hence 0 ∈
σp(T ). Therefore the scalar field K can be decomposed as follows:

K = (σp(T ) ∪ {0}) ∪ ρ(T ).

We can say rather more about the spectrum σ(T ) in terms of transpose

operators ([99, Chapter X, Section 5, Theorems 1, 2 and 3]):

Theorem 2.47 (Riesz–Schauder). Let T be a compact linear operator

on a Banach space X into itself. Then we have the following three

assertions (i), (ii) and (iii):

(i) The spectrum σ(T ) of T is either a finite set or a countable set
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accumulating only at the zero 0; and every non-zero element of

σ(T ) is an eigenvalue of T .

(ii) dimN(λI − T ) = dimN(λ− T ′) < +∞ for all λ ̸= 0.

(iii) Let λ ̸= 0. The non-homogeneous equation

(λI − T )x = y

has a solution if and only if y is orthogonal to the space N(λ−T ′).

Similarly, the non-homogeneous transpose equation

(λI − T ′)z = w

has a solution if and only if w is orthogonal to the space N(λI −
T ). Moreover, the operator λI − T is onto if and only if it is

one-to-one.

2.9 Fredholm Operators

Throughout this section, the letters X, Y , Z denote Banach spaces over

the same scalar field K.

A linear operator T : X → Y is called a Fredholm operator if the

following five conditions are satisfied:

(i) The domain D(T ) of T is dense in X.

(ii) T is a closed operator.

(iii) The null space N(T ) = {x ∈ D(T ) : Tx = 0} of T has finite

dimension; dimN(T ) <∞.

(iv) The range R(T ) of T is closed in Y .

(v) The range R(T ) has finite codimension in Y ; codimR(T ) =

dimY/R(T ) <∞.

Then the index of T is defined by the formula

ind T := dimN(T )− codimR(T ).

For example, we find from Theorems 2.45 and 2.40 that if X = Y

and T is compact, then the operator I − T is a Fredholm operator and

ind (I − T ) = 0.

We give a characterization of Fredholm operators. First, we have the

following ([48, Theorem 2.24]):

Theorem 2.48. If T : X → Y is a Fredholm operator with domain

D(T ), then there exist a bounded linear operator S : Y → X and compact

linear operators P : X → X, Q : Y → Y such that
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(a) ST = I − P on D(T ),

(b) TS = I −Q on Y .

Furthermore, we have the formulas

R(P ) = N(T ),

dimR(Q) = codimR(T ).

Theorem 2.48 has a converse:

Theorem 2.49. Let T be a closed linear operator from X into Y with

domain D(T ) dense in X. Assume that there exist bounded linear op-

erators S1 : Y → X and S2 : Y → X and compact linear operators

K1 : X → X, K2 : Y → Y such that

(a) S1T = I −K1 on D(T ),

(b) TS2 = I −K2 on Y .

Then T is a Fredholm operator.

Now we state some important properties of Fredholm operators ([48,

Theorem 2.21]):

Theorem 2.50. If T : X → Y is a Fredholm operator and if S : Y → Z

is a Fredholm operator, then the product ST : X → Z is a Fredholm

operator, and we have the formula

ind (ST ) = ind S + ind T.

The next theorem states that the index is stable under compact per-

turbations or small perturbations ([48, Theorem 2.26]):

Theorem 2.51. (i) If T : X → Y is a Fredholm operator and if K :

X → Y is a compact linear operator, then the sum T +K : X → Y is a

Fredholm operator, and we have the formula

ind (T +K) = ind T.

(ii) The Fredholm operators form an open subset of the space L(X,Y )

of bounded operators. More precisely, if E : X → Y is a bounded op-

erator with ∥E∥ sufficiently small, then the sum T + E : X → Y is a

Fredholm operator, and we have the formula

ind (T + E) = ind T.

As for the transposes of Fredholm operators, we have the following:
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Theorem 2.52. If T : X → Y is a Fredholm operator and if Y is

reflexive, then the transpose T ′ : Y ′ → X ′ of T is a Fredholm operator,

and we have the formula

ind T ′ = − ind T.

Now we can state a generalization of the Fredholm alternative (Corol-

lary 2.46) in terms of adjoint operators ([48, Theorem 2.27]):

Theorem 2.53 (the Fredholm alternative). Let A : X → Y be a Fred-

holm operator with ind A = 0. Then there are two, mutually exclusive

possibilities (i) and (ii):

(i) The homogeneous equation Au = 0 has only the trivial solution

u = 0. In this case, we have the following two assertions:

(a) For each f ∈ Y , the non-homogeneous equation Au = f

has a unique solution u ∈ X.

(b) For each g ∈ X ′, the adjoint equation A∗v = g has a

unique solution v ∈ Y ′.

(ii) The homogeneous equation Au = 0 has exactly p linearly inde-

pendent solutions u1, u2, . . ., up for some p ≥ 1. In this case, we

have the following three assertions:

(c) The homogeneous adjoint equation A∗v = 0 has exactly p

linearly independent solutions v1, v2, . . ., vp.

(d) The non-homogeneous equation Au = f is solvable if and

only if the right-hand side f satisfies the orthogonal con-

ditions

(vj , f) = 0 for all 1 ≤ j ≤ p.

(e) The non-homogeneous adjoint equation A∗v = g is solv-

able if and only if the right-hand side g satisfies the or-

thogonal conditions

(g, uj) = 0 for all 1 ≤ j ≤ p.

2.10 Hilbert Spaces

A complex (or real) linear space X is called a pre-Hilbert space or inner

product space if, to each ordered pair of elements x and y of X, there is

associated a complex (or real) number (x, y) in such a way that

(I1) (y, x) = (x, y).
---
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(I2) (αx, y) = α(x, y) for all α ∈ C (or α ∈ R).

(I3) (x+ y, z) = (x, z) + (y, z) for all x, y and z ∈ X.

(I4) (x, x) ≥ 0; (x, x) = 0 if and only if x = 0.

Here (x, y) denotes the complex conjugate of (x, y). In the real case

condition (I1) becomes simply (y, x) = (x, y). The number (x, y) is

called the inner product or scalar product of x and y.

The following are immediate consequences of conditions (I1), (I2) and

(I3):

(i) (αx+ βy, z) = α(x, z) + β(y, z) for all α, β ∈ C.

(ii) (x, αy + βz) = α(x, y) + β(x, z) for all α, β ∈ C.

These properties (i) and (ii) are frequently called sesquilinearity. In the

real case they are bilinearity.

We list some basic properties of the inner product:

(1) The Schwarz inequality holds true for all x, y ∈ X:

|(x, y)|2 ≤ (x, x)(y, y).

Here the equality holds true if and only if x and y are linearly

dependent.

(2) The quantity

∥x∥ =
√

(x, x) (the non-negative square root)

satisfies axioms (N1), (N2) and (N3) of a norm; hence a pre-

Hilbert space is a normed linear space by the norm

∥x∥ =
√

(x, x).

(3) The inner product (x, y) is a continuous function of x and y:

∥xn − x∥ −→ 0, ∥yn − y∥ −→ 0 =⇒ (xn, yn) −→ (x, y).

(4) The parallelogram law holds true for all x, y ∈ X:

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2). (2.15)

Conversely, we assume that X is a normed linear space whose

norm satisfies condition (2.15). We let

(x, y) =
1

4

(
∥x+ y∥2 − ∥x− y∥2

)
if X is a real normed linear space, and let

(x, y) =
1

4

(
∥x+ y∥2 − ∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2

)
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if X is a complex normed linear space. Then it is easy to verify

that the number (x, y) satisfies axioms (I1) through (I4) of an

inner product; hence X is a pre-Hilbert space.

A pre-Hilbert space is called a Hilbert space if it is complete with

respect to the norm derived from the inner product.

If X and Y are pre-Hilbert spaces over the same scalar field K, then

the product space X × Y is a pre-Hilbert space by the inner product

({x1, y1}, {x2, y2})
= (x1, x2) + (y1, y2) for all x1, x2 ∈ X and y1, y2 ∈ Y .

Furthermore, if X and Y are Hilbert spaces, then so is X × Y .

2.10.1 Orthogonality

Let X be a pre-Hilbert space. Two elements x, y of X are said to be

orthogonal if (x, y) = 0; we then write x ⊥ y. We remark that

x ⊥ y ⇐⇒ y ⊥ x.

x ⊥ x ⇐⇒ x = 0.

If A is a subset of X, we let

A⊥ = {x ∈ X : (x, y) = 0 for all y ∈ A}.

In other words, A⊥ is the set of all those elements of X which are

orthogonal to every element of A.

We list some facts which follow at once:

(i) The set A⊥ is a linear subspace of X.

(ii) A ⊂ B =⇒ B⊥ ⊂ A⊥.

(iii) A ∩A⊥ = {0}.
(iv) The set A⊥ is closed.

(v) A⊥ = A
⊥
= [A]⊥ where A is the closure of A and [A] is the space

spanned by A, that is, the space of all finite linear combinations

of elements of A.

Facts (iv) and (v) follow from the continuity of the inner product.
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2.10.2 The Closest-Point Theorem and Applications

Theorem 2.54 (the closest-point theorem). Let A be a closed convex

subset of a Hilbert space X. If x is a point not in A, then there is a

unique point a in A such that

∥x− a∥ = dist(x,A).

Theorem 2.54 can be proved by using the parallelogram law.

One of the consequences of Theorem 2.54 is that every closed linear

subspace of a Hilbert space is complemented:

Theorem 2.55. Let M be a closed linear subspace of a Hilbert space

X. Then every element x of X can be decomposed uniquely in the form

x = y + z, y ∈M, z ∈M⊥. (2.16)

Moreover, the mapping x 7→ {y, z} is an isomorphism of X onto M ×
M⊥.

We shall write the decomposition (2.16) in the form

X =M ⊕M⊥, (2.16′)

emphasizing that the mapping x 7→ {y, z} is an isomorphism of X onto

M ×M⊥. The space M⊥ is called the orthogonal complement of M .

Corollary 2.56. If M is a closed linear subspace of a Hilbert space X,

then it follows that M⊥⊥ = (M⊥)⊥ =M . Furthermore, if A is a subset

of X, then we have A⊥⊥ = [A], where [A] is the space spanned by A.

With the above notation (2.16), we define a mapping PM of X into

M by the formula

PMx = y.

Since the decomposition (2.16) is unique, it follows that PM is linear.

Furthermore, we easily obtain the following:

Theorem 2.57. The operator PM enjoys the following three properties

(i), (ii) and (iii):

(i) P 2
M = PM (idempotent property).

(ii) (PMx, x
′) = (x, PMx

′) (symmetric property).

(iii) ∥PM∥ ≤ 1.

--
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The operator PM is called the orthogonal projection onto M .

Similarly, we define a mapping PM⊥ of X into M⊥ by the formula

PM⊥x = z.

Then Corollary 2.56 asserts that PM⊥ is the orthogonal projection onto

M⊥. It is clear that

PM + PM⊥ = I.

Now we give an important characterization of bounded linear func-

tionals on a Hilbert space:

Theorem 2.58 (the Riesz representation theorem). Every element y of

a Hilbert space X defines a bounded linear functional JXy on X by the

formula

JXy(x) = (x, y) for all x ∈ X, (2.17)

and we have the formula

∥JXy∥ = sup
x∈X
∥x∥≤1

|JXy(x)| = ∥y∥.

Conversely, for every bounded linear functional f on X, there exists

a unique element y of X such that f = JXy, that is,

f(x) = (x, y) for all x ∈ X,

and so

∥f∥ = ∥y∥.

In view of formula (2.17), it follows that the mapping JX enjoys the

following property:

JX(αy + βz) = αJXy + βJXz for all y, z ∈ X and α, β ∈ C.

We express this by saying that JX is conjugate linear or antilinear. In

the real case, JX is linear.

Let X ′ be the strong dual space of a Hilbert space X, that is, the

space of bounded linear functionals on X with the norm

∥f∥ = sup
x∈X
∥x∥≤1

|f(x)|.

Then Theorem 2.58 may be restated as follows:

There is a conjugate linear, norm-preserving isomorphism (2.18)
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JX of X onto X ′.

In this case, we say that X ′ is antidual to X.

Recall that a sequence {xn} in a normed linear space X is said to

converge weakly to an element x of X if f(xn) → f(x) for every f ∈ X ′.

Assertion (2.18) tells us that a sequence {xn} in a Hilbert space X

converges weakly to an element x of X if and only if (xn, y) → (x, y) for

every y ∈ X.

Another important consequence of Theorem 2.58 is the reflexivity of

Hilbert spaces:

Corollary 2.59. Every Hilbert space can be identified with its strong

bidual space.

2.10.3 Orthonormal Sets

Let X be a pre-Hilbert space. A subset S of X is said to be orthogonal

if every pair of distinct elements of S is orthogonal. Furthermore, if

each element of S has norm one, then S is said to be orthonormal.

We remark that if S is an orthogonal set of non-zero elements, we can

construct an orthonormal set from S by normalizing each element of S.

If {x1, x2, . . . , xn} is an orthonormal set and if x =
∑n

i=1 αixi, then we

have the formula

∥x∥2 =
n∑

i=1

|αi|2, αi = (x, xi).

Therefore, every orthonormal set is linearly independent.

First, we state the Gram–Schmidt orthogonalization:

Theorem 2.60 (Gram–Schmidt). Let {xi}i∈I be a finite or countable

infinite set of linearly independent vectors of X. Then we can construct

an orthonormal set {ui}i∈I such that, for each i ∈ I,

(a) ui is a linear combination of {x1, x2, . . . , xi}.
(b) xi is a linear combination of {u1, u2, . . . , ui}.

Corollary 2.61. Every n-dimensional pre-Hilbert space over the scalar

field K is isomorphic to the space Kn with the usual inner product.

Let {uλ}λ∈Λ be an orthonormal set of a pre-Hilbert space X. For each

x ∈ X, we let

x̂λ = (x, uλ), λ ∈ Λ.
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The scalars x̂λ are called the Fourier coefficients of x with respect to

{uλ}.
Then we have the following:

Theorem 2.62. For each x ∈ X, the set of those λ ∈ Λ such that

x̂λ ̸= 0 is at most countable. Furthermore, we have the Bessel inequality∑
λ∈Λ

|x̂λ|2 ≤ ∥x∥2.

An orthonormal set S of X is called a complete orthonormal system

if it is not contained in a larger orthonormal set of X.

As for the existence of such systems, we have the following:

Theorem 2.63. Let X be a Hilbert space having a non-zero element.

Then, for every orthonormal set S in X, there exists a complete or-

thonormal system that contains S.

The next theorem gives useful criteria for the completeness of or-

thonormal sets:

Theorem 2.64. Let S = {uλ}λ∈Λ be an orthonormal set in a Hilbert

space X. Then the following five conditions (i) through (v) are equiva-

lent:

(i) The set S is complete.

(ii) S⊥ = {0}.
(iii) The space [S] spanned by S is dense in X: [S] = X.

(iv) For every x ∈ X, we have the formula

∥x∥2 =
∑
λ∈Λ

|x̂λ|2. (2.19)

(v) For every x ∈ X, we have the formula

x =
∑
λ∈Λ

x̂λuλ in X. (2.20)

Formula (2.19) is called the Parseval identity and formula (2.20) is called

the Fourier series expansion of x with respect to {uλ}.

2.10.4 Adjoint Operators

Throughout this subsection, the letters X, Y , Z denote Hilbert spaces

over the same scalar field K. Let T be a linear operator from X into

--
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Y with domain D(T ) dense in X. Each element y of Y defines a linear

functional f on D(T ) by the formula

f(x) = (Tx, y) for every x ∈ D(T ).

If this functional f is continuous everywhere on D(T ), by applying The-

orem 2.8 we obtain that f can be extended uniquely to a continuous

linear functional f̃ on D(T ) = X. Therefore, Riesz’s theorem (Theorem

2.63) asserts that there exists a unique element y∗ of X such that

f̃(x) = (x, y∗) for all x ∈ X.

In particular, we have the formula

(Tx, y) = f(x) = (x, y∗) for all x ∈ D(T ).

Hence we let

D(T ∗) = the totality of those y ∈ Y such that the mapping

x 7−→ (Tx, y)

is continuous everywhere on D(T ),

and define

T ∗y = y∗.

In other words, the mapping T ∗ is a linear operator from Y into X with

domain D(T ∗) such that

(Tx, y) = (x, T ∗y) for all x ∈ D(T ) and y ∈ D(T ∗).

The operator T ∗ is called the adjoint operator or simply the adjoint of

T .

We list some basic properties of adjoints:

(i) The operator T ∗ is closed.

(ii) If T ∈ L(X,Y ), then T ∗ ∈ L(Y,X) and ∥T ∗∥ = ∥T∥.
(iii) If T , S ∈ L(X,Y ), then (αT+βS)∗ = αT ∗+βS∗ for all α, β ∈ C.

(iv) If T ∈ L(X,Y ) and S ∈ L(Y,Z), then (ST )∗ = T ∗S∗.

A densely defined linear operator T from X into itself is said to be

self-adjoint if T = T ∗. Note that every self-adjoint operator is closed.

As for the adjoints of closed operators, we have the following (see

Theorem 2.35):
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Theorem 2.65. If T is a densely defined, closed linear operator from X

into Y , then the adjoint T ∗ is a densely defined, closed linear operator

from Y into X and we have the formula

T ∗∗ = (T ∗)∗ = T.

Corollary 2.66. If T is a densely defined, closable linear operator, then

the adjoint T ∗ is densely defined and the operator T ∗∗ coincides with the

minimal closed extension T of T . Namely, we have the formula

G (T ∗∗) = G(T ).

2.11 Continuous Functions on Metric Spaces

In this last section we formulate two fundamental theorems concerning

spaces of continuous functions defined on a metric space.

2.11.1 The Ascoli–Arzelà Theorem

Let X be a subset of a metric space (S, ρ) and F a Banach space. We

let

C(X,F ) = the space of continuous maps of X into F.

We say that a subset Φ of C(X,F ) is equicontinuous at a point x0 of X

if, for any given ε there exists a constant δ = δ(x0, ε) > 0 such that we

have, for all f ∈ Φ,

x ∈ X, ρ(x, x0) < δ =⇒ |f(x)− f(x0)| < ε.

We say that Φ is equicontinuous on X if it is equicontinuous at every

point of X.

The next theorem provides a criterion for compactness of compact

subsets of functions spaces:

Theorem 2.67 (Ascoli–Arzelà). Let X be a compact subset of a met-

ric space (S, ρ) and F a Banach space. Let Φ be a subset of the space

C(X,F ) of continuous maps with supremum norm. Then Φ is relatively

compact in C(X,F ) if and only if the following two conditions are sat-

isfied:

(I) Φ is equicontinuous.

(II) For each x ∈ X, the set Φ(x) = {f(x) : f ∈ Φ} is relatively com-

pact in F .
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The next corollary is a version of the Ascoli–Arzelà theorem in the

case where F is the real numbers R or complex numbers C.

Corollary 2.68. Let X be a compact subset of a metric space, and

let Φ be a subset of the space C(X) of continuous functions on X with

supremum norm. Then Φ is relatively compact in C(X) if and only if it

is equicontinuous and bounded for the supremum norm.

We remark that a subset Φ is relatively compact if and only if it has

the property that any sequence in Φ has a convergent subsequence, con-

verging in its closure. The Ascoli–Arzelà theorem is used mostly when

X is a σ-compact space. In that case, we have the following version of

the Ascoli–Arzelà theorem:

Corollary 2.69 (Ascoli–Arzelà). Let X be a metric space that is a

denumerable union of compact sets. Let {fn} be a sequence of continuous

maps of X into a Banach space F . Assume that:

(1) The sequence {fn} is equicontinuous as a family of maps.

(2) For each x ∈ X, the closure of the set {fn(x) : n = 1, 2, . . .} is

compact in F .

Then there exists a subsequence of {fn} that converges pointwise to a

continuous map f ∈ C(X,F ), and this convergence is uniform on every

compact subset of X.

2.11.2 The Stone–Weierstrass Theorem

Let (X, d) be a compact metric space. In the space C(X) of continuous,

real-valued functions on X, we define the uniform metric

ρ (f, g) = max
x∈X

|f(x)− g(x)| for f , g ∈ C(X).

Moreover, we introduce the following operations on C(X) for any f ,

g ∈ C(X) and α ∈ R:

(S1) (f + g)(x) = f(x) + g(x) for all x ∈ X.

(S2) (fg)(x) = f(x) · g(x) for all x ∈ X.

(S3) (α f)(x) = α f(x) for all x ∈ X.

A subset A of C(X) is called an algebra if it is a real linear subspace

such that

f, g ∈ A =⇒ fg ∈ A.
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Let B be a subset of C(X). The intersection of all algebras containing

B is an algbra. This algebra is called the algebra generated by B.

Example 2.2. Let X = [a, b] be the finite closed interval in R. Let

C[a, b] be the space of continuous, real-valued functions on [a, b]. The

algebra generated by functions 1 and x is the set P of all polynomials.

A subset B of C(X) is said to separate points of X if, for any two

distinct points x, y ∈ X there exists a function f ∈ B such that

f(x) ̸= f(y).

For example, the set P of all polynomials separates points of X = [a, b].

The next theorem is a generalization of the classical Weierstrass ap-

proximation theorem (see [30, Chapter 3, Theorem 3.7.1], [29, Section

4.7, Theorem 4.45]):

Theorem 2.70 (Stone–Weierstrass). Let X be a compact metric space

and let A be an algebra in the space C(X) of continuous, real-valued

functions on X. If A contains the constant function 1 and separates

points of X, then A is dense in C(X), that is, A = C(X).

The classical Weierstrass theorem is a special case of the Stone–

Weierstrass theorem (Theorem 2.70) if we take

X = C[a, b],

A = P.

2.12 Notes and Comments

The topics in this chapter form a necessary background for what follows.

For more thorough treatments of this subject, the reader might be re-

ferred to Brezis [14], Folland [29], Friedman [30], Kato [38], Kolmogorov–

Fomin [39], Reed–Simon [58], Rudin [60], Schechter [66] and Yosida [99].

-
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Measures, Integration and Lp Spaces

In this chapter we set forth the basic concepts of measure theory and

develop the theory of integration on abstract measure spaces, paying

particular attention to the Lebesgue integral on the Euclidean space

Rn. In particular, we prove Minkowski’s inequality for integrals (Theo-

rem3.16) and Hardy’s inequality (Theorem 3.18)in Lp spaces. In Section

3.9, we prove the Marcinkiewicz interpolation theorem (Theorem 3.30)

which plays an important role in the proof of Theorem 9.5 in Section 9.3.

In Section 3.10, as an application of Marcinkiewicz’s interpolation theo-

rem we study Riesz potentials in the classical potential theory (Theorem

3.31).

3.1 Measure Theory

This section is a summary of the basic definitions and results about

measure theory which will be used throughout the book. Most of the

material are quite familiar to the reader and may be omitted. This

section, included for the sake of completeness, should serve to settle

questions of notation and such.

3.1.1 Measurable Spaces and Functions

Let X be a non-empty set. A collection M of subsets of X is said to be

a σ-algebra in X if it has the following three properties (S1), (S2) and

(S3):

(S1) The empty set ∅ belongs to M.

(S2) If A ∈ M, then its complement Ac = X \A belongs to M.
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(S3) If {An} is an arbitrary countable collection of members of M,

then the union
∪∞

n=1An belongs to M.

The pair (X,M) is called a measurable space and the members of M
are called measurable sets in X.

For any collection F of subsets of X, there exists a smallest σ-algebra

σ(F) in X which contains F . This σ(F) is sometimes called the σ-

algebra generated by F .

We let

R = {−∞} ∪R ∪ {+∞}

with the obvious ordering. The topology on R is defined by declaring

that the open sets in R are those which are unions of segments of the

types

(a, b), [−∞, a), (a,+∞].

The elements of R are called extended real numbers.

Let (X,M) be a measurable space. An extended real-valued func-

tion f defined on a set A ∈ M is said to be M-measurable or simply

measurable if, for every a ∈ R, the set

{x ∈ A : f(x) > a}

is in M.

If A is a subset of X, we let

χA(x) =

{
1 if x ∈ A,

0 if x /∈ A.

The function χA is called the characteristic function of A.

A real-valued function f on X is called a simple function if it takes on

only a finite number of values. Thus, if a1, a2, . . ., am are the distinct

values of f , then f can be written as

f(x) =
m∑
j=1

ajχAj (x)

where Aj = {x ∈ X : f(x) = aj}. We remark that the function f is

measurable if and only if each Aj is measurable.

The next theorem characterizes measurable functions in terms of sim-

ple functions:

Theorem 3.1. An extended real-valued function defined on a measur-

able set is measurable if and only if it is a pointwise limit of a sequence
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of measurable simple functions. Furthermore, every non-negative mea-

surable function is a pointwise limit of an increasing sequence of non-

negative measurable simple functions.

The next monotone class theorem will be useful for the study of mea-

surability of functions:

Theorem 3.2 (the monotone class theorem). Let F be a π-system in

X and let H be a linear space of real-valued functions on X. Assume

that the following two conditions (i) and (ii) are satisfied:

(i) 1 ∈ H and χA ∈ H for all A ∈ F .

(ii) If {fn} is an increasing sequence of non-negative functions in H
such that f = supn fn is bounded, then it follows that f ∈ H.

Then the linear space H contains all real-valued, bounded functions on

X which are σ(F)-measurable.

3.1.2 Measures

Let (X,M) be a measurable space. An extended real-valued function µ

defined on M is called a non-negative measure or simply a measure if it

has the following three properties (M1), (M2) and (M3):

(M1) 0 ≤ µ(A) ≤ ∞, A ∈ M.

(M2) µ(∅) = 0.

(M3) The function µ is countably additive, that is,

µ

( ∞∑
i=1

Ai

)
=

∞∑
i=1

µ(Ai)

for any disjoint countable collection {Ai} of members of M.

The triple (X,M, µ) is called ameasure space. In other words, a measure

space is a measurable space which has a non-negative measure defined

on the σ-algebra of its measurable sets. If µ(X) <∞, then the measure

µ is called a finite measure and the space (X,M, µ) is called a finite

measure space. If X is a countable union of sets of finite measure, then

the measure µ is said to be σ-finite on X. We also say that the measure

space (X,M, µ) is σ-finite.

Let (X,M, µ) be a measure space. A set E ∈ M such that µ(E) = 0

is called a null set. We remark that any countable union of null sets is
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a null set. A measure µ whose domain includes all subsets of null sets

is said to be complete, that is, if it satisfies the condition

µ(E) = 0 and F ⊂ E =⇒ F ∈ M.

It is known (see [29, Theorem 1.9]) that, for a measure space (X,M, µ)

there exist a σ-algebra M and a unique extension µ of µ to a complete

measure on M. The measure µ is called the completion of µ and the

σ-algebra M is called the completion of M with respect to µ.

3.1.3 Lebesgue Measures

The next theorem is one of the fundamental theorems in measure theory:

Theorem 3.3. There exist a σ-algebra M in Rn and a non-negative

measure µ on M having the following four properties (i), (ii), (iii) and

(iv):

(i) Every open set in Rn is in M.

(ii) If A ⊂ B, B ∈ M and µ(B) = 0, then A ∈ M and µ(A) = 0.

(iii) If A = {x ∈ Rn : aj ≤ xj ≤ bj(1 ≤ j ≤ n)}, then A ∈ M and

µ(A) =
∏n

j=1(bj − aj).

(iv) The measure µ is translation invariant, that is, if x ∈ Rn and

A ∈ M, then the set x + A = {x+ y : y ∈ A} is in M and

µ(x+A) = µ(A).

The elements of M are called Lebesgue measurable sets in Rn and the

measure µ is called the Lebesgue measure on Rn.

3.1.4 Signed Measures

Let (X,M) be a measurable space. A real-valued function µ defined on

M is called a signed measure or real measure if it is countably additive,

that is,

µ

( ∞∑
i=1

Ai

)
=

∞∑
i=1

µ(Ai)

for any disjoint countable collection {Ai} of members of M. It should

be noticed that every rearrangement of the series
∑

i µ(Ai) also con-

verges, since the disjoint union
∑

iAi is not changed if the subscripts

are permuted. A signed measure takes its values in (−∞,+∞), but a
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non-negative measure may take +∞; hence the non-negative measures

do not form a subclass of the signed measures.

If µ is a signed measure, we define a function |µ| on M by the formula

|µ|(A) = sup

n∑
i=1

|µ(Ai)|, A ∈ M, (3.1)

where the supremum is taken over all countable partitions {Ai} of A into

members of M. Then the function |µ| is a finite non-negative measure

on M. The measure |µ| is called the total variation measure of µ, and

the quantity |µ|(X) is called the total variation of µ. We remark that

|µ(A)| ≤ |µ|(A) ≤ |µ|(X), A ∈ M.

3.1.5 Borel Measures

Let X be a locally compact Hausdorff space. There exists a smallest

σ-algebra B in X which contains all open sets in X. The members of

B are called Borel sets in X. A signed measure defined on B is called a

real Borel measure on X. A non-negative Borel measure µ is said to be

outer regular on a Borel set B if it satisfies the condition

µ(B) = inf {µ(G) : B ⊂ G, G is open} .

A non-negative Borel measure µ is said to be inner regular on a Borel

set B if it satisfies the condition

µ(B) = sup {µ(F ) : F ⊂ B, F is compact} .

If µ is outer and inner regular on all Borel sets, it is called a regular

Borel measure.

We give a useful criterion for the regularity of µ:

Theorem 3.4. Let X be a locally compact Hausdorff space in which

every open set is σ-compact. If µ is a non-negative Borel measure on X

such that µ(K) < +∞ for every compact set K ⊂ X, then it is regular.

Let (X, ρ) be a locally compact metric space. A Radon measure on X

is a Borel measure that is finite on all compact sets in X, and is outer

regular on all Borel sets in X and inner regular on all open sets in X.
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3.1.6 Product Measures

Let (X,M) and (Y,N ) be measurable spaces. We let

M⊗N =the smallest σ-algebra in X × Y which contains

all rectangles A×B where A ∈ M and B ∈ N .

ThenM⊗N is called the product σ-algebra onX×Y , and (X×Y,M⊗N )

is a measurable space.

For the product of measure spaces, we have the following ([29, Section

2.5]):

Theorem 3.5. Let (X,M, µ) and (Y,N , ν) be two σ-finite measure

spaces. Then there exists a unique σ-finite, non-negative measure λ on

M⊗N such that

λ(A×B) = µ(A)ν(B) for A ∈ M and B ∈ N .

The measure λ is called the product measure of µ and ν, and is denoted

by µ× ν.

3.1.7 Direct Image of Measures

Let (X,M) and (Y,N ) be measurable spaces. A mapping f of X into

Y is said to be measurable if the inverse image f−1(B) of every B ∈ N
is in M.

Let (X,M, µ) be a measure space and (Y,N ) a measurable space. If

f → X → Y is a measurable mapping, then we can define a measure ν

on (Y,N ) by the formula

ν(B) = µ(f−1(B)) for B ∈ N .

We then write ν = f∗µ. The measure f∗µ is called the direct image of

µ under f .

3.1.8 Integrals

Let (X,M, µ) be a measure space. If A is a measurable subset of X and

if f(x) is a non-negative measurable simple function on A of the form

f(x) =
m∑
j=1

ajχAj (x), aj ≥ 0,
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then we let ∫
A

f(x) dµ(x) =

m∑
j=1

ajµ(Aj). (3.2)

The convention: 0 · ∞ = 0 is used here; it may happen that aj = 0 and

µ(Aj) = ∞. If f(x) is a non-negative measurable function on A, we let∫
A

f(x) dµ(x) = sup

∫
A

s(x) dµ(x) (3.3)

where the supremum is taken over all measurable simple functions s on

A such that 0 ≤ s(x) ≤ f(x), x ∈ A. We remark that if f(x) is a non-

negative simple function, then the two definitions (3.2) and (3.3) of the

integral
∫
A
f(x) dµ(x) coincide.

If f(x) is a measurable function on A, we can write it in the form

f(x) = f+(x)− f−(x),

where

f+(x) = max {f(x), 0} ,
f−(x) = max {−f(x), 0} .

Both f+(x) and f−(x) are non-negative measurable functions on A.

Then we define the integral of f(x) by the formula∫
A

f(x) dµ(x) =

∫
A

f+(x) dµ(x)−
∫
A

f−(x) dµ(x),

provided at least one of the integrals on the right-hand side is finite.

If both integrals are finite, we say that f(x) is µ-integrable or simply

integrable on A.

For simplicity, we abbreviate∫
A

f dµ =

∫
A

f(x) dµ(x).

If µ is the Lebesgue measure on Rn, we customarily write∫
A

f(x) dx,

instead of
∫
A
f(x) dµ(x).

A proposition concerning the points of a measurable set A is said

to hold µ-almost everywhere (µ-a.e.) or simply almost everywhere (a.e.)

in A if there exists a measurable set N of measure zero such that the

proposition holds for all x ∈ A \ N . For example, if f(x) and g(x) are
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measurable functions on A and if µ({x ∈ A : f(x) ̸= g(x)}) = 0, then

we say that f(x) = g(x) a.e. in A.

The next three theorems are concerned with the interchange of inte-

gration and limit process:

Theorem 3.6 (the monotone convergence theorem). Let {fn(x)} be an

increasing sequence of non-negative measurable functions defined on a

measurable set A. Then we have the formula

lim
n→∞

∫
A

fn(x) dµ(x) =

∫
A

(
lim

n→∞
fn(x)

)
dµ(x).

Theorem 3.7 (Fatou’s lemma). Let {fn(x)} be a sequence of non-

negative measurable functions defined on a measurable set A. Then we

have the inequality∫
A

(
lim inf
n→∞

fn(x)
)
dµ(x) ≤ lim inf

n→∞

∫
A

fn(x) dµ(x).

Theorem 3.8 (the Lebesgue dominated convergence theorem). Let

{fn(x)} be a sequence of measurable functions defined on a measurable

set A which converges to some function f(x) almost everywhere in A.

Assume that there exists a non-negative integrable function g(x) defined

on A such that

|fn(x)| ≤ g(x) a.e. in A, n = 1, 2, . . . .

Then the limit function f(x) is integrable on A and we have the formula∫
A

f(x) dµ(x) = lim
n→∞

∫
A

fn(x) dµ(x).

3.1.9 Fubini’s Theorem

We consider integration on product spaces. Let (X,M, µ) and (Y,N , ν)

be two σ-finite measure spaces, and let µ × ν be the unique product

measure of µ and ν on the product σ-algebra M⊗N .

First, let E be a subset of X × Y . For a point x ∈ X, we define the

x-section Ex of E by the formula

Ex = {y ∈ Y : (x, y) ∈ E} .

For a point y ∈ Y , we define the y-section Ey of E by the formula

Ey = {x ∈ X : (x, y) ∈ E} .
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For example, if E = A×B where A ⊂ X and B ⊂ Y , then we have the

formulas

Ex = B,

Ey = A.

Secondly, let f(x, y) be a function defined on X × Y . For a point

x ∈ X, we define the x-section fx of f by the formula

fx(y) = f(x, y) for y ∈ Ex.

For a point y ∈ Y , we define the y-section fy of f by the formula

fy(x) = f(x, y) for x ∈ Ey.

For example, if E = A×B where A ⊂ X and B ⊂ Y , then we have the

formulas

(χE)x (y) = χEx(y) = χB(y) for y ∈ Y ,

(χE)
y
(x) = χEy (x) = χA(x) for x ∈ X.

Now we assume that f(x, y) is an M ⊗ N -measurable function on

X × Y such that its integral exists. Then we customarily write∫∫
X×Y

f(x, y) d(µ× ν)(x, y).

This integral is called the double integral of f . If it happens that the

function

g(x) =

∫
Y

f(x, y) dν(y), x ∈ X

is defined and also its integral exists, then we denote the integral∫
X

g(x) dµ(x)

by any one of the following notation:∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x),

∫
X

dµ(x)

∫
Y

f(x, y) dν(y),∫∫
X×Y

f(x, y) dν(y) dµ(x),

∫∫
X×Y

f dν dµ.

Similarly, we write∫
Y

(∫
X

f(x, y)dµ(x)

)
dν(y),

∫
Y

dν(y)

∫
X

f(x, y) dµ(x),
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X×Y

f(x, y) dµ(x) dν(y),

∫∫
X×Y

f dµ dν.

These integrals are called the iterated integrals of f(x, y).

The next theorem describes the most important relationship between

double integrals and iterated integrals:

Theorem 3.9 (Fubini). Assume that (X,M, µ) and (Y,N , ν) are σ-

finite measure spaces. Then we have the following three assertions:

(i) If E ∈ M ⊗ N , then it follows that Ex ∈ N for all x ∈ X

and that Ey ∈ M for all y ∈ Y . Moreover, ν(Ex) is an M-

measurable function of x and µ(Ey) is an N -measurable function

of y, respectively, and we have the formula∫
X

ν(Ex) dµ(x) =

∫
Y

µ(Ey) dν(y) = (µ× ν)(E).

In particular, if (µ× ν)(E) <∞, then it follows that ν(Ex) <∞
for µ-almost all x ∈ X and that µ(Ey) < ∞ for ν-almost all

y ∈ Y .

(ii) If f(x, y) is a non-negative, M⊗mathcalN -measurable function

on X×Y , then it follows that fx(y) is an N -measurable function

of y for any x ∈ X and that fy(x) is an M-measurable function

of x for all y ∈ Y . Moreover, the functions

X ∋ x 7−→ g(x) =

∫
Y

fx(y) dν(y) =

∫
Y

f(x, y) dν(y),

Y ∋ y 7−→ h(y) =

∫
X

fy(x) dµ(x) =

∫
X

f(x, y) dµ(x)

are M-measurable and N -measurable, respectively, and we have

the formula∫
X

g(x) dµ(x) =

∫
Y

h(y) dν(y) =

∫∫
X×Y

f(x, y) d(µ× ν).

(iii) If f(x, y) is a µ× ν-integrable function on X ×Y , then it follows

that the function fx(y) is ν-integrable for µ-almost all x ∈ X

and that the function fy(x) is µ-integrable for ν-almost all y ∈
Y . Furthermore, the function g(x) is µ-integrable on X and the

function h(y) is ν-integrable on Y , respectively, and we have the

formula∫
X

g(x) dµ(x) =

∫
Y

h(y) dν(y) =

∫∫
X×Y

f(x, y) d(µ× ν).
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The next theorem gives a useful version of Fubini’s theorem:

Theorem 3.10 (Fubini). Assume that (X,M, µ) and (Y,N , ν) are σ-

finite measure spaces. Then we have the following two assertions:

(i) If f(x, y) is a µ⊗ ν-integrable function on X ×Y , then the func-

tion fx(y) on Y is ν-integrable for µ- almost all x ∈ X, and the

function fy(x) is µ-integrable for ν-almost all y ∈ Y . Further-

more, the function g(x), defined by the formula

g(x) =

∫
Y

fx(y) dν(y) =

∫
Y

f(x, y) dν(y)

for µ-almost all x ∈ X, is µ-integrable, and the function h(y),

defined by the formula

h(y) =

∫
X

fy(x) dµ(x) =

∫
X

f(x, y) dµ(x)

for ν-almost all y ∈ Y , is ν-integrable, respectively, and we have

the formula∫∫
X×Y

f(x, y) d(µ× ν) =

∫
X

g(x) dµ =

∫
Y

h(y) dν.

(ii) Conversely, if f(x, y) is an M⊗N -measurable function on X×Y ,

then the functions

φ(x) =

∫
Y

|f(x, y)| dν(y), x ∈ X,

ψ(y) =

∫
X

|f(x, y)| dµ(x), y ∈ Y

are M-measurable and N -measurable, respectively, and we have

the formula∫∫
X×Y

|f(x, y)| d(µ× ν) =

∫
X

φ(x) dµ =

∫
Y

ψ(y) dν.

Furthermore, if either φ(x) or ψ(y) is integrable, then f(x, y) is

integrable, and part (i) applies.

Let (X,M, µ) and (Y,N , ν) be complete, σ-finite measure spaces, and

let (X × Y,L, µ× ν) be the completion of (X × Y,M⊗N , µ× ν). The

next theorem is a version of Fubini’s theorem (Theorem 3.9) for complete

measures:
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Theorem 3.11 (Fubini). Let (X × Y,L, µ × ν) be the completion of

the product measure space (X × Y,M ⊗ N , µ × ν). Then we have the

following three assertions:

(i) If E ∈ L, then it follows that Ex ∈ N for µ-almost all x ∈ X

and that Ey ∈ M for ν-almost all y ∈ Y . Moreover, ν(Ex) is

an M-measurable function of x and µ(Ey) is an N -measurable

function of y, respectively, and we have the formula∫
X

ν(Ex) dµ(x) =

∫
Y

µ(Ey) dν(y) = (µ× ν)(E).

In particular, if µ(E) < ∞, then it follows that ν(Ex) < ∞ for

µ-almost all x ∈ X and that µ(Ey) <∞ for ν-almost all y ∈ Y .

(ii) If f(x, y) is an L-measurable function on the product space X×Y
such that f(x, y) ≥ 0 for µ× ν-almost all (x, y) ∈ X × Y , then it

follows that fx(y) is an N -measurable function of y for µ-almost

all x ∈ X and that fy(x) is an M-measurable function of x for

ν-almost all y ∈ Y . Moreover, the functions

X ∋ x 7−→ g(x) =

∫
Y

f(x, y) dν(y),

Y ∋ y 7−→ h(y) =

∫
X

f(x, y) dµ(x)

are M-measurable and N -measurable, respectively, and the for-

mula∫
X

g(x) dµ(x) =

∫
Y

h(y) dν(y) =

∫∫
X×Y

f(x, y) d(µ× ν)

holds true.

(iii) If f(x, y) is an L-measurable and µ × ν-integrable function on

X×Y , then it follows that the function fx(y) is ν-integrable for µ-

almost all x ∈ X and that the function fy(x) is µ-integrable for ν-

almost all y ∈ Y . Furthermore, the function g(x) is µ-integrable

on X and the function h(y) is ν-integrable on Y , respectively,

and we have the formula∫
X

g(x) dµ(x) =

∫
Y

h(y) dν(y) =

∫∫
X×Y

f(x, y) d(µ× ν).

The next corollary gives a useful version of Fubini’s theorem for com-

plete measures:
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Corollary 3.12. Let (X × Y,L, µ× ν) be the completion of the product

measure space (X × Y,M ⊗ N , µ × ν). If f(x, y) is an L-measurable

function on X × Y , then the functions

φ(x) =

∫
Y

|f(x, y)| dν(y), x ∈ X,

ψ(y) =

∫
X

|f(x, y)| dµ(x), y ∈ Y

are M-measurable and N -measurable, respectively, and we have the for-

mula ∫∫
X×Y

|f(x, y)| d(µ× ν) =

∫
X

φ(x) dµ(x) =

∫
Y

ψ(y) dν(y).

Furthermore, if either φ(x) or ψ(y) is integrable, then f(x, y) is inte-

grable, and Theorem 3.11 applies.

3.2 Lp Spaces

Let (X,M, µ) be a measure space. Two M-measurable functions f and

g are said to be equivalent if they are equal µ-almost everywhere in X

with respect to the measure µ, that is, if f(x) = g(x) for all x outside

of a set of µ-measure zero:

f ∼ g ⇐⇒ f(x) = g(x) for µ-almost all x ∈ X.

This is obviously an equivalence relation.

If 1 ≤ p <∞, we let

Lp(X) = the space of equivalence classes of M-measurable

functions f on X such that |f |p is µ-integrable on X.

We define

∥f∥p :=

(∫
X

|f(x)|p dµ(x)
)1/p

.

An M-measureable Lebesgue measurable function f on X is said to

be essentially bounded if there exists a constant C > 0 such that

|f(x)| ≤ C for µ-almost all x ∈ X.

For p = ∞, we let

L∞(X) = the space of equivalence classes of essentially bounded,
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M-measurable functions f on X.

We define

∥f∥∞ := ess supx∈X |f(x)|
= inf {C : |f(x)| ≤ C for µ-almost all x ∈ X} .

Then we have the following theorem:

Theorem 3.13. (i) The space Lp(X), 1 ≤ p < ∞, is a Banach space

with the norm ∥ · ∥p.
(ii)The space L∞(X) is a Banach space with the norm ∥ · ∥∞.

In order to show that Lp(X) is a normed linear space, we need the

following two inequalities:

Theorem 3.14 (Hölder’s inequality). Let 1 ≤ p and q ≤ ∞ such that

1/p+ 1/q = 1. Then we have, for all f ∈ Lp(X) and g ∈ Lq(X),∣∣∣∣∫
X

f(x)g(x) dµ(x)

∣∣∣∣ ≤ (∫
X

|f(x)|p dµ(x)
)1/p(∫

X

|g(x)|q dµ(x)
)1/q

.

Theorem 3.15 (Minkowski’s inequality). Let 1 ≤ p ≤ ∞. Then we

have, for all f , g ∈ Lp(X),(∫
X

|f(x) + g(x)|p dµ
)1/p

(3.4)

≤
(∫

X

|f(x)|p dµ
)1/p

+

(∫
X

|g(x)|p dµ
)1/p

.

3.3 Minkowski’s Inequality for Integrals

Let (X,M, µ) and (Y,N , ν) be two σ-finite, complete measure spaces

and let (M × N )∗ be the completion of M ⊗ N with respect to the

product measure µ× ν.

Then Minkowski’s inequality for 1 ≤ p ≤ ∞ (Theorem 3.15) can be

generalized as follows:

Theorem 3.16 (Minkowski’s inequality for integrals). Let 1 ≤ p ≤ ∞
and assume that f(x, y) is an (M×N )∗-measureble function on X×Y ,

and satisfies the conditions

f(·, y) ∈ Lp(X) for ν-almost all y ∈ Y , (3.5a)
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Y

∥f(·, y)∥p dν(y) <∞. (3.5b)

Then we have the following three assertions (3.6a), (3.6b) and (3.6c):

f(x, ·) ∈ L1(Y ) for µ-almost all x ∈ X. (3.6a)

F (x) =

∫
Y

f(x, y) dν(y) ∈ Lp(X). (3.6b)

∥F∥p ≤
∫
Y

∥f(·, y)∥p dν(y). (3.6c)

Inequality (3.6c) is called Minkowski’s inequality for integrals.

Proof. The proof is divided into two steps.

Step 1: First, we show that

The function y 7→ ∥f(·, y)∥p is N -measurable.

Step 1-a: The case where 1 ≤ p < ∞. Since the function |f(x, y)|p
is (M×N )∗-measurable on X × Y , it follows from an application of

Fubini’s theorem (Theorem 3.10) that the function

x 7−→ |f(x, y)|p

is M-measurable for ν-almost all y ∈ Y , and that the function

y 7−→
∫
X

|f(x, y)|p dµ(x)

is N -measurable. Hence we find that the function

y 7−→ ∥f(·, y)∥p =

(∫
X

|f(x, y)|p dµ(x)
)1/p

is N -measurable.

Step 1-b: The case where p = ∞. We assume that

µ(X) <∞.

Then we have, part (ii) of Theorem 3.21 in Section 3.6,

∥f(·, y)∥∞ = lim
q↑∞

∥f(·, y)∥q for ν-almost all y ∈ Y .

This proves the N -measurability of the function ∥f(·, y)∥∞, since the

function y 7→ ∥f(·, y)∥q is N -measurable.

Now we assume that X is σ-finite, that is, it is a countable union of

sets Xn of finite measure:

X =
∞∪

n=1

Xn, µ(Xn) <∞.
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Since we have the assertion

∥f(·, y)∥∞ = sup
n≥1

∥f(·, y)∥∞ for ν-almost all y ∈ Y ,

it follows that the function y 7→ ∥f(·, y)∥∞ is N -measurable.

Step 2: Now we prove inequality (3.6).

Step 2-a: The case where p = ∞. We remark that

|f(x, y)| ≤ ∥f(·, y)∥∞
for µ-almost all x ∈ X and for ν-almost all y ∈ Y .

Hence we have, by conditions (3.5a) and (3.5b),∫
Y

|f(x, y)| dν(y) ≤
∫
Y

∥f(·, y)∥∞ dν(y) <∞ for µ-almost all x ∈ X,

and so

f(x, ·) ∈ L1(Y ) for µ-almost all x ∈ X.

Furthermore, in view of Fubini’s theorem (Theorem 3.10) it follows that

the function

x 7−→ F (x) =

∫
Y

f(x, y) dν(y)

is M-measurable and that

|F (x)| ≤
∫
Y

∥f(·, y)∥∞ dν(y) for µ-almost all x ∈ X.

This proves the desired inequality (3.6c) for p = ∞:

∥F∥∞ ≤
∫
Y

∥f(·, y)∥∞ dν(y).

Step 2-b: The case where p = 1. By Fubini’s theorem (Theorem

3.10), we have the inequality

∥F∥1 =

∫
X

∣∣∣∣∫
Y

f(x, y) dν(y)

∣∣∣∣ dµ(x)
≤
∫
X

∫
Y

|f(x, y)| dν(y) dµ(x) =
∫
Y

(∫
X

|f(x, y)| dµ(x)
)
dν(y)

=

∫
Y

∥f(·, y)∥1 dν(y).

This proves the desired inequality (3.6c) for p = 1.

Step 2-c: The case where 1 < p <∞.
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(i) First, we assume that

f(x, y) ≥ 0 on X × Y. (3.7)

Then, in view of Fubini’s theorem (Theorem 3.10) it follows that the

function

x 7−→ F (x) =

∫
Y

f(x, y) dν(y)

is M-measurable. Thus we have, by Hölder’s inequality (Theorem 3.14),

∫
X

|F (x)|p dµ(x) =
∫
X

|F (x)|p−1

(∫
Y

f(x, y) dν(y)

)
dµ(x)

=

∫
Y

(∫
X

|F (x)|p−1
f(x, y) dµ(x)

)
dν(y)

≤
∫
Y

(∫
X

∥F∥p−1
p ∥f(·, y)∥p

)
dν(y)

= ∥F∥p−1
p

∫
Y

∥f(·, y)∥p dν(y).

Therefore, if we have the inequality

∥F∥p <∞,

it follows that

∥F∥p ≤
∫
Y

∥f(·, y)∥p dν(y).

Now we assume that X and Y are σ-finite, that is, they are the count-

able unions of sets Xn and Yn of finite measure, respectively:

X =
∞∪

n=1

Xn, µ(Xn) <∞.

Y =
∞∪

n=1

Yn, ν(Yn) <∞.

We let

f(x, y) =

{
min {f(x, y), n} if x ∈ Xn, y ∈ Yn,

0 otherwise.

Then it follows that

fn(x, y) ↑ f(x, y) as n→ ∞,



80 Measures, Integration and Lp Spaces

so that

Fn(x) =

∫
Y

fn(x, y)dν(y) ↑ F (x) =
∫
Y

f(x, y) dν(y) as n→ ∞.

We remark that

∥Fn∥p <∞.

Hence it follows that

∥Fn∥p ≤
∫
Y

∥fn(·, y)∥p dν(y) ≤
∫
Y

∥f(·, y)∥p dν(y).

Therefore, by passing to the limit we obtain that

∥F∥p ≤
∫
Y

∥f(·, y)∥p dν(y).

This proves the desired inequality (3.6c) for 1 < p <∞ under condition

(3.7).

(ii) We consider the general case. By applying Step (i) to the function

|f(x, y)|, we obtain that

G(x) =

∫
Y

|f(x, y)| dν(y) ∈ Lp(X),

∥G∥p ≤
∫
Y

∥f(·, y)∥p dν(y).

Hence we have the assertion

G(x) <∞ for µ-almost all x ∈ X,

and so

f(x, ·) ∈ L1(Y ) for µ-almost all x ∈ X.

However, in view of Hölder’s inequality (Theorem 3.14) it follows that

G(x) ∈ L1(Xn), n = 1, 2, . . . .

By Fubini’s theorem, this implies that

F (x) =

∫
Y

f(x, y) dν(y) ∈ L1(Xn), n = 1, 2, . . . .

In particular, it follows that F is M-measurable on each Xn, and so it

is M-measurable on X =
∪

nXn.

Moreover, we have the inequality

∥F∥p ≤ ∥G∥p ≤
∫
Y

∥f(·, y)∥p dν(y).
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This proves the desired inequality (3.6c) for 1 < p <∞.

The proof of Theorem 3.16 is now complete.

3.4 Hardy’s Inequality

First, we prove a general integral inequality on the interval (0,∞):

Theorem 3.17. Let K(x, y) be a Lebesgue measurable function defined

on the interval (0,∞). Assume that K(x, y) is positively homogeneous

of degree −1, that is,

K(λx, λy) = λ−1K(x, y), λ > 0,

and further that the integral

AK :=

∫ ∞

0

|K(1, y)|y−1/p dy

is finite for some 1 ≤ p ≤ ∞.

Then the operator Tf , defined by the formula

Tf(x) =

∫ ∞

0

K(x, y)f(y) dy,

is bounded from Lp(0,∞) into itself. More precisely, we have the in-

equality

∥Tf∥p ≤ AK ∥f∥p , f ∈ Lp(0,∞).

Proof. Since we have the formula

Tf(x) =

∫ ∞

0

K(x, y)f(y) dy

=

∫ ∞

0

K(x · 1, x · z)f(zx)x dz =
∫ ∞

0

x−1K(1, z)f(zx)x dz

=

∫ ∞

0

K(1, z)f(zx) dz,

by applying Minkowski’s inequality for integrals (Theorem 3.16) we ob-

tain that

∥Tf∥p ≤
∫ ∞

0

|K(1, z)| ∥f(z·)∥p dz.

However, it is easy to see that

∥f(z·)∥p =

(∫ ∞

0

|f(zx)|p dx
)1/p

= z−1/p

(∫ ∞

0

|f(y)|p dy
)1/p

□ 
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= z−1/p ∥f∥p .

Therefore, we have the inequality

∥Tf∥p ≤
(∫ ∞

0

|K(1, z)|z−1/p dz

)
∥f∥p = AK ∥f∥p .

The proof of Theorem 3.17 is complete.

Now we can prove Hardy’s inequality which will be used systemati-

cally:

Theorem 3.18 (Hardy’s inequality). Let 1 ≤ p ≤ ∞ and γ ̸= 0. If f(x)

is a non-negative, Lebesgue measurable function on the interval (0,∞),

we define a function F (x) by the formula

F (x) =

{∫ x

0
f(y) dy if γ < 0,∫∞

x
f(y) dy if γ > 0.

Then we have the inequality(∫ ∞

0

(xγF (x))p
dx

x

)1/p

≤ 1

|γ|

(∫ ∞

0

(xγ+1f(x))p
dx

x

)1/p

. (3.8)

Proof. We only consider the case where γ < 0. The case where γ > 0 is

proved similarly.

If we let

K(x, y) :=

{
xγ−1/py−γ+1/p−1 if 0 ≤ y ≤ x,

0 if x < y.

then it follows that K(x, y) is positively homogeneous of degree −1 and

satisfies the conditions∫ ∞

0

K(1, y)y−1/p dy =

∫ 1

0

y−γ−1 dy = − 1

γ
.

If we introduce an integral operator

Tg(x) :=

∫ ∞

0

K(x, y) g(y) dy

= xγ−1/p

∫ x

0

y−γ+1/p−1 g(y) dy, g ∈ Lp(0,∞),

then, by applying Theorem 3.17 to our situation we obtain that(∫ ∞

0

(
xγ−1/p

∫ x

0

y−γ+1/p−1g(y) dy

)p

dx

)1/p

□ 
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≤ 1

|γ|

(∫ ∞

0

g(y)p dy

)1/p

.

In particular, if we let

g(y) := yγ−1/p+1 f(y),

then it follows that(∫ ∞

0

(xγF (x))p
dx

x

)1/p

=

(∫ ∞

0

(
xγ−1/p

∫ x

0

f(x) dy

)p

dx

)1/p

≤ 1

|γ|

(∫ ∞

0

(
yγ−1/p+1 f(y)

)p
dy

)1/p

=
1

|γ|

(∫ ∞

0

(xγ+1f(x))p
dx

x

)1/p

.

The proof of Theorem 3.18 is complete.

Example 3.1. If we let

γ =:
1

p
− 1, 1 < p ≤ ∞,

then we have, by inequality (3.10),(∫ ∞

0

(
1

x

∫ x

0

f(y) dy

)p

dx

)1/p

≤ p

p− 1

(∫ ∞

0

f(y)p dy

)1/p

.

3.5 The Generalized Hölder Inequality

Hölder’s inequality (Theorem 3.14) can be generalized as follows:

Theorem 3.19 (the generalized Hölder inequality). Let 1 ≤ p, q, r ≤ ∞
such that

1

p
+

1

q
=

1

r
.

Then we have, for all f ∈ Lp(X) and g ∈ Lq(X),(∫
X

|f(x)g(x)|r dµ
)1/r

(3.9)

≤
(∫

X

|f(x)|p dµ
)1/p(∫

X

|g(x)|q dµ
)1/q

.

□ 
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Proof. We only consider the case where 1 ≤ p, q < ∞. Since we have

the formula
1
p
r

+
1
q
r

= 1,

the desired inequality (3.9) follows by applying Hölder’s inequality (The-

orem 3.14) to the functions |f |r ∈ Lp/r(X) and |g|r ∈ Lq/r(X).

The proof of Theorem 3.19 is complete.

Some basic properties of the Lp spaces are summarized in the following

theorem:

Theorem 3.20. Assume that

0 < µ(X) <∞.

Then we have the following two assertions (i) and (ii):

(i) We have the inclusion

Lp(X) ⊂ Lq(X), 1 ≤ q < p ≤ ∞,

with continuous injection.

More precisely, we have the inequality

∥f∥q ≤ µ(X)1/q−1/p ∥f∥p , f ∈ Lp(X). (3.10)

(ii) The norm ∥ · ∥p is continuous for p ≥ 1, that is,

lim
q↑p

∥f∥q = ∥f∥p , f ∈ Lp(X).

Proof. (i) By Hölder’s inequality (Theorem 3.14), it follows that∫
X

|f(x)|q dµ ≤
(∫

X

1 dµ

)(p−q)/p(∫
X

|f(x)|p dµ
)q/p

= µ(X)1−p/q ∥f∥qp ,

so that

∥f∥q ≤ µ(X)1/q−1/p ∥f∥p .

This proves the desired inequality (3.10).

(ii) First, we remark that, by inequality (3.10),

lim sup
q↑p

∥f∥q ≤ ∥f∥p .

(ii-a) The case p = ∞: It suffices to show that

lim inf
q↑∞

∥f∥q ≥ ∥f∥∞ . (3.11)

□ 
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We may assume that

∥f∥∞ > 0.

For each ε > 0, we can find a set X1 ⊂ X such that

X1 ⊂ {x ∈ X : |f(x)| ≥ ∥f∥∞ − ε} ,
µ(X1) > 0.

Then we have the inequality

∥f∥q =

(∫
X

|f(x)|q dµ(x)
)1/q

≥
(∫

X1

|f(x)|q dµ(x)
)1/q

≥ (∥f∥∞ − ε)µ(X1)
1/q,

and so

lim inf
q↑∞

∥f∥q ≥ ∥f∥∞ − ε.

This proves the desired inequality (3.13), since ε is arbitrary.

(ii-b) The case where 1 < p <∞: We let

X1 = {x ∈ X : |f(x)| > 1} ,
X2 = {x ∈ X : |f(x)| ≤ 1} .

Then we have the formula

∥f∥qq =

∫
X1

|f(x)|q dµ(x) +
∫
X2

|f(x)|q dµ(x).

However, we have the inequalities

|f(x)|q ≤ |f(x)|p , x ∈ X1,

|f(x)|q ≤ 1, x ∈ X2.

Hence, by applying the monotone convergence theorem (Theorem 3.6)

to the first term and also the Lebesgue dominated convergence theorem

(Theorem 3.8) to the second term we obtain that

lim
q↑p

∥f∥qq =

∫
X1

|f(x)|p dµ(x) +
∫
X2

|f(x)|p dµ(x) = ∥f∥pp .

Now the proof of Theorem 3.20 is complete. □ 
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3.6 The Generelized Young Inequality

Now we prove a general theorem about integral operators on a measure

space:

Theorem 3.21 (the generalized Young inequality). Let (X,M, µ) and

(Y,N , ν) be σ-finite, complete measure spaces and let 1 ≤ p, q, r ≤ ∞
such that

1

p
+

1

r
= 1 +

1

q
.

Assume that K(x, y) is an (M×N )∗-measurable function on the product

space X × Y such that∫
X

|K(x, y)|r dµ(x) ≤M for ν-almost all y ∈ Y

and that ∫
Y

|K(x, y)|r dν(y) ≤ N for µ-almost all x ∈ X,

where M and N are positive constants.

If f ∈ Lp(X), then the function Tf(x), defined by the formula

Tf(x) =

∫
Y

K(x, y)f(y) dν(y),

is well-defined for µ-almost all x ∈ X, and is in the space Lq(X).

Furthermore, we have the inequality

∥Tf∥q ≤M1/qN1−(1/p) ∥f∥p . (3.12)

Proof. The proof of Theorem 3.21 is divided into two steps.

Step 1: First, we assume that

K(x, y) ≥ 0 on X × Y ,

f(y) ≥ 0 on Y .

Then we have, by Fubini’s theorem (Theorem 3.10), the following two

assertions (i) and (ii):

(i) The function y 7→ K(x, y)f(y) is N -measurable for µ-almost all

x ∈ X.

(ii) The function Tf(x) =
∫
Y
K(x, y)f(y) dν(y) is M-measurable on

X.
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By the generalized Hölder inequality (Theorem 3.19), it follows that

Tf(x) =

∫
Y

K(x, y)1−r/qK(x, y)r/qf(y)p/qf(y)1−p/q dν(y) (3.13)

≤
(∫

Y

K(x, y)r dν(y)

)1−1/p(∫
Y

K(x, y)rf(y)p dν(y)

)1/q

×
(∫

Y

f(y)p dν(y)

)1/p−1/q

≤ N1−1/p ∥f∥1−p/q
p

(∫
X

K(x, y)rf(y)p dν(y)

)1/q

.

Step I-a: The case where q = ∞: In view of inequality (3.13), it

follows that

Tf(x) ≤ N1−1/p ∥f∥p for µ-almost all x ∈ X,

so that

∥Tf∥∞ ≤ N1−1/p ∥f∥p .

This proves the desired inequality (3.12) for q = ∞.

Step I-b: The case where 1 ≤ q <∞: We have, by Fubini’s theorem

(Theorem 3.10),∫
X

Tf(x)q dµ(x)

≤
(
N1−1/p ∥f∥1−p/q

p

)q ∫
X

∫
Y

K(x, y)rf(y)p dν(y) dµ(x)

≤
(
N1−1/p ∥f∥1−p/q

p

)q
M ∥f∥pp

=
(
M1/qN1−1/p ∥f∥p

)q
,

and so

∥Tf∥q ≤M1/qN1−1/p ∥f∥p .

This proves the desired inequality (3.12) for 1 < q <∞.

Moreover, it follows that

Tf(x) <∞ for µ-almost all x ∈ X.

Step II: We consider the general case. To do this, we remark that

K(x, y)f(y) =
[
(ReK(x, y)f(y))+ − (ReK(x, y)f(y))−

]
+

√
−1
[
(ImK(x, y)f(y))+ − (ImK(x, y)f(y))−

]
,

--
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and that

(ReK(x, y)f(y))± ≤ |K(x, y)f(y)|,
(ImK(x, y)f(y))± ≤ |K(x, y)f(y)|.

Here

f+(x) = max {f(x), 0} ,
f−(x) = max {−f(x), 0} .

However, we have, by Step I,∫
Y

|K(x, y)||f(y)| dν(y) <∞ for µ-almost all x ∈ X.

Hence it follows that

(1) The function y 7→ K(x, y)f(y) is N -integrable for µ-almost all

x ∈ X.

(2) The function Tf(x) =
∫
Y
K(x, y)f(y) dν(y) is M-measurable on

X.

Furthermore, since we have the inequality

|Tf(x)| ≤
∫
Y

|K(x, y)||f(y)| dν(y) for µ-almost all x ∈ X,

we find that the desired inequality (3.12) remains valid for this case.

The proof of Theorem 3.21 is complete.

The case where r := 1 and p := q is useful in applications:

Corollary 3.22 (Schur’s lemma). Assume that K(x, y) is an (M×N )∗-

measurable function on the product space X × Y such that∫
X

|K(x, y)| dµ(x) ≤M for ν-almost all y ∈ Y

and that ∫
Y

|K(x, y)| dν(y) ≤ N for µ-almost all x ∈ X,

where M and N are positive constants.

If f ∈ Lp(X), then the function Tf(x), defined by the formula

Tf(x) =

∫
Y

K(x, y)f(y) dν(y),

is well-defined for µ-almost all x ∈ X, and is in Lp(X).

□ 
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Furthermore, we have the inequality

∥Tf∥p ≤M1/pN1−(1/p) ∥f∥p .

3.7 Convolutions

In this section we prove a useful inequality for convolutions:

Theorem 3.23 (Young’s inequality). Let 1 ≤ p, q, r ≤ ∞ such that

1

p
+

1

q
=

1

r
+ 1.

If f ∈ Lp(Rn) and g ∈ Lq(Rn), then the function (f ∗ g)(x), defined by

the formula

(f ∗ g) (x) =
∫
Rn

f(x− y) g(y) dy,

is well-defined for almost all x ∈ Rn, and is in Lr(Rn). Furthermore,

we have the inequality

∥f ∗ g∥r ≤ ∥f∥p ∥g∥q . (3.14)

The function f ∗ g is called the convolution of f and g.

Proof. Step I: First, we have to verify that

The function f(x± y) is Lebesgue measurable on Rn ×Rn. (3.15)

Step I-a: First, we prove assertion (3.15) under the condition that

f(x) is Borel measurable on Rn, that is,

Claim 3.1. If f(x) is Borel measurable on Rn, then f(x ± y) is Borel

measurable on Rn ×Rn.

The proof of Claim 3.1 is divided into five steps:

Step (1): If f(x) is continuous on Rn, then f(x ± y) is continuous

on Rn ×Rn, and so it is Borel measurable on Rn ×Rn.

Step (2): Let G be an arbitrary open subset of Rn, and let

f(x) := the characteristic function χG(x) of G.

If we let

fN (x) := min {N dist(x,Gc), 1} for N ∈ N,

then it follows that

fN (x) is continuous on Rn,
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fN (x) −→ f(x), x ∈ Rn.

Hence we find from Step (1) that the function

f(x± y) = lim
N→∞

fN (x± y)

is Borel measurable on Rn ×Rn, if f = χG.

Step (3): We define

A = {A ⊂ Rn : χA(x± y) is Borel measurable on Rn ×Rn} .

Then A is a σ-algebra.

Indeed, we have the following three assertions (a), (b) and (c):

(a) The empty set ∅ is in A, since χ∅ = 0.

(b) If A ∈ A, then we have χAc = 1− χA, so that the function

χAc(x± y) = 1− χA(x± y)

is Borel measurable on Rn ×Rn.

(c) If Aj ∈ A and A =
∪∞

j=1Aj , then the function

χA(x± y) = sup
j≥1

χAj (x± y)

is Borel measurable on Rn ×Rn.

Step (4): By Steps (2) and (3), it follows that A is a σ-algebra which

contains all open subsets of Rn; hence A contains all Borel subsets of

Rn. Namely, we find that the function χE(x ± y) is Borel measurable

on Rn ×Rn, for each Borel subset E of Rn.

Step (5): Let f(x) be an arbitrary Borel measurable function on Rn.

We may assume that

f(x) ≥ 0 on Rn.

Then we can find an increasing sequence of non-negative, Borel measur-

able simple functions fN (x) on Rn such that

fN (x) −→ f(x) for x ∈ Rn.

Hence, by Step (4) it follows that the function

f(x± y) = lim
N→∞

fN (x± y)

is Borel measurable on Rn ×Rn.

This completes the proof of Claim 3.1. □ 
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Step I-b: Now we prove assertion (3.15).

Let f(x) be an arbitrary Lebesgue measurable function on Rn. We

may assume that

f(x) ≥ 0 on Rn.

Then we can find two Borel measurable functions g(x) and h(x) on Rn

such that

0 ≤ g(x) ≤ f(x) ≤ h(x) on Rn,

g(x) = f(x) = h(x) for almost all x ∈ Rn.

This follows from the fact that the Lebesgue measure is the completion

of the Borel measure.

Hence we have the inequalities

0 ≤ g(x± y) ≤ f(x± y) ≤ h(x± y) for (x, y) ∈ Rn ×Rn.

However, we know from Step I-a that the functions g(x±y) and h(x±y)
are Borel measurable on Rn ×Rn. Thus, by applying Fubini’s theorem

(Theorem 3.10) we obtain that∫
Rn

∫
Rn

(h(x± y)− g(x± y)) dx dy

=

∫
Rn

(∫
Rn

(h(x± y)− g(x± y)) dx

)
dy

=

∫
Rn

(∫
Rn

(h(x)− g(x)) dx

)
dy

= 0.

This proves that

g(x± y) = h(x± y) for almost all (x, y) ∈ Rn ×Rn,

so that

g(x± y) = f(x± y) = h(x± y) for almost all (x, y) ∈ Rn ×Rn.

Therefore, we find that the function f(x±y) is Lebesgue measurable on

Rn×Rn, since the functions g(x±y) and h(x±y) are Borel measurable

on Rn ×Rn.

Step II: End of Proof of Theorem 3.23. The case where 1 ≤ r <

∞: It suffices to apply Theorem 3.21 with

(X,µ) := (Rn, dx), (Y, ν) := (Rn, dy),

p := q, q := r, r := p,
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K(x, y) := f(x− y), f(y) := g(y).

Indeed, since we have the formula∫
Rn

|f(x− y)|p dx =

∫
Rn

|f(x− y)|p dy = ∥f∥pp ,

it follows from an application of Theorem 3.21 with M = N := ∥f∥pp
that

∥f ∗ g∥r ≤
(
∥f∥pp

)1/r (
∥f∥pp

)1−1/q

∥g∥p = ∥f∥p ∥g∥q .

This proves the desired inequality (3.14) for 1 ≤ r <∞.

The case where r = ∞: If f ∈ Lp(Rn) and g ∈ Lq(Rn) with 1/p +

1/q = 1, then, by applying Hölder’s inequality (Theorem 3.14) we obtain

that

|(f ∗ g)(x)| =
∣∣∣∣∫

Rn

f(x− y)g(y) dy

∣∣∣∣
≤
(∫

Rn

|f(x− y)|p dy
)1/p(∫

Rn

|g(y)|qdy
)1/q

= ∥f∥p ∥g∥q .

Hence we have the desired inequality (3.14) for r = ∞:

∥f ∗ g∥∞ ≤ ∥f∥p ∥g∥q .

The proof of Theorem 3.23 is now complete.

3.7.1 Approximations to the Identity

The next theorem 3.25 underlies one of the most important uses of con-

volutions. Before coming to it, we need a technical lemma:

Lemma 3.24. Assume that f ∈ Lp(Rn) with 1 ≤ p <∞. If we let

fx(y) = f(x+ y) for y ∈ Rn,

then we have the assertion

fx −→ f in Lp(Rn) as x→ 0.

Proof. (1) If g is a continuous function with compact support, then we

have the assertion

gx −→ g uniformly as x→ 0,

□ 
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and so

∥gx − g∥p −→ 0 as x→ 0.

(2) Let f ∈ Lp(Rn). For each ε > 0, we can find a continuous function

g with compact support such that

∥f − g∥p <
ε

2
.

Then we have the inequality

∥fx − gx∥p = ∥f − g∥p <
ε

2
,

and so

∥fx − f∥p ≤ ∥fx − gx∥p + ∥gx − g∥p + ∥g − f∥p < ε+ ∥gx − g∥p .

This implies that

lim sup
x→0

∥fx − f∥p ≤ ε.

The proof of Lemma 3.24 is complete.

Remark 3.1. Lemma 3.24 is not true for p = ∞. Indeed, the assertion

∥fx − f∥∞ = sup
y∈Rn

|f(x+ y)− f(y)| −→ 0 as x→ 0

implies the uniform continuity of f on Rn.

Theorem 3.25. Let φ(x) be a function in L1(Rn) such that∫
Rn

φ(x) dx = 1.

For any ε > 0, we define

φε(x) =
1

εn
φ
(x
ε

)
.

Then we have the following two assertions (i) and (ii):

(i) If f ∈ Lp(Rn) with 1 ≤ p <∞, then it follows that

f ∗ φε −→ f in Lp(Rn) as ε ↓ 0.

(ii) If f ∈ L∞(Rn) is uniformly continuous, then it follows that

f ∗ φε −→ f in L∞(Rn) as ε ↓ 0.

□ 
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Proof. (i) Since we have the formula∫
Rn

φε(x) dx =

∫
Rn

φ(x) dx = 1,

it follows that

(f ∗ φε)(x)− f(x) =

∫
Rn

(f(x− y)− f(x))φε(y) dy

=

∫
Rn

(f(x− εz)− f(x))φ(z) dz.

Hence, by applying Minkowski’s inequality for integrals (Theorem 3.16)

we obtain that

∥f ∗ φε − f∥p ≤
∫
Rn

∥f−εz − f∥p |φ(z)| dz.

However, we have the inequality

∥f−εz − f∥p ≤ ∥f−εz∥p + ∥f∥p = 2 ∥f∥p ,

and so

∥f−εz − f∥p |φ(z)| ≤ 2 ∥f∥p |φ(z)|,

with

φ ∈ L1(Rn).

Furthermore, Lemma 3.24 tells us that

lim
ε↓0

∥f−εz − f∥p = 0, z ∈ Rn.

Therefore, it follows from an application of the Lebesgue dominated

convergence theorem (Theorem 3.8) that

lim sup
ε↓0

∥f ∗ φε − f∥p ≤ lim
ε↓0

∫
Rn

∥f−εz − f∥p |φ(z)| dz = 0.

(ii) Assume that f ∈ L∞(Rn) is uniformly continuous. Since φ(x) is

integrable on Rn, it follows that, for each δ > 0, there exists a compact

subset W of Rn such that∫
Rn\W

|φ(z)| dz < δ.

Then we have the inequality

sup
x∈Rn

|f ∗ φε(x)− f(x)|
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≤ sup
x∈Rn

(∫
Rn

|f(x− εy)− f(x)| |φ(y)| dy
)

= sup
x∈Rn

(∫
W

|f(x− εy)− f(x)| |φ(y)| dy

+

∫
Rn\W

|f(x− εy)− f(x)| |φ(y)| dy
)

≤ sup
x∈Rn

(f(x− εy)− f(x)|) ·
∫
W

|φ(y)| dy + 2 ∥f∥∞ ·
∫
Rn\W

|φ(y)| dy

≤ sup
x∈Rn

(|f(x− εy)− f(x)|) ∥φ∥1 + 2δ ∥f∥∞ .

However, we have the assertion

lim
ε↓0

 sup
x∈Rn

x∈W

|f(x− εy)− f(x)|

 = 0,

since f is uniformly continuous and since W is compact.

Summing up, we obtain that

lim sup
ε↓0

∥f ∗ φε − f∥∞ ≤ 2δ ∥f∥∞ .

This proves part (ii), since δ is arbitrary.

The proof of Theorem 3.25 is complete.

The family of functions {φε} defined above is called an approxima-

tion to the identity. What makes these useful is that, by choosing φ

appropriately we can obtain the functions f ∗φε to have nice properties.

Example 3.2 (the heat kernel). Let

K(x) :=
1

(4π)n/2
e−

|x|2
4t , t > 0,

and

Kt(x) =
1

(
√
t )n

K

(
x√
t

)
=

1

(4πt)n/2
e−

|x|2
4t , t > 0.

We define

u(x, t) = f ∗Kt(x)

=
1

(4πt)n/2

∫
Rn

e−
|x−y|2

4t f(y) dy, t > 0.

Then we have the following two assertions (i) and (ii):

□ 
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(i) If f ∈ Lp(Rn) with 1 ≤ p <∞, then it follows that

u(·, t) −→ f in Lp(Rn) as t ↓ 0.

(ii) If f is bounded and continuous on Rn, then it follows that u(x, t)

is continuous on Rn × [0,∞) and further that

u(·, t) −→ f in L∞(Rn) as t ↓ 0.

Proof. (i) Note that∫
Rn

K(x) dx =
1

(4π)n/2

∫
Rn

e−
|x|2
4t dx = 1.

Therefore, part (i) follows by applying Theorem 3.25 with

φ(x) := K(x),

ε :=
√
t.

(ii) Similarly, part (ii) follows by applying Theorem 3.25 with

φ(x) := K(x),

ε :=
√
t.

The proof of Example 3.2 is complete.

Remark 3.2. It should be emphasized that the function u(x, t) = f ∗
Kt(x) is a solution of the following initial value problem for the heat

equation:{
∂u
∂t (x, t)−∆u(x, t) = 0 for all x ∈ Rn and t > 0,

u(x, 0) = f(x) for all x ∈ Rn.

3.7.2 Friedrichs’ Mollifiers

Let ρ(x) be a non-negative, bell-shaped C∞ function on Rn satisfying

the following two conditions:

supp ρ = {x ∈ Rn : |x| ≤ 1} . (3.16a)∫
Rn

ρ(x) dx = 1. (3.16b)

For example, we may take

ρ(x) =

{
k exp[−1/(1− |x|2)] if |x| < 1,

0 if |x| ≥ 1,

□ 
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where the constant factor k is so chosen that condition (3.16) is satisfied.

For each ε > 0, we define

ρε(x) =
1

εn
ρ
(x
ε

)
,

then ρε(x) is a non-negative, C∞ function on Rn, and satisfies the con-

ditions

supp ρε = {x ∈ Rn : |x| ≤ ε} ; (3.17a)∫
Rn

ρε(x) dx = 1. (3.17b)

The functions {ρε} are called Friedrichs’ mollifiers (see Figure 3.1).

✲

✻

0
|x| = 1|x| = 1

2

|x| = 1

4

|x| = 1

y = ρ
1

(x) = ρ(x)

y = ρ 1

2

(x)

y = ρ 1

4

(x)

x ∈ R
n

y

Fig. 3.1. Friedrichs’ mollifiers {ρε}

The next local version of Theorem 3.25 shows how mollifiers can be

used to approximate a function by smooth functions in a domain of Rn:

Theorem 3.26. Let Ω be an open subset of Rn. Then we have the

following two assertions:

(i) If u ∈ Lp(Ω) with 1 ≤ p < ∞ and vanishes outside a compact
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subset K of Ω, then it follows that ρε ∗ u ∈ C∞
0 (Ω) provided that

ε < dist (K, ∂Ω), and further that ρε ∗ u→ u in Lp(Ω) as ε ↓ 0.

(ii) If u ∈ Cm
0 (Ω) with 0 ≤ m < ∞, then it follows that ρε ∗ u ∈

C∞
0 (Ω) provided that ε < dist (suppu, ∂Ω), and further that ρε ∗

u→ u in Cm
0 (Ω) as ε ↓ 0.

Here

dist (K, ∂Ω) = inf {|x− y| : x ∈ K, y ∈ ∂Ω} .

The functions ρε ∗ u are called regularizations of the function u.

Corollary 3.27. The space C∞
0 (Ω) is dense in Lp(Ω) for each 1 ≤ p <

∞.

Proof. Indeed, Corollary 3.27 is an immediate consequence of part (i)

of Theorem 3.26, since Lp functions with compact support are dense in

Lp(Ω).

The next result gives another useful construction of smooth functions

that vanish outside compact sets:

Corollary 3.28. Let K be a compact subset of Rn. If Ω is an open

subset of Rn such that K ⊂ Ω, then there exists a function f ∈ C∞
0 (Ω)

such that

0 ≤ f(x) ≤ 1 in Ω,

f(x) = 1 on K.

Proof. Let

δ = dist (K, ∂Ω),

and define a relatively compact subset U of Ω, containing K, as follows:

U =

{
x ∈ Ω : |x− y| < δ

2
for some y ∈ K

}
.

Then it is easy to verify that the function

f(x) = ρε ∗ χU (x) =
1

εn

∫
U

ρ

(
x− y

ε

)
dy, 0 < ε <

δ

2
,

satisfies all the conditions.

□ 

□ 
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3.8 Distribution Functions

In this section we are interested in giving a concise expression for the

Lp-norm of a function. Let (Ω,B, µ) be a measure space. Let f(x) be a

measurable function defined on Ω. If τ > 0, we define the distribution

function of f by the formula

σ(τ) := µ ({x ∈ Ω : |f(x)| > τ}) .

The next theorem asserts that a measurable function is Lp-integrable

over Ω with respect to µ if and only if its distribution function is inte-

grable over the interval [0,∞) with respect to pτp−1 dτ = dτp:

Theorem 3.29. Let f(x) be a measurable function defined on Ω, and

let 1 ≤ p <∞. Then f ∈ Lp(Ω) if and only if it satisfies the condition∫ ∞

0

τp−1σ(τ) dτ <∞. (3.18)

Moreover, in this case we have the formula∫
Ω

|f(x)|p dµ = p

∫ ∞

0

τp−1σ(τ) dτ =

∫ ∞

0

σ(τ) dτp. (3.19)

Proof. First, it should be noticed that the function σ(τ) is monotone

decreasing and right-continuous in τ , for τ > 0.

The proof of Theorem 3.29 is divided into two steps.

Step (I): If condition (3.20) holds true, then we have the following

claim:

Claim 3.2. τp σ(τ) → 0 as τ → 0 and τ → ∞.

Proof. (a) Our proof is based on a reduction to absurdity. Assume, to

the contrary, that we have, as τ → 0,

τp σ(τ) ↛ 0.

Then we can find a sequence {τj} and a positive constant δ such that

τpj σ(τj) ≥ δ, 0 < τj+1 <
1

2
τj .

Hence it follows that

p

∫ τj

τj+1

τp−1σ(τ) dτ ≥ pσ(τj)

∫ τj

τj+1

τp−1 dτ = σ(τj)
(
τpj − τpj+1

)
≥ δ

τpj

(
τpj − τpj+1

)
= δ

(
1−

(
τj+1

τj

)p)
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≥ δ

(
1− 1

2p

)
.

This contradict condition (3.20), since we have

p

∫ ∞

0

τp−1σ(τ) dτ = ∞, 1 ≤ p <∞.

(b) Our proof is based on a reduction to absurdity. Assume, to the

contrary, that we have, as τ → ∞,

τp σ(τ) ↛ 0.

Then we can find a sequence {τj} and a positive constant δ such that

τpj+1 σ(τj+1) ≥ δ, 0 < τj <
1

2
τj+1.

Hence it follows that

p

∫ τj+1

τj

τp−1σ(τ) dτ ≥ pσ(τj+1)

∫ τj+1

τj

τp−1 dτ = σ(τj+1)
(
τpj+1 − τpj

)
≥ δ

τpj+1

(
τpj+1 − τpj

)
= δ

(
1−

(
τj
τj+1

)p)
≥ δ

(
1− 1

2p

)
.

This contradict condition (3.18), since we have the assertion

p

∫ ∞

0

τp−1σ(τ) dτ = ∞, 1 ≤ p <∞.

The proof of Claim 3.2 is complete.

In view of Claim 3.2, by integration by parts we obtain that

p

∫ ∞

0

τp−1σ(τ) dτ = [τp σ(τ)]
∞
0 −

∫ ∞

0

τp dσ(τ)

= −
∫ ∞

0

τp dσ(τ) =

∫
Ω

|f(x)|p dµ.

This proves the desired formula (3.19).

Step (II): Conversely, we assume that f ∈ Lp(Ω). Then we have, for

all τ > 0,

τp σ(τ) ≤
∫
E(τ)

|f(x)|p dµ, (3.20)

where

E(τ) := {x ∈ Ω : |f(x)| > τ} .

□ 
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However, since f ∈ Lp(Ω) it follows that∫
Ω

|f(x)|p dµ = lim
τ→∞

∫
Ω\E(τ)

|f(x)|p dµ

=

∫
Ω

|f(x)|p dµ− lim
τ→∞

∫
E(τ)

|f(x)|p dµ,

so that

lim
τ→∞

∫
E(τ)

|f(x)|p dµ = 0.

Hence we have, by inequality (3.20),

lim
τ→∞

τp σ(τ) ≤ lim
τ→∞

∫
E(τ)

|f(x)|p dµ = 0.

Therefore, by integration by parts it follows that∫
Ω

|f(x)|p dµ = − lim
ε↓0

∫ ∞

ε

τp dσ(τ)

= lim
ε↓0

{
− [τp σ(τ)]

∞
ε +

∫ ∞

ε

pτp−1 σ(τ) dτ

}
= lim

ε↓0

{
εp σ(ε) +

∫ ∞

ε

pτp−1 σ(τ) dτ

}
≥ p

∫ ∞

0

τp−1 σ(τ) dτ.

This proves the desired condition (3.18), since 1 ≤ p <∞.

The proof of Theorem 3.29 is now complete.

3.9 Marcinkiewicz’s Interpolation Theorem

In this section we prove the Marcinkiewicz interpolation theorem (The-

orem 3.30) for which we need some terminology. Let (Ω,B, ϕ) and

(Ω̂, B̂, ϕ̂) be two measure spaces, and the norms of Lp(Ω) and Lp(Ω̂)

will be denoted by the same notation ∥ · ∥p, but it is clear from the

context which is which.

(i) Let T be a not necessarily linear mapping of Lp(Ω) into Lq(Ω̂)

with 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. The mapping T is said to be

of type (p, q) if there exists a positive constant K such that we

have, for all f ∈ Lp(Ω),

∥Tf∥q ≤ K ∥f∥p .

□ 
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(ii) Let T be a not necessarily linear mapping of Lp(Ω) into a set of

measurable functions defined on Ω̂ with 1 ≤ p ≤ ∞. In the case

where q < ∞, the mapping T is said to be of weak type (p, q)

if there exists a positive constant K such that we have, for all

f ∈ Lp(Ω) and all s > 0,

ϕ̂
({
y ∈ Ω̂ : |(Tf)(y)| > s

})
≤
(
K ∥f∥p

s

)q

.

In the case where q = ∞ a mapping of type (p,∞) is said to be

of weak type (p,∞).

It is easy to see that a mapping of type (p, q) is of weak type (p, q).

We denote the totality of functions which are expressed as a sum of a

function in Lp(Ω) and a function in Lq(Ω) by Lp(Ω) + Lq(Ω), that is,

Lp(Ω) + Lq(Ω) := {f + g : f ∈ Lp(Ω), g ∈ Lq(Ω)} .

Let 1 ≤ p < q < r <∞. If f(x) ∈ Lq(Ω), we let

f1(x) :=

{
0 if |f(x)| ≤ 1,

f(x) if |f(x)| > 1,

and

f2(x) :=

{
f(x) if |f(x)| ≤ 1,

0 if |f(x)| > 1.

Then it follows that f(x) can be written in the form

f(x) = f1(x) + f2(x),

with

f1(x) ∈ Lp(Ω), f2(x) ∈ Lr(Ω),

Indeed, it suffices to note that

|f1(x)|p ≤ |f(x)|q,
|f2(x)|r ≤ |f(x)|q.

Therefore, for 1 ≤ p < q < r <∞, we have the inclusion

Lq(Ω) ⊂ Lp(Ω) + Lr(Ω).

Marcinkiewicz’s interpolation theorem reads as follows:
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Theorem 3.30 (Marcinkiewicz). Let 1 ≤ p < q < r and let T be a linear

mapping of the space Lp(Ω) + Lr(Ω) into a set of measurable functions

defined on Ω̂. If T is of weak type (p, p) and also of weak type (r, r),

then it is of type (q, q).

Proof. If f(x) is a measurable function defined on Ω and if τ > 0, we let

(f)r := ϕ({x ∈ Ω : |f(x)| > τ}).

We shall use the same notation for a measurable function defined on Ω̂

with ϕ replaced by ϕ̂.

First, since T is of weak type (p, p) and of weak type (r, r), we can

find two constants K1 > 0 and K2 > 0 such that we have, for any τ > 0

and for any f ∈ Lp(Ω) or for any f ∈ Lr(Ω),

(Tf)τ ≤
(
K1 ∥f∥p

τ

)p

or (Tf)τ ≤
(
K2 ∥f∥r

τ

)r

, (3.21)

respectively. If f(x) is a function in Lq(Ω), we let

f1(x) :=

{
f(x) if |f(x)| ≤ τ ,

τ sign f(x) if |f(x)| > τ,

and

f2(x) := f(x)− f1(x).

Then, since Tf(x) = Tf1(x) + Tf2(x), we have the inclusion

{y : |(Tf)(y)| > τ} ⊂ {y : |(Tf1)(y)| > τ/2} ∪ {y : |(Tf2)(y)| > τ/2} .

Hence, by condition (3.21) with τ := τ/2 it follows that

(Tf)τ ≤ (Tf1)τ/2 + (Tf2)τ/2 (3.22)

≤
(
2K1 ∥f1∥r

τ

)r

+

(
2K2 ∥f2∥p

τ

)p

.

However, we remark that

(f1)σ =

{
(f)σ for σ < τ,

0 for σ ≥ τ ,

and that

(f2)σ = (f)σ+τ for σ ≥ 0.

Thus, it follows from an application of Theorem 3.29 that

∥f1∥rr = r

∫ ∞

0

σr−1(f1)σ dσ = r

∫ τ

0

σr−1(f)σ dσ, (3.23)
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and further that

∥f2∥pp = p

∫ ∞

0

σp−1(f2)σ dσ (3.24)

= p

∫ ∞

0

σp−1(f)σ+τ dσ = p

∫ ∞

τ

(σ − τ)p−1(f)σ dσ.

By combining inequality (3.22) and two formulas (3.23) and (3.24), we

obtain that

(Tf)τ ≤
(
2K1

τ

)r

r

∫ τ

0

σr−1(f)σ dσ

+

(
2K2

τ

)p

p

∫ ∞

τ

(σ − τ)p−1(f)σ dσ.

Therefore, we have, by this inequality and Theorem 3.29,

∥Tf∥qq

= q

∫ ∞

0

τ q−1(Tf)τ dτ

≤ q

∫ ∞

0

τ q−1

(
2K1

τ

)r

r

(∫ τ

0

σr−1(f)σ dσ

)
dτ

+ q

∫ ∞

0

τ q−1

(
2K2

τ

)p

p

(∫ ∞

τ

(σ − τ)p−1(f)σ dσ

)
dτ

= qr(2K1)
r

∫ ∞

0

τ q−r−1

(∫ τ

0

σr−1(f)σ dσ

)
dτ

+ pq(2K2)
p

∫ ∞

0

τ q−p−1

(∫ ∞

τ

(σ − τ)p−1(f)σ dσ

)
dτ

= qr(2K1)
r

∫ ∞

0

(∫ ∞

σ

τ q−r−1 dτ

)
σr−1(f)σ dσ

+ pq(2K2)
p

∫ ∞

0

(∫ σ

0

τ q−p−1(σ − τ)p−1 dτ

)
(f)σ dσ

=
qr(2K1)

r

r − q

∫ ∞

0

σq−1(f)σ dσ + pq(2K2)
pB(q − p, p)

∫ ∞

0

σq−1(f)σ dσ

=

{
r(2K1)

r

r − q
+ p(2K2)

pB(q − p, p)

}
∥f∥qq .

This proves that the operator T is of type (q, q), with

K :=

(
r(2K1)

r

r − q
+ p(2K2)

pB(q − p, p)

)1/q

.

The proof of Theorem 3.30 is complete. □ 
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3.10 Riesz Potentials

In this section, as an application of Marcinkiewicz’s interpolation theo-

rem (Theorem 3.30) we study Riesz potentials in the classical potential

theory.

Let ∆ be the usual Laplacian

∆ =
n∑

j=i

∂2

∂x2j
.

Then we have, for every f ∈ S(Rn),

(̂−∆f)(ξ) = |ξ|2 f̂(ξ),

and also

F((−∆)α/2f)(ξ) = |ξ|α f̂(ξ), α > 0.

If 0 < α < n, we define a Riesz potential Iα by the formula

Iα(f)(x) = (−∆)−α/2(f)(x) =
1

γ(α)

∫
Rn

|x− y|α−nf(y) dy,

where

γ(α) =
πn/2 2α Γ(α/2)

Γ ((n− α)/2)
.

The function
1

γ(α)
|x|α−n

is called a Riesz kernel.

The purpose of this secion is to prove the following:

Theorem 3.31. Let 0 < α < n, 1 < p < q and 1/q = 1/p− α/n. Then

we have, for all f ∈ Lp(Ω),

∥Iα(f)∥q ≤ Ap,q ∥f∥p , (3.25)

with some constant Ap,q > 0.

Proof. We have only to prove the theorem for the integral kernel

K(x) = |x|α−n.

We shall show that the mapping

f 7−→ K ∗ f
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is of weak type (p, q). Namely, we have, for all λ > 0,

m {x : |K ∗ f(x)| > λ} ≤
(
Ap,q

∥f∥p
λ

)q

, (3.26)

where m is the Lebesgue measure on Rn.

To do so, it suffices to prove that

m {x : |K ∗ g(x)| > λ} ≤
(
Ap,q

λ

)q

for all ∥g∥p = 1. (3.27)

Indeed, by letting

g(x) =
f(x)

∥f∥p
,

we obtain from inequality (3.27) that

m
{
x : |K ∗ f(x)| > λ ∥f∥p

}
= m {x : |K ∗ g(x)| > λ} ≤

(
Ap,q

λ

)q

.

This proves the desired inequality (3.26) if we take

λ :=
λ

∥f∥p
.

In order to prove inequality (3.27), we let, for a positive constant µ,

K(x) := K1(x) +K∞(x),

where

K1(x) =

{
K(x) for |x| ≤ µ,

0 for |x| > µ,

and

K2(x) =

{
0 for |x| ≤ µ,

K(x) for |x| > µ.

The constant µ will be chosen later on.

Since we have the formula

K ∗ g = K1 ∗ g +K∞ ∗ g,

it follows that

m {x : |K ∗ g(x)| > 2λ} (3.28)

≤ m {x : |K1 ∗ g(x)| > λ}+m {x : |K∞ ∗ g(x)| > λ} .
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(1) First, we have the inequality

m {x : |K1 ∗ g(x)| > λ} (3.29)

≤
∫
Rn

(
|K1 ∗ g(x)|

λ

)p

dx =
∥|K1 ∗ g(x)|∥pp

λp

≤ 1

λp
∥K1∥p1 ∥g∥

p
p =

1

λp
∥K1∥p1 .

However, it follows that

∥K1∥1 =

∫
|x|≤µ

|x|α−n dx =

∫
Σn−1

∫ µ

0

rα−nrn−1 dr dσ (3.30)

=
ωn

α
µα,

where ωn is the surface area of the unit sphere Σn−1 in Rn

ωn := |Σn−1| =
2πn/2

Γ(n/2)
.

Therefore, by combining inequality (3.29) and formula (3.30) we obtain

that

m {x : |K1 ∗ g(x)| > λ} ≤ Cp
1

µαp

λp
, C1 :=

ωn

α
. (3.31)

(2) Secondly, by using Young’s inequality (Theorem 3.23) we have the

inequality

∥K∞ ∗ g∥∞ ≤ ∥K∞∥p′ ∥g∥p = ∥K∞∥p′ , p′ =
p

p− 1
. (3.32)

However, it follows that

∥K∞∥p′ (3.33)

=

(∫
|x|≥µ

(
|x|α−n

)p′

dx

)1/p′

=

(∫
Σn−1

∫ ∞

µ

r(α−n)p′
rn−1 dr dσ

)1/p′

=

(
ωn

[
1

(α− n)p′ + n
r(α−n)p′+n

]∞
µ

)1/p′

= ω1/p′

n

(
µn−(n−α)p′

(n− α)p′ − n

)1/p′
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= C2 µ
(α−n)+n(1−1/p) = C2 µ

−n/q, C2 :=

(
ωn

p− 1

p(n− α)

)1/p′

.

If we choose the constant µ as

µ :=

(
C2

λ

)q/n

,

or equivalently

λ = C2 µ
−n/q,

then it follows from inequalities (3.32) and (3.33) that

∥K∞ ∗ g∥∞ ≤ ∥K∞∥p′ = λ.

This proves that

m {x : |K∞ ∗ g(x)| > λ} = 0. (3.34)

(3) By combining inequalities (3.28), (3.31) and assertion (3.34), we

have proved that

m {x : |K ∗ g(x)| > 2λ} ≤ Cp
1

(
1

λ

)q

,

so that (by replacing 2λ by λ)

m {x : |K ∗ g(x)| > λ} ≤ (Ap,qλ)
q
, Ap,q := 2C

p/q
1 .

Therefore, the desired inequality (3.27) (and hence (3.25)) follows from

an application of Marcinkiewicz’s theorem 3.30.

We can prove a more precise estimate for Riesz potentials with α := nµ

(see [45, Chapter 1, Lemma 1.34], [33, Chapter 7, Lemma 7.12]):

Theorem 3.32. If 0 < µ ≤ 1, we define the Riesz potential by the

formula

(Inµf)(x) :=

∫
Ω

|x− y|n(µ−1) f(y) dy.

Then, for any p, q satisfying the conditions

1 ≤ p ≤ q ≤ ∞,

0 ≤ δ = δ(p, q) :=
1

p
− 1

q
< µ,

□ 
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the operator Inµ maps Lp(Ω) continuously into Lq(Ω). More precisely,

we have, for all f ∈ Lp(Ω),

∥Inµf∥Lq(Ω) ≤
(
1− δ

µ− δ

)1−δ

V 1−µ
n |Ω|µ−δ ∥f∥Lp(Ω) .

Here Vn is the volume of the unit ball in Rn

Vn =
ωn

n
=

πn/2

Γ(n/2 + 1)
.

3.11 Notes and Comments

For more thorough treatments of the subject in this chapter, the reader

might be referred to Duoandikoetxea [23], Folland [29], Friedman [30],

Malý–Ziemer [45], Rudin [60], Stein–Shakarchi [71] and Torchinsky [91].
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Elements of Real Analysis

This chapter is devoted to the precise definitions and statements of real

analytic tools such as BMO and VMO functions, the Calderón–Zygmund

decomposition (Theorem 4.7), the John–Nirenberg inequality (Theorem

4.10), the Hardy–Littlewood maximal function (Theorem 4.4), sharp

functions (Theorem 4.14) and spherical harmonics (Theorem 4.31).

4.1 BMO Functions

In this section we recall some basic definitions and results concerning

BMO functions from real analysis.

First, we let

L1
loc(R

n) = the space of equivalence classes of Lebesgue measurable

functions on Rn which are integrable on every compact

subset of Rn.

The elements of L1
loc(R

n) are called locally integrable functions on Rn.

A function f ∈ L1
loc(R

n) is said to be of bounded mean oscillation,

f ∈ BMO, if it satisfies the condition (see [37])

∥f∥∗ := sup
B

1

|B|

∫
B

|f(x)− fB| dx <∞,

where the supremum is taken over all balls B in Rn, |B| is the Lebesgue
measure of B and fB is the integral average of f over B

fB :=
1

|B|

∫
B

f(y) dy.

The quantity ∥·∥∗ is called the BMO norm. This is not properly a norm,

110
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since any function which is constant almost everywhere has zero oscilla-

tion. However, it is easy to see that these are the only functions having

zero oscillation. Therefore, we view the class BMO as the quotient space

of the above space by the space of constant functions. In other words,

two functions which differ by a constant coincide as functions in the class

BMO. Then it should be emphasized (see [52]) that the class BMO is a

Banach space equipped with the BMO norm ∥ · ∥∗.
It is not important that we subtract exactly fB in the definition of

BMO. More precisely, we can obtain the following claim:

Claim 4.1. Let f ∈ L1
loc(R

n). Assume that, for each ball B, there exists

a constant αB such that we have the inequality

1

|B|

∫
B

|f(x)− αB | dx ≤ C,

with some positive constant C independent of B. Then it follows that

f ∈ BMO with ∥f∥∗ ≤ 2C.

Proof. Indeed, we have, for all balls B,

|fB − αB| =
1

|B|

∣∣∣∣∫
B

(f(y)− fB) dy

∣∣∣∣ ≤ 1

|B|

∫
B

|f(x)− αB| dx ≤ C.

Hence it follows that

1

|B|

∫
B

|f(x)− fB | dx ≤ 1

|B|

∫
B

|f(x)− αB | dx+
1

|B|

∫
B

|αB − fB | dx

≤ 2C.

This proves that f ∈ BMO with ∥f∥∗ ≤ 2C.

The proof of Claim 4.1 is complete.

Sometimes we will define the BMO norm with cubes in place of balls.

If Q is a cube with sides parallel to the coordinate axes, then we can

define an equivalent BMO norm ∥ · ∥∗′ by the formula

∥f∥∗′ := sup
Q

1

|Q|

∫
Q

|f(x)− fQ| dx,

where the supremum is taken over all cubes Q in Rn, and fQ is the

integral average of f over Q

fQ :=
1

|Q|

∫
Q

f(y) dy.

In fact, we can obtain the following lemma:

□ 
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Lemma 4.1. For any function f ∈ L1
loc(R

n), we have the inequalities

∥f∥∗′ ≤
nn/2Vn
2n−1

∥f∥∗ , (4.1)

∥f∥∗ ≤ 2n+1

Vn
∥f∥∗′ , (4.2)

where

Vn :=
ωn

n
=

πn/2

Γ(n/2 + 1)

is the volume of the unit ball in Rn.

Proof. (1) Let Q = Q(x, r) be a cube with side length 2r and with center

x, and let B = B(x,
√
n r) be a ball of radius

√
n r about x (see Figure

4.1). Then it follows that

Q(x, r) ⊂ B(x,
√
n r),

|Q(x, r)| = (2r)n, |B(x,
√
n r)| = nn/2rnVn.

Hence we have the inequality

B(x,
√

n r)

Q(x, r) .
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Fig. 4.1. The cube Q(x, r) and the ball B(x,
√
n r)

|fQ − fB |

=

∣∣∣∣ 1

|Q|

∫
Q

(f(x)− fB) dx

∣∣∣∣ ≤ 1

|Q|

∫
Q

|f(x)− fB | dx

≤
(
|B|
|Q|

)(
1

|B|

∫
B

|f(x)− fB | dx
)

=
nn/2Vn

2n

(
1

|B|

∫
B

|f(x)− fB | dx
)

≤ nn/2Vn
2n

∥f∥∗ .
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Therefore, we obtain that

1

|Q|

∫
Q

|f(x)− fQ| dx

≤ 1

|Q|

∫
Q

|f(x)− fB| dx+
1

|Q|

∫
Q

|fB − fQ| dx

≤
(
|B|
|Q|

)
1

|B|

∫
B

|f(x)− fB | dx+ |fQ − fB |

≤ nn/2Vn
2n

(
1

|B|

∫
B

|f(x)− fB| dx
)
+
nn/2Vn

2n
∥f∥∗

≤ nn/2Vn
2n−1

∥f∥∗ .

This proves the desired inequality (4.1).

(2) Similarly, if Q = Q(x, r) is a cube with side length 2r and with

center x and if B = B(x, r) is a ball of radius r about x (see Figure 4.2),

then it follows that

B(x, r) ⊂ Q(x, r),

|B(x, r)| = rnVn, |Q(x, r)| = (2r)n.

Hence we have the inequality

|fB − fQ| =
∣∣∣∣ 1

|B|

∫
B

(f(x)− fQ) dx

∣∣∣∣ ≤ 1

|B|

∫
B

|f(x)− fQ| dx

≤
(
|Q|
|B|

)(
1

|Q|

∫
Q

|f(x)− fQ| dx
)

=
2n

Vn

(
1

|Q|

∫
Q

|f(x)− fQ| dx
)

≤ 2n

Vn
∥f∥∗′ .

Q(x, r)
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Fig. 4.2. The cube Q(x, r) and the ball B(x, r)
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Therefore, we obtain that

1

|B|

∫
B

|f(x)− fB | dx

≤ 1

|B|

∫
B

|f(x)− fQ| dx+
1

|B|

∫
B

|fQ − fB | dx

≤
(
|Q|
|B|

)
1

|Q|

∫
Q

|f(x)− fQ| dx+ |fB − fQ|

≤ 2n

Vn

(
1

|Q|

∫
Q

|f(x)− fQ| dx
)
+

2n

Vn
∥f∥∗′

≤ 2n+1

Vn
∥f∥∗′ .

This proves the desired inequality (4.2).

The proof of Lemma 4.1 is complete.

If Q is a cube with sides parallel to the coordinate axes, then we

denote by δQ its side length and by xQ its center, respectively. For each

λ > 0, we denote by λQ the cube centered at xQ with side length λδQ
(see Figure 4.3 below).

Q

λQ

xQ
•
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Fig. 4.3. The cubes Q and λQ

Lemma 4.2. Let f ∈ BMO. For any positive integer j, there exists a

constant c(n) > 0 such that

|f2jQ − fQ| ≤ c(n)j ∥f∥∗ . (4.3)

□ 
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For example, we may take

c(n) = 2nn/2 Vn = 2
(nπ)n/2

Γ(n/2 + 1)
.

Proof. First, it follows that

|f2Q − fQ| =
∣∣∣∣ 1

|Q|

∫
Q

(f2Q − f(x)) dx

∣∣∣∣ ≤ 1

|Q|

∫
Q

|f2Q − f(x)| dx

≤ 1

|Q|

∫
2Q

|f2Q − f(x)| dx = 2n
(

1

|2Q|

∫
2Q

|f2Q − f(x)| dx
)

≤ 2n ∥f∥∗′ .

Similarly, we have, for any positive integer j,∣∣f2jQ − f2j−1Q

∣∣ ≤ 2n ∥f∥∗′ .

Hence it follows that∣∣f2jQ − fQ
∣∣ ≤ |f2jQ − f2j−1Q|+ |f2j−1Q − f2j−2Q|+ . . . (4.4)

+ |f4Q − f2Q|+ |f2Q − fQ|
≤ j2n ∥f∥∗′ .

However, we have, by Lemma 4.1,

∥f∥∗′ ≤
nn/2Vn
2n−1

∥f∥∗ . (4.5)

Therefore, the desired inequality (4.3) follows by combining inequalities

(4.4) and (4.5):

∣∣f2jQ − fQ
∣∣ ≤ j2n ∥f∥∗′ ≤ j2n

nn/2Vn
2n−1

∥f∥∗ = 2jnn/2Vn ∥f∥∗ .

The proof of Lemma 4.2 is complete.

4.2 VMO Functions

Next we introduce a subspace of BMO functions whose BMO norm over

a ball vanishes as the radius of the ball tends to zero. More precisely, if

f ∈ BMO and r > 0, then we let

η(r) := sup
ρ≤r

1

|B|

∫
B

|f(x)− fB | dx,

□ 
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where the supremum is taken over all balls B with radius ρ ≤ r. A

function f ∈ BMO has vanishing mean oscillation, f(x) ∈ VMO, if it

satisfies the condition (see [61])

lim
r↓0

η(r) = 0.

The function η(r) will be referred as the VMO modulus of f . The

assumption that f ∈ VMO means a kind of continuity in the average

sense, not in the pointwise sense.

First, we prove the following claim:

Claim 4.2. (i) Uniformly continuous functions which belong to BMO are

VMO functions.

(ii) VMO is a closed subspace of BMO.

Proof. (i) Assume that f(x) is a uniformly continuous function which

belongs to BMO. Then, for any ε > 0 there exists a constant r = r(ε) >

0 such that, for each ball B with radius r,

x, y ∈ B =⇒ |f(x)− f(y)| < ε,

or equivalently,

sup
x,y∈B

|f(x)− f(y)| ≤ ε.

Hence it follows that we have, for all x ∈ B,

|f(x)− fB | =
1

|B|

∣∣∣∣∫
B

(f(x)− f(y)) dy

∣∣∣∣ ≤ 1

|B|

∫
B

|f(x)− f(y)| dy

≤ sup
x,y∈B

|f(x)− f(y)|

≤ ε.

Therefore, we obtain that, for all balls B with radius ρ ≤ r,

1

|B|

∫
B

|f(x)− fB | dx ≤ ε,

so that

η(r) ≤ ε.

This proves that limr↓0 η(r) = 0, that is, f ∈ VMO.

(ii) Assume that f is the limit of a sequence {fj} of VMO functions

in the BMO norm

lim
j→∞

∥fj − f∥∗ = 0.
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Then it follows that, for all balls B with radius ρ ≤ r,

1

|B|

∫
B

|f(x)− fB | dx

≤ 1

|B|

∫
B

|fj(x)− f(x)− (fj)B + fB| dx+
1

|B|

∫
B

|fj(x)− (fj)B | dx

≤ ∥fj − f∥∗ + ηj(r),

where

ηj(r) = sup
ρ≤r

1

|B|

∫
B

|fj(x)− (fj)B| dx.

Hence we have the inequality

η(r) = sup
ρ≤r

1

|B|

∫
B

|f(x)− fB| dx ≤ ∥fj − f∥∗ + ηj(r). (4.6)

However, for any given ε > 0 there exists a positive integer N = N(ε)

such that

∥fN − f∥∗ <
ε

2
. (4.7)

Moreover, we can find a positive number δ = δ(N, ε) such that

ηN (r) = sup
ρ≤r

1

|B|

∫
B

|fN (x)− (fN )B | dx <
ε

2
for all 0 < r < δ. (4.8)

Therefore, by combining inequalities (4.6) with j := N , (4.7) and (4.8)

we obtain that

η(r) = sup
ρ≤r

1

|B|

∫
B

|f(x)− fB | dx ≤ ∥fN − f∥∗ + ηN (r)

≤ ε for all 0 < r < δ.

This proves that limr↓0 η(r) = 0, that is, f ∈ VMO.

The proof of Claim 4.2 is complete.

The relationship between BMO and its subspace VMO is quite similar

to the relationship between L∞(Rn) and its subspace BUC of bounded

uniformly continuous functions on Rn. This can be visualized as follows:

L∞(Rn) −−−−→ BMOx x
BUC −−−−→ VMO

□ 
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In fact, the next theorem collects some important results concerning

VMO functions (see [32, Chapter VI, Theorem 5.1], [91, Chapter VIII]):

Theorem 4.3. For a function f ∈ BMO, the following three conditions

(i), (ii) and (iii) are equivalent:

(i) f is in VMO.

(ii) f is in the BMO closure of uniformly continuous functions that

belong to BMO.

(iii) limy→0 ∥f(· − y)− f(·)∥∗ = 0, where f(x − y) is the translation

of f(x) by y-units. More precisely, there exists a positive constant

C = C(n) such that

∥f(· − y)− f(·)∥∗ ≤ Cη(r) for |y| < r. (4.9)

Examples 4.1. (i) ln |x| ∈ BMO, but ln |x| ̸∈ VMO (n = 1).

(ii) ln |ln |x|| ∈ VMO (n = 1).

(iii) L∞(Rn) ⊂ BMO.

(iv) W θ,n/θ(Rn) ⊂ VMO for 0 < θ ≤ 1 (see Proposition 7.7).

(v) The Sobolev space W 1,n(Rn) is a proper subspace of VMO. For

example, |ln |x||α ∈W 1,n(Rn) if 0 < α < 1−1/n, while |ln |x||α ∈
VMO \W 1,n(Rn) if 1− 1/n ≤ α < 1.

Fig. 4.4. The functions ln |x| and ln |ln |x||

Let Ω be a bounded domain of Rn with n ≥ 3. Then it should be

emphasized that, by replacing the ball B above by the intersection B∩Ω

y 

y = ln lxl 

X 

0 

1 y = ln(ln lxl) 
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we obtain the definitions of BMO(Ω) and VMO(Ω). Given a function

defined on Ω that belongs to BMO(Ω) (resp. VMO(Ω)), we can extend

it to the whole Rn preserving its BMO (resp. VMO) character (see [1,

Proposition 1.3]).

4.3 The Calderón–Zygmund Decomposition

Let f ∈ L1(Rn). The purpose of this section is to describe the splitting

of the space Rn into a subset Ω made up of non-overlapping cubes over

each of which the average of |f | is between t and 2nt and the complement

Rn \Ω where |f(x)| ≤ t (Theorem 4.7). This is known as the Calderón–

Zygmund decomposition. The Calderón–Zygmund decomposition is a

key step in real analysis. The idea behind this decomposition is that it

is often useful to split an arbitrary integrable function into its “small”

and “large” parts, and then we use different techniques to analyze each

part.

In the Euclidean space Rn we define the unit cube, open on the right,

to be the set [0, 1)n, and we let

D0 =the collection of cubes in Rn which are congruent

to [0, 1)n whose vertices lie on the lattice Zn.

If we dilate this family Q0 of cubes by a factor 2−k for each integer

k ∈ Z, we obtain the family of cubes Dk as follows:

Dk =the collection of cubes, open on the right, whose

vertices are adjacent points of the lattice (2−k Z)n.

The cubes in D =
∪

k∈Z Dk are called dyadic cubes.

From this construction, we obtain the following three assertions (1),

(2) and (3):

(1) Given x ∈ Rn, there exists a unique cube in each family Dk which

contains x.

(2) Any two dyadic cubes are either disjoint or one is contained in

the other.

(3) A dyadic cube in Dk is contained in a unique cube of each family

Dj , j < k, and contains 2n dyadic cubes of Dk+1.

If f ∈ L1
loc(R

n), we define the Hardy–Littlewood maximal function
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Mf by the formula

Mf(x) := sup
x∈Q

1

|Q|

∫
Q

|f(y)| dy,

where the supremum is taken over all cubes Q containing x and |Q| is
the Lebesgue measure of Q. The Hardy–Littlewood maximal function

will be studied in detail in the next Section 4.4.

In order to study the size of Mf , we shall look at its distribution

function |Et|. First, instead of looking at Mf , we try to obtain a family

{Qj} of cubes such that the average of |f | over each Qj is comparable to

t. This can be done most effectively by considering only dyadic cubes.

More precisely, we can prove the following theorem:

Theorem 4.4. Let f ∈ L1(Rn). Then, for every t > 0, there exists a

family {Qj} of disjoint dyadic cubes which satisfies the following three

conditions (4.10), (4.11) and (4.12):

Et = {x ∈ Rn :Mf(x) > t} ⊂
∪
j

3Qj . (4.10)

t

4n
<

1

|Qj |

∫
Qj

|f(y)| dy ≤ t

2n
for every Qj . (4.11)

|Et| ≤
12n

t

∫
Rn

|f(y)| dy. (4.12)

Here we recall that if Q is a cube with center xQ and with side length

δQ, then αQ, α > 0, denotes the cube with the same center xQ as Q and

with side length αδQ.

Proof. The proof is divided into two steps.

Step I: If f ∈ L1(Rn) and t > 0, we let

Ct =the collection of cubes Q ∈ D which satisfy the condition

t <
1

|Q|

∫
Q

|f(y)| dy (4.13)

and are maximal among those which satisfy condition (4.13).

Then it is easy to verify the following three assertions (i), (ii) and (iii):

(i) Every cube Q ∈ D satisfying condition (4.13) is contained in some

cube Q′ ∈ Ct, since condition (4.13) imposes an upper bound on

the size of Q, that is, since we have the inequality

|Q| ≤ 1

t

∫
Rn

|f(y)| dy.
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(ii) The cubes in Ct are non-overlapping.

(iii) For any cube Q ∈ Ct, we have the inequalities

t <
1

|Q|

∫
Q

|f(y)| dy ≤ 2nt.

Indeed, if Q ∈ Dk is in Ct and if Q′ is the only cube in Dk−1 containing

Q, then it follows that

1

|Q′|

∫
Q′

|f(y)| dy ≤ t.

However, since |Q′| = 2n|Q|, we obtain that

1

|Q|

∫
Q

|f(y)| dy ≤ 2n

|Q′|

∫
Q′

|f(y)| dy ≤ 2nt.

Therefore, we have constructed a family Ct = {Qj} of disjoint dyadic

cubes which satisfies the condition

t <
1

|Qj |

∫
Qj

|f(y)| dy ≤ 2nt. (4.14)

Step II: (1) Assertion (4.10): If Ct/4n = {Qj}, we show that

Et = {x ∈ Rn :Mf(x) > t} ⊂
∪
j

3Qj .

To do this, let x0 be an arbitrary point of Et. Then we can find a

cube R containing x0 in its interior and satisfying the condition

t <
1

|R|

∫
R

|f(y)| dy.

We shall look for a dyadic cube of comparable size over which the average

of |f | is comparably large. If we take the only integer k such that

2−(k+1)n < |R| ≤ 2−kn,

then there exists at most one point of the lattice Λk = 2−kZn which is

an interior point of R. Here it should be noticed that there exists a cube

in Dk, and at most 2n cubes in Dk, meeting the interior of R. Hence we

can find a cube Q ∈ Dk which meets the interior of R and satisfies the

condition ∫
R∩Q

|f(y)| dy > t|R|
2n

.

However, it follows that

|R| ≤ |Q| < 2n|R|.
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Hence we obtain that∫
R∩Q

|f(y)| dy > t|R|
2n

>
t

2n
|Q|
2n

=
t|Q|
4n

,

so that

1

|Q|

∫
Q

|f(y)| dy > t

4n
.

This implies that Q is contained in some cube Qj ∈ Ct/4n .
Moreover, since R and Q meet and |R| ≤ |Q|, it follows that

x0 ∈ R ⊂ 3Q ⊂ 3Qj .

This proves the desired assertion (4.10).

(2) Assertion (4.11): This follows from inequalities (4.14) with t :=

t/4n

t

4n
<

1

|Qj |

∫
Qj

|f(y)| dy ≤ 2n · t

4n
=

t

2n
.

(3) Assertion (4.12): By combining assertions (4.10) and (4.11), we

obtain that

|Et| ≤
∑
j

|3Qj | = 3n
∑
j

|Qj |

≤ 3n
∑
j

4n

t

∫
Qj

|f(y)| dy =
12n

t

∑
j

∫
Qj

|f(y)| dy

≤ 12n

t

∫
Rn

|f(y)| dy.

The proof of Theorem 4.4 is complete.

As an application of inequality (4.12), we can obtain an extension of

Lebesgue’s differentiation theorem:

Theorem 4.5 (Lebesgue’s differentiation theorem). Let f ∈ L1
loc(R

n).

If x ∈ Rn and r > 0, we let

Q(x, r) :=
n∏

k=1

[−r + xk, r + xk].

Then we have, for almost every point x of Rn,

lim
r↓0

1

|Q(x, r)|

∫
Q(x,r)

|f(y)− f(x)| dy = 0. (4.15)

□ 
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Proof. Without loss of generality, we may assume that f ∈ L1(Rn).

Since we have the formula

{x ∈ Rn : assertion (4.15) does not hold}

=
∞∪
j=1

{
x ∈ Rn : lim sup

r↓0

1

|Q(x, r)|

∫
Q(x,r)

|f(y)− f(x)| dy > 1

j

}
,

it suffices to show that, for every t > 0, the set

At :=

{
x ∈ Rn : lim sup

r↓0

1

|Q(x, r)|

∫
Q(x,r)

|f(y)− f(x)| dy > t

}
has measure zero.

For any given ε > 0, we can find functions g ∈ C0(R
n) and h ∈

L1(Rn) such that

f(x) = g(x) + h(x),∫
Rn

|h(x)| dx < ε.

Then we have the inequality

1

|Q(x, r)|

∫
Q(x,r)

|f(y)− f(x)| dy

≤ 1

|Q(x, r)|

∫
Q(x,r)

|g(y)− g(x)| dy + |h(x)|+ 1

|Q(x, r)|

∫
Q(x,r)

|h(y)| dy

≤ 1

|Q(x, r)|

∫
Q(x,r)

|g(y)− g(x)| dy + |h(x)|+Mh(x).

By the uniform continuity of g, it follows that

lim
r↓0

1

|Q(x, r)|

∫
Q(x,r)

|g(y)− g(x)| dy = 0.

Hence, by passing to the limit we obtain that

lim sup
r↓0

1

|Q(x, r)|

∫
Q(x,r)

|f(y)− f(x)| dy ≤ |h(x)|+Mh(x).

This implies that the set At can be decomposed as follows:

At ⊂
{
x ∈ Rn :Mh(x) >

t

2

}∪{
x ∈ Rn : |h(x)| > t

2

}
.

However, we have the inequality∣∣∣∣{x ∈ Rn : |h(x)| > t

2

}∣∣∣∣ = ∫
{x∈Rn:|h(x)|>t/2}

dy
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≤
∫
{x∈Rn:|h(x)|>t/2}

2

t
|h(y)| dy

≤
∫
Rn

2

t
|h(y)| dy =

2

t

∫
Rn

|h(y)| dy

<
2

t
ε,

and also, by inequality (4.12) with t := t/2,∣∣∣∣{x ∈ Rn :Mh(x) >
t

2

}∣∣∣∣ ≤ 12n

t/2

∫
Rn

|h(y)| dy =
2 · 12n

t

∫
Rn

|h(y)| dy

<
2 · 12n

t
ε.

Summing up, we have proved that, for any given ε > 0,

|At| ≤
2

t
ε+

2 · 12n

t
ε =

2

t
(1 + 12n)ε.

This proves that |At| = 0 for every t > 0.

The proof of Theorem 4.5 is complete.

Definition 4.1. Let f ∈ L1
loc(R

n). A point x of Rn is called a Lebesgue

point for f if it satisfies the condition

lim
r↓0

1

|Q(x, r)|

∫
Q(x,r)

|f(y)− f(x)| dy = 0. (4.15)

Rephrased, Theorem 4.5 asserts that almost every point of Rn is a

Lebesgue point for f ∈ L1
loc(R

n).

Furthermore, we can prove the following corollary:

Corollary 4.6. Let f ∈ L1
loc(R

n). Then, for every Lebesgue point x for

f , and thus, for almost every point x ∈ Rn, we have the following two

assertions (4.16) and (4.17):

f(x) = lim
r↓0

1

|Q(x, r)|

∫
Q(x,r)

f(y) dy. (4.16)

|f(x)| ≤Mf(x). (4.17)

Proof. (i) Let x be an arbitrary Lebesgue point for f . Then it follows

from condition (4.15) that we have, as r ↓ 0,∣∣∣∣∣ 1

|Q(x, r)|

∫
Q(x,r)

f(y) dy − f(x)

∣∣∣∣∣ =
∣∣∣∣∣ 1

|Q(x, r)|

∫
Q(x,r)

(f(y)− f(x)) dy

∣∣∣∣∣
≤ 1

|Q(x, r)|

∫
Q(x,r)

|f(y)− f(x)| dy

□ 
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−→ 0.

This proves the desired assertion (4.16).

(ii) We remark that

1

|Q(x, r)|

∣∣∣∣∣
∫
Q(x,r)

f(y) dy

∣∣∣∣∣ ≤ 1

|Q(x, r)|

∫
Q(x,r)

|f(y)| dy (4.18)

≤Mf(x).

However, by assertion (4.16) it follows that we have, as r ↓ 0,∣∣∣∣∣ 1

|Q(x, r)|

∣∣∣∣∣
∫
Q(x,r)

f(y) dy

∣∣∣∣∣− |f(x)|

∣∣∣∣∣
≤

∣∣∣∣∣ 1

|Q(x, r)|

∫
Q(x,r)

f(y) dy − f(x)

∣∣∣∣∣ −→ 0.

Therefore, by passing to the limit in inequality (4.18) we obtain that

|f(x)| = lim
r↓0

1

|Q(x, r)|

∣∣∣∣∣
∫
Q(x,r)

f(y) dy

∣∣∣∣∣ ≤Mf(x).

This proves the desired assertion (4.17).

The proof of Corollary 4.6 is complete.

Summing up, we can obtain the following Calderón–Zygmund decom-

position theorem:

Theorem 4.7 (the Calderón–Zygmund decomposition). If f(x) is an

arbitrary function in the space L1(Rn), then, for every t > 0 we can

construct a family Ct = {Qj} of disjoint maximal dyadic cubes over

which the average of |f | is greater than t. This family Ct satisfies the

following two conditions (4.14) and (4.19):

t <
1

|Qj |

∫
Qj

|f(y)| dy ≤ 2nt for every Qj . (4.14)

|f(x)| ≤ t for almost every x ∈ Rn \
∪

j Qj . (4.19)

Moreover, we have, for every t > 0,

Et = {x ∈ Rn :Mf(x) > t} ⊂
∪
j

3Qj , (4.10)

where the Qj range over Ct/4n .

□ 
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Proof. By Theorem 4.4, we have only to prove assertion (4.19).

(i) Let x0 be a Lebesgue point for f . If {Qj} is a sequence of cubes

such that

Q1 ⊃ Q2 ⊃ · · · ⊃ Qj ⊃ · · · ,∩
j

Qj = {x0},

then it follows that

f(x0) = lim
j→∞

1

|Qj |

∫
Qj

f(y) dy. (4.20)

Indeed, if the cube Qj has side length rj , then we have the assertion

Qj ⊂ Q(x0, rj), |Qj | = rnj ↓ 0,

Therefore, we obtain from condition (4.15) that, as j → ∞,∣∣∣∣∣ 1

|Qj |

∫
Qj

f(y) dy − f(x0)

∣∣∣∣∣ =
∣∣∣∣∣ 1

|Qj |

∫
Qj

(f(y)− f(x0)) dy

∣∣∣∣∣
≤ 1

|Qj |

∫
Qj

|f(y)− f(x)| dy

≤ 2n

|Q(x0, rj)|

∫
Q(x,rj)

|f(y)− f(x0)| dy

−→ 0.

This proves the desired assertion (4.20).

(ii) Now, let f ∈ L1(Rn), and let Ct = {Qj} be a family of disjoint

maximal dyadic cubes over which the average of |f | is greater than t:

t <
1

|Qj |

∫
Qj

|f(y)| dy ≤ 2nt for every Qj .

If x0 is a point of Rn \
∪

j Qj , then we have, for any dyadic cube Q

containing x0,

1

|Q|

∫
Q

|f(y)| dy ≤ t.

Hence, by taking a sequence {Rk} of dyadic cubes of decreasing size

such that ∩
k

Rk = {x0},



4.4 The Hardy–Littlewood Maximal Function 127

we obtain that
1

|Rk|

∫
Rk

|f(y)| dy ≤ t. (4.21)

If, in addition, x0 is a Lebesgue point for f and so for |f |, then we have,

by inequality (4.21) and assertion (4.20),

|f(x0)| = lim
k

1

|Rk|

∫
Rk

|f(y)| dy ≤ t.

Therefore, we have proved the desired assertion (4.19)

|f(x)| ≤ t for almost every x ∈ Rn \
∪

j Qj .

The proof of Theorem 4.7 is complete.

4.4 The Hardy–Littlewood Maximal Function

If f ∈ L1
loc(R

n), we define the Hardy–Littlewood maximal function Mf

by the formula

Mf(x) := sup
x∈Q

1

|Q|

∫
Q

|f(y)| dy,

where the supremum is taken over all cubes Q containing x. It should

be noticed that we can take only those cubes Q for which x is an in-

terior point. This implies that the function x 7→ Mf(x) is lower semi-

continuous, since the set

Et := {x ∈ Rn :Mf(x) > t}

is open for every t > 0. Indeed, it suffices to note that

Et = {x ∈ Rn :Mf(x) > t} =
∪{

Qo :
1

|Qo|

∫
Qo

|f(y)| dy > t

}
,

where the Qo range over all open cubes containing x.

If we define the maximal function M ′f by the formula

M ′f(x) := sup
r>0

1

|Q(x, r)|

∫
Q(x,r)

|f(y)| dy,

where

Q(x, r) :=

{
y ∈ Rn : max

1≤j≤n
|yj − xj | ≤ r

}
=

n∏
j=1

[xj − r, xj + r] ,

then we have the inequalities

M ′f(x) ≤Mf(x) ≤ 2nM ′f(x), x ∈ Rn.

□ 
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Indeed, if Q is a cube with side length ℓ and containing x, then it follows

that

Q ⊂ Q(x, ℓ),

|Q(x, ℓ)| = (2ℓ)n = 2n|Q|.

Hence we obtain that

1

|Q|

∫
Q

|f(y)| dy ≤ 2n

|Q(x, ℓ)|

∫
Q(x,ℓ)

|f(y)| dy ≤ 2nM ′f(x), x ∈ Rn.

This proves that

Mf(x) ≤ 2nM ′f(x).

Furthermore, if we define the maximal function M ′′f by the formula

M ′′f(x) := sup
x∈B

1

|B|

∫
B

|f(y)| dy,

where the supremum is taken over all balls B containing x, then, by

arguing as in the proof of Lemma 4.1 we can obtain the inequalities

Vn
2n
M ′′f(x) ≤Mf(x) ≤ Vn

nn/2
M ′′f(x), x ∈ Rn,

where Vn = ωn/n = πn/2/Γ(n/2 + 1) is the volume of the unit ball in

Rn.

The next theorem gives a fundamental norm estimate for the maximal

functionMf(x) for 1 < p <∞ (cf. [67, Chapter I, Section 1.3, Theorem

1]):

Theorem 4.8. If f ∈ Lp(Rn) with 1 < p < ∞, then it follows that

Mf ∈ Lp(Rn). More precisely, we have the inequality

∥Mf∥Lp(Rn) ≤ Cp ∥f∥Lp(Rn) , (4.22)

with a positive constant Cp. For example, we may take

Cp = 2

(
12n · p
p− 1

)1/p

.

Proof. Our proof is divided into two steps.

Step I: The essential step in the proof is the following theorem:

Theorem 4.9. Let f ∈ L1
loc(R

n). If t > 0, we let

Et = {x ∈ Rn :Mf(x) > t} .
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Then we have the following two estimates for the Lebesgue measure |Et|
of Et:

|Et| ≤
2 · 12n

t

∫
{x∈Rn:|f(x)|>t/2}

|f(y)| dy. (4.23a)

|Et| ≥
1

2nt

∫
{x∈Rn:|f(x)|>t}

|f(y)| dy. (4.23b)

Proof. (i) First, we decompose the function f(x) as follows:

f(x) = f1(x) + f2(x),

where

f1(x) =

{
f(x) if |f(x)| > t

2 ,

0 otherwise,

and

f2(x) =

{
f(x) if |f(x)| ≤ t

2 ,

0 otherwise.

Then it follows that

Mf(x) = sup
x∈Q

1

|Q|

∫
Q

|f(y)| dy

≤ sup
x∈Q

1

|Q|

∫
Q

|f1(y)| dy + sup
x∈Q

1

|Q|

∫
Q

|f2(y)| dy

=Mf1(x) +Mf2(x).

However, since we have the inequality

|f2(x)| ≤
t

2
in Rn,

it follows that

Mf2(x) = sup
x∈Q

1

|Q|

∫
Q

|f2(y)| dy ≤ t

2
.

Summing up, we have proved that

Mf(x) ≤Mf1(x) +Mf2(x) ≤
t

2
.

This implies that

Mf(x) > t =⇒ Mf1(x) >
t

2
.



130 Elements of Real Analysis

Therefore, by applying inequality (4.12) to the function f1 we obtain

that

|Et| = |{x ∈ Rn :Mf(x) > t}|

≤
∣∣∣∣{x ∈ Rn :Mf1(x) >

t

2

}∣∣∣∣
≤ 12n

t/2

∫
Rn

|f1(y)| dy =
2 · 12n

t

∫
Rn

|f1(y)| dy

=
2 · 12n

t

∫
{x∈Rn:|f(x)|>t/2}

|f(y)| dy.

This proves the desired estimate (4.23a).

(ii) Without loss of generality, we may assume that f ∈ L1(Rn).

Indeed, otherwise, we truncate and apply a limiting process.

Then, by using the Calderón–Zygmund decomposition for f (Theorem

4.7) we can construct a family {Qj} of disjoint dyadic cubes such that

t <
1

|Qj |

∫
Qj

|f(y)| dy ≤ 2nt for every Qj .

|f(x)| ≤ t for almost every x ∈ Rn \
∪∞

j=1Qj .

Then it follows that

x ∈ Qj =⇒ Mf(x) ≥ 1

|Qj |

∫
Qj

|f(y)| dy > t =⇒ x ∈ Et.

This proves that
∞∪
j=1

Qj ⊂ Et.

Hence, we obtain that

|Et| ≥
∞∑
j=1

|Qj | ≥
1

2nt

∞∑
j=1

∫
Qj

|f(y)| dy =
1

2nt

∫
∪∞

j=1 Qj

|f(y)| dy.

However, we remark that

x ̸∈
∞∪
j=1

Qj =⇒ |f(x)| ≤ t,

or equivalently,

{x ∈ Rn : |f(x)| > t} ⊂
∞∪
j=1

Qj .
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Therefore, we obtain that

|Et| ≥
∞∑
j=1

|Qj | ≥
1

2nt

∫
∪∞

j=1 Qj

|f(y)| dy

≥ 1

2nt

∫
{x∈Rn:|f(x)|>t}

|f(y)| dy.

This proves the desired estimate (4.23b).

The proof of Theorem 4.9 is complete.

Step II: By applying Theorem 3.29 and Fubini’s theorem (Theorem

3.10) to our situation, we obtain from estimate (4.23a) that

∥Mf∥pLp(Rn) =

∫
Rn

(Mf(x))p dx =

∫ ∞

0

ptp−1 |Et| dt

≤ 2p · 12n
∫ ∞

0

tp−2

(∫
{y∈Rn:|f(y)|>t/2}

|f(x)| dx

)
dt

= 2p · 12n
∫
Rn

(∫ 2|f(x)|

0

tp−2 dt

)
|f(x)| dx

=
2p · 12n

p− 1

∫
Rn

(2|f(x)|)p−1 |f(x)| dx

=
2pp · 12n

p− 1

∫
Rn

|f(x)|p dx

=
2pp · 12n

p− 1
∥f∥pLp(Rn) .

This proves the desired estimate (4.22).

Now the proof of Theorem 4.8 is complete.

Remark 4.1. Theorem 4.8 remains valid if the norm is taken on the half-

space Rn
+. In this case, the definition of BMO functions need to be

modified by taking only cubes Q contained in Rn
+ (see Figure 4.4).

4.5 The John–Nirenberg Inequality

In this section we study the rate of growth of functions in BMO. The

next theorem asserts that logarithmic growth is the maximum possible

for BMO functions:

Theorem 4.10 (John–Nirenberg). Let f ∈ BMO. Then we can find

□ 

□ 
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Fig. 4.5. The cube Q contained in the half-space Rn
+

constants C1 > 0 and C2 > 0, depending only on the dimension, such

that we have, for any cube Q and any t > 0,

|{x ∈ Q : |f(x)− fQ| > t}| ≤ C1 e
−(C2/∥f∥∗)t |Q|. (4.24)

For example, we may take

C1 =
√
e , C2 =

1

2n+1e
.

Proof. First, we may assume that ∥f∥∗ = 1, since the John–Nirenberg

inequality (4.24) is homogeneous. Indeed, if we let

g(x) :=
f(x)

∥f∥∗
, s :=

t

∥f∥∗
,

then we can rewrite inequality (4.24) in the form

|{x ∈ Q : |g(x)− gQ| > s}| ≤ C1 e
−C2s |Q|, s > 0. (4.24′)

The proof of inequality (4.24′) is divided into three steps.

Step I: We fix a cube Q and take the constant e. Then it follows that

1

|Q|

∫
Q

|f(x)− fQ| dx ≤ 1 < e.

We make use of the Calderón–Zygmund decomposition of Q for the

function

f(x)− fQ

relative to e (see Theorem 4.7). This is done just as in Theorem 4.7

except that we begin by bisecting the sides of Q to form 2n equal cubes

{Q1,j}. Then we have the following assertions:

e <
1

|Q1,j |

∫
Q1,j

|f(x)− fQ| dx ≤ 2ne.
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|f(x)− fQ| ≤ e for almost every x ∈ Q \
∪

j Q1,j .

|fQ1,j − fQ| ≤ 2ne.∑
j

|Q1,j | ≤
1

e
|Q|.

Indeed, it suffices to note that

|fQ1,j − fQ| =
1

|Q1,j |

∣∣∣∣∣
∫
Q1,j

(f(y)− fQ) dy

∣∣∣∣∣ ≤ 1

|Q1,j |

∫
Q1,j

|f(y)− fQ| dy

≤ 2ne,

and that∑
j

|Q1,j | ≤
1

e

∑
j

∫
Q1,j

|f(y)− fQ| dy ≤ 1

e

∫
Q

|f(y)− fQ| dy

≤ 1

e
|Q|.

Step II: On each Q1,j , we make use of the Calderón–Zygmund de-

composition of Q1,j for the function

f(x)− fQ1,j

relative to e (see Theorem 4.7). This is done just as in Theorem 4.7

except that we begin by bisecting the sides of Q1,j to form 2n equal

cubes {Q2,k}. Then we have the following assertions:

e <
1

|Q2,k|

∫
Q2,k

|f(x)− fQ1,j | dx ≤ 2ne.

|f(x)− fQ1,j | ≤ e for almost every x ∈ Q1,j \
∪

kQ2,k.

|fQ2,k
− fQ1,j | ≤ 2ne.∑

k

|Q2,k| ≤
1

e
|Q1,j |.

Indeed, it suffices to note that∑
k

|Q2,k| ≤
1

e

∑
k

∫
Q2,k

|f(y)− fQ1,j
| dy ≤ 1

e

∫
Q1,j

|f(y)− fQ1,j
| dy

≤ 1

e
|Q1,j |.

Now we gather the cubes Q2,k corresponding to all the Q1,j and col-



134 Elements of Real Analysis

lectively rename them Q2,k. Then we have the following assertions:∑
k

|Q2,k| ≤
1

e

∑
j

|Q1,j | ≤
(
1

e

)2

|Q|.

|f(x)− fQ| ≤ |f(x)− fQ1,j |+ |fQ1,j − fQ| ≤ e+ 2ne

≤ 2 · 2ne for almost every x ∈ Q \
∪

kQ2,k.

Step III: By repeating this process for all cubes formed, we have, after

N -steps, a family {QN,j} of subcubes of Q which satisfies the following

two conditions:∑
j

|QN,j | ≤
(
1

e

)N

|Q|.

|f(x)− fQ| ≤ N · 2ne for almost every x ∈ Q \
∪

j QN,j .

(a) If N · 2ne ≤ t < (N + 1) · 2ne with N ∈ N, then it follows that

x ∈ Q, |f(x)− fQ| > t =⇒ |f(x)− fQ| > N · 2ne =⇒ x ∈
∪
j

QN,j .

This proves that

{x ∈ Q : |f(x)− fQ| > t} ⊂
∞∪
j=1

QN,j .

Hence we have, for all t ≥ 2ne,

|{x ∈ Q : |f(x)− fQ| > t}| ≤
∞∑
j=1

|QN,j | ≤ e−N |Q| ≤ e−C2t|Q|,

with

C2 :=
1

2n+1 e
.

(b) On the other hand, if 0 < t < 2ne, then it follows that

C2t =
1

2n+1e
· t < 1

2
.

Hence we have, for all 0 < t < 2ne,

|{x ∈ Q : |f(x)− fQ| > t}| ≤ |Q| < e1/2−C2t |Q| = C1 e
−C2t |Q| ,

with

C1 :=
√
e , C2 :=

1

2n+1e
.
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Summing up, we have proved that

|{x ∈ Q : |f(x)− fQ| > t}| ≤

{
C1 e

−C2t |Q| for all 0 < t < 2ne,

e−C2t |Q| for all t ≥ 2ne.

This proves the desired inequality (4.24′).

The proof of Theorem 4.10 is complete.

The next theorem asserts that if f ∈ BMO, then it is locally in Lp for

any 1 < p <∞ (see [70, Chapter IV, Section 1.3, Corollary]):

Theorem 4.11. Let f ∈ BMO and 1 < p < ∞. Then we have, for all

cubes Q, (
1

|Q|

∫
Q

|f(y)− fQ|p dy
)1/p

≤ cp ∥f∥∗ , (4.25)

with a positive constant cp. For example, we may take

cp =
(C1 pΓ(p))

1/p

C2
.

Proof. We let

Et := {x ∈ Q : |f(x)− fQ| > λ} , t > 0.

Then we have, by Theorem 3.29 and the John–Nirenberg inequality

(4.24), ∫
Q

|f(y)− fQ|p dy =

∫ ∞

0

p tp−1 |Et| dt

≤ C1 |Q|
∫ ∞

0

p tp−1 e−C2t/∥f∥∗ dt.

Therefore, by making the change of variables

s =
C2t

∥f∥∗
,

we obtain that

1

|Q|

∫
Q

|f(y)− fQ|p dy ≤ C1 p

(
∥f∥∗
C2

)p ∫ ∞

0

sp−1 e−s ds

= C1 pΓ(p)

(
∥f∥∗
C2

)p

.

This proves inequality (4.25) with

cp :=
(C1 pΓ(p))

1/p

C2
.

□ 
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The proof of Theorem 4.11 is complete.

Remark 4.2. Theorem 4.11 remains valid if the norm is taken on the

half-space Rn
+. In this case, the definition of BMO functions need to be

modified by taking only cubes Q contained in Rn
+ (see Figure 4.4).

Rephrased, Theorem 4.11 asserts that, for each 1 < p < ∞, the

quantity

∥f∥∗,p := sup
Q

(
1

|Q|

∫
Q

|f(y)− fQ|p dy
)1/p

is a norm on the space BMO equivalent to ∥ · ∥∗.
Indeed, it suffices to note that we have, by Hölder’s inequality (The-

orem 3.14),

1

|Q|

∫
Q

|f(y)− fQ| dy ≤ 1

|Q|

(∫
Q

|f(y)− fQ|p dy
)1/p(∫

Q

1q dy

)1/q

=

(
1

|Q|

∫
Q

|f(y)− fQ|p dy
)1/p

≤ ∥f∥∗,p .

This proves that the reverse inequality

∥f∥∗ = sup
Q

1

|Q|

∫
Q

|f(y)− fQ| dy ≤ ∥f∥∗,p

holds true.

As a consequence of the proof of Theorem 4.11, we obtain the following

two additional results:

Corollary 4.12. Let f ∈ BMO. Then we have, for all 0 < λ <

C2/ ∥f∥∗,
1

|Q|

∫
Q

eλ|f(y)−fQ| dy <∞.

Proof. If we expand the exponential function as a power series, we obtain

from Theorem 3.29 and the John–Nirenberg inequality (4.24) that∫
Q

eλ|f(y)−fQ| dy = |Q|+
∞∑
p=1

λp

p!

∫
Q

|f(y)− fQ|p dy

= |Q|+
∞∑
p=1

λp

p!

∫ ∞

0

p tp−1 |Et| dt

□ 
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= |Q|+
∞∑
p=1

λ

∫ ∞

0

(λt)p−1

(p− 1)!
|Et| dt

= |Q|+
∫ ∞

0

λ eλt |Et| dt

≤ |Q|
(
1 +

∫ ∞

0

λ eλt
(
C1 e

−C2t/∥f∥∗

)
dt

)
= |Q|

(
1 +

λC1

C2/∥f∥∗ − λ

)
.

This proves that

1

|Q|

∫
Q

eλ|f(y)−fQ| dy ≤ 1 +
λC1

C2/∥f∥∗ − λ
.

The proof of Corollary 4.12 is complete.

The proof of Theorem 4.11 with p := 1 can be used to prove that the

converse to the John–Nirenberg inequality (Theorem 4.10) holds true:

Corollary 4.13. Let f ∈ L1
loc(R

n). Assume that there exist positive

constants C1, C2 and K such that we have, for any cube Q and any

t > 0,

|{x ∈ Q : |f(x)− fQ| > t}| ≤ C1 e
−C2t/K |Q|. (4.26)

Then it follows that f ∈ BMO.

Proof. Indeed, we have, by Theorem 3.29 and inequality (4.26),∫
Q

|f(y)− fQ| dy =

∫ ∞

0

|Et| dt ≤ C1

(∫ ∞

0

e−C2t/K dt

)
|Q|

=
C1K

C2
|Q| .

Hence it follows that, for any cube Q,

1

|Q|

∫
Q

|f(y)− fQ| dy ≤ C1K

C2
.

This proves that

∥f∥∗ ≤ C1K

C2
.

The proof of Corollary 4.13 is complete.

□ 

□ 
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4.6 The Sharp Function and the Space BMO

If f(x) ∈ L1
loc(R

n), we define the sharp function f ♯(x) by the formula

f ♯(x) := sup
x∈Q

1

|Q|

∫
Q

|f(y)− fQ| dy,

where the supremum is taken over all cubes Q containing x and |Q| is
the Lebesgue measure of Q. It should be noticed that we can take only

those cubes Q for which x is an interior point.

If we define the sharp function f ♯′(x) by the formula

f ♯′(x) := sup
x∈B

1

|B|

∫
B

|f(y)− fB | dy,

where the supremum is taken over all balls B containing x, then, by

arguing as in the proof of Lemma 4.1 we can obtain the inequalities

Vn
2n
f ♯′(x) ≤ f ♯(x) ≤ Vn

2n/2
f ♯′(x), x ∈ Rn,

where Vn = ωn/n = πn/2/Γ(n/2 + 1) is the volume of the unit ball in

Rn.

We begin by proving the following:

Claim 4.3. For the maximal functions and sharp functions, we have the

useful inequalities

f ♯(x) ≤ 2Mf(x), x ∈ Rn. (4.27)

(|f |)♯(x) ≤ 2f ♯(x), x ∈ Rn. (4.28)

Proof. (i) First, we remark that

|f(y)− fQ| ≤ |f(y)|+ |fQ| ,

|fQ| ≤
1

|Q|

∫
Q

|f(y)| dy ≤Mf(x).

Hence we have, for all cubes Q containing x,

1

|Q|

∫
Q

|f(y)− fQ| dy ≤ 1

|Q|

∫
Q

|f(y)| dy + |fQ| ≤ 2Mf(x).

This proves the desired inequality (4.27).

(ii) Similarly, we remark that

||f(y)| − (|f |)Q| ≤ ||f(y)| − (|fQ|)|+ |(|fQ|)− (|f |)Q| (4.29)

≤ |f(y)− fQ|+ |(|fQ|)− (|f |)Q| ,
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where

fQ =
1

|Q|

∫
Q

f(y) dy,

(|f |)Q =
1

|Q|

∫
Q

|f(y)| dy.

However, it follows that

|(|f |)Q − |fQ|| =
1

|Q|

∣∣∣∣∫
Q

(|f(y)| − |fQ|) dy
∣∣∣∣ (4.30)

≤ 1

|Q|

∫
Q

||f(y)| − |fQ|| dy

≤ 1

|Q|

∫
Q

|f(y)− fQ| dy.

Therefore, by combining inequalities (4.29) and (4.30) we obtain that,

for all cubes Q containing x,

1

|Q|

∫
Q

||f(y)| − (|f |)Q| dy ≤ 1

|Q|

∫
Q

|f(y)− fQ| dy + ||fQ| − (|f |)Q|

≤ 2

|Q|

∫
Q

|f(y)− fQ| dy

≤ 2f ♯(x).

This proves the desired inequality (4.28).

The proof of Claim 4.3 is complete.

Secondly, it should be noticed that a function f is in BMO exactly

when f ♯ is a bounded function in Rn. More precisely, it is easy to verify

that

BMO =
{
f ∈ L1

loc(R
n) : f ♯ ∈ L∞(Rn)

}
,

and further that

∥f∥∗ =
∥∥f ♯∥∥

L∞(Rn)
= sup

Q

1

|Q|

∫
Q

|f(y)− fQ| dy.

In view of inequality (4.27), we obtain from Theorem 4.8 that, for

1 < p <∞, ∥∥f ♯∥∥
Lp(Rn)

≤ 2 ∥Mf∥Lp(Rn) ≤ 2Cp ∥f∥Lp(Rn) .

On the other hand, by inequality (4.17) it follows that

|f(x)| ≤Mf(x) for almost every point x of Rn,

□ 
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so that

∥f∥Lp(Rn) ≤ ∥Mf∥Lp(Rn) .

Hence, we have the inequality∥∥f ♯∥∥
Lp(Rn)

≤ 2Cp ∥Mf∥Lp(Rn) .

The next theorem asserts that the converse inequality holds true (see

[68, Chapter IV, Section 2.2, Theorem 2]):

Theorem 4.14. Let 1 < p < ∞. If f ∈ Lp(Rn), then we have the

inequality

∥Mf∥Lp(Rn) ≤ Ap

∥∥f ♯∥∥
Lp(Rn)

, (4.31)

with a positive constant Ap. For example, we may take

Ap := 2 (2 · 3n)1/p 4n+1 2(n+1)p.

Proof. The proof is divided into four steps.

Step I: It suffices to show that

∥M(|f |)∥Lp(Rn) ≤ cp
∥∥(|f |)♯∥∥

Lp(Rn)
. (4.31′)

Indeed, since we have, by Claim 4.3,

Mf(x) =M(|f |)(x), x ∈ Rn,

(|f |)♯(x) ≤ 2f ♯(x), x ∈ Rn,

it follows from inequality (4.31′) that

∥Mf∥Lp(Rn) = ∥M(|f |)∥Lp(Rn) ≤ cp
∥∥(|f |)♯∥∥

Lp(Rn)
≤ 2cp

∥∥f ♯∥∥
Lp(Rn)

.

This proves the desired inequality (4.31) with Ap := 2cp.

Step II: Therefore, we may assume that

f(x) ≥ 0 on Rn.

Our proof is based on the Calderón–Zygmund decomposition (Theorem

4.7). First, we see that this decomposition can be carried out for our

function f . Let t > 0 and assume that Q is a cube such that

fQ =
1

|Q|

∫
Q

f(y) dy > t. (4.32)

Then we have, for every x ∈ Q,

t <
1

|Q|

∫
Q

f(y) dy ≤Mf(x),
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and so

tp ≤ 1

|Q|

∫
Q

(Mf(x))p dx ≤ 1

|Q|

∫
Rn

(Mf(x))p dx.

This proves that

|Q| ≤ 1

tp

∫
Rn

(Mf(x))p dx. (4.33)

Hence, if Q1 ⊂ Q2 ⊂ · · · ⊂ Qk ⊂ · · · is an increasing family of dyadic

cubes such that

fQk
=

1

|Qk|

∫
Qk

f(y) dy > t,

then it follows from inequality (4.33) that the family is necessarily finite.

Therefore, we find that each dyadic cube Q satisfying condition (4.32)

is contained in a maximal one. If {Qt,j} is a family of these maximal

dyadic cubes, it follows from an application of the Calderón–Zygmund

decomposition (Theorem 4.7) that

t < fQt,j
=

1

|Qt,j |

∫
Qt,j

f(y) dy ≤ 2nt.

f(x) ≤ t for almost every x ∈ Rn \
∪

j Qt,j .

It should be noticed that if t < s, then each Qs,j is contained in some

Qt,k, since we have the inequality

fQs,j =
1

|Qs,j |

∫
Qs,j

f(y) dy > s > t.

For any given t > 0, we take

Q0 := Qt/(2n+1),j0 ,

A := 2(n+1)p+2.

Then there are two possibilities:

(A) Q0 ⊂
{
x ∈ Rn : f ♯(x) > t/A

}
.

(B) Q0 ̸⊂
{
x ∈ Rn : f ♯(x) > t/A

}
.

In the first case (A), we have the inequality∑
{j:Qt,j⊂Q0}

|Qt,j | ≤
∣∣∣∣{x ∈ Rn : f ♯(x) >

t

A

}∣∣∣∣ . (4.34)
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In the second case (B), we can find a point x0 ∈ Q0 such that

1

|Q0|

∫
Q0

|f(y)− fQ0 | dy ≤ f ♯(x0) ≤
t

A
.

Here we remark the following inequalities:

t

2n+1
< fQ0 =

1

|Q0|

∫
Q0

f(y) dy ≤ 2n · t

2n+1
=
t

2
.

fQt,j =
1

|Qt,j |

∫
Qt,j

f(y) dy > t.

Then, since we have the inequality

t

2
|Qt,j | =

(
t− t

2

)
|Qt,j |

≤
∫
Qt,j

f(y) dy − fQ0 |Qt,j | =
∫
Qt,j

(f(y)− fQ0) dy

≤
∫
Qt,j

|f(y)− fQ0 | dy,

we obtain that

t

2

∑
{j:Qt,j⊂Q0}

|Qt,j | ≤
∑

{j:Qt,j⊂Q0}

∫
Qt,j

|f(y)− fQ0 | dy

≤
∫
Q0

|f(y)− fQ0 | dy ≤ t

A
|Q0|.

This proves that ∑
{j:Qt,j⊂Q0}

|Qt,j | ≤
2

A
|Q0|. (4.35)

Therefore, by combining inequalities (4.34) and (4.35) we have proved

that∑
j

|Qt,j | ≤
∣∣∣∣{x ∈ Rn : f ♯(x) >

t

A

}∣∣∣∣+ 2

A

∑
k

∣∣Qt/(2n+1),k

∣∣ . (4.36)

Step III: If we introduce a function

α(t) :=
∑
j

|Qt,j |,

then we can rewrite inequality (4.36) as follows:

α(t) ≤
∣∣∣∣{x ∈ Rn : f ♯(x) >

t

A

}∣∣∣∣+ 2

A
α

(
t

2n+1

)
. (4.37)
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If N is an arbitrary positive integer, we let

IN :=

∫ N

0

p tp−1 α(t) dt.

In order to estimate the integral IN , we need the following claim:

Claim 4.4. If we introduce the distribution function of Mf by the for-

mula

β(t) := |{x ∈ Rn :Mf(x) > t}| ,

then we have the inequalities

α(t) ≤ β(t), (4.38a)

β(t) ≤ 3n α

(
t

4n

)
. (4.38b)

Proof. (i) Since we have, for any x ∈ Qt,j ,

t <
1

|Qt,j |

∫
Qt,j

f(y) dy ≤Mf(x),

it follows that ∪
j

Qt,j ⊂ {x ∈ Rn :Mf(x) > t} .

This proves that

α(t) =
∑
j

|Qt,j | ≤ |{x ∈ Rn :Mf(x) > t}| = β(t).

(ii) Just as in the proof of Theorem 4.7, we obtain that

β(t) = |{x ∈ Rn :Mf(x) > t}| ≤
∑
j

∣∣3Qt/4n,j

∣∣ = 3n
∑
j

∣∣Qt/4n,j

∣∣
≤ 3n α

(
t

4n

)
.

The proof of Claim 4.4 is complete.

First, by inequality (4.38a) and Theorem 3.29 it follows that

IN =

∫ N

0

p tp−1 α(t) dt ≤
∫ N

0

p tp−1 β(t) dt

≤
∫ ∞

0

p tp−1 β(t) dt =

∫
Rn

Mf(x)p dx = ∥Mf∥pLp(Rn) .

□ 
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This proves that the finite limit

lim
N→∞

IN =

∫ ∞

0

p tp−1 α(t) dt (4.39)

exists.

Secondly, we obtain from inequality (4.37) that

IN ≤
∫ N

0

p tp−1

∣∣∣∣{x ∈ Rn : f ♯(x) >
t

A

}∣∣∣∣ dt (4.40)

+
2

A

∫ N

0

p tp−1α

(
t

2n+1

)
dt

=

∫ N

0

p tp−1

∣∣∣∣{x ∈ Rn : f ♯(x) >
t

A

}∣∣∣∣ dt
+

2

A

∫ N/(2n+1)

0

p (2n+1)p−1 sp−1α(s) 2n+1 ds

≤
∫ N

0

p tp−1

∣∣∣∣{x ∈ Rn : f ♯(x) >
t

A

}∣∣∣∣ dt+ 1

2

∫ N

0

p sp−1α(s) ds

=

∫ N

0

p tp−1

∣∣∣∣{x ∈ Rn : f ♯(x) >
t

A

}∣∣∣∣ dt+ 1

2
IN ,

since we have chosen

A = 2(n+1)p+2.

Hence, by inequality (4.40) it follows that

IN ≤ 2

∫ N

0

p tp−1

∣∣∣∣{x ∈ Rn : f ♯(x) >
t

A

}∣∣∣∣ dt.
Therefore, in view of assertion (4.39) we can let N → ∞ to obtain that∫ ∞

0

p tp−1 α(t) dt ≤ 2

∫ ∞

0

p tp−1

∣∣∣∣{x ∈ Rn : f ♯(x) >
t

A

}∣∣∣∣ dt. (4.41)

Step IV: By inequalities (4.38b) and (4.41), it follows from an appli-

cation of Theorem 3.29 that∫
Rn

Mf(x)p dx =

∫ ∞

0

p tp−1 β(t) dt

≤ 3n
∫ ∞

0

p tp−1 α

(
t

4n

)
dt = 3n

∫ ∞

0

p (4n)p−1 sp−1 α(s) 4n ds

= 3n · 4np
(∫ ∞

0

p sp−1 α(s) ds

)
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≤ 3n · 4np
(
2

∫ ∞

0

p tp−1

∣∣∣∣{x ∈ Rn : f ♯(x) >
t

A

}∣∣∣∣ dt)
= 2 · 3n · 4np

∫ ∞

0

pAp−1 σp−1
∣∣{x ∈ Rn : f ♯(x) > σ

}∣∣Adσ
= 2 · 3n · 4np ·Ap

∫ ∞

0

p σp−1
∣∣{x ∈ Rn : f ♯(x) > σ

}∣∣ dσ
= 2 · 3n · 4np ·Ap

∫
Rn

f ♯(x)p dx.

Summing up, we have proved the desired inequality

∥Mf∥Lp(Rn) ≤ cp
∥∥f ♯∥∥

Lp(Rn)
, (4.31′)

with

cp := (2 · 3n)1/p 4n+1 2(n+1)p.

Now the proof of Theorem 4.14 is complete.

Corollary 4.15. Let 1 < p < ∞. If f ∈ Lp(Rn), then we have the

inequality

∥f∥Lp(Rn) ≤ Ap

∥∥f ♯∥∥
Lp(Rn)

,

with a positive constant Ap.

Corollary 4.15 is an immediate consequence of inequality (4.17) and

Theorem 4.14.

Remark 4.3. Theorem 4.14 and Corollary 4.15 remain valid if the norm

is taken on the half-space Rn
+. In this case, the definition of sharp

functions need to be modified by taking only cubes Q contained in Rn
+

(see Figure 4.4).

4.7 Spherical Harmonics

In this section we introduce spherical harmonics in order to prove the

fundamental results of singular integrals in Chapter 10 and Chapter 11.

The presentation here is a slightly expanded version of Neri [51] (see also

[6, Chapter 5]).

If m is a non-negative integer, then we denote by Πm the set of all

polynomials in the variables x = (x1, x2, . . . , xn), n ≥ 2, which are ho-

mogeneous of degree m. A typical example of homogeneous polynomials

of degree 2 is given by the formula

|x|2 = x21 + x22 + · · ·+ x2n.

□ 
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For simplicity, we assume throughout this section that our polynomials

have real coefficients, the complex case being of course identical except

for the occasional presence of complex conjugates.

We begin by proving the following fundamental result:

Lemma 4.16. The space Πm is a finite dimensional real vector space.

Moreover, if we denote by g(m) the dimension of the vector space Πm,

then we have the formula

g(m) =

(
m+ n− 1

n− 1

)
=

(n+m− 1)!

m!(n− 1)!
.

Proof. (1) The first statement is obvious.

(2) Since the monomials xα with |α| = m form a basis in the vector

space Πm, it follows that the dimension g(m) is equal to the number of

such monomials. However, it should be noticed that these monomials

occur as coefficients in the formula
n∏

j=1

(1− xj t)
−1

=
n∏

j=1

(
1 + xj t+ · · ·+ xkj t

k + · · ·
)
.

This implies that their number is equal to the coefficient of tm in (1 −
t)−n. Therefore, we obtain that

g(m) =
1

m!

dm

dtm
(1− t)−n

∣∣∣∣
t=0

=
1

m!
n(n+ 1) · · · (n+m− 1)(1− t)−(n+m)

∣∣∣∣
t=0

=
(n+m− 1)!

m!(n− 1)!
=

(
n+m− 1

n− 1

)
.

The proof of Lemma 4.16 is complete.

We let

P (x) =
∑

|α|=m

aαx
α ∈ Πm,

and introduce the homogeneous differential polynomial

P

(
∂

∂x

)
=
∑

|α|=m

aα

(
∂

∂x

)α

,

which is obtained from P (x) by replacing each monomial xα by the

corresponding differential monomial (∂/∂x)
α
. Now we can prove the

following:

□ 
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Lemma 4.17. Every space Πm is a real inner product space endowed

with the inner product

⟨P,Q⟩ := P

(
∂

∂x

)
Q(x), P,Q ∈ Πm,

Proof. First, it should be noticed that we have, for |α| = |β|,(
∂

∂x

)α

xβ =

{
α! if α = β,

0 otherwise.

Hence it is easy to verify that the formula ⟨P,Q⟩, P , Q ∈ Πm, defines

a bilinear form on the product space Πm × Πm. Moreover, if P (x) =∑
α aαx

α and Q(x) =
∑

β bβx
β with |α| = |β| = m, then we obtain that

⟨P,Q⟩ =
∑

|α|=m

α! aαbα =
∑

|α|=m

α! bαaα = ⟨Q,P ⟩ ,

⟨P, P ⟩ =
∑

|α|=m

α! a2α ≥ 0,

⟨P, P ⟩ = 0 if and only if P (x) ≡ 0.

This proves that the quantity ⟨P,Q⟩ satisfies the axioms (I1) through

(I4) of inner product in Section 2.10.

The proof of lemma 4.16 is complete.

Let P ∈ Πℓ and Q ∈ Πm with ℓ ≤ m. Then it is easy to see that the

polynomial

⟨P,Q⟩ = P

(
∂

∂x

)
Q(x)

belongs to the space Πm−ℓ. Hence it follows that the associated differ-

ential polynomial P (∂/∂x) defines a linear operator

P

(
∂

∂x

)
: Πm −→ Πm−ℓ

by the formula ⟨P,Q⟩. Moreover, we have the following:

Lemma 4.18. Let P ∈ Πℓ such that P (x) ̸≡ 0, and m ≥ ℓ. Then the

linear map P
(

∂
∂x

)
: Πm → Πm−ℓ is surjective.

Proof. Our proof is based on a reduction to absurdity. Assume, to the

contrary, that the range P (∂/∂x)Πm is a proper subspace V of Πm−ℓ.

Then, by using Lemma 4.17 we can find an element R(x) ̸≡ 0 in the inner

□ 
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product space Πm−ℓ which is orthogonal to the space V . Therefore, we

have, for all Q ∈ Πm,⟨
R,P

(
∂

∂x

)
Q(x)

⟩
= R

(
∂

∂x

)
P

(
∂

∂x

)
Q(x) ≡ 0.

In particular, by choosing Q(x) := R(x)P (x) we obtain that ⟨Q,Q⟩ = 0,

so that Q(x) = R(x)P (x) ≡ 0. This implies that R(x) ≡ 0, since

P (x) ̸≡ 0. This contradiction proves that P (∂/∂x) : Πm → Πm−ℓ is

surjective.

The proof of Lemma 4.18 is complete.

Theorem 4.19 (the decomposition theorem). Let P ∈ Πℓ such that

P (x) ̸≡ 0, and m ≥ ℓ. Then, every element T ∈ Πm can be decomposed

uniquely in the form

T (x) =
∑
k

P k(x)Rk(x) (4.42)

where

Rk ∈ Πm−kℓ,

P

(
∂

∂x

)
Rk(x) ≡ 0,

and the summation is taken over all non-negative integers k such that

kℓ ≤ m. Moreover, the Rk(x) ̸≡ 0 are not divisible by P (x).

Proof. (1) First, we show that every element T ∈ Πm can be decomposed

uniquely in the form

T = PS1 +R0,

where S1 ∈ Πm−ℓ and P (∂/∂x)R0(x) ≡ 0.

To do this, we introduce the subspace

M := {PS : S ∈ Πm−ℓ}

of all elements of Πm which are divisible by P (x), and the subspace

N :=

{
R ∈ Πm : P

(
∂

∂x

)
R(x) ≡ 0

}
of all elements of Πm which are annihilated by P (∂/∂x). Then we have

the assertion

M ∩N = {0}.

□ 
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Indeed, if PS ∈M belongs to N , then it follows that

P

(
∂

∂x

)
P (x)S(x) ≡ 0,

so that

S

(
∂

∂x

)
P

(
∂

∂x

)
P (x)S(x) = ⟨PS, PS⟩ = 0.

This implies that PS = 0. Hence, we have the formula

dim(M ⊕N) = dim(M) + dim(N) = g(m− ℓ) + dim(N).

However, by Lemma 4.18 it follows that

g(m− ℓ) + dim(N) = dim (Πm) ,

so that,

dim(M ⊕N) = dim (Πm) .

Therefore, we have proved that

Πm =M ⊕N,

and further that each element T ∈ Πm can be decomposed uniquely in

the form

T = PS1 +R0,

with S1 ∈ Πm−ℓ and R0 ∈ N . Moreover, it should be emphasized

that R0(x) is not divisible by P (x) unless R0(x) ≡ 0, since we have

M ∩N = {0}.
(2) Similarly, by repeating the same procedure for S1(x) (in place of

T (x)) we obtain that

S1 = PS2 +R1,

where S2 ∈ Πm−2ℓ and R1(x) is annihilated by P (∂/∂x) and not divis-

ible by P (x) (unless R1(x) ≡ 0). We remark that

T = PS1 +R0 = P (PS2 +R1) +R0 = P 2S2 + PR1 +R0.

(3) This recursive process ends when we reach an element Sk ∈ Πm−kℓ

of degree less than ℓ. In this case, it follows that Sk(x) is not divisible

by P (x) and that P (∂/∂x)Sk(x) ≡ 0. Hence, we may take Sk = Rk.

This proves the desired decomposition (4.42).

The proof of Theorem 4.19 is complete. □ 
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It should be emphasized that the homogeneous polynomial

|x|2 = x21 + x22 + · · ·+ x2n

of degree 2 corresponds to the usual Laplacian

∆ =
∂2

∂x21
+

∂2

∂x22
+ . . .+

∂2

∂x2n
.

All polynomials P ∈ Πm are called solid harmonics of degree m if they

satisfy the Laplace equation: ∆P = 0 in Rn. The restrictions of these

solid harmonics to the unit sphere Σn−1 are called spherical harmonics

of degree m.

We shall use the following notation:

Sm := all solid harmonics of degree m,

Hm := all spherical harmonics of degree m.

Remark 4.4. (a) By Lemma 4.18, it follows that Sm is the nullspace of

the Laplacian as a linear map of Πm onto Πm−2. If m = 0 and m = 1,

then we have Sm = Πm. However, if m ≥ 2, then we obtain that Sm is

a proper subspace Πm of dimension

d(m) := g(m)− g(m− 2).

This formula remains valid for all non-negative integers m if we let

g(−1) = g(−2) = 0.

(b) If Sm ∈ Sm, then, we have, for all x ̸= 0 and x′ = x/|x|,

Sm(x) = Sm

(
|x| x

|x|

)
= |x|m Sm

(
x

|x|

)
= |x|mQm(x′),

where Qm(x′) = Sm(x′) is the corresponding spherical harmonic in Hm.

Since this correspondence is an isomorphism, it follows from assertion

(a) that Hm is a vector space of dimension d(m) = g(m)− g(m− 2).

(c) On the Euclidean space R2, we have, for any integer m ≥ 1,

g(m) =

(
m+ 1

1

)
= m+ 1, g(m− 2) = m− 1.

Hence it follows that d(m) = g(m) = m + 1 for m = 0 and 1, and

that d(m) = g(m) − g(m − 2) = 2 for m ≥ 2. In terms of the complex

variable z = x+ iy = reiθ, we obtain that zm = rm cosmθ+ irm sinmθ.

Therefore, we can conclude that, for every m, cosmθ and sinmθ are the

only linearly independent spherical harmonics on the plane.

On the Euclidean space R3, it is easy to see that d(m) = 2m + 1,
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so the dimension of Sm, and hence that of Hm, increases as the odd

integers.

(d) On the general Euclidean space Rn, we have, as m→ ∞,

g(m) =

(
m+ n− 1

n− 1

)
=

(m+ n− 1)(m+ n− 2) · · · (m+ 1)

(n− 1)!

∼ mn−1

(n− 1)!
.

Moreover, by using the mean value theorem we obtain that

d(m) = g(m)− g(m− 2)

∼
[
mn−1

(n− 1)!
− (m− 2)n−1

(n− 1)!

]
∼ 2

mn−2

(n− 2)!
.

Summing up, we have proved that, for any dimension n ≥ 2,

d(m) ∼ c(n)mn−2

as m → ∞, where c(n) is a positive constant depending only on the

dimension n.

Corollary 4.20. Any continuous function on the unit sphere Σn−1 can

be approximated uniformly by a finite linear combination of spherical

harmonics.

Proof. Let f(x′) be an arbitrary continuous function on Σn−1. We may

assume that f(x′) is real valued. By the Stone–Weierstrass theorem

(Theorem 2.70), it follows that f(x′) can be approximated uniformly by

the restriction to Σn−1 of some polynomial T (x). However, since T (x) is

a finite sum of homogeneous pieces, we have only to consider each piece

Tm ∈ Πm.

We remark that the assertion is obvious for m = 0 and m = 1.

If m ≥ 2, by applying the decomposition theorem (Theorem 4.19) to

P (x) := |x|2 and P (∂/∂x) := ∆ we obtain that

Tm(x) =
∑

2k≤m

|x|2kRk(x),

where Rk(x) are solid harmonics of degree m− 2k. Hence, we have, on

the unit sphere Σn−1,

Tm(x′) =
∑

2k≤m

Rk(x
′),

where the Rk(x
′) belong to Hm−2k.

The proof of Corollary 4.20 is complete. □ 
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Lemma 4.21. Let Qj ∈ Hj and Sj(x) = |x|jQj(x
′) its corresponding

solid harmonics. Then we have, for k ̸= m,∫
Σn−1

Qk(x
′)Qm(x′) dσ(x′) = 0, (4.43)∫

|x|≤1

Sk(x)Sm(x) dx = 0. (4.44)

Here dσ is the surface measure on the unit sphere Σn−1.

Proof. Since we have, in terms of polar coordinates,∫
|x|≤1

Sk(x)Sm(x) dx

=

(∫ 1

0

rk+mrn−1 dr

)∫
Σn−1

Qk(x
′)Qm(x′) dσ(x′)

=
1

k +m+ n

∫
Σn−1

Qk(x
′)Qm(x′) dσ(x′),

it suffices to prove formula (4.43) for spherical harmonics.

By using Green’s formula (see Theorem 5.3 in Chapter 5), we obtain

that ∫
|x|≤1

(Sk(x) ·∆Sm(x)− Sm(x) ·∆Sk(x)) dx

=

∫
Σn−1

(
Sk(x

′)
∂Sm

∂ν
(x′)− Sm(x′)

∂Sk

∂ν

)
dσ(x′),

where ν is the outward normal to the unit sphere Σn−1. However, since

we have the formula

∂

∂ν
=

∂

∂|x|
,

it follows that

∂

∂ν
(Sj(x)) = j|x|j−1Qj(x

′).

Moreover, by the definition of solid harmonics it follows that ∆Sj = 0

in Rn. Therefore, we obtain that

0 =

∫
Σn−1

(Qk(x
′) ·mQm(x′)−Qm(x′) · kQk(x

′)) dσ(x′)

= (m− k)

∫
Σn−1

Qk(x
′)Qm(x′) dσ(x′).



4.7 Spherical Harmonics 153

This proves that we have, for k ̸= m,∫
Σn−1

Qk(x
′)Qm(x′) dσ(x′) = 0.

The proof of Lemma 4.21 is complete.

We consider the vector spaces Hm as linear subspaces of the real

Hilbert space L2(Σn−1) with inner product

(f, g) =

∫
Σn−1

f(x′) g(x′) dσ(x′).

With respect to this inner product, we can construct an orthonormal

basis {Yℓm}, 1 ≤ ℓ ≤ d(m), in each space Hm. Hence, we have, for each

m,

(Yim, Yjm) =

∫
Σn−1

Yim(x′)Yjm(x′) dσ(x′) = δij , 1 ≤ i, j ≤ d(m).

Moreover, we have the following theorem (cf. Theorem 2.64):

Theorem 4.22. (i) The Hilbert space L2(Σn−1) can be decomposed into

the infinite direct sum in the sense of Hilbert space theory:

L2(Σn−1) =

∞∑
m=0

Hm.

More precisely, any function f ∈ L2(Σn−1) has the development

f(x′) =

∞∑
m=0

Ym(x′), Ym(x′) ∈ Hm,

where the convergence is in the L2(Σn−1) norm, and we have the formula∫
Σn−1

|f(x′)|2 dσ(x′) =
∞∑

m=0

∫
Σn−1

|Ym(x′)|2 dσ(x′).

(ii) Furthermore, the family {Yℓm} m=0,1,...,
ℓ=1,2,...,d(m)

forms a complete or-

thonormal system in the Hilbert space L2(Σn−1). More precisely, any

function f ∈ L2(Σn−1) has the Fourier series expansion with respect to

{Yℓm}

f(x′) =
∞∑

m=0

d(m)∑
ℓ=1

aℓm Yℓm(x′),

□ 
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where the Fourier coefficients aℓm are given by the formulas

aℓm =

∫
Σn−1

f(y)Yℓm(y) dσ(y),

and satisfy the Parseval identity

∞∑
m=0

d(m)∑
ℓ=1

|aℓm|2 =

∫
Σn−1

|f(x′)|2 dσ(x′).

Proof. Since part (i) is an immediate consequence of part (ii), we have

only to prove part (ii).

First, by Lemma 4.21 it follows that spherical harmonics of distinct

degrees are orthogonal, so that the family {Yℓm} is orthonormal. On

the other hand, since the continuous functions are dense in L2(Σn−1), it

follows from an application of Corollary 4.20 that the set of all finite lin-

ear combinations of the Yℓm is dense in L2(Σn−1). This implies that the

orthonormal system {Yℓm} is complete in the Hilbert space L2(Σn−1).

The proof of Theorem 4.22 is complete.

Now we prove some important bounds on the spherical harmonics

{Yℓm} and their derivatives. These bounds can be deduced from the

fact that we have, for each integer m ≥ 0,

d(m)∑
ℓ=1

Y 2
ℓm(x′) =

d(m)

ωn
, x′ ∈ Σn−1, (4.45)

where

d(m) = g(m)− g(m− 2),

and

ωn := |Σn−1| =
2πn/2

Γ(n/2)

is the surface area of the unit sphere Σn−1. In order to prove formula

(4.45), we introduce the concept of zonal harmonics:

Lemma 4.23. For each m and each point x′ ∈ Σn−1, we can find a

spherical harmonic Zx′ ∈ Hm, called a zonal harmonic with pole x′,

such that we have, for all Q ∈ Hm,

Q(x′) = (Q,Zx′). (4.46)

□ 
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Moreover, we have, for all y ∈ Σn−1,

Zx′(y) =

d(m)∑
ℓ=1

Yℓm(x′)Yℓm(y). (4.47)

Proof. (1) First, we remark that the map Q → Q(x′) is a linear func-

tional over the finite dimensional Hilbert space Hm. Hence, the desired

formula (4.46) follows from an application of the Riesz representation

theorem (Theorem 2.58).

(2) Secondly, since the {Yℓm}, 1 ≤ ℓ ≤ d(m), form an orthonormal

basis in each space Hm, we obtain that any element Q ∈ Hm can be

written uniquely in the form

Q(x′) =

d(m)∑
ℓ=1

aℓ Yℓm(x′), x′ ∈ Σn−1, (4.48)

where the Fourier coefficients aℓ are given by the formulas

aℓ := aℓm = (Q,Yℓm) =

∫
Σn−1

Q(y)Yℓm(y) dσ(y).

Hence we have, by formula (4.46) and formula (4.48),

(Q,Zx′) =

d(m)∑
ℓ=1

(Q,Yℓm)Yℓm(x′) =

Q, d(m)∑
ℓ=1

Yℓm(x′)Yℓm

 . (4.49)

This proves the desired formula (4.47), since formula (4.49) holds true

for all Q in Hm.

The proof of Lemma 4.23 is complete.

Lemma 4.24. If u : Σn−1 → Σn−1 is a rotation, then we have, for any

zonal harmonic Zx′ ,

Zux′(uy) = Zx′(y), y ∈ Σn−1. (4.50)

Proof. If the function Q(x′) belongs to Hm, then so does the function

Q(ux′), since the Laplacian ∆ is invariant under rotations. By applying

formula (4.46) to the harmonic Qu(x
′) := Q(ux′), we obtain that

Q(ux′) = Qu(x
′) =

∫
Σn−1

Qu(y)Zx′(y) dσ(y) (4.51)

=

∫
Σn−1

Q(uy)Zx′(y) dσ(y).

□ 
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On the other hand, by applying again formula (4.46) to the harmonic

Q(x′) and by changing variables we obtain that

Q(ux′) (4.52)

=

∫
Σn−1

Q(y)Zux′(y) dσ(y) =

∫
Σn−1

Q(uy)Zux′(uy) dσ(y),

since the surface measure dσ is also invariant under rotations.

Therefore, it follows from formula (4.51) and formula (4.52) that we

have, for all Q ∈ Hm,∫
Σn−1

Zx′(y)Q(uy) dσ(y) =

∫
Σn−1

Zux′(uy)Q(uy) dσ(y).

This proves the desired formula (4.50).

The proof of Lemma 4.24 is complete.

Remark 4.5. If the pole x′ ∈ Σn−1 of a zonal harmonic Zx′ lies on the

axis of a rotation u, then we have ux′ = x′ and so, by Lemma 4.24,

Zx′(y) = Zx′(uy) for y ∈ Σn−1.

In other words, a zonal harmonic Zx′ is constant along each “parallel”

relative to the pole x′.

The next lemma proves the desired formula (4.45):

Lemma 4.25. For any integer m ≥ 0, we have the formula

d(m)∑
ℓ=1

Y 2
ℓm(x′) =

d(m)

ωn
for x′ ∈ Σn−1. (4.45)

Proof. By formula (4.46), we have, for any x′ ∈ Σn−1,

Zx′(x′) =

d(m)∑
ℓ=1

Y 2
ℓm(x′),

and we have, for any rotation u,

Zux′(ux′) =

d(m)∑
ℓ=1

Y 2
ℓm(ux′).

Hence, by applying Lemma 4.24 to our situation we obtain that

d(m)∑
ℓ=1

Y 2
ℓm(x′) =

d(m)∑
ℓ=1

Y 2
ℓm(ux′) for x′ ∈ Σn−1. (4.53)

□ 
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Since each point y of Σn−1 is the image y = ux′ under a suitable rotation

u, we find from formula (4.53) that

d(m)∑
ℓ=1

Y 2
ℓm(x′) = Am for x′ ∈ Σn−1, (4.54)

where Am is a constant depending only on the degree m and the dimen-

sion n.

Hence, by integrating formula (4.54) over Σn−1 we obtain that∫
Σn−1

d(m)∑
ℓ=1

Y 2
ℓm(x′) dσ(x′) = Am

∫
Σn−1

dσ(x′) = Amωn. (4.55)

On the other hand, since the {Yℓm}, 1 ≤ ℓ ≤ d(m), form an orthonor-

mal basis in the Hilbert space L2(Σn−1), it follows that∫
Σn−1

d(m)∑
ℓ=1

Y 2
ℓm(x′) dσ(x′) =

d(m)∑
ℓ=1

∫
Σn−1

Yℓm(x′)Yℓm(x′) dσ(x′) (4.56)

= d(m).

Therefore, by combining formula (4.55) and formula (4.56) we have

proved that

Am =
d(m)

ωn
.

The proof of Lemma 4.25 is complete.

Now we can prove the desired bounds on the spherical harmonics Yℓm:

Theorem 4.26. (i) For all x′ ∈ Σn−1, we have the estimate

|Yℓm(x′)| ≤ C1m
(n−2)/2, (4.57)

where C1 is a positive constant depending only on the dimension n.

(ii) More generally, we have, for any multi-index α,∣∣∣∣( ∂

∂x

)α

(|x|mYℓm(x′))

∣∣∣∣ ≤ C2m
(n−2)/2+|α||x|m−|α|, (4.58)

where C2 is a positive constant depending only on |α| and n.

Proof. (i) By Lemma 4.25 and assertion (d) of Remark 4.4, it follows

that we have, for some positive constant C depending only on n,

Y 2
ℓm(x′) ≤

d(m)∑
ℓ=1

Y 2
ℓm(x′) =

d(m)

ωn
≤ Cmn−2 for x′ ∈ Σn−1.

□ 
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Hence, the desire estimate (4.57) follows by taking the square root of

this inequality.

(ii) First, we remark that estimate (4.58) for |α| = 0 is reduced to

estimate (4.57).

Secondly, we consider the case where |α| = 1. To do this, we let

P (x) := |x|m Yℓm(x′),

and estimate the first partial derivatives ∂P/∂xj .

Since we have the assertion

P ∈ Sm,

and so

∆

(
∂P

∂xj

)
=

∂

∂xj
(∆P ) = 0 in Rn,

it follows that

∂P

∂xj
∈ Sm−1.

Hence, by applying Lemma 4.25 to the functions ∂P/∂xj and by using

Schwarz’s inequality (Theorem 3.14 with p = q := 2) we obtain that

∣∣∣∣ ∂P∂xj (x′)
∣∣∣∣2 =

∣∣∣∣∣∣
d(m−1)∑

ℓ=1

bℓ Yℓm−1(x
′)

∣∣∣∣∣∣
2

≤

d(m−1)∑
ℓ=1

b2ℓ

d(m−1)∑
ℓ=1

Y 2
ℓm−1(x

′)


= A

d(m− 1)

ωn
,

where the Fourier coefficients bℓ are given by the formulas

bℓ :=

(
∂P

∂xj
, Yℓm−1

)
=

∫
Σn−1

∂P

∂xj
(y)Yℓm−1(y) dσ(y), 1 ≤ ℓ ≤ d(m− 1),

and A is a positive constant given by the formula

A :=

d(m−1)∑
ℓ=1

b2ℓ =

∫
Σn−1

∣∣∣∣ ∂P∂xj (x′)
∣∣∣∣2 dσ(x′).
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Therefore, we have the estimate∣∣∣∣ ∂P∂xj (x′)
∣∣∣∣2 ≤ d(m− 1)

ωn

∫
Σn−1

∣∣∣∣ ∂P∂xj
∣∣∣∣2 dσ (4.59)

≤ d(m− 1)

ωn

∫
Σn−1

|gradP |2 dσ, x′ ∈ Σn−1.

However, since gradP is homogeneous of degree m − 1, by letting

r := |x| and by using polar coordinates we obtain that∫
|x|≤1

|gradP |2 dx =

(∫ 1

0

r2m+n−3 dr

)∫
Σn−1

|gradP |2 dσ

=
1

2m+ n− 2

∫
Σn−1

|gradP |2 dσ,

so that∫
Σn−1

|gradP |2 dσ = (2m+ n− 2)

∫
|x|≤1

|gradP |2 dx. (4.60)

Moreover, since P (x) is harmonic in Rn, it follows that

div (P gradP ) = |gradP |2 + P ∆P = |gradP |2 .

Hence, we have, by the divergence theorem (see Theorem 5.2 in Chapter

5), ∫
|x|≤1

|gradP |2 dx =

∫
|x|≤1

div (P gradP ) dx (4.61)

=

∫
Σn−1

P (gradP ) · ν dσ.

However, since P (x) is homogeneous of degree m, we have, by Euler’s

formula for homogeneous functions,

(gradP ) · ν = mP (x′).

Hence it follows that∫
Σn−1

P (gradP ) · ν dσ (4.62)

= m

∫
Σn−1

P (x′)2 dσ(x′) = m

∫
Σn−1

Yℓm(x′)2 dσ(x′) = m.

By combining formulas (4.60), (4.61) and (4.62), we obtain that∫
Σn−1

|gradP |2 dσ = m(2m+ n− 2).
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Therefore, by carrying this formula into estimate (4.59) we obtain from

assertion (d) with m := m− 1 of Remark 4.4 that∣∣∣∣ ∂P∂xj (x′)
∣∣∣∣2 ≤ d(m− 1)

ωn
m(2m+ n− 2)

≤ C(m− 1)n−2m(2m+ n− 2)

≤ C ′mn for all x′ ∈ Σn−1,

where C and C ′ are positive constants depending on n. Moreover, since

∂P/∂xj is homogeneous of degree m − 1, we have, for some positive

constant C ′′ depending on n,∣∣∣∣ ∂P∂xj (x)
∣∣∣∣ ≤ C ′′mn/2 |x|m−1, x ∈ Rn.

This proves the desired estimate (4.58) for |α| = 1.

Repeating this argument, we obtain the desired estimate (4.58) for

the general case.

The proof of Theorem 4.26 is complete.

By part (ii) of Theorem 4.22, we know that any function f ∈ L2(Σn−1)

can be expanded by the Fourier series

f(x′) =

∞∑
m=0

d(m)∑
ℓ=1

aℓm Yℓm(x′), (4.63)

where the Fourier coefficients aℓm are given by the formulas

aℓm =

∫
Σn−1

f(y)Yℓm(y) dσ(y). (4.64)

and satisfy the Parseval identity

∞∑
m=0

d(m)∑
ℓ=1

|aℓm|2 =

∫
Σn−1

|f(x′)|2 dσ(x′).

Remark 4.6. Any continuous function f(x′) on the unit sphere Σn−1 has

a continuous extension f̃(x) := f(x/|x|) to the space Rn \ {0} which is

homogeneous of degree zero. Conversely, any function g(x) ∈ C(Rn \
{0}) which is homogeneous of degree zero is of the form g(x) = f̃(x)

where f(x) is its restriction to the unit sphere Σn−1. In the following,

we shall not distinguish between f(x′) and f̃(x), and if we write f(x′) ∈
C∞(Σn−1), then we mean that f̃(x) ∈ C∞(Rn \ {0}).

□ 
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If f(x′) ∈ C∞(Σn−1), then it is well known that the Fourier series

(4.63) converges absolutely and uniformly to f(x′) in the unit sphere

Σn−1. In fact, we shall prove (Theorem 4.30) that a necessary and

sufficient condition for a sequence

{aℓm} m=0,1,...,
ℓ=1,2,...,d(m)

to be the harmonic Fourier coefficients of some function

f(x′) ∈ C∞(Σn−1)

is that the sequence {aℓm} be rapidly decreasing. This result is a conse-

quence of the formula (4.71) analogous to formula (4.64), which we shall

prove in Theorem 4.29 below.

First, we introduce a second-order differential operator L, which pre-

serves the degree of homogeneity of a function, given by the formula

Lf := |x|2∆f.

We remark that Lf = ∆f on the unit sphere Σn−1. Then we have the

following lemma:

Lemma 4.27. For any function Yℓm(x′) and any integer r ≥ 1, we have

the formula

LrYℓm(x′) = (−m)r(m+ n− 2)rYℓm(x′) for x′ ∈ Σn−1. (4.65)

Proof. First, we prove formula (4.65) for r = 1.

If P (x) := |x|mYℓm(x′) is the corresponding solid harmonic, then it

follows that

LYℓm(x′) = |x|2∆Yℓm = |x|2∆
(
|x|−m P (x)

)
. (4.66)

However, we remark the following elementary formulas:

∆(fg) = f ∆g + 2(grad f) · (grad g) + g ∆f,

grad
(
|x|k

)
= k|x|k−2 x,

∆
(
|x|k

)
= k(k + n− 2) |x|k−2,

x · (gradP ) = mP (x).

Hence, by the harmonicity of P (x) it follows that

∆
(
|x|−m P (x)

)
= 2

(
grad |x|−m

)
· (gradP ) + (−m)(−m+ n− 2) |x|−m−2 P (x)

= 2(−m)|x|−m−2 x · (gradP ) + (−m)(−m+ n− 2) |x|−m−2 P (x)
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= 2(−m2)|x|−m−2 P (x) + (−m)(−m+ n− 2)|x|−m−2 P (x)

= (−m)(m+ n− 2) |x|−m−2 P (x).

Therefore, by substituting this formula into formula (4.66) we obtain

that

LYℓm(x′) = (−m)(m+ n− 2) |x|−m∆
(
|x|−m P (x)

)
= (−m)(m+ n− 2)Yℓm(x′).

This proves the desired formula (4.65) for r = 1.

The desired formula (4.65) for any integer r ≥ 2 follows by iteration.

The proof of lemma 4.27 is complete.

Lemma 4.28. If f , g ∈ C2r(Rn \ {0}) are homogeneous of degree zero,

then we have the formula∫
Σn−1

f · Lrg dσ =

∫
Σn−1

g · Lrf dσ. (4.67)

Proof. Using polar coordinates, we obtain that, for some constant C ̸= 0,∫
1≤|x|≤2

(f(x) ·∆g(x)− g(x) ·∆f(x)) dx (4.68)

= C

∫
Σn−1

(f(x′) ·∆g(x′)− g(x′) ·∆f(x′)) dσ(x′).

However, we have, by Green’s formula (see Theorem 5.3 in Chapter

5), ∫
1≤|x|≤2

(f(x) ·∆g(x)− g(x) ·∆f(x)) dx (4.69)

=

∫
|x|=2

(
f(x′)

∂g

∂ν
(x′)− g(x′)

∂f

∂ν
(x′)

)
dσ(x′)

−
∫
|x|=1

(
f(x′)

∂g

∂ν
(x′)− g(x′)

∂f

∂ν
(x′)

)
dσ(x′)

= 0.

Indeed, it suffices to note that

∂

∂ν
=

∂

∂|x|

is the radical derivative and that f(x) and g(x) are constant along radii.

□ 
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Therefore, by combining formula (4.68) and formula (4.69) we obtain

that ∫
Σn−1

(f ·∆g − g ·∆f) dσ = 0. (4.70)

Since we have Lf = ∆f and Lg = ∆g on Σn−1, it follows from formula

(4.70) that ∫
Σn−1

f · Lg dσ =

∫
Σn−1

g · Lf dσ.

Moreover, by replacing g by Lg in this formula we obtain that∫
Σn−1

f · L2g dσ =

∫
Σn−1

Lg · Lf dσ =

∫
Σn−1

g · L2f dσ.

Hence, the desired formula (4.67) follows by repeating this process.

The proof of lemma 4.28 is complete.

Theorem 4.29. If f ∈ C∞(Σn−1) and if {aℓm} are its Fourier coeffi-

cients with respect to the spherical harmonics {Yℓm}, then we have, for

any integer r ≥ 0,

aℓm = (−m)−r(m+ n− 2)−r

∫
Σn−1

Yℓm · Lrf dσ. (4.71)

Proof. By combining Lemma 4.27 and Lemma 4.28, we obtain that

aℓm =

∫
Σn−1

f · Yℓm dσ = (−m)−r(m+ n− 2)−r

∫
Σn−1

f · LrYℓm dσ

= (−m)−r(m+ n− 2)−r

∫
Σn−1

Yℓm · Lrf dσ.

This proves the desired formula (4.71).

Theorem 4.30. (i) If f ∈ C∞(Σn−1) and if {aℓm} are its Fourier

coefficients with respect to the spherical harmonics {Yℓm}, then we have,

for any integer r ≥ 0,

∞∑
m=0

d(m)∑
ℓ=1

mr |aℓm| <∞. (4.72)

(ii) Conversely, given any family {aℓm} m=0,1,...,
ℓ=1,2,...,d(m)

of constants which

□ 

□ 



164 Elements of Real Analysis

satisfies condition (4.72) for any integer r ≥ 0, we can construct a func-

tion f ∈ C∞(Σn−1) such that

f(x′) =
∞∑

m=0

d(m)∑
ℓ=1

aℓm Yℓm(x′).

Proof. (i) We have only to prove estimate (4.72) for all r sufficiently

large. By formula (4.71), it follows that

|aℓm| = m−r(m+ n− 2)−r

∣∣∣∣∣
∫
Σn−1

Yℓm(y)Lrf(y) dσ(y)

∣∣∣∣∣ .
Hence, by using Schwarz’s inequality (Theorem 3.14 with p = q := 2)

and the normality of Yℓm we obtain that

|aℓm| (4.73)

≤ m−2r

(∫
Σn−1

|Yℓm(y)|2 dσ(y)

)1/2(∫
Σn−1

|Lrf(y)|2 dσ(y)

)1/2

= m−2r

(∫
Σn−1

|Lrf(y)|2 dσ(y)

)1/2

= C(r)m−2r,

where C(r) is a positive constant defined by the formula

C(r) :=

(∫
Σn−1

|Lrf(y)|2 dσ(y)

)1/2

.

Since we have, by assertion (d) of Remark 4.4,

d(m) ≤ Cmn−2

for some positive constant C, it follows from inequality (4.73) that we

have, for all integers r > n− 1,

∞∑
m=0

d(m)∑
ℓ=1

mr |aℓm| ≤ C(r)
∞∑

m=1

d(m)m−r ≤ C C(r)
∞∑

m=1

mn−2−r

<∞.

This proves part (i).

(ii) Conversely, we assume that the constants {aℓm} satisfy condition
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(4.72) for all integers r ≥ 0. Then it follows from an application of

Theorem 4.26 that we have the estimate

|Yℓm(x′)| ≤ Cm(n−2)/2 for all x′ ∈ Σn−1,

with a positive constant C independent of m. This proves that

∞∑
m=0

d(m)∑
ℓ=1

|aℓm Yℓm(x′)| ≤ C
∞∑

m=0

d(m)∑
ℓ=1

|aℓm|m(n−2)/2 for all x′ ∈ Σn−1.

Therefore, we obtain from condition (4.72) that the series∑
ℓ,m

aℓm Yℓm(x′)

converges absolutely and uniformly to some continuous function f(x′)

in the unit sphere Σn−1.

By repeating this argument and by using estimate (4.58) of Theorem

4.26, we obtain that the series
∑

ℓ,m aℓm (∂/∂x)αYℓm(x′) is absolutely

and uniformly convergent to the continuous function (∂/∂x)αf(x′) in the

unit sphere Σn−1. Summing up, we have proved that f ∈ C∞(Σn−1).

The proof of Theorem 4.30 is complete.

By combining Theorem 4.22, Theorem 4.26 and Theorem 4.30, we

have proved the following fundamental results for spherical harmonics:

Theorem 4.31. (i) The space Hm of n-dimensional spherical harmon-

ics of degree m has dimension

d(m) = g(m)− g(m− 2),

where

g(ℓ) =

(
ℓ+ n− 1

n− 1

)
=

(ℓ+ n− 1)!

(n− 1)!ℓ!
, ℓ ≥ 0,

g(−1) = g(−2) = 0.

Moreover, we have the estimate

d(m) ≤ c(n)mn−2, (4.74)

with a positive constant c(n) depending on n.

(ii) The Hilbert space L2(Σn−1) can be decomposed into the infinite

direct sum in the sense of Hilbert space theory:

L2(Σn−1) =
∞∑

m=0

Hm.

□ 



166 Elements of Real Analysis

More precisely, any function f ∈ L2(Σn−1) has the development

f(x′) =
∞∑

m=0

Ym(x′), Ym ∈ Hm,

where the convergence is in the L2(Σn−1) norm, and we have the formula∫
Σn−1

|f(x′)|2 dσ(x′) =
∞∑

m=0

∫
Σn−1

|Ym(x′)|2 dσ(x′).

(iii) If Ym(x′) is any n-dimensional spherical harmonic of degree m,

then its partial derivatives (∂αYm/∂x
α)(x′) satisfy the estimates

sup
x′∈Σn−1

∣∣∣∣∂αYm∂xα
(x′)

∣∣∣∣ ≤ cm|α|+(n−2)/2, (4.75)

with a positive constant c = c(n, |α|) depending on the multi-indices α

and n.

(iv) The spherical harmonics {Ykm} m=0,1,...,
k=1,2,...,d(m)

form a complete or-

thonormal system in the Hilbert space L2(Σn−1). If f ∈ C∞(Σn−1) has

the Fourier series expansion with respect to {Ykm}

f(x′) =
∞∑

m=0

d(m)∑
k=1

akm Ykm(x′),

akm =

∫
Σn−1

f(y)Ykm(y) dσ(y),

then the Fourier coefficients akm satisfy, for any integer r > 1, the

estimate

|akm| ≤ c(r)m−2r, (4.76)

with a positive constant c(r) depending on r.

4.8 Notes and Comments

For more thorough treatments of real analytic tools, the reader might be

referred to Duoandikoetxea [23], Garcia-Cuerva–Rubio de Francia [31],

Garnett [32], Malý–Ziemer [45], Neri [51], Stein [68], [70] and Torchinsky

[91].

---
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5

Harmonic Functions and Poisson Integrals

The purpose of this chapter is to study harmonic functions in the half-

spaceRn+1
+ in terms of Poisson integrals of functions in various Lp spaces

(Theorems 5.8, 5.9 and 5.10). In particular, we establish fundamental

relationships between means of derivatives of Poisson integrals u(x, y)

taken with respect to the normal variable y and those taken with respect

to the tangential variables xi (Theorems 5.14 and 5.19). More precisely,

Theorem 5.14 (resp. Theorem 5.19) establishes fundamental relation-

ships between means of the first (resp. second) derivatives of u(x, y)

taken with respect to y and those taken with respect to xi.

5.1 Lipschitz Domains and Green’s Formulas

An open set Ω in Rn is called a Lipschitz hypograph if its boundary

∂Ω can be represented as the graph of a Lipschitz continuous function.

Namely, there exists a Lipschitz continuous function ζ : Rn−1 → R such

that (see Figure 5.1)

Ω =
{
x = (x′, xn) ∈ Rn : xn < ζ(x′), x′ ∈ Rn−1

}
. (5.1)

Sometimes, a different smoothness condition will be needed, so we

broaden the above terminology as follows (see [98, Section 2]): For any

non-negative integer k and any 0 < θ ≤ 1, we say that the domain Ω

defined by formula (5.1) is a Ck,θ hypograph if the function ζ is of class

Ck,θ, that is, if ζ is of class Ck and its k-th order partial derivatives are

Hölder continuous with exponent θ.

The next definition requires that, roughly speaking, the boundary

of Ω can be represented locally as the graph of a Lipschitz continuous

function, by using different systems of Cartesian coordinates for different

parts of the boundary:

169
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Fig. 5.1. The Lipschitz hypograph Ω = {xn < ζ(x′)}

Definition 5.1. Let Ω be a bounded domain in Euclidean space Rn

with boundary ∂Ω. We say that Ω is a Lipschitz domain if there exist

finite families {Uj}Jj=1 and {Ωj}Jj=1 having the following three properties

(i), (ii) and (iii) (see Figure 5.2):

(i) The family {Uj}Jj=1 is a finite open covering of ∂Ω.

(ii) Each Ωj can be transformed to a Lipschitz hypograph by a rigid

motion, that is, by a rotation plus a translation.

(iii) The set Ω satisfies the conditions

Uj ∩ Ω = Uj ∩ Ωj , 1 ≤ j ≤ J.

Ω
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Fig. 5.2. The families {Uj} and {Ωj} of the Lipschitz domain Ω

In the obvious way, we define a Ck,θ domain by substituting “Ck,θ”

for “Lipschitz” throughout Definition 5.1. It should be emphasized that

a Lipschitz domain is the same thing as a C0,1 domain.
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If Ω is a Lipschitz hypograph defined by formula (5.1), then we remark

that its boundary

∂Ω =
{
x = (x′, ζ(x′)) : x′ ∈ Rn−1

}
is an (n− 1)-dimensional, C0,1 submanifold of Rn. Hence we find that

∂Ω has a surface measure dσ and an outward unit normal ν which exists

dσ-almost everywhere in Rn−1, if we apply the following Rademacher’s

theorem (see [45, Chapter 1, Corollary 1.73], [69, Theorem]):

Theorem 5.1 (Rademacher). We have the assertion

C0,1(Rn) =W 1,∞(Rn).

In other words, any Lipschitz continuous function on Rn admits L∞

first partial derivatives almost everywhere in Rn.

Indeed, it follows from an application of Rademacher’s theorem that

the function ζ(x′) is Fréchet differentiable almost everywhere in Rn−1

with

∥∇ζ∥L∞(Rn−1) ≤ C, (5.2)

where C is any Lipschitz constant for the function ζ(x′). Then we have

the following formulas for dσ and ν (see Figure 5.3):

dσ =
√
1 + |∇ζ(x′)|2 dx′,

ν =
(−∇ζ(x′), 1)√
1 + |∇ζ(x′)|2

.

Here it should be noticed that we have, by inequality (5.2),

1 ≤
√

1 + |∇ζ(x′)|2 ≤
√
1 + C2,

so that the surface measure dσ is equivalent locally to the Lebesgue

measure dx′.

We consider the case where Ω is a bounded Lipschitz domain. By using

the notation of Definition 5.1, we choose a partition of unity {ϕj}Jj=1

subordinate to the open covering {Uj}Jj=1 of ∂Ω (see Figure 5.4), that

is,

ϕj ∈ C∞
0 (Uj),

0 ≤ ϕj(x) ≤ 1 in Uj ,

J∑
j=1

ϕj(x) = 1 on ∂Ω.
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Fig. 5.3. The unit outward normal n = −ν to the boundary ∂Ω =
{xn = ζ(x′)}
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Fig. 5.4. The partition of unity {ϕj} subordinate to the open covering {Uj}
of ∂Ω

Then, upon using local coordinate systems flattening out the bound-

ary ∂Ω, together with a partition of unity, we can prove the following

divergence theorem for Lipschitz domains:

Theorem 5.2 (the divergence theorem). Let Ω be a bounded, Lipschitz

domain of Rn with boundary ∂Ω. If F = (f1, f2, . . . , fn), is a C
1 vector

field, then we have the formula∫
Ω

n∑
i=1

∂fi
∂xi

dx =

∫
∂Ω

n∑
i=1

fiνi dσ, fi ∈ C1(Ω), (5.3)

or equivalently, ∫
Ω

divF dx =

∫
∂Ω

(F,ν) dσ,
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where ν = (ν1, ν2, . . . , νn) is the unit outward normal to ∂Ω and dσ is

the surface measure of ∂Ω.

5.2 Harmonic Functions

We start with the following elementary result:

Let I = (a, b) be an open interval of R. If u ∈ C2(I) and d2u/dx2 =

0 in I, then u(x) is a linear function. In particular, we have, for all

sufficiently small r > 0,

u(x) =
1

2
[u(x+ r) + u(x− r)] (the mean value property),

u(x) =
1

2r

∫ r

−r

u(x+ z) dz =
1

2

∫ 1

−1

u(x+ ry) dy.

In this section, we extend these results to the n-dimensional case by

replacing the operator d2/dx2 by the usual Laplacian

∆ =
∂2

∂x21
+

∂2

∂x22
+ . . .+

∂2

∂x2n
.

To do this, we need the following Green formulas for Lipschitz domains:

Theorem 5.3 (Green’s formula). Let Ω be a bounded, Lipschitz domain

of Rn with boundary ∂Ω. For u, v ∈ C2(Ω), we have the formulas∫
Ω

(v∆u+∇v · ∇u) dx =

∫
∂Ω

v
∂u

∂ν
dσ. (5.4a)∫

Ω

(v∆u− u∆v) dx =

∫
∂Ω

(
v
∂u

∂ν
− ∂v

∂ν
u

)
dσ. (5.4b)

Proof. (i) Formula (5.4a) follows by applying the divergence theorem

(Theorem 5.2) with

f = v∇u =

(
v
∂u

∂x1
, v

∂u

∂x2
, . . . , v

∂u

∂xn

)
.

(ii) Formula (5.4b) follows by interchanging u and v in formula (5.4a)

and then by subtracting this formula from formula (5.4a).

The proof of Theorem 5.3 is complete.

A function u(x) defined in Ω is said to be harmonic if it is twice

continuously differentiable in Ω and satisfies the Laplace equation

∆u =
∂2u

∂x21
+
∂2u

∂x22
+ . . .+

∂2u

∂x2n
= 0 in Ω.

□ 
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Corollary 5.4. If a function u(x) ∈ C2(Ω) is harmonic in Ω, then we

have, for any Lipschitz subdomain Ω′ of Ω,∫
∂Ω′

∂u

∂ν
dσ = 0.

Proof. It suffices to take v := 1 in formula (5.4a).

Theorem 5.5 (the mean value theorem). Assume that u(x) ∈ C2(Ω)

is harmonic in Ω. If x ∈ Ω and r > 0 is small enough so that

B(x, r) ⊂ Ω,

then we have the formulas

u(x) =
1

rn−1ωn

∫
S(x,r)

u(y) dσ(y) (5.5a)

=
1

ωn

∫
S(0,1)

u(x+ rz) dσ(z). (5.5b)

Here

ωn := |Σn−1| =
2πn/2

Γ(n/2)

is the surface area of the unit sphere Σn−1 = S(0, 1) in Rn.

Proof. For any 0 < ε < r, we consider the annular domain (see Figure

5.5)

Γεr := {y ∈ Ω : ε < |y − x| < r} = B(x, r) \B(x, ε).

Γεr

B(x, r)

B(x, ε)

x
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Fig. 5.5. The open balls B(x, r), B(x, ε) and the annular domain Γεr

□ 



5.2 Harmonic Functions 175

(i) The proof of the first formula (5.5a): We let

v(y) =

{
1

|x−y|n−2 if n ≥ 3,

− log |x− y| if n = 2.

Then, since we have the formula

∂

∂ν
=

{
1
r

∑n
j=1(yj − xj)

∂
∂yj

on S(x, r) = {x ∈ Ω : |y − x| = r},
1
ε

∑n
j=1(xj − yj)

∂
∂yj

on S(x, ε) = {x ∈ Ω : |y − x| = ε},

it follows that

∂v

∂ν
=

{
(2− n) 1

rn−1 on S(x, r),

−(2− n) 1
εn−1 on S(x, ε).

Furthermore, it is easy to see that

∆v(y) = 0 for all y ∈ Ω \ {x}.

Thus, by applying Green’s formula (5.4b) with Ω := Γεr we obtain that

0 =

∫
S(x,r)

(
v
∂u

∂ν
− ∂v

∂ν
u

)
dσ +

∫
S(x,ε)

(
v
∂u

∂ν
− ∂v

∂ν
u

)
dσ (5.6)

=

∫
S(x,r)

1

rn−2

∂u

∂ν
dσ −

∫
S(x,r)

(2− n)
1

rn−1
u dσ

+

∫
S(x,ε)

1

εn−2

∂u

∂ν
dσ +

∫
S(x,ε)

(2− n)
1

εn−1
u dσ.

However, by Corollary 5.4 it follows that∫
S(x,r)

∂u

∂ν
dσ = 0,∫

S(x,ε)

∂u

∂ν
dσ = 0.

Hence we have, by formula (5.6),

1

rn−1

∫
S(x,r)

u(y) dσ(y) =
1

εn−1

∫
S(x,ε)

u(z) dσ(z). (5.7)

Now we need the following:

Claim 5.1. We have, as ε ↓ 0,

1

εn−1

∫
S(x,ε)

u(z) dσ(z) −→ ωn u(x).
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Proof. Indeed, by the continuity of u(x) it follows that

1

ωnεn−1

∣∣∣∣∣
∫
S(x,ε)

u(z) dσ(z)− u(x)

∣∣∣∣∣
=

1

ωnεn−1

∣∣∣∣∣
∫
S(x,ε)

(u(z)− u(x)) dσ(z)

∣∣∣∣∣
≤ 1

ωnεn−1

∫
S(x,ε)

|u(z)− u(x)| dσ(z)

≤ sup
z∈B(x,ε)

|u(z)− u(x)| −→ 0 as ε ↓ 0.

This proves Claim 5.1.

Therefore, by letting ε ↓ 0 in formula (5.7) we obtain from Claim 5.1

that

u(x) =
1

rn−1ωn

∫
S(x,r)

u(y) dσ(y).

(ii) The proof of the second formula (5.5b): We make the change of

variables

y = x+ rz, z ∈ S(0, 1).

Then, since we have the formula

dσ(y) = rn−1 dσ(z),

it follows from formula (5.5a) that

u(x) =
1

rn−1ωn

∫
S(x,r)

u(y) dσ(y) =
1

rn−1ωn

∫
S(0,1)

u(x+ rz)rn−1 dσ(z)

=
1

ωn

∫
S(0,1)

u(x+ rz) dσ(z).

The proof of Theorem 5.5 is complete.

Corollary 5.6. Assume that u(x) is harmonic in Ω. Then we have the

formulas

u(x) =
n

rnωn

∫
B(x,r)

u(y) dy (5.8a)

=
n

ωn

∫
B(0,1)

u(x+ rz) dz. (5.8b)

□ 

□ 
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Remark 5.1. The volume Vn of the unit ball B(0, 1) is given by the

formula

Vn =

∫ 1

0

∫
S(0,1)

rn−1 dσ(y) dr = ωn

∫ 1

0

rn−1 dr =
ωn

n
=

πn/2

Γ(n/2 + 1)
.

Hence we can rewrite formula (5.8b) as follows:

u(x) =
1

Vn

∫
B(0,1)

u(x+ rz) dz. (5.9)

Proof. (i) The proof of the first formula (5.8a): By formula (5.5b), it

follows that, for 0 < ρ < 1,

u(x) =
1

ωn

∫
S(0,1)

u(x+ ρry) dσ(y).

Therefore, integrating both sides from 0 to 1 with respect to ρn−1dρ we

obtain that

1

n
u(x) =

1

ωn

∫ 1

0

∫
S(0,1)

u(x+ ρry)ρn−1 dρ dσ(y)

=
1

ωn

∫ r

0

∫
S(0,1)

u(x+ ty)

(
t

r

)n−1
dt

r
dσ(y)

=
1

ωn

1

rn

∫ r

0

∫
S(0,1)

u(x+ ty) tn−1 dσ(y) dt

=
1

rnωn

∫
B(x,r)

u(y) dy.

This proves formula (5.8a).

(ii) The proof of the second equality (5.8b): We make the change of

variables

y = x+ rz, z ∈ B(0, 1).

Then, since we have the formula

dy = rn dz,

it follows from formula (5.8a) that

u(x) =
n

rnωn

∫
B(x,r)

u(y) dy =
n

rnωn

∫
B(0,1)

u(x+ rz)rn dz

=
n

ωn

∫
B(0,1)

u(x+ rz) dz.

The proof of Corollary 5.6 is complete. □ 



178 Harmonic Functions and Poisson Integrals

5.3 Poisson Kernels

To motivate the definition of Poisson kernels, we begin with some heuris-

tic remarks on the Dirichlet boundary value problem
(

∂2

∂x2
1
+ ∂2

∂x2
2
+ · · ·+ ∂2

∂x2
n
+ ∂2

∂y2

)
u(x, y) = 0 in Rn+1

+ ,

u(x, 0) = f(x) on Rn
(5.10)

in the half-space Rn+1
+ = {(x, y) : x ∈ Rn, y > 0}. If we consider the

partial Fourier transform ũ(ξ, y) of a solution u(x, y) of problem (5.10),

then we have the following initial value problem
(

d2

dy2 − |ξ|2
)
ũ(ξ, y) = 0, y > 0,

ũ(ξ, 0) = f̂(ξ).

Hence it follows that the partial Fourier transform ũ(ξ, y) is given by

the formula

ũ(ξ, y) = f̂(ξ) e−|ξ|y, y > 0.

Therefore, by the partial Fourier inversion formula we obtain that the so-

lution u(x, y) of problem (5.10) may be “formally” expressed as follows:

u(x, y) =
1

(2π)n

∫
Rn

eixξ e−|ξ|y f̂(ξ) dξ

=
1

(2π)n

∫
Rn

e−|ξ|y
(∫

Rn

ei(x−z)ξ f(z) dz

)
dξ

=

∫
Rn

(
1

(2π)n

∫
Rn

ei(x−z)ξ e−|ξ|y dξ

)
f(z) dz

:=

∫
Rn

P (x− z, y) f(y) dy,

where

P (x, y) :=
1

(2π)n

∫
Rn

eixξe−|ξ|y dξ, y > 0. (5.11)

The function P (x, y) is called the Poisson kernel for the half-spaceRn+1
+ .

However, we can calculate explicitly the Poisson kernel P (x, y). Indeed,

we have the following:

Claim 5.2. The Poisson kernel P (x, y) is given by the formula

P (x, y) =
1

cn

y

(|x|2 + y2)(n+1)/2
, x ∈ Rn, y > 0, (5.12a)



5.3 Poisson Kernels 179

where cn is a positive constant given by the formula

cn =
π(n+1)/2

Γ((n+ 1)/2)
=
ωn+1

2
. (5.12b)

Here

ωn+1 := |Σn| = (n+ 1)Vn+1 =
2π(n+1)/2

Γ((n+ 1)/2)

is the surface area of the unit sphere Σn in Rn+1.

Proof. First, we recall the following two well-known formulas (5.13) and

(5.14):

e−γ =
1√
π

∫ ∞

0

e−u

√
u
e−

γ2

4u du, γ > 0. (5.13)

1

(2π)n

∫
Rn

eixξe−α|ξ|2 dx =
1

(4απ)
n
2
e−

|x|2
4α for α > 0. (5.14)

Therefore, by using Fubini’s theorem (Theorem 3.10) we obtain from

formula (5.13) with γ := |ξ|y and formula (5.14) with α := y2/(4u) that

1

(2π)n

∫
Rn

eixξe−|ξ|y dξ

=

∫
Rn

eixξ
(

1√
π

∫ ∞

0

e−u

√
u
e−|ξ|2y2/(4u) du

)
dξ

=
1√
π

∫ ∞

0

e−u

√
u

(
1

(2π)n

∫
Rn

eixξe−|ξ|2y2/(4u) dξ

)
du

=
1√
π

∫ ∞

0

e−u

√
u

(
u

πy2

)n/2

e−|x|2u/y2

du

=
1

π(n+1)/2

1

yn

∫ ∞

0

u(n−1)/2e−(1+|x|2/y2)u du

=
Γ((n+ 1)/2)

π(n+1)/2

y

(|x|2 + y2)(n+1)/2

= P (x, y).

The proof of Claim 5.2 is complete.

Now we prove fundamental properties of the Poisson kernel P (x, y):

Lemma 5.7. The Poisson kernel P (x, y) enjoys the following properties:

∫
Rn

P (x, y) dx = 1 for all x ∈ Rn. (5.15a)

□ 
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Py(x, y) =
1

cn

|x|2 − ny2

(|x|2 + y2)(n+3)/2
for all x ∈ Rn. (5.15b)

|Py(x, y)| ≤
n+ 1

y
P (x, y) for all x ∈ Rn.

Pxi(x, y) =
1

cn

−(n+ 1)xiy

(|x|2 + y2)(n+3)/2
for all x ∈ Rn, (5.15c)

|Pxi(x, y)| ≤
n+ 1

2y
P (x, y) for all x ∈ Rn and 1 ≤ i ≤ n.

Here Py(x, y) and Pxi(x, y) indicate the partial derivative of P (x, y) in

the direction of the element subscripted, that is,

Py(x, y) =
∂P

∂y
, Pxi(x, y) =

∂P

∂xi
.

Proof. It is easy to verify assertions (5.15b) and (5.15c). Moreover,

assertions (5.15a) follow from a direct calculation. Indeed, we have, by

formula (5.12a),

P (x, y) =
1

cn

y

(|x|2 + y2)(n+1)/2
=

1

yn
P

(
x

y
, 1

)
for all y > 0,

and also∫
Rn

P (z, 1) dz

=
Γ((n+ 1)/2)

π(n+1)/2

∫
Rn

(1 + |z|2)−(n+1)/2 dz

=
Γ((n+ 1)/2)

π(n+1)/2

∫ ∞

0

∫
Σ

(1 + r2)−(n+1)/2rn−1 dr dσ

=
Γ((n+ 1)/2)

π(n+1)/2

(
2πn/2

Γ(n/2)

)∫ ∞

0

∫
Σ

(1 + r2)−(n+1)/2rn−1 dr dσ

=
2√
π

Γ((n+ 1)/2)

Γ(n/2)

∫ ∞

1

s−(n+1)/2(s− 1)(n−1)/2 1

2
√
s− 1

ds

=
1√
π

Γ((n+ 1)/2)

Γ(n/2)

∫ ∞

1

(
1− 1

s

)(n−2)/2

s−3/2 ds

=
1√
π

Γ((n+ 1)/2)

Γ(n/2)

∫ 1

0

(1− σ)(n−2)/2σ−1/2 dσ

=
1√
π

Γ((n+ 1)/2)

Γ(n/2)
B(1/2, n/2) =

1√
π

Γ((n+ 1)/2)

Γ(n/2)

Γ(1/2)Γ(n/2)

Γ((n+ 1)/2))

= 1.
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Therefore, we obtain that∫
Rn

P (x, y) dx =

∫
Rn

1

yn
P

(
x

y
, 1

)
dx =

∫
Rn

P (z, 1) dz = 1.

The proof of Lemma 5.7 is complete.

5.4 Poisson Integrals

If f(x) ∈ Lp(Rn) with 1 ≤ p ≤ ∞, then the Poisson integral of f(x) is

defined as the convolution of f(x) with the Poisson kernel P (x, y):

u(x, y) = P (x, y) ∗ f(x) (5.16)

=
1

cn

∫
Rn

y

(|x− z|2 + y2)(n+1)/2
f(z) dz for all y > 0.

Then we have the following assertions for the Poisson integral u(x, y):

Theorem 5.8. (i) Let f ∈ Lp(Rn) with 1 ≤ p ≤ ∞. Then the function

u(x, y) = P (x, y) ∗ f(x)

is well defined in the half-space Rn+1
+ , and satisfies the inequality

∥u(·, y)∥p ≤ ∥f∥p for all y > 0.

Furthermore, the function u(x, y) is harmonic in Rn+1
+ .

(ii) If 1 ≤ p <∞, we have, as y ↓ 0,

u(·, y) −→ f in Lp(Rn). (5.17)

If, in addition, f(x) is bounded and continuous on Rn, then the func-

tion u(x, y) is continuous on Rn+1
+ = {(x, y) : x ∈ Rn, y ≥ 0}, and sat-

isfies the Dirichlet condition

u(x, 0) = f(x) for every x ∈ Rn. (5.18)

Proof. The proof is divided into three steps.

Step 1: Since we have, for all y > 0,

P (·, y) ∈
∞∩
p=1

Lp(Rn),

it follows that the function u(x, y) = P (x, y) ∗ f(x) is well defined on

Rn+1
+ .

□ 
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Furthermore, we can differentiate formula (5.16) under the integral

sign to obtain the following formulas (5.19) and (5.20):

∂2u

∂y2
(x, y) (5.19)

=
1

cn

∫
Rn

[
n(n+ 1)y3 − 3(n+ 1)y|x− z|2

(|x− z|2 + y2)(n+1)/2+1

]
f(z) dz,

∂2u

∂x2i
(x, y) (5.20)

=
1

cn

∫
Rn

[
(n+ 1)(n+ 3)y(xi − zi)

2 − (n+ 1)(t2 + |x− z|2)
(|x− z|2 + y2)(n+1)/2+2

]
f(z) dz.

It should be noticed that the integrals converge absolutely on compact

subsets of Rn+1
+ . Indeed, it suffices to note that the terms in the bracket

[·] in formulas (5.19) and (5.20) are bounded by a function in Lp′
(Rn)

uniformly in (x, y) of a compact subset of Rn+1
+ , where p′ = p/(p− 1) is

the exponent conjugate to p.

Summing up, we find that

u(x, y) ∈ C2(Rn+1
+ ),

and that  n∑
j=1

∂2

∂x2j
+

∂2

∂y2

u(x, y) = 0 in Rn+1
+ ,

that is, the function u(x, y) is harmonic in the half-space Rn+1
+ .

Step 2: We recall that ∫
Rn

P (x, 1) dx = 1,

and further that

1

yn
P

(
x

y
, 1

)
= P (x, y) for all y > 0.

Therefore, the desired assertion (5.17) follows from an application of

Theorem 3.25 with

φ(x) := P (x, 1), ε := y.

Step 3: To prove assertion (5.18), we assume that f(x) is bounded

and continuous on Rn. Then we have, for all y > 0,

P (x, y) ∗ f(x)− f(x) =

∫
Rn

P (x− z, y)[f(z)− f(x)] dz (5.21)
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=

∫
Rn

P (z, y)[f(x− z)− f(x)] dz

=

∫
Rn

P (ξ, 1)[f(x− yξ)− f(x)] dξ.

However, we remark that

|P (ξ, 1) [f(x− yξ)− f(x)] | ≤ 2max |f | · P (ξ, 1),

and that ∫
Rn

P (ξ, 1) dξ = 1.

Therefore, by applying the Lebesgue dominated convergence theorem

(Theorem 3.9) we obtain from formula (5.21) that

lim
y↓0

P (x, y) ∗ f(x) = f(x) for every x ∈ Rn.

The proof of Theorem 5.8 is complete.

Assertions (5.17) and (5.18) may be made precise. To do this, we

recall some important results in the theory of differentiation of integrals

of functions defined on Rn (Theorem 4.8 and Corollary 4.6).

First, Corollary 4.6 may be restated as follows:

Claim 5.3. If f(t) is a locally integrable function on Rn, then we have,

for almost every x ∈ Rn,

lim
r↓0

1

rn

∫
|t|<r

(f(x− t)− f(x)) dt = 0. (5.22)

In particular, this is true for functions f ∈ Lp(Rn) with 1 ≤ p ≤ ∞.

Indeed, it suffices to note that∣∣∣∣∣ 1rn
∫
|t|<r

(f(x− t)− f(x)) dt

∣∣∣∣∣
=

∣∣∣∣∣ 1rn
∫
B(x,r)

(f(y)− f(x)) dy

∣∣∣∣∣ ≤ 1

rn

∫
B(x,r)

|f(y)− f(x)| dy

= 2n
1

(2r)n

∫
B(x,r)

|f(y)− f(x)| dy

≤ 2n
1

|Q(x, r)|

∫
Q(x,r)

|f(y)− f(x)| dy.

Therefore, the desired assertion (5.22) follows from assertion (4.15).

□ 
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We let

D(f) = the set of all points x ∈ Rn for which condition (5.22) holds.

The set D(f) is called the set of points where the integral of f is differ-

entiable. There is a smaller but closely related set which is also naturally

associated with each locally integrable function.

We let

L(f) = the set of all Lebesgue points x ∈ Rn for f , i.e.,

lim
r↓0

1

rn

∫
|t|<r

|f(x− t)− f(x)| dt = 0. (5.23)

The set L(f) is called the Lebesgue set of f (see Definition 4.1).

Secondly, Theorem 4.8 may be restated as follows:

Claim 5.4. If f(x) is a locally integrable function on Rn, then the com-

plement of the Lebesgue set L(f) has measure zero.

Now we can generalize assertions (5.17) and (5.18) as follows:

Theorem 5.9. Let f ∈ Lp(Rn) with 1 ≤ p ≤ ∞. Then we have the

formula

lim
ε↓0

P (x, ε) ∗ f(x) = lim
ε↓0

∫
Rn

P (x− t, ε)f(t) dt = f(x), (5.24)

whenever x belongs to the Lebesgue set L(f) of f . In particular, the

convergence (5.24) holds true for almost all x ∈ Rn.

Proof. If x is a point of the Lebesgue set L(f), then it follows from con-

dition (5.23) that, for each δ > 0, there exists a constant η = η(x, δ) > 0

such that

1

rn

∫
|t|<r

|f(x− t)− f(x)| dt < δ for all 0 < r ≤ η. (5.25)

We let

φ(t) := P (t, 1) =
1

cn

1

(|t|2 + 1)(n+1)/2
, t ∈ Rn,

φε(t) := P (t, ε) =
1

cn

ε

(|t|2 + ε2)(n+1)/2
, t ∈ Rn, ε > 0.

Then we have the inequality

|P (x, ε) ∗ f(x)− f(x)| =
∣∣∣∣∫

Rn

P (t, ε)f(x− t) dt− f(x)

∣∣∣∣ (5.26)
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=

∣∣∣∣∫
Rn

(f(x− t)− f(x))φε(t) dt

∣∣∣∣
≤
∫
|t|≥η

|f(x− t)− f(x)|φε(t) dt

+

∫
|t|<η

|f(x− t)− f(x)|φε(t) dt

:= I
(ε)
1 (x, η) + I

(ε)
2 (x, η).

We estimate the two integrals I
(ε)
1 (x, η) and I

(ε)
2 (x, η) on the right of

inequality (5.26).

(i) The estimate of I
(ε)
1 (x, η): We let

χη(x) = the characteristic function of the set {t ∈ Rn : |t| ≥ η}.

Then we have, by Hölder’s inequality (Theorem 3.14),

I
(ε)
1 (x, η) =

∫
|t|≥η

|f(x− t)− f(x)|φε(t) dt

=

∫
Rn

|f(x− t)− f(x)|χη(t)φε(t) dt

≤
∫
Rn

|f(x− t)|χη(t)φε(t) dt+

∫
Rn

|f(x)|χη(t)φε(t) dt

≤ ∥f∥p ∥χηφε∥p′ + |f(x)| ∥χηφε∥1 .

However, it follows that, as ε ↓ 0,

∥χηφε∥1 =

∫
|t|≥η

1

εn
φ

(
t

ε

)
dt =

∫
|z|≥ η

ε

φ(z) dz −→ 0,

and further that

∥χηφε∥p′ =

(∫
|t|≥η

φε(t)
p′
dt

)1/p′

=

(∫
Rn

(χη(t)φε(t)) (χη(t)φε(t))
p/p′

dt

)1/p′

≤ ∥χηφε∥1/p∞ ∥χηφε∥1/p
′

1 −→ 0,

since we have the formula

∥χηφε∥∞ = sup
|t|≥η

|φε(t)| =
1

cn

ε

(η2 + ε2)(n+1)/2
.

Hence we find that, as ε ↓ 0,

I
(ε)
1 (x, η) ≤ ∥f∥p ∥χηφε∥p′ + |f(x)| ∥χηφε∥1 −→ 0. (5.27)
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(ii) The estimate of I
(ε)
2 (x, η): We let

g(r) :=

∫
Σn−1

|f(x− rσ)− f(x)| dσ,

where Σn−1 is the unit sphere in Rn. Then we find that condition (5.25)

is equivalent to the following condition: For each δ > 0, there exists a

constant η = η(x, δ) > 0 such that

G(r) :=

∫ r

0

sn−1g(s) ds =

∫
|t|<r

|f(x− t)− f(x)| dt (5.25′)

< δrn for all 0 < r ≤ η.

Moreover, we introduce a function ψ(r) (associated with the function

φ(x)) by the formula

ψ(r) :=
1

cn

1

(r2 + 1)(n+1)/2
, r > 0.

By integration by parts, it follows that

I
(ε)
2 (x, η) ≤

∫
|t|<η

|f(x− t)− f(x)|φε(t) dt

=

∫ η

0

∫
Σn−1

|f(x− rσ)− f(x)| ε−n ψ
(r
ε

)
rn−1 dr dσ

=

∫ η

0

rn−1g(r) ε−n ψ
(r
ε

)
dr

=
[
G(r) ε−n ψ

(r
ε

)]η
0
−
∫ η

0

G(r)
(
ε−n ψ′

(r
ε

))
ε−1 dr

= G(η) ε−n ψ
(η
ε

)
−
∫ η/ε

0

G(εs) ε−n ψ′(s) ds.

Hence we have, by condition (5.25′),

I
(ε)
2 (x, η) ≤ δ ηn ε−n ψ

(η
ε

)
− δ

∫ η/ε

0

(εs)nε−n ψ′(s) ds ≤ Aδ, (5.28)

where A is a positive constant defined by the formula

A :=
1

cn

(
sup
r>0

{
rn

(r2 + 1)(n+1)/2

}
+ n

∫ ∞

0

sn−1

(s2 + 1)(n+1)/2
ds

)
.

Therefore, by combining inequalities (5.26), (5.27) and (5.28) we ob-

tain that

lim sup
ε↓0

|P (x, ε) ∗ f(x)− f(x)| ≤ lim sup
ε↓0

{
I
(ε)
1 (x, η) + I

(ε)
2 (x, η)

}
≤ Aδ.
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This proves the desired assertion (5.24), since δ is arbitrary.

The proof of Theorem 5.9 is complete.

5.5 Manipulations of Harmonic Functions

Theorem 5.8 has a converse:

Theorem 5.10. Assume that a function u(x, y) is harmonic in the half-

space Rn+1
+ and that there exist constants c > 0 and 1 ≤ p < ∞ such

that

∥u(·, y)∥p ≤ c for all y > 0. (5.29)

Then we have the following two assertions (a) and (b):

(a) If 1 < p <∞, there exists a function f(x) ∈ Lp(Rn) such that

u(x, y) = P (x, y) ∗ f(x).

(b) If p = 1, there exists a finite Borel measure µ on Rn such that

u(x, y) =

∫
Rn

P (x− t, y) dµ(t).

Furthermore, if {u(·, y)} is a Cauchy sequence in L1(Rn) as y ↓ 0, then

there exists a function f(x) ∈ L1(Rn) such that u(x, y) = P (x, y)∗f(x).

The proof of Theorem 5.10 is divided into two steps.

Step 1: In order to prove Theorem 5.10, we need some lemmas:

Lemma 5.11. Assume that a function u(x, y) is harmonic in the half-

space Rn+1
+ and satisfies condition (5.29). Then we have the inequality

∥u(·, y)∥∞ ≤
(
2n+1

Vn+1

)1/p

c y−n/p for all y > 0,

where Vn+1 is the volume of the unit ball in Rn+1

Vn+1 :=
2π(n+1)/2

(n+ 1)Γ((n+ 1)/2)
.

In particular, the function u(x, y) is bounded in each proper sub-half

space of Rn+1
+ .

Proof. By applying the mean value theorem for harmonic functions

(Theorem 5.5) with

Ω := Rn+1, r :=
y

2
,

□ 
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we obtain that

u(x, y) =
n+ 1

(y/2)n+1

∫ y/2

0

u(x, y)rn dr

=
(n+ 1)2n+1

yn+1

∫ y/2

0

(
1

ωn+1

∫
Σn

u((x, y) + rσ) dσ

)
rn dr

=
2n+1

Vn+1

1

yn+1

∫
|t|≤y/2

u((x, y) + t) dt.

Here Σn is the unit sphere in Rn+1 and

ωn+1 := |Σn| = (n+ 1)Vn+1 =
2π(n+1)/2

Γ((n+ 1)/2)

is its surface area. Therefore, we have, by Hölder’s inequality (Theorem

3.14) and inequality (5.29),

|u(x, y)| ≤ 2n+1

Vn+1

1

yn+1

∫
|(x,y)−(ξ,η)|≤y/2

|u(ξ, η)| dξ dη

≤ 2n+1

Vn+1

1

yn+1

(∫
|(x,y)−(ξ,η)|≤y/2

|u(ξ, η)|p dξ dη

)1/p

×
(
Vn+1

(y
2

)n+1
)1−1/p

≤
(
2n+1

Vn+1

)1/p

y−(n+1)/p

(∫ 3y/2

y/2

(∫
Rn

|u(ξ, η)|p dξ
)
dη

)1/p

≤
(
2n+1

Vn+1

)1/p

y−(n+1)/p

(∫ 3y/2

y/2

cp dη

)1/p

≤
(
2n+1

Vn+1

)1/p

cy−n/p.

The proof of Lemma 5.11 is complete.

The next lemma is a special case of the Schwarz reflection principle

for hyperplanes (see [6, Chapter 4, Theorem 4.12]):

Lemma 5.12. If u(x, y) is harmonic in the half-space Rn+1
+ , everywhere

continuous and bounded on the closure Rn+1
+ = Rn+1

+ ∪Rn and is equal

to zero on the boundary Rn, then it follows that u(x, y) ≡ 0 on Rn+1
+ .

Proof. The proof is divided into two steps.

□ 
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(1) We let

u∗(x, y) :=

{
u(x, y) if y ≥ 0,

−u(x,−y) if y < 0.

Then it follows that {
∆u∗ = 0 in Rn+1

+ ,

∆u∗ = 0 in Rn+1
− ,

and further that

u∗ = 0 on Rn.

Hence we have the assertion

u∗ ∈ C
(
Rn+1

)
∩ C2

(
Rn+1

+

)
∩ C2

(
Rn+1

−
)
.

Now we show that u∗ is harmonic near Rn in Rn+1. To do so, let (x0, 0)

be an arbitary point of Rn and let

Br := B ((x0, 0), r) ⊂ Rn+1

be an arbitrary small open ball of radius r about (x0, 0) (see Figure 5.6).
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Fig. 5.6. The open ball Br of radius r about (x0, 0)

Then we have the formula∫
∂Br

u∗(x, y) dσ(x, y)

=

∫
∂B+

r

u(x, y) dσ(x, y)−
∫
∂B−

r

u(x,−y) dσ(x, y)
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=

∫
∂B+

r

u(x, y) dσ(x, y)−
∫
∂B+

r

u(x, y) dσ(x, y)

= 0.

Hence there exists a constant ε > 0 such that∫
∂Br

u∗(x, y) dσ(x, y) = 0 for all 0 < r < ε.

Therefore, by using Green’s identity (5.4a) with Ω := Br and v := 1 we

obtain that

0 =
d

dr

(
1

rn ωn+1

∫
∂Br

u∗(x, y) dσ(x, y)

)
=

d

dr

(
1

ωn+1

∫
S(0,1)

u∗ ((x0, 0) + rz) dσ(z)

)

=
1

ωn+1

∫
S(0,1)

z · ∇u∗ ((x0, 0) + rz) dσ(z)

=
1

ωn+1

∫
S(0,r)

w

r
· ∇u∗ ((x0, 0) + w) r−ndσ(w)

=
1

rn ωn+1

∫
S(0,r)

w

r
· ∇u∗ ((x0, 0) + w) dσ(w)

=
1

rn ωn+1

∫
S(0,r)

∂u∗

∂ν
((x0, 0) + w) dσ(w)

=
1

rn ωn+1

∫
Br

∆u∗(x, y) dx dy for all 0 < r < ε,

where

S(0, r) =
{
w ∈ Rn+1 : |w| = r

}
.

Since the integral of ∆u∗ over any ball near the point (x0, 0) vanishes,

it follows that

∆u∗(x, y) = 0 in a neighborhood of each point (x0, 0) of R
n.

Summing up, we have proved that u∗(x, y) is harmonic in the whole

space Rn+1.

(2) By Lemma 5.11, it follows that the function u∗(x, y) is harmonic

and bounded on the whole space Rn+1. Hence, by applying Liouville’s

theorem for harmonic functions ([6, Chapter 2, Theorem 2.1]) we obtain

that

u∗(x, y) ≡ 0 on Rn+1,
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so that

u(x, y) ≡ 0 on Rn+1
+ .

The proof of Lemma 5.12 is complete.

Lemma 5.13. Assume that a function u(x, y) is harmonic in the half-

space Rn+1
+ and bounded in a proper sub-half space {(x, y) ∈ Rn+1

+ : y >

y0} of Rn+1
+ , for each y0 > 0. Then we have the formula

u(x, y1 + y2) = u(x, y1) ∗ P (x, y2) for all y1, y2 > 0.

Proof. For each y1 > 0, we let

w1(x, y) := u(x, y1 + y) for all y ≥ 0,

and

w2(x, y) := u(x, y1) ∗ P (x, y) =
∫
Rn

P (x− t, y)u(t, y1) dt for all y > 0.

Then it suffices to show that

w1(x, y) ≡ w2(x, y) for all (x, y) ∈ Rn+1
+ .

We find that the functions w1(x, y) and w2(x, y) are both harmonic in

Rn+1
+ , everywhere continuous and bounded on Rn+1

+ , and further take

the same boundary values u(x, y1) on Rn. Hence, by applying Lemma

5.12 to the function

h(x, y) = w1(x, y)− w2(x, y),

we obtain that

h(x, y) ≡ 0 on Rn+1
+ ,

that is,

w1(x, y) ≡ w2(x, y) for all (x, y) ∈ Rn+1
+ .

The proof of Lemma 5.13 is complete.

Step 2: Now, the proof of Theorem 5.10 may be carried out as follows.

Step 2-a: The case 1 < p <∞. Assume that

∥u(·, y)∥p ≤ c for all y > 0.

Then, by the weak compactness of the space Lp(Rn) (see Theorem 2.30)

we can find a sequence {yk}, yk ↓ 0, and a function f ∈ Lp(Rn) such

that

u(·, yk) −→ f weakly in Lp(Rn) as k → ∞,

□ 

□ 
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that is,∫
Rn

u(t, yk)g(t) dt −→
∫
Rn

f(t)g(t) dt for all g ∈ Lp′
(Rn) as k → ∞.

However, we remark that

P (·, y) = 1

cn

y

(| · |2 + y2)(n+1)/2
∈ Lp′

(Rn) for each y > 0.

Hence we have the assertion∫
Rn

P (x− t, y)u(t, yk) dt (5.30)

−→
∫
Rn

P (x− t, y)f(t) dt for all y > 0.

Thus it remains to show the following:

Claim 5.5. u(x, y) =
∫
Rn P (x−t, y) f(t) dt = P (x, y)∗f(x) for all y > 0.

Proof. By Lemma 5.13, it follows that

u(x, y + yk) =

∫
Rn

P (x− t, y)u(t, yk) dt. (5.31)

Hence, by letting k → ∞ in formula (5.31) we obtain from assertion

(5.30) that

u(x, y) = lim
k→∞

u(x, y + yk) = lim
k→∞

∫
Rn

P (x− t, y)u(t, yk) dt

=

∫
Rn

P (x− t, y)f(t) dt.

The proof of Claim 5.5 is complete.

Step 2-b: The case p = 1. Assume that

∥u(·, y)∥1 ≤ c for all y > 0.

Then, by the compactness of measures (Theorem 2.35) we can find a

sequence {yk}, yk ↓ 0, and a finite Borel measure µ on Rn such that∫
Rn

u(t, yk) g(t) dt −→
∫
Rn

g(t) dµ(t) for all g ∈ C0(R
n),

where

C0(R
n)

= the space of continuous functions on Rn vanishing at infinity.

□ 
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However, we find that

P (·, y) = 1

cn

y

(| · |2 + y2)(n+1)/2
∈ C0(R

n) for all y > 0.

Hence we have the assertion∫
Rn

P (x− t, y)u(t, yk) dt (5.32)

−→
∫
Rn

P (x− t, y) dµ(t) for all y > 0.

By arguing just as in the proof of Claim 5.5, we obtain that

u(x, y) =

∫
Rn

P (x− t, y) dµ(t) for all y > 0.

Furthermore, if {u(·, y)} is a Cauchy sequence in L1(Rn) as y ↓ 0, then

there exists a function f ∈ L1(Rn) such that u(·, y) −→ f in L1(Rn) as

y ↓ 0. Hence it follows that∫
Rn

u(t, yk) g(t) dt −→
∫
Rn

f(t) g(t) dt for all g ∈ L∞(Rn).

However, we remark that

P (·, y) = 1

cn

y

(| · |2 + y2)(n+1)/2
∈ L∞(Rn) for all y > 0.

Thus we have the assertion∫
Rn

P (x− t, y)u(t, yk) dt −→
∫
Rn

P (x− t, y)f(t) dt for all y > 0,

and so, by assertion (5.32),

u(x, y) =

∫
Rn

P (x− t, y) f(t) dt for all y > 0.

The proof of Theorem 5.10 is now complete.

The next theorem establishes some fundamental relationships between

means of the first derivatives of Poisson integrals

u(x, y) =

∫
Rn

P (x− t, y) f(t) dt

taken with respect to the variable y and those taken with respect to the

variables xi:

□ 
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Theorem 5.14. Assume that a function u(x, y) is harmonic in the half-

space Rn+1
+ and bounded in a proper sub-half space {(x, y) ∈ Rn+1

+ : y >

y0} of Rn+1
+ , for each y0 > 0. Then we have, for α > 0, 1 ≤ p, q ≤ ∞,

sup
1≤i≤n

∥yαuxi(·, ·)∥pq ≤Mα ∥yαuy(·, ·)|∥pq . (a)

∥yαuy(·, ·)∥pq ≤Mα sup
1≤i≤n

∥yαuxi(·, ·)∥pq . (b)

Here uy(x, y) and uxi(x, y) indicate the partial derivative of u(x, y) in

the direction of the element subscripted, that is,

uy(x, y) =
∂u

∂y
, uxi(x, y) =

∂u

∂xi
,

and the mixed norm ∥·∥pq is defined by the formula

∥yαu(·, ·)∥pq :=


(∫∞

0
(yα ∥u(·, y)∥p)q

dy
y

)1/q
if 1 ≤ q <∞,

supy>0

{
yα ∥u(·, y)∥p

}
if q = ∞.

The proof of Theorem 5.14 is divided into two steps.

Step 1: In order to prove Theorem 5.14, we need several lemmas.

Lemma 5.15. Let 1 ≤ p ≤ ∞. Then we have the inequality

∥P (·, y)∥p ≤
(

1

cn

)1/p′

y−n/p′
for all y > 0, (5.33)

where p′ is the exponent conjugate to p:

p′ =
p

p− 1
.

Proof. We remark that, by formulas (5.12a) and (5.15a),

∥P (·, y)∥1 = 1,

∥P (·, y)∥∞ =
1

cn
y−n for all y > 0.

Hence the desired inequality (5.33) follows from the logarithmic con-

vexity of the Lp norm as a function of 1/p, since we have the formula

1

p
= 1− 1

p′
=

(
1− 1

p′

)
1

1
+

1

p′
1

∞
.

The proof of Lemma 5.15 is complete. □ 
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Lemma 5.16. If f(x) ∈ Lp(Rn) with 1 ≤ p ≤ ∞ and if u(x, y) =

P (x, y) ∗ f(x) is its Poisson integral, then we have the inequality

∥u(·, y)∥∞ ≤
(

1

cn

)1/p

∥f∥p y
−n/p for all y > 0.

Proof. By Young’s inequality (Theorem 3.23), it follows that

∥u(·, y)∥∞ ≤ ∥P (·, y)∥p′ ∥f∥p

≤
(

1

cn

)1/p

y−n/p ∥f∥p for all y > 0.

The proof of Lemma 5.16 is complete.

Lemma 5.17. Assume that a function u(x, y) is harmonic in the half-

space Rn+1
+ and that, for each y0 > 0, there exists a constant A =

A(y0) > 0 such that

∥u(·, y)∥p ≤ A for all y ≥ y0, (5.34)

with 1 ≤ p ≤ ∞. Then we have the following inequalities:

∥uy(·, y)∥p ≤ 2(n+ 1) y−1 ∥u(·, y/2)∥p for all y > 0. (a)

∥uxi(·, y)∥p ≤ (n+ 1) y−1 ∥u(·, y/2)∥p for all y > 0. (b)

Proof. By condition (5.34), we can apply Theorem 5.10 to obtain that

there exists a function h(x) ∈ Lp(Rn) such that

u(x, y + y0) = P (x, y) ∗ h(x) for all y > 0.

Hence it follows from an application of Lemma 5.15 that

∥u(·, y + y0)∥∞ ≤ ∥P (·, y)∥p′ ∥h∥p ≤ c−1/p
n ∥h∥p y

−n/p for all y > 0.

This proves that the function u(x, y + y0) is bounded in each proper

sub-half space of Rn+1
+ . Hence we have, by Lemma 5.13,

u(x, y1 + y2 + y0) = P (x, y2) ∗ u(x, y1 + y0) for all y1, y2 > 0,

or equivalently,

u(x, y + z) = P (x, y) ∗ u(x, z) for all y, z > 0.

If we differentiate the both sides with respect to y (resp. xi), we find

that

uy(x, y + z) = Py(x, y) ∗ u(x, z) for all y, z > 0,

uxi(x, y + z) = Pxi(x, y) ∗ u(x, z) for all y, z > 0,

□ 
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since the integrals defining the convolutions converge absolutely.

Therefore, part (a) follows from part (b) of Lemma 5.7. Indeed, we

have the inequality

∥uy(·, y)∥p = ∥Py(·, y/2) ∗ u(·, y/2)∥p ≤ ∥Py(·, y/2)∥1 ∥u(·, y/2)∥p
≤ 2(n+ 1)y−1 ∥u(·, y/2)∥p for all y > 0.

Similarly, part (b) follows from part (c) of Lemma 5.7.

The proof of Lemma 5.17 is complete.

Lemma 5.18. Assume that a function u(x, y) is harmonic in the half-

space Rn+1
+ and bounded in a proper sub-half space {(x, y) ∈ Rn+1

+ : y >

y0} of Rn+1
+ , for each y0 > 0. Then we have, for α > 0, 1 ≤ p, q ≤ ∞,∥∥yα+1uy(·, ·)

∥∥
pq

≤ 2α+1(n+ 1) ∥yαu(·, ·)∥pq . (a)∥∥yα+1uxi(·, ·)
∥∥
pq

≤ 2α(n+ 1) ∥yαu(·, ·)∥pq , 1 ≤ i ≤ n. (b)

If, in addition, u(x, y) → 0 as y → ∞, then we have the inequality

∥yαu(·, ·)∥pq ≤ 1

α

∥∥yα+1uy(·, ·)
∥∥
pq
. (c)

Proof. We recall that

u(x, y + z) = P (x, y) ∗ u(x, z) for all y, z > 0.

Hence, if we differentiate the both sides with respect to y (resp. xi), we

obtain that

uy(x, y + z) = Py(x, y) ∗ u(x, z) for all y, z > 0,

uxi(x, y + z) = Pxi(x, y) ∗ u(x, z) for all y, z > 0.

In particular, it follows that

uy(x, y) = Py(x, y/2) ∗ u(x, y/2) for all y > 0,

uxi(x, y) = Pxi(x, y/2) ∗ u(x, y/2) for all y > 0.

Therefore, we have, by part (b) of Lemma 5.17,

∥uy(·, y)∥p = ∥Py(·, y/2) ∗ u(·, y/2)∥p (5.35)

≤ ∥Py(·, y/2)∥1 ∥u(·, y/2)∥p
≤ 2(n+ 1)y−1 ∥u(·, y/2)∥p for all y > 0.

Similarly, we have the inequality

∥uxi
(·, y)∥p ≤ (n+ 1)y−1 ∥u(·, y/2)∥p for all y > 0. (5.36)

□ 



5.5 Manipulations of Harmonic Functions 197

(a-1) The case 1 ≤ q <∞: By inequality (5.35), it follows that

∥∥yα+1uy(·, ·)
∥∥
pq

=

(∫ ∞

0

(
yα+1 ∥uy(·, y)∥p

)q dy
y

)1/q

≤
(∫ ∞

0

(
yα+12(n+ 1) y−1 ∥u(·, y/2)∥p

)q dy
y

)1/q

= 2α+1(n+ 1)

(∫ ∞

0

(
zα ∥u(·, z)∥p

)q dz
z

)1/q

= 2α+1(n+ 1) ∥yαu(·, ·)∥pq .

(a-2) The case q = ∞: We have, by inequality (5.36),∥∥yα+1uy(·, ·)
∥∥
p∞ = sup

y>0

{
yα+1 ∥uy(·, y)∥p

}
≤ 2(n+ 1) sup

y>0

{
yα ∥u(·, y/2)∥p

}
= 2α+1(n+ 1) sup

z>0

{
zα ∥u(·, z)∥p

}
= 2α+1(n+ 1) ∥yαu(·, ·)∥p∞ .

This completes the proof of part (a).

(b) Similarly, we have the inequality∥∥yα+1uxi(·, ·)
∥∥
pq

≤ 2α(n+ 1) ∥yαu(·, ·)∥pq , 1 ≤ q ≤ ∞.

(c) If u(x, y) → 0 as y → ∞, it follows that

u(x, y) = −
∫ ∞

y

us(x, s) ds for all y > 0.

Hence, by applying Minkowski’s inequality for integrals (Theorem 3.18)

we obtain that

∥u(·, y)∥p ≤
∫ ∞

y

∥us(·, s)∥p ds for all y > 0.

(c-1) The case 1 ≤ q < ∞: By Hardy’s inequality (Theorem 3.20), it

follows that

∥yαu(·, ·)∥pq =

(∫ ∞

0

(yα ∥u(·, y)∥p)
α+1 dy

y

)1/q

≤
(∫ ∞

0

(
yα
∫ ∞

y

∥us(·, s)∥p ds
)q

dy

y

)1/q
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≤ 1

α

(∫ ∞

0

(
yα+1 ∥uy(·, y)∥p

)q dy
y

)1/q

=
1

α

∥∥yα+1uy(·, ·)
∥∥
pq
.

(c-2) The case q = ∞: We let

Cα =
∥∥yα+1uy(·, ·)

∥∥
p∞ .

Then we have the inequality

∥uy(·, y)∥p ≤ Cαy
−α−1 for all y > 0,

so that

∥u(·, y)∥p ≤
∫ ∞

y

∥us(·, s)∥p ds ≤ Cαα
−1y−α for all y > 0.

This proves that

∥yαu(·, ·)∥pq = sup
y>0

{
yα ∥u(·, y)∥p

}
≤ 1

α

∥∥yα+1uy(·, ·)
∥∥
p∞ .

The proof of Lemma 5.18 is complete.

Step 2: First, we remark that, for each y0 > 0, there exists a constant

Ay0 > 0 such that

∥u(·, y)∥∞ ≤ Ay0 for all y > y0.

Hence, by virtue of Lemma 5.17 it follows that

∥uy(·, y)∥∞ ≤ 2(n+ 1)

y
∥u(·, y/2)∥∞ (5.37)

≤ 2(n+ 1)Ay0

y
for all y ≥ 2y0,

and that

∥uxi(·, y)∥∞ ≤ (n+ 1)

y
∥u(·, y/2)∥∞ (5.38)

≤ (n+ 1)Ay0

y
for all y ≥ 2y0.

Step 2-a: Since the function uy(x, y) is harmonic in Rn+1
+ and sat-

isfies the inequality (5.37), it follows from an application of part (b) of

Lemma 5.18 that∥∥yα+1uxiy(·, ·)
∥∥
pq

≤ 2α(n+ 1) ∥yαuy(·, ·)∥pq . (5.39)

□ 
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Moreover, we remark by inequality (5.38) that uxi(x, y) → 0 as y → ∞.

Hence, by applying part (c) of Lemma 5.18 to the function uxi(x, y) we

obtain that

∥yαuxi(·, ·)∥pq ≤ 1

α

∥∥yα+1uxiy(·, ·)
∥∥
pq
. (5.40)

Therefore, it follows from inequalities (5.39) and (5.40) that

∥yαuxi(·, ·)∥pq ≤ 2α

α
(n+ 1) ∥yαuy(·, ·)∥pq .

This proves the desired part (a) of Theorem 5.14.

Step 2-b: Since the function uxi(x, y) is harmonic in Rn+1
+ and sat-

isfies the inequality (5.38), it follows from an application of part (b) of

Lemma 5.18 that∥∥yα+1uxixj (·, ·)
∥∥
pq

≤ 2α(n+ 1) ∥yαuxi(·, ·)∥pq . (5.41)

However, we remark that

uyy(x, y) = −
n∑

i=1

uxixi(x, y).

Hence we have, by inequality (5.41),

∥∥yα+1uyy(·, ·)
∥∥
pq

≤
n∑

i=1

∥∥yα+1uxixi(·, ·)
∥∥
pq

(5.42)

≤ 2α(n+ 1)
n∑

i=1

∥yαuxi(·, ·)∥pq

≤ 2αn(n+ 1) sup
1≤i≤n

∥yαuxi(·, ·)∥pq .

Moreover, we remark by inequality (5.37) that uy(x, y) → 0 as y → ∞.

Hence, by applying part (c) of Lemma 5.18 to the function uy(x, y) we

obtain that

∥yαuy(·, ·)∥pq ≤ 1

α

∥∥yα+1uyy(·, ·)
∥∥
pq
. (5.43)

Therefore, it follows from inequalities (5.42) and (5.43) that

∥yαuy(·, ·)∥pq ≤ 2α

α
n(n+ 1) sup

1≤i≤n
∥yαuxi(·, ·)∥pq .

This proves the desired part (b) of Theorem 5.14.

The proof of Theorem 5.14 is now complete. □ 
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The next theorem establishes some fundamental relationships between

means of the second derivatives of Poisson integrals

u(x, y) =

∫
Rn

P (x− t, y) f(t) dt

taken with respect to the variable y and those taken with respect to the

variables xi:

Theorem 5.19. Assume that a function u(x, y) is harmonic in the half-

space Rn+1
+ and bounded in a proper sub-half space {(x, y) ∈ Rn+1

+ : y >

y0} of Rn+1
+ , for each y0 > 0. Then we have, for α > 0, 1 ≤ p, q ≤ ∞,

sup
1≤i,j≤n

∥∥yαuxixj (·, ·)
∥∥
pq

≤Mα ∥yαuyy(·, ·)∥pq . (a)

∥yαuyy(·, ·)∥pq ≤Mα sup
1≤i,j≤n

∥∥yαuxixj (·, ·)
∥∥
pq
. (b)

Proof. Part (b) follows from the equation

uyy(x, y) = −
n∑

i=1

uxixi(x, y).

On the other hand, part (a) follows by applying part (a) of Theorem

5.14 twice.

The proof of Theorem 5.19 is complete.

5.6 Notes and Comments

The results of this chapter are adapted from Taibleson [72] and Folland

[28] (see also [6, Chapter 1]).

D 



6

Besov Spaces via Poisson Integrals

In this chapter we develop the theory of Besov spaces on the Euclidean

space Rn, paying particular attention to Poisson integrals. Besov spaces

are function spaces defined in terms of the Lp modulus of continuity,

and enter naturally in connection with boundary value problems in the

framework of Sobolev spaces of Lp type. We prove a variety of equivalent

norms for the Besov spaces on Rn via Poisson integrals (Theorems 6.3,

6.5 and 6.6).

6.1 Definition of Besov Spaces

Let α > 0 and 1 ≤ p, q ≤ ∞. We let

Bα
p,q(R

n) = the space of functions f ∈ Lp(Rn) for which (6.1)

∥f∥α;p,q = ∥f∥p +
∥∥∥yα−αu(α)y (·, ·)

∥∥∥
pq

= ∥f∥p +
(∫ ∞

0

(
yα−α

∥∥∥u(α)y (·, y)
∥∥∥
p

)q
dy

y

)1/q

<∞.

Here α is the smallest integer greater than α and u(x, y) = P (x, y)∗f(x)
is the Poisson integral of f(x)

u(x, y) = P (x, y) ∗ f(x) (5.16)

=
1

cn

∫
Rn

y

(|x− z|2 + y2)(n+1)/2
f(z) dz for all y > 0,

where cn is a positive constant given by the formula

cn =
π(n+1)/2

Γ((n+ 1)/2)
.

201
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Moreover, we recall that the mixed norm ∥·∥pq is defined by the formula

∥yαu(·, ·)∥pq =


(∫∞

0
(yα ∥u(·, y)∥p)q

dy
y

)1/q
if 1 ≤ q <∞,

supy>0

{
yα ∥u(·, y)∥p

}
if q = ∞.

First, we prove the completeness of Bα
p,q(R

n):

Theorem 6.1. The space Bα
p,q(R

n) is a Banach space.

Proof. We only consider the case:

0 < α < 1, α = 1.

Let {fk} be an arbitrary Cauchy sequence in Bα
p,q(R

n), that is, we

have, as k, ℓ→ ∞,∥∥fk − f ℓ
∥∥
α;p,q

=
∥∥fk − f ℓ

∥∥
p
+
∥∥y1−α

(
uky(·, ·)− uℓy(·, ·)

)∥∥
pq

(6.2)

−→ 0,

where

uk(x, y) = P (x, y) ∗ fk(x).

Then, since Lp(Rn) is complete, there exists a function f ∈ Lp(Rn)

such that ∥∥fk − f
∥∥
p
−→ 0 as k → ∞.

We let

u(x, y) = P (x, y) ∗ f(x).

Then we obtain the following claim:

Claim 6.1.
∥∥y1−α

(
uky(·, ·)− uy(·, ·)

)∥∥
pq

−→ 0 as k → ∞.

Proof. Since we have the formulas

uℓy(x, y) = Py(x, y) ∗ f ℓ(x),
uy(x, y) = Py(x, y) ∗ f(x),

it follows that we have, by Lemma 5.7,∥∥uℓy(·, y)− uy(·, y)
∥∥
p
≤ ∥Py(·, y)∥1

∥∥f ℓ − f
∥∥
p

≤ (n+ 1)y−1
∥∥f ℓ − f

∥∥
p

for all y > 0.

This implies that we have, for each y > 0,∥∥y1−α
(
uky(·, y)− uℓy(·, y)

)∥∥
p
−→

∥∥y1−α
(
uky(·, y)− uy(·, y)

)∥∥
p
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as ℓ→ ∞.

Hence, by applying Fatou’s lemma (Theorem 3.7) we obtain from asser-

tion (6.2) that ∥∥y1−α
(
uky(·, ·)− uy(·, ·)

)∥∥q
pq

=

∫ ∞

0

(
y1−α

∥∥uky(·, y)− uy(·, y)
∥∥
p

)q dy
y

=

∫ ∞

0

lim
ℓ→∞

(
y1−α

∥∥uky(·, y)− uℓy(·, y)
∥∥
p

)q dy
y

≤ lim inf
ℓ→∞

∫ ∞

0

(
y1−α

∥∥uky(·, y)− uℓy(·, y)
∥∥
p

)q dy
y

≤ sup
ℓ≥k

∥∥y1−α
(
uky(·, ·)− uℓy(·, ·)

)∥∥q
pq

≤ sup
ℓ≥k

∥∥fk − f ℓ
∥∥q
α;p,q

−→ 0 as k → ∞.

The proof of Claim 6.1 is complete.

Therefore, we find from Claim 6.1 that

f ∈ Bα
p,q(R

n),

fk −→ f in Bα
p,q(R

n),

since we have the assertion∥∥y1−αuy(·, ·)
∥∥
pq

≤
∥∥y1−α

(
uy(·, ·)− uky(·, ·)

)∥∥
pq

+
∥∥y1−αuky(·, ·)

∥∥
pq
<∞,

and also∥∥fk − f
∥∥
α;p,q

=
∥∥fk − f

∥∥
p
+
∥∥y1−α

(
uky(·, ·)− uy(·, ·)

)∥∥
pq

−→ 0 as k → ∞.

This proves the completeness of the Besov space Bα
p,q(R

n).

The proof of Theorem 6.1 is complete.

Proposition 6.2. Let f ∈ Lp(Rn) with 1 ≤ p ≤ ∞, and u(x, y) =

P (x, y) ∗ f(x) its Poisson integral. Then, for any integer k > α, the

norm

∥f∥p +
∥∥∥yk−αu(k)y (·, ·)

∥∥∥
pq

is equivalent to the norm ∥f∥α;p,q.

□ 

□ 
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Proof. It suffices to show that the ratio∥∥∥yk−αu
(k)
y (·, ·)

∥∥∥
pq∥∥∥yα−αu

(α)
y (·, ·)

∥∥∥
pq

is bounded above and below by positive constants independent of f .

However, this follows from a repeated application of part (a) and part

(c) of Lemma 5.18.

The proof of Proposition 6.2 is complete.

6.2 Various Norms of Besov Spaces

The next theorem gives a variety of equivalent norms for the Besov space

Bα
p,q(R

n):

Theorem 6.3. Let f be a function in Lp(Rn) with 1 ≤ p, q ≤ ∞, and

let u(x, y) = P (x, y) ∗ f(x) be its Poisson integral. We define the eight

norms A through H as follows:

• A :=

∥∥∥∥f(·+ h)− f(·)
|h|α

∥∥∥∥
pq

=

(∫
Rn

(∥f(·+ h)− f(·)∥p
|h|α

)q
dh

|h|n

)1/q

,

0 < α < 1.

• B :=

∥∥∥∥f(·+ h)− 2f(·) + 2f(· − h)

|h|α

∥∥∥∥
pq

=

(∫
Rn

(∥f(·+ h)− 2f(·) + f(· − h)∥p
|h|α

)q
dh

|h|n

)1/q

,

0 < α < 2.

• C :=
1

ωn

∫ ∞

0

t−α

∥∥∥∥∥
∫
Σn−1

(f(·+ tσ)− f(·)) dσ

∥∥∥∥∥
p

q

dt

t

1/q

,

0 < α < 2.

• D :=

(∫ ∞

0

(
y1−α ∥uy(·, y)∥p

)q dy
y

)1/q

=
∥∥y1−αuy(·, ·)

∥∥
pq
,

0 < α < 1.

□ 
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• E :=

(∫ ∞

0

(y2−α ∥uyy(·, y)∥p)
q dy

y

)1/q

=
∥∥y2−αuyy(·, ·)

∥∥
pq
,

0 < α < 2.

• F :=

(∫ ∞

0

(
t−α · sup

0<|h|≤t

∥f(·+ h)− f(·)∥p

)q
dt

t

)1/q

,

0 < α < 1.

• G :=

(∫ ∞

0

(
t−α · sup

0<|h|≤t

∥f(·+ h)− 2f(·) + f(· − h)∥p

)q
dt

t

)1/q

,

0 < α < 2.

• H :=

(∫ ∞

0

(
y−α ∥u(·, y)− f(·)∥p

)q dy
y

)1/q

,

0 < α < 1.

Here Σn−1 is the unit sphere in Rn, dσ is its surface element and ωn is

its surface area

ωn := |Σn−1| =
∫
Σn−1

dσ =
2πn/2

Γ(n/2)
.

Then the norms A, B, C, D, E, F , G and H are equivalent for

0 < α < 1, while the norms B, C, E and G are equivalent for 0 < α < 2.

Proof. The proof is divided into ten steps.

Step 1: E ≤ 22−α(n+ 1)D and D ≤ 1/(1− α)E for 0 < α < 1.

Assume that

u(x, y) = P (x, y) ∗ f(x) for f ∈ Lp(Rn).

Then we have, by part (i) of Theorem 5.8,

∥u(·, y)∥p = ∥P (·, y) ∗ f∥p ≤ ∥f∥p for all y > 0.

Hence, by Lemma 5.11 it follows that

∥u(·, y)∥∞ ≤
(
2n+1

Vn+1

)1/p

∥f∥p y
−n/p for all y > 0,

where Vn+1 is the volume of the unit ball in Rn+1

Vn+1 =
ωn+1

n+ 1
=

π(n+1)/2

Γ((n+ 1)/2 + 1)
.
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By applying Lemma 5.17 with p := ∞, we obtain that, for each y0 > 0,

∥uy(·, y)∥∞ ≤ 2(n+ 1)Ay0 y
−1 for all y ≥ 2y0, (6.3)

with

Ay0 :=

(
2n+1

Vn+1

)1/p

∥f∥p y
−n/p
0 .

Therefore, it follows from an application of part (a) of Lemma 5.18 with

α := 1− α that

E =
∥∥y2−αuyy(·, ·)

∥∥
pq

≤ 22−α(n+ 1)
∥∥y1−αuy(·, ·)

∥∥
pq

= 22−α(n+ 1)D, 0 < α < 1.

On the other hand, we find from inequality (6.3) that uy(x, y) → 0

as y → ∞. Hence, by applying part (c) of Lemma 5.18 with u(x, y) :=

uy(x, y) and α := 1− α we obtain that

D =
∥∥y1−αuy(·, ·)

∥∥
pq

≤ 1

1− α

∥∥y2−αuyy(·, ·)
∥∥
pq

=
1

1− α
E, 0 < α < 1.

Step 2: C ≤ (2ω
1/q
n )−1B.

Step 2-a: The case q = ∞. By Minkowski’s inequality for integrals

(Theorem 3.16), it follows that

C =
1

ωn
sup
t>0

t−α

∥∥∥∥∥
∫
Σn−1

(f(·+ tσ)− f(·)) dσ

∥∥∥∥∥
p


=

1

2

1

ωn
sup
t>0

t−α

∥∥∥∥∥
∫
Σn−1

(f(·+ tσ)− 2f(·) + f(· − tσ)) dσ

∥∥∥∥∥
p


≤ 1

2

1

ωn
sup
t>0

{∫
Σn−1

∥f(·+ tσ)− 2f(·) + f(· − tσ)∥p
tα

dσ

}

≤ 1

2

1

ωn

∫
Σn−1

(
sup
h∈Rn

∥f(·+ h)− 2f(·) + f(· − h)∥p
|h|α

)
dσ

=
1

2
B, 0 < α < 1.

Step 2-b: The case 1 ≤ q < ∞. By applying Hölder’s inequality

(Theorem 3.14) with q′ = q/(q − 1), we obtain that

C
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=
1

ωn

∫ ∞

0

t−α

∥∥∥∥∥
∫
Σn−1

(f(·+ tσ)− f(·)) dσ

∥∥∥∥∥
p

q

dt

t

1/q

=
1

2

1

ωn

∫ ∞

0

∥∥∥∥∥
∫
Σn−1

(f(·+ tσ)− 2f(·) + f(· − tσ)) dσ

∥∥∥∥∥
q

p

dt

t1+αq

1/q

≤ 1

2

1

ωn

(∫ ∞

0

(∫
Σn−1

∥f(·+ tσ)− 2f(·) + f(· − tσ)∥p dσ

)q
dt

t1+αq

)1/q

≤ 1

2

1

ωn

(∫ ∞

0

∫
Σn−1

∥f(·+ tσ)− 2f(·) + f(· − tσ)∥qp dσ ωq/q′

n

dt

t1+αq

)1/q

≤ 1

2

1

ω
1/q
n

(∫ ∞

0

∫
Σn−1

∥f(·+ tσ)− 2f(·) + f(· − tσ)∥qp dσ
dt

t1+αq

)1/q

=
1

2

1

ω
1/q
n

(∫
Rn

(∥f(·+ h)− 2f(·) + f(· − h)∥p
|h|α

)q
dh

|h|n

)1/q

=
1

2ω
1/q
n

B, 0 < α < 1.

Step 3: B ≤ 2A. We remark that

∥f(·+ h)− 2f(·) + f(· − h)∥p ≤ ∥f(·+ h)− f(·)∥p + ∥f(·)− f(· − h)∥p
≤ 2 ∥f(·+ h)− f(·)∥p .

Hence we have the inequality

B =

(∫
Rn

(∥f(·+ h)− 2f(·) + f(· − h)∥p
|h|α

)q
dh

|h|n

)1/q

≤

(∫
Rn

(
2 ∥f(·+ h)− f(·)∥p

|h|α

)q
dh

|h|n

)1/q

= 2A, 0 < α < 1.

Step 4: A ≤ ω
1/q
n F . This is obvious. Indeed, we have the inequality

A =

(∫
Rn

(∥f(·+ h)− f(·)∥p
|h|α

)q
dh

|h|n

)1/q

=

(∫ ∞

0

∫
Σn−1

∥f(·+ tσ)− f(·)∥qp
dt

t1+αq
dσ

)1/q
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≤ ω1/q
n

(∫ ∞

0

(
t−α · sup

0<|h|≤t

∥f(·+ h)− f(·)∥p

)q
dt

t

)1/q

= ω1/q
n F, 0 < α < 1.

Step 5: F ≤MαD. We recall (see Theorem 5.9) that

lim
y↓0

u(x, y) = f(x),

whenever x belongs to the Lebesgue set L(f) of f . We let

L = {(x, h) ∈ Rn ×Rn : x+ h ∈ L(f)} .

By Fubini’s theorem (Theorem 3.10), we find that the complement of L
has measure zero.

Now we assume that

(x, 0), (x, h) ∈ L with 0 < |h| ≤ t.

Then we have, for h = sσ, 0 < s ≤ t and σ ∈ Σn−1,

f(x+ h)− f(x)

= (f(x+ h)− u(x+ h, t)) + (u(x+ h, t)− u(x, t)) + (u(x, t)− f(x))

= −
∫ t

0

uy(x+ sσ, y) dy +

∫ s

0

ur(x+ rσ, t) dr +

∫ t

0

uy(x, y) dy.

Hence it follows from an application of Minkowski’s inequality for inte-

grals (Theorem 3.16) that

∥f(·+ h)− f(·)∥p ≤
∫ t

0

∥uy(·+ sσ, y)∥p dy +
∫ s

0

∥ur(·+ rσ, t)∥p dr

+

∫ t

0

∥uy(·, y)∥p dy

≤ 2

∫ t

0

∥uy(·, y)∥p dy + t ∥ur(·, t)∥p

≤ 2

∫ t

0

∥uy(·, y)∥p dy + t
n∑

i=1

∥uxi(·, t)∥p ,

since we have the formula

ur(x+ rσ, t) =

n∑
i=1

∂u

∂xi
(x+ rσ, t)σi.

Step 5-a: The case q = ∞. Since we have the inequality

∥uy(·, y)∥p ≤ Dyα−1 for all y > 0,
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it follows from part (a) of Theorem 5.14 that

sup
1≤i≤n

∥uxi(·, y)∥p ≤M ′
α ∥uy(·, y)∥p ≤M ′

αDy
α−1 for all y > 0.

Thus we obtain that

∥f(·+ h)− f(·)∥p ≤ 2

∫ t

0

∥uy(·, y)∥p dy + t
n∑

i=1

∥uxi(·, t)∥p (6.4)

≤ 2D

∫ t

0

yα−1 dy +M ′
αDnt tα−1

=

(
2

α
+ nM ′

α

)
D tα for all 0 < |h| ≤ t.

This proves that

t−α · sup
0<|h|≤t

∥f(·+ h)− f(·)∥p ≤
(
2

α
+ nM ′

α

)
D,

so that

F = sup
t>0

(
t−α · sup

0<|h|≤t

∥f(·+ h)− f(·)∥p

)
≤MαD,

with

Mα :=
2

α
+ nM ′

α, 0 < α < 1.

Step 5-b: The case 1 ≤ q <∞. In view of inequality (6.4), we have,

for some positive constant Mq,

F =

(∫ ∞

0

(
t−α · sup

0<|h|≤t

∥f(·+ h)− f(·)∥p

)q
dt

t

)1/q

(6.5)

≤

(∫ ∞

0

t−αq

(
2

∫ t

0

∥uy(·, y)∥p dy + t
n∑

i=1

∥uxi(·, t)∥p

)q
dt

t

)1/q

≤Mq

[(∫ ∞

0

(
t−α

∫ t

0

∥uy(·, y)∥p dy
)q

dt

t

)1/q

+
n∑

i=1

(∫ ∞

0

(
t1−α ∥uxi(·, t)∥p

)q dt
t

)1/q
]
.

However, we have, by Hardy’s inequality (Theorem 3.18),(∫ ∞

0

(
t−α

∫ t

0

∥uy(·, y)∥p dy
)q

dt

t

)1/q

(6.6)
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≤ 1

α

(∫ ∞

0

(
y1−α ∥uy(·, y)∥p

)q dy
y

)1/q

=
1

α
D.

Furthermore, we have, by part (a) of Theorem 5.14,

n∑
i=1

(∫ ∞

0

(
t1−α ∥uxi(·, t)∥p

)q dt
t

)1/q

(6.7)

≤M ′
α

(∫ ∞

0

(
y1−α ∥uy(·, y)∥p

)q dy
y

)1/q

=M ′
αD.

Therefore, by combining inequalities (6.5), (6.6) and (6.7) we find that

F ≤MαD,

with

Mα :=Mq

(
1

α
+M ′

α

)
, 0 < α < 1.

Step 6: B ≤ ω
1/q
n G. This is obvious. Indeed, we have the inequality

B

=

(∫
Rn

(∥f(·+ h)− 2f(·) + f(· − h)∥p
|h|α

)q
dh

|h|n

)1/q

=

(∫ ∞

0

∫
Σn−1

∥f(·+ tσ)− 2f(·) + f(· − tσ)∥qp dσ
dt

t1+αq

)1/q

≤ ω1/q
n

(∫ ∞

0

(
t−α · sup

0<|h|≤t

∥f(·+ h)− 2f(·) + f(· − h)∥p

)q
dt

t

)1/q

= ω1/q
n G, 0 < α < 2.

Step 7: G ≤ MαE. We have, for h = sσ, 0 < s ≤ t, σ ∈ Σn−1 and

ε > 0,

u(x± h, ε) =
{
[tuy(x± h, t)− εuy(x± h, ε)]

− [u(x± h, t)− u(x± h, ε)]
}

− [tuy(x± h, t)− εuy(x± h, ε)] + u(x± h, t)

=

∫ t

ε

yuyy(x± h, y) dy − tuy(x± h, t) + u(x± h, t)
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+ εuy(x± h, ε),

and

u(x, ε) =

∫ t

ε

yuyy(x, y) dy − tuy(x, t) + u(x, t) + εuy(x, ε).

Hence it follows that

u(x+ h, ε)− 2u(x, ε) + u(x− h, ε)

=

∫ t

ε

yuyy(x+ h, y) dy +

∫ t

ε

yuyy(x− h, y) dy − 2

∫ t

ε

yuyy(x, y) dy

− t [uy(x+ h, t)− uy(x, t)]− t [uy(x− h, t)− uy(x, t)]

+ [u(x+ h, t)− 2u(x, t) + u(x− h, t)]

+ ε [uy(x+ h, ε)− 2uy(x, ε) + uy(x− h, ε)] .

Thus, by applying Minkowski’s inequality for integrals (Theorem 3.16)

we obtain that

∥u(·+ h, ε)− 2u(·, ε) + u(· − h, ε)∥p (6.8)

≤
∫ t

ε

y ∥uyy(·+ h, y)∥p dy +
∫ t

ε

y ∥uyy(· − h, y)∥p dy

+ 2

∫ t

ε

y ∥uyy(·, y)∥p dy

+ t ∥uy(·+ h, t)− uy(·, t)∥p + t ∥uy(· − h, t)− uy(·, t)∥p
+ ∥u(·+ h, t)− 2u(·, t) + u(· − h, t)∥p
+ ε ∥uy(·+ h, ε)− 2uy(·, ε) + uy(· − h, ε)∥p

≤ 4

∫ t

ε

y ∥uyy(·, y)∥p dy + 2t ∥uy(·+ h, t)− uy(·, t)∥p

+ ∥u(·+ h, t)− 2u(·, t) + u(· − h, t)∥p + 4ε ∥uy(·, ε)∥p

≤ 4

∫ t

ε

y ∥uyy(·, y)∥p dy + 2t
n∑

i=1

∫ s

0

∥uyxi(·+ rσ, t)∥p dr

+
n∑

i,j=1

∫ s

0

∫ r

0

∥∥uxixj (·+ vσ, t)
∥∥
p
dv dr

+
n∑

i,j=1

∫ s

0

∫ r

0

∥∥uxixj
(· − vσ, t)

∥∥
p
dv dr + 4ε ∥uy(·, ε)∥p

≤ 4

∫ t

ε

y ∥uyy(·, y)∥p dy + 2t2
n∑

i=1

∥uyxi(·, t)∥p
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+ t2
n∑

i,j=1

∥∥uxixj (·, t)
∥∥
p
+ 4ε ∥uy(·, ε)∥p .

Step 7-1: Here we need the following lemma:

Lemma 6.4. Assume that u(x, y) is harmonic in the half-space Rn+1
+

and bounded in each proper subhalf space of Rn+1
+ , and that we are given

α > 0, an integer k > α, D > 0 and y0 > 0 such that∥∥∥yk−αu(k)y (·, ·)
∥∥∥
pq

≤ D, (6.9)

∥u(·, y)∥p ≤ D for all y ≥ y0. (6.10)

Then it follows that the function u(x, y) is the Poisson integral of some

function f ∈ Bα
p,q(R

n). Moreover, we have the following two assertions

(a) and (b):

∥uy(·, y)∥p = o(y−1) as y ↓ 0. (a)

∥f∥α;p,q ≤Mα,k,y0D. (b)

Proof. The proof of Lemma 6.4 is divided into two steps.

Step (I): First, we prove assertion (a).

(a-1) The case 0 < α < 1: We remark that

u(x, y) = O(1) as y → ∞,

uniformly in x ∈ Rn. However, we have, by the mean value theorem,

u(x, y) = u(x, y0) + uy(x, z)(y − y0) for some z ∈ (y0, y).

Hence it follows that

uy(x, y) = o(1) as y → ∞,

uniformly in x ∈ Rn.

Now, by a repeated application of part (c) of Lemma 5.18 we find

from inequality (6.9) that∥∥y1−αuy(·, y)
∥∥
pq

≤Mα

∥∥y2−αuyy(·, y)
∥∥
pq

(6.11)

≤Mα,k

∥∥∥yk−αu(k)(·, y)
∥∥∥
pq

≤Mα,kD for all y > 0.

However, it is easy to see that the function ∥uy(·, y)∥p is non-increasing

of y. Indeed, since uy(x, y) is harmonic in Rn+1
+ , it follows that

∥uy(·, y1 + y2)∥p = ∥P (·, y1) ∗ uy(·, y2)∥p
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≤ ∥P (·, y1)∥1 ∥uy(·, y2)∥p
= ∥uy(·, y2)∥p for all y1 and y2 > 0.

Thus we have, by inequality (6.11),

y1−α

((1− α)q)1/q
∥uy(·, y)∥p =

(∫ y

0

(
t(1−α) ∥uy(·, y)∥p

)q dt
t

)1/q

≤
(∫ y

0

(
t(1−α) ∥uy(·, t)∥p

)q dt
t

)1/q

≤
(∫ ∞

0

(
t(1−α) ∥uy(·, t)∥p

)q dt
t

)1/q

=
∥∥y1−αuy(·, ·)

∥∥
pq

≤Mα,kD for all y > 0.

This proves that

y ∥uy(·, y)∥p ≤Mα,k ((1− α)q)
1/q

Dyα for all y > 0. (6.12)

(a-2) The case α ≥ 1: We remark that, by inequality (6.9),(∫ 2y0

0

(
yk−1/2

∥∥∥u(k)y (·, y)
∥∥∥
p

)q
dy

y

)1/q

(6.13)

=

(∫ 2y0

0

yq(α−1/2)

(
yk−α

∥∥∥u(k)y (·, y)
∥∥∥
p

)q
dy

y

)1/q

≤ (2y0)
(α−1/2)D.

On the other hand, it follows from inequality (6.10) that, for all y ≥ 2y0,∥∥∥u(k)y (·, y)
∥∥∥
p
=
∥∥∥P (k)

y (·, y/2) ∗ u(·, y/2)
∥∥∥
p

≤
∥∥∥P (k)

y (·, y/2)
∥∥∥
1
∥u(·, y/2)∥p ≤ Mk

yk
∥u(·, y/2)∥p

≤ (MkD)y−k.

Thus we have the inequality(∫ ∞

2y0

(
yk−1/2

∥∥∥u(k)y (·, y)
∥∥∥
p

)q
dy

y

)1/q

(6.14)

≤MkD

(∫ ∞

2y0

(
yk−1/2y−k

)q dy
y

)1/q

=
2MkD

q
(2y0)

−q/2.
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Therefore, by combining inequalities (6.13) and (6.14) we obtain that(∫ ∞

0

(
yk−1/2

∥∥∥u(k)y (·, y)
∥∥∥
p

)q
dy

y

)1/q

=

(∫ 2y0

0

(
yk−1/2

∥∥∥u(k)y (·, y)
∥∥∥
p

)q
dy

y

+

∫ ∞

2y0

(
yk−1/2

∥∥∥u(k)y (·, y)
∥∥∥
p

)q
dy

y

)1/q

≤Mα,k,y0
D,

where Mα,k,y0 is a positive constant given by the formula

Mα,k,y0 := (2y0)
(α−1/2) +

2Mk

q
(2y0)

−q/2.

Hence it follows from a repeated application of part (c) of Lemma 5.18

that (∫ ∞

0

(
y1/2 ∥uy(·, y)∥p

)q dy
y

)1/q

≤Mk

(∫ ∞

0

(
yk−1/2

∥∥∥u(k)y (·, y)
∥∥∥
p

)q
dy

y

)1/q

≤MkMα,k,y0D.

This proves that

s1/2 ∥uy(·, s)∥p =
(q
2

)1/q (∫ s

0

(
y1/2 ∥uy(·, s)∥p

)q dy
y

)1/q

≤MkMα,k,y0 D for all s > 0,

or equivalently,

y ∥uy(·, y)∥p ≤MkMα,k,y0Dy
1/2 for all y > 0. (6.15)

Summing up, we obtain from inequalities (6.12) and (6.15) that we

have, for some β ∈ (0, 1),

∥uy(·, y)∥p ≤ (M ′
α,k,y0

D)yβ−1 for all y > 0, (6.16)

In particular, it follows that

∥uy(·, y)∥p = o(y−1) as y ↓ 0.

This proves the desired assertion (a).
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Step (II): Secondly, we prove assertion (b). To do this, we show that

there exists a function f ∈ Bα
p,q(R

n) such that

u(x, y) = P (x, y) ∗ f(x).

We remark that

u(x, y) = u(x, y0) +

∫ y0

y

us(x, s) ds for all 0 < y ≤ y0.

Hence we have, by inequality (6.16),

∥u(·, y)∥p ≤ ∥u(·, y0)∥p +
∫ y0

y

∥us(·, s)∥p ds (6.17)

≤ D +M ′
α,k,y0

D

∫ y0

y

sβ−1 ds ≤ D

(
1 +M ′

α,k,y0

yβ0
β

)
:=M ′′

α,k,y0
D for all 0 < y ≤ y0,

where M ′′
α,k,y0

is a positive constant given by the formula

M ′′
α,k,y0

:= 1 +M ′
α,k,y0

yβ0
β
, 0 < β < 1.

By a similar argument, it follows that we have, for some positive

constant M ′′′
α,k,y0

,

∥u(·, y1)− u(·, y2)∥p ≤
∣∣∣∣∫ y1

y2

∥us(·, s)∥p ds
∣∣∣∣ ≤M ′′′

α,k,y0
D
∣∣∣yβ2 − yβ1

∣∣∣ .
This implies that {u(·, y)} is a Cauchy sequence in Lp(Rn) as y ↓ 0.

Thus, by arguing as in the proof of Theorem 5.10 we find that the

function u(x, y) is the Poisson integral of a function f ∈ Lp(Rn):

u(x, y) = P (x, y) ∗ f(x).

Furthermore, by letting y ↓ 0 in inequality (6.17) we obtain that

∥f∥p = lim
y↓0

∥u(·, y)∥p ≤M ′′
α,k,y0

D. (6.18)

Therefore, in view of Proposition 6.2, it follows from inequalities (6.9)

and (6.18) that

∥f∥α;p,q =
∥∥∥yk−αu(k)y (·, y)

∥∥∥
pq

+ ∥f∥p ≤
(
1 +M ′′

α,k,y0

)
D.

This proves the desired assertion (b), with

Mα,k,y0 := 1 +M ′′
α,k,y0

.
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The proof of Lemma 6.4 is complete.

Step 7-2: Now we recall that

E =
∥∥y2−αuyy(·, ·)

∥∥
pq
,

and that

∥u(·, y)∥∞ ≤ ∥P (·, y)∥p′ ∥f∥p ≤
(

1

cn

)1/p

y−n/p ∥f∥p for all y > 0.

Hence, by applying Lemma 6.4 to our situation we find that

ε ∥uy(·, ε)∥p −→ 0 as ε ↓ 0.

Furthermore, we remark that

u(·+ h, ε)− 2u(·, ε) + u(· − h, ε)

= P (·, ε) ∗ (f(·+ h)− 2f(·) + f(· − h)) −→ f(·+ h)− 2f(·) + f(· − h)

in Lp(Rn) as ε ↓ 0.

Therefore, by letting ε ↓ 0 in inequality (6.8) we obtain that

∥f(·+ h)− 2f(·) + f(· − h)∥p (6.19)

≤ 4

∫ t

0

y ∥uyy(·, y)∥p dy + 2t2
n∑

i=1

∥uyxi(·, t)∥p + t2
n∑

i,j=1

∥∥uxixj (·, t)
∥∥
p
.

However, we have, by Theorems 5.14 and 5.19,

t2 ∥uyxi(·, t)∥p ≤Mt2 ∥uyy(·, t)∥p for all t > 0, (6.20)

t2
∥∥uxixj

(·, t)
∥∥
p
≤Mt2 ∥uyy(·, t)∥p for all t > 0. (6.21)

Therefore, by combining inequalities (6.19), (6.20) and (6.21) we ob-

tain that

∥f(·+ h)− 2f(·) + f(· − h)∥p (6.22)

≤ 4

∫ t

0

y ∥uyy(·, y)∥p dy + 2Mt2 ∥uyy(·, t)∥p .

Step 7-2a: The case q = ∞. Since we have the inequality

∥uyy(·, y)∥p ≤ yα−2E for all y > 0,

it follows from inequality (6.22) that

∥f(·+ h)− 2f(·) + f(· − h)∥p ≤ 4E

∫ t

0

yα−1dy +MEtα

□ 
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≤MαEt
α for all 0 < |h| = s ≤ t.

This proves that

G = sup
t>0

(
t−α · sup

0<|h|≤t

∥f(·+ h)− 2f(·) + f(· − h)∥p

)
≤MαE, 0 < α < 2.

Step 7-2b: The case 1 ≤ q < ∞. By applying Hardy’s inequality

(Theorem 3.18), we obtain from inequality (6.22) that

G =

(∫ ∞

0

(
t−α · sup

0<|h|≤t

∥f(·+ h)− 2f(·) + f(· − h)∥p

)q
dt

t

)1/q

≤

(∫ ∞

0

t−αq

(
4

∫ t

0

y ∥uyy(·, y)∥p dy + 2Mt2 ∥uyy(·, t)∥p

)q
dt

t

)1/q

≤

[
23−3/q

(∫ ∞

0

(
t−α

∫ t

0

y ∥uyy(·, y)∥p dy
)q

dt

t

)1/q

+ 21−1/qM

(∫ ∞

0

(
t2−α ∥uyy(·, t)∥p

)q dt
t

)1/q
]

≤
(
23−3/q

α
+ 21−1/qM

)(∫ ∞

0

(
t2−α ∥uyy(·, t)∥p

)q dt
t

)1/q

≤
(
8

α
+ 2M

)
E.

This proves that

G ≤MαE,

with

Mα :=
8

α
+ 2M, 0 < α < 2.

Step 8: E ≤MαC. We remark that

|Pyy(z, y)| ≤
My

(|z|2 + y2)
(n+3)/2

for all y > 0,

and that ∫
Rn

Pyy(z, y) dz =
d2

dy2

(∫
Rn

P (z, y) dz

)
= 0.
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Hence we have the formula

uyy(x, y) =

∫
Rn

[f(x− z)− f(x)]Pyy(z, y) dz,

and so

∥uyy(·, y)∥p (6.23)

≤M

∫
Rn

∥f(· − z)− f(·)∥p
y

(|z|2 + y2)
(n+3)/2

dz

=M

∫ ∞

0

∫
Σn−1

∥f(· − tσ)− f(·)∥p
y

(t2 + y2)
(n+3)/2

tn−1 dσ dt

=Mωn

∫ ∞

0

∥ϕt(·)∥p
y

(t2 + y2)
(n+3)/2

tn−1 dt.

Here

ϕt(x) =
1

ωn

∫
Σn−1

(f(x+ tσ)− f(x)) dσ.

Step 8-a: The case q = ∞. Since we have, by Minkowski’s inequality

for integrals (Theorem 3.16),

∥ϕt(·)∥p ≤ 1

ωn

∫
Σn−1

∥f(·+ tσ)− f(·)∥p ≤ Ctα for all t > 0,

it follows from inequality (6.23) that

∥uyy(·, y)∥p ≤MC ωn

∫ ∞

0

y

(t2 + y2)
(n+3)/2

tα+n−1 dt

≤MC ωn

(∫ y

0

y · yα+n−1

yn+3
dt+

∫ ∞

y

y

tn+3
tα+n−1 dt

)
=MC ωn

(∫ y

0

yα−3 dt+

∫ ∞

y

ytα−4 dt

)
=

4− α

3− α
M ωn C y

α−2 for all y > 0.

This proves that

E = sup
y>0

{
y2−α ∥uyy(·, y)∥p

}
≤MαC,

with

Mα :=
4− α

3− α
M ωn, 0 < α < 2.



6.2 Various Norms of Besov Spaces 219

Step 8-b: The case 1 ≤ q < ∞. By applying Hardy’s inequality

(Theorem 3.18), we obtain that

E =

(∫ ∞

0

(
y2−α ∥uyy(·, y)∥p

)q dy
y

)1/q

≤

(∫ ∞

0

(
yα−2M ωn

∫ ∞

0

∥ϕt(·)∥p
ytn−1

(t2 + y2)
(n+3)/2

dt

)q
dy

y

)1/q

=M ωn

(∫ ∞

0

(∫ ∞

0

∥ϕt(·)∥p
ytn−1

(t2 + y2)
(n+3)/2

dt

)q
dy

y1+q(α−2)

)1/q

≤M ωn

(∫ ∞

0

(
y−n−α

∫ y

0

tn−1 ∥ϕt(·)∥p dt
)q

dy

y

)1/q

+M ωn

(∫ ∞

0

(
y3−α

∫ ∞

y

t−4 ∥ϕt(·)∥p dt
)q

dy

y

)1/q

≤ Mωn

n+ α

(∫ ∞

0

(
y−n−α+1yn−1 ∥ϕy(·)∥p

)q dy
y

)1/q

+
Mωn

3− α

(∫ ∞

0

(
y3−α+1y−4 ∥ϕy(·)∥p

)q dy
y

)1/q

=M ωn

(
1

n+ α
+

1

3− α

)(∫ ∞

0

(
y−α ∥ϕy(·)∥p

)q dy
y

)1/q

=M ωn

(
1

n+ α
+

1

3− α

)
C.

This proves that

E ≤MαC,

with

Mα :=Mωn

(
1

n+ α
+

1

3− α

)
, 0 < α < 2.

Step 9: H ≤ (1/α)D. If x is a point of the Lebesgue set of f ∈
Lp(Rn), it follows that

u(x, y)− f(x) =

∫ y

0

uy(x, s) ds.

Hence, by applying Minkowski’s inequality for integrals (Theorem 3.16)

we obtain that

∥u(·, y)− f(·)∥p ≤
∫ y

0

∥uy(·, s)∥p ds. (6.24)
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Step 9-a: The case q = ∞. Since we have the inequality

s1−α ∥uy(·, s)∥p ≤ D for all s > 0,

it follows from inequality (6.24) that

∥u(·, y)− f(·)∥p ≤
∫ y

0

∥uy(·, s)∥p ds ≤ D

∫ y

0

sα−1 ds =
D

α
yα.

This proves that

H = sup
y>0

{
y−α ∥u(·, y)− f(·)∥p

}
≤ 1

α
D.

Step 9-b: The case 1 ≤ q <∞. In view of inequality (6.24), it follows

from an application of Hardy’s inequality (Theorem 3.18) that

H =

(∫ ∞

0

(
y−α ∥u(·, y)− f(·)∥p

)q dy
y

)1/q

≤
(∫ ∞

0

(
y−α

∫ y

0

∥uy(·, s)∥p ds
)q

dy

y

)1/q

≤ 1

α

(∫ ∞

0

(
y1−α ∥uy(·, y)∥p

)q dy
y

)1/q

=
1

α
D, 0 < α < 1.

Step 10: D ≤MαH (0 < α < 1). We recall that

uy(x, y) = u(x, y/2) ∗ Py(x, y/2),

and that

|Py(x, y/2)| ≤
n+ 1

y
P (x, y/2) for all y > 0.

Hence we have, by Young’s inequality (Theorem 3.23),

∥uy(·, y)∥p ≤ ∥u(·, y/2)∥p ∥Py(·, y/2)∥1

≤ n+ 1

y
∥P (·, y/2)∥1 ∥u(·, y/2)∥p

=
n+ 1

y
∥u(·, y/2)∥p =

n+ 1

y
∥P (·, y/2) ∗ f(·)∥p

≤ n+ 1

y
∥f∥p for all y > 0.

This proves that, as N → ∞,∥∥uy(·, 2Ny)∥∥p −→ 0 for each y > 0.
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Hence we have the assertion

∥uy(·, y)∥p = lim
N→∞

∥∥uy(·, y)− uy(·, 2Ny)
∥∥
p
, for each y > 0. (6.25)

On the other hand, we have the following claim:

Claim 6.2. There exists a positive constant Mα such that we have, for

any integer N > 1,∥∥y1−α(uy(·, y)− uy(·, 2Ny))
∥∥
pq

≤MαH, 0 < α < 1. (6.26)

Proof. By Minkowski’s inequality (Theorem 3.15), we obtain that

y1−α
∥∥uy(·, y)− uy(·, 2Ny)

∥∥
p

(6.27)

≤ y1−α
N∑

k=1

∥∥uy(·, 2k−1y)− uy(·, 2ky)
∥∥
p

= y1−α
N∑

k=1

∥∥[f(·)− u(·, 2k−1y)
]
∗ Py(·, 2k−1y)

∥∥
p

≤ y1−α
N∑

k=1

∥∥f(·)− u(·, 2k−1y)
∥∥
p

∥∥Py(·, 2k−1y)
∥∥
1

≤ y1−α
N∑

k=1

n+ 1

y
21−k

∥∥f(·)− u(·, 2k−1y)
∥∥
p

= (n+ 1)
N∑

k=1

(2α−1)k−1(2k−1y)−α
∥∥f(·)− u(·, 2k−1y)

∥∥
p
.

However, we have, for 1 ≤ k ≤ N ,(∫ ∞

0

(
(2k−1y)−α

∥∥f(·)− u(·, 2k−1y)
∥∥
p

)q dy
y

)1/q

(6.28)

=

(∫ ∞

0

(
z−α ∥f(·)− u(·, z)∥p

)q dz
z

)1/q

.

Hence it follows from inequalities (6.27) and (6.28) that∥∥y1−α(uy(·, y)− uy(·, 2Ny))
∥∥
pq

=

(∫ ∞

0

(
y1−α

∥∥uy(·, y)− u(·, 2Ny)
∥∥
p

)q dy
y

)1/q

≤ (n+ 1)

×

(∫ ∞

0

(
N∑

k=1

(2α−1)k−1(2k−1y)−α
∥∥f(·)− u(·, 2k−1y)

∥∥
p

)q

dy

y

)1/q
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= (n+ 1)

(∫ ∞

0

(
N∑

k=1

(2α−1)k−1

)q (
z−α ∥f(·)− u(·, z)∥p

)q dz
z

)1/q

= (n+ 1)

(
N∑

k=1

(2α−1)k−1

)∥∥y−α(f(·)− u(·, y))
∥∥
pq

≤ (n+ 1)

( ∞∑
k=1

(
1

21−α

)k−1
)
H, 0 < α < 1.

This proves the desired inequality (6.26), with

Mα :=
n+ 1

1− 2α−1
, 0 < α < 1.

The proof of Claim 6.2 is complete.

Therefore, by applying Fatou’s lemma (Theorem 3.7) we obtain from

formula (6.25) and inequality (6.26) that

Dq =
∥∥y1−αuy(·, y)

∥∥q
pq

=

∫ ∞

0

(
y1−α ∥uy(·, y)∥p

)q dy
y

=

∫ ∞

0

lim
N→∞

(
y1−α

∥∥uy(·, y)− uy(·, 2Ny)
∥∥
p

)q dy
y

≤ lim inf
N→∞

∫ ∞

0

(
y1−α

∥∥uy(·, y)− uy(·, 2Ny)
∥∥
p

)q dy
y

= lim inf
N→∞

∥∥y1−α(uy(·, y)− uy(·, 2Ny))
∥∥q
pq

≤ (MαH)q.

This proves that

D ≤MαH, 0 < α < 1.

The proof of Theorem 6.3 is now complete.

Theorem 6.5. Let α > 0, 1 ≤ p, q ≤ ∞ and let k be a positive integer

less than α. Then the norm

∥f∥p +
∑
|s|=k

∥Ds
xf∥α−k;p,q

is equivalent to the norm ∥f∥α;p,q.

Proof. The proof of Theorem 6.5 is divided into two steps.

Step (I): We assume that

∥f∥α;p,q = ∥f∥p +
∥∥∥yα−αu(α)y (·, y)

∥∥∥
pq
<∞,

□ 

□ 
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where

u(x, y) = P (x, y) ∗ f(x).

Then we have the following three assertions (a), (b) and (c):

(a) The function Ds
xu(x, y) is harmonic in the half-space Rn+1

+ and

bounded in each proper sub-half space of Rn+1
+ .

(b) ∥Ds
xu(·, y)∥p = ∥Ds

xP (·, y) ∗ f(·)∥p ≤Ms ∥f∥p, y ≥ 1.

(c) It follows from a repeated application of Lemma 5.18 that∥∥∥yα−(α−k)Ds
x(u

(α)
y (·, y))

∥∥∥
pq

≤Mα

∥∥∥yα−αu(α)y (·, y)
∥∥∥
pq

≤Mα ∥f∥α;p,q .

Hence, by applying Lemma 6.4 to our situation we obtain that there

exists a function g ∈ Bα−k
pq (Rn) such that

Ds
xu(x, y) = P (x, y) ∗ g(x), |s| = k,

and that

∥g∥α−k;p,q ≤M ∥f∥α;p,q .

However, it is easy to see that

g = Ds
xf.

Indeed, we have the formulas

P (x, y) ∗ g(x) = Ds
xu(x, y) = Ds

x (P (x, y) ∗ f(x)) = P (x, y) ∗Ds
xf(x).

Therefore, we obtain that

∥Ds
xf∥α−k;p,q = ∥Ds

xf∥p +
∥∥∥yα−(α−k)Dα

y (D
s
xu(·, y))

∥∥∥
pq

= ∥g∥p +
∥∥∥yα−(α−k)Dα

y (P (·, y) ∗ g(·))
∥∥∥
pq

≤ ∥g∥α−k;p,q

≤M ∥f∥α;p,q .

We are done with the proof in one direction:

∥f∥p +
∑
|s|=k

∥Ds
xf∥α−k;p,q ≤ (M + 1) ∥f∥α;p,q .

Step (II): Conversely, we assume that

f ∈ Lp(Rn),
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and that ∑
|s|=k

∥Ds
xf∥α−k;p,q <∞.

Then we have, for all |s| = k,

Ds
xu(x, y) = Ds

x (P (x, y) ∗ f(x)) = P (x, y) ∗Ds
xf(x).

By applying Proposition 6.2 with f(x) := Ds
xf(x), we obtain that∥∥∥yk+α−αDs

x(u
(α)
y (·, y))

∥∥∥
pq

=
∥∥∥yα−(α−k)Dα

y (P (·, y) ∗Ds
xf(·))

∥∥∥
pq

(6.29)

≤ ∥Ds
xf∥α−k;p,q .

Moreover, we have, by a repeated application of part (b) of Theorem

5.19,∥∥∥yk+α−αu(k+α)
y (·, y))

∥∥∥
pq

≤Mk

∑
|s|=k

∥∥∥yk+α−αDs
x(u

(α)
y (·, y))

∥∥∥
pq
. (6.30)

Hence, in view of Proposition 6.2, it follows from inequalities (6.29) and

(6.30) that∥∥∥yα−αu(α)y (·, y))
∥∥∥
pq

≤M ′
k

∥∥∥yk+α−αu(k+α)
y (·, y))

∥∥∥
pq

(6.31)

≤M ′
kMk

∑
|s|=k

∥∥∥yk+α−αDs
x(u

(α)
y (·, y))

∥∥∥
pq

≤M ′
kMk

∑
|s|=k

∥Ds
xf∥α−k;p,q .

Therefore, we obtain from inequality (6.31) that

∥f∥α;p,q = ∥f∥p +
∥∥∥yα−αu(α)y (·, y))

∥∥∥
pq

≤ (1 +M ′
kMk)

∥f∥p +
∑
|s|=k

∥Ds
xf∥α−k;p,q

 .

This completes the proof in the other direction.

The proof of Theorem 6.5 is complete.

By combining Theorems 6.5 and 6.3, we obtain the following:

□ 
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Theorem 6.6. Let α > 0, 1 ≤ p, q ≤ ∞ and let k be a non-negative

integer such that k < α ≤ k + 1. Then the norm

∥f∥p +
∑
|s|=k

(∫
Rn

∥Dsf(·+ h)− 2Dsf(·) +Dsf(· − h)∥qp
|h|n+(α−k)q

dh

)1/q

is equivalent to the norm ∥f∥α;p,q defined by formula (6.1):

∥f∥α;p,q = ∥f∥p +
(∫ ∞

0

(
yk+1−α

∥∥∥u(k+1)
y (·, y)

∥∥∥
p

)q
dy

y

)1/q

.

6.3 Notes and Comments

The results discussed in this chapter are adapted from Taibleson [72]

and Stein [68].
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Sobolev and Besov Spaces

This chapter is devoted to the precise definitions and statements of func-

tion spaces of Lp type with some detailed proofs. The function spaces

we shall treat are the following:

(i) The generalized Sobolev spaces W s,p(Ω) and Hs,p(Ω). When Ω

is a Lipschitz domain, these spaces coincide with each other.

(ii) The Besov spaces Bs,p(∂Ω) on the boundary ∂Ω of a Lipschitz

domain Ω are function spaces defined in terms of the Lp modulus

of continuity, and enter naturally in connection with boundary

value problems in the framework of Lp Sobolev spaces.

In fact, we need to make sense of the restriction u|∂Ω to the boundary

∂Ω as an element of a Besov space on ∂Ω when u belongs to a Sobolev

space on the domain Ω. In particular, we formulate an important trace

theorem (Theorem 7.5) that will be used in the study of boundary value

problems in Parts III and IV.

In the last Section 7.4 we prove part (iv) of Examples 4.1 (Proposition

7.7):

W θ,n/θ(Rn) ⊂ VMO for 0 < θ ≤ 1.

7.1 Sobolev Spaces

In this section we present a brief description of the basic concepts and

results of Lp Sobolev spaces which will be used in subsequent chapters.

Many problems in partial differential equations may be formulated in

terms of abstract operators acting between suitable Sobolev spaces, and

these operators are then analyzed by the methods of functional analysis.

226



7.1 Sobolev Spaces 227

7.1.1 First Definition of Sobolev Spaces

Let Ω be an open subset of Rn. If 1 < p <∞ and if s is a non-negative

integer, then the Sobolev space W s,p(Ω) is defined to be the space of

those functions u ∈ Lp(Ω) such that Dαu ∈ Lp(Ω) for |α| ≤ s, and the

norm ∥u∥W s,p(Ω) is defined by the formula

∥u∥W s,p(Ω) =

∑
|α|≤s

∫
Ω

|Dαu(x)|pdx

1/p

. (7.1)

If 1 < p < ∞ and if s = m + θ with a non-negative integer m and

0 < θ < 1, then the Sobolev space W s,p(Ω) is defined to be the space

of those functions u ∈ Wm,p(Ω) such that, for |α| = m, the integral

(Slobodeckĭı seminorm)∫∫
Ω×Ω

|Dαu(x)−Dαu(y)|p

|x− y|n+pθ
dx dy (7.2)

is finite. The norm ∥u∥W s,p(Ω) of W
s,p(Ω) is defined by the formula

∥u∥W s,p(Ω) =

( ∑
|α|≤m

∫
Ω

|Dαu(x)|p dx (7.3)

+
∑

|α|=m

∫∫
Ω×Ω

|Dαu(x)−Dαu(y)|p

|x− y|n+pθ
dx dy

)1/p

.

7.1.2 Second Definition of Sobolev Spaces

Next, we introduce a second family of Sobolev spaces, by using the

Fourier transform.

Let S(Rn) be the Schwartz space or space of C∞ functions on Rn

rapidly decreasing at infinity. We recall that the (direct) Fourier trans-

form F and the inverse Fourier transform F∗ are isomorphisms of S(Rn)

onto itself. The dual space S ′(Rn) of S(Rn) are called the space of tem-

pered distributions onRn. Roughly speaking, the tempered distributions

are those distributions which grow at most polynomially at infinity, since

the functions in S(Rn) die out faster than any power of x at infinity.

The importance of tempered distributions lies in the fact that they have

Fourier transforms. More precisely, if u ∈ S ′(Rn), we define its (direct)

Fourier transform Fu by the formula

⟨Fu, φ⟩ = ⟨u,Fφ⟩ for all φ ∈ S(Rn),
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where ⟨·, ·⟩ is the pairing of S ′(Rn) and S(Rn). Similarly, if v ∈ S ′(Rn),

we define its inverse Fourier transform F∗v by the formula

⟨F∗v, ψ⟩ = ⟨v,F∗ψ⟩ for all ψ ∈ S(Rn).

It should be emphasized that the Fourier transforms F and F∗ are iso-

morphisms of S ′(Rn) onto itself.

If s ∈ R, we define a linear map

Gs = (I −∆)−s/2 : S ′(Rn) −→ S ′(Rn)

by the formula

Gsu = F∗
(
(1 + |ξ|2)−s/2Fu

)
for u ∈ S ′(Rn). (7.4)

The operator Gs : S ′(Rn) → S ′(Rn) can be visualized as follows:

u ∈ S ′(Rn)
Gs

−−−−−→ S′(Rn) ∋ Gsu

F
y xF∗

Fu ∈ S ′(Rn) −−−−−−−−→
(1+|ξ|2)−s/2

S ′(Rn) ∋ (1 + |ξ|2)−s/2Fu

Fig. 7.1. The operator Gs defined by formula (7.4)

Then it is easy to see that the map Gs is an isomorphism of S ′(Rn)

onto itself, and its inverse is the map G−s. The function Gsu is called

the Bessel potential of order s of u.

We can calculate the convolution kernel Gs(x) of the Bessel potential

Gsu for all s > 0. More precisely, we have the following:

Theorem 7.1. Let s > 0. (i) The inverse Fourier transform

F∗
(
(1 + |ξ|2)−s/2

)
is equal to the function

Gs(x) =
1

(4π)s/2
1

Γ(s/2)

∫ ∞

0

e−π|x|2/δ e−δ/(4π) δ(s−n)/2 dδ

δ
. (7.5)

In other words, we have, by the Fourier inversion formula,

F(Gs)(ξ) =
(
1 + |ξ|2

)−s/2
. (7.6)
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Moreover, we have the formula∫
Rn

Gs(x) dx = 1,

and so

Gs ∈ L1(Rn).

(ii) Let 1 ≤ p ≤ ∞. The Bessel potential Gs can be expressed as

follows:

Gsu(x) = Gs ∗ u(x) =
∫
Rn

Gs(x− y)u(y) dy for u ∈ Lp(Rn). (7.7)

Furthermore, the Bessel potential Gs is bounded from Lp(Rn) into itself.

More precisely, we have the inequality

∥Gsu∥Lp(Rn) ≤ ∥u∥Lp(Rn) for u ∈ Lp(Rn). (7.8)

One of the most important facts concerning Bessel potentials is that

they can be used to define the generalized Sobolev spaces Hs,p(Rn) in

the following way: If s ∈ R and 1 < p <∞, we let

Hs,p(Rn) = the image of Lp(Rn) under the mapping Gs

= {Gsv : v ∈ Lp(Rn)} .

We equip Hs,p(Rn) with the norm

∥u∥Hs,p(Rn) =
∥∥G−su

∥∥
Lp(Rn)

for u ∈ Hs,p(Rn). (7.9)

The space Hs,p(Rn) is called the Bessel-potential space of order s or the

generalized Sobolev space of order s.

We list some basic topological properties of Hs,p(Rn):

(1) The Schwartz space S(Rn) is dense in each Hs,p(Rn).

(2) The space H−s,p′
(Rn) is the dual space of Hs,p(Rn), where p′ =

p/(p− 1) is the exponent conjugate to p.

(3) If s > t, then we have the inclusions

S(Rn) ⊂ Hs,p(Rn) ⊂ Ht,p(Rn) ⊂ S ′(Rn),

with continuous injections.

(4) If s is a non-negative integer, then the space Hs,p(Rn) is iso-

morphic to the Sobolev space W s,p(Rn), and the norm (7.9) is

equivalent to the norm (7.1).
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7.1.3 Definition of General Sobolev Spaces

Now we define the generalized Sobolev spaces Hs,p(Ω) for general do-

mains Ω.

For each s ∈ R and 1 < p <∞, we let

Hs,p(Ω) = the space of restrictions to Ω of functions in Hs,p(Rn).

We equip the space Hs,p(Ω) with the norm

∥u∥Hs,p(Ω) = inf ∥U∥Hs,p(Rn) ,

where the infimum is taken over all U ∈ Hs,p(Rn) which equal u in Ω.

The space Hs,p(Ω) is a Banach space with respect to the norm ∥ · ∥s,p.
It should be noticed that

H0,p(Ω) = Lp(Ω); ∥·∥H0,p(Ω) = ∥·∥Lp(Ω) .

Then we have the following relationships between the spaces Hs,p(Ω)

and W s,p(Ω) (see [2, Theorem 5.24]):

Theorem 7.2. If Ω is a bounded, Lipschitz domain, then we have, for

all s ≥ 0 and 1 < p <∞,

Hs,p(Ω) =W s,p(Ω).

7.1.4 Sobolev Imbedding Theorems

In Chapter 13, we shall need Sobolev’s imbedding theorems (see [2,

Theorem 4.12, Part I and Part II]; [80, Chapter 4]).

Definition 7.1. An open subset Ω of Rn satisfies the cone condition if

there exists a finite cone C such that each point x ∈ Ω is the vertex of

a finite cone Cx contained in Ω and congruent to C.

We remark that the cone Cx need not be obtained from C by parallel

translation, but simply by rigid motion.

Example 7.1. Any Lipschitz domain satisfies the cone condition (see

[2, Paragraph 4.11]).

Theorem 7.3 (Sobolev). Let j ≥ 0 and m ≥ 1 be integers, and let

1 ≤ p <∞.

Part I: Assume that Ω is an open subset of Rn which satisfies the

cone condition. Then we have the imbeddings

Wm+j,p(Ω)
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⊂


W j,q(Ω) for all p ≤ q ≤ np/(n−mp) if 1 < p < n/m,

W j,q(Ω) for all p ≤ q <∞ if p = n/m,

Cj
B(Ω) if n/m < p <∞.

Here

Cj
B(Ω) = the space of those functions u ∈ Cj(Ω)

for which Dαu is bounded for 0 ≤ |α| ≤ j,

with norm given by the formula

∥u∥Cj
B(Ω) = max

0≤|α|≤j
sup
x∈Ω

|Dαu(x)| .

Part II: Assume that Ω is a bounded, Lipschitz domain in Rn. Then

we have the imbeddings

Wm+j,p(Ω)

⊂


Cj+λ(Ω) for all 0 < λ ≤ m− n/p if (m− 1)p < n < mp,

Cj+λ(Ω) for all 0 < λ < 1 if n = (m− 1)p,

Cj+1(Ω) if n = (m− 1) and p = 1.

7.1.5 The Rellich–Kondrachov Theorem

In Chapter 15 we shall need the following Rellich–Kondrachov theorem

(see [2, Theorem 6.3, Parts I and II], [33, Section 7.12, Theorem 7.26]):

Theorem 7.4 (Rellich–Kondrachov). Let Ω be a bounded, open subset

of Rn that satisfies the cone condition. Then the imbedding

W j+1,p(Ω) −→W j,q(Ω)

is compact for any integer j ≥ 0 if either n > p and 1 ≤ q < np/(n− p)

or 1 ≤ n ≤ p and 1 ≤ q <∞.

The Rellich–Kondrachov theorem is an Lp Sobolev space version of the

Bolzano–Weierstrass theorem and the Ascoli–Arzelà theorem in calculus:

7.2 Besov Spaces on the Boundary

In studying boundary value problems, we shall need to make sense of

the restriction u|∂Ω as an element of a function space on the boundary

∂Ω when u belongs to an Lp Sobolev space on the Lipschitz domain Ω.
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Subjects Sequences Compactness theorems

Theory of Sequences of The Bolzano–Weierstrass
real numbers real numbers theorem

Calculus Sequences of The Ascoli–Arzerà
continuous functions theorem

Theory of Sequences of The Rellich–Kondrachov
distributions distributions theorem

Table 7.1. A bird’s-eye view of three compactness theorems in calculus

In this way, the Besov spaces Bs,p(∂Ω) on the boundary ∂Ω enter nat-

urally in connection with boundary value problems. The Besov spaces

Bs,p(∂Ω) are defined to be locally the Besov spacesBs,p(Rn−1) onRn−1,

upon using local coordinate systems flattening out ∂Ω, together with a

partition of unity.

An open set Ω in Rn is called a Lipschitz hypograph if its boundary

∂Ω can be represented as the graph of a Lipschitz continuous function.

Namely, there exists a Lipschitz continuous function ζ : Rn−1 → R such

that (see Figure 5.1)

Ω =
{
x = (x′, xn) ∈ Rn : xn < ζ(x′), x′ ∈ Rn−1

}
. (5.1)

We define Besov spaces Bs,p(∂Ω) on the boundary ∂Ω of a Lipschitz

domain Ω, upon using local coordinate systems flattening out ∂Ω, to-

gether with a partition of unity, in the following way.

Step 1: If Ω is a Lipschitz hypograph defined by formula (5.1), then

we remark that its boundary

∂Ω =
{
x = (x′, ζ(x′)) : x′ ∈ Rn−1

}
is an (n− 1)-dimensional, C0,1 submanifold of Rn. Hence we find that

∂Ω has a surface measure dσ and a unit outward normal ν which ex-

ists dσ-almost everywhere in Rn−1. Indeed, by Rademacher’s theorem

(Theorem 5.1) it follows that the function ζ(x′) is Fréchet differentiable
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almost everywhere in Rn−1 with

∥∇ζ∥L∞(Rn−1) ≤ C,

where C is any Lipschitz constant for the function ζ(x′). Then we have

the following formulas for dσ and ν

dσ =
√
1 + |∇ζ(x′)|2 dx′,

ν =
(−∇ζ(x′), 1)√
1 + |∇ζ(x′)|2

.

Step 1-1: Now we can define the Besov spaces Bs,p(∂Ω) for 0 < s ≤ 1

in the following way: For any function φ ∈ Lp(∂Ω) = Lp(∂Ω, dσ), we

define a function

φζ(x
′) := φ(x′, ζ(x′)), x′ ∈ Rn−1,

and let, for 0 < s < 1,

Bs,p(∂Ω) =
{
φ ∈ Lp(∂Ω) : φζ ∈ Bs,p(Rn−1)

}
.

We equip this space with the norm (see the norm A in Theorem 6.3 with

n := n− 1, α := s, p = q)

|φ|Bs,p(∂Ω) = |φζ |Bs,p(Rn−1) (7.10)

=

(∫
Rn−1

|φζ(x
′)|p dx′ +

∫∫
Rn−1×Rn−1

|φζ(x
′)− φζ(y

′)|p

|x′ − y′|(n−1)+ps
dx′ dy′

)1/p

.

For s = 1, we let

B1,p(∂Ω) = the space of (equivalence classes of) functions

φ ∈ Lp(∂Ω, dσ) for which the integral∫∫
Rn−1×Rn−1

|φζ(x
′ + h′)− 2φζ(x

′) + φζ(x
′ − h′)|p

|h′|(n−1)+p
dh′ dx′.

is finite.

The space B1,p(∂Ω) is a Banach space with respect to the norm (see the

norm B in Theorem 6.3 with n := n− 1, α := 1, p = q)

|φ|B1,p(∂Ω) = |φζ |B1,p(Rn−1) (7.11)

=

(∫
Rn−1

|φζ(x
′)|p dx′

+

∫∫
Rn−1×Rn−1

|φζ(x
′ + h′)− 2φζ(x

′) + φζ(x
′ − h′)|p

|h′|(n−1)+p
dh′ dx′

)1/p

.
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Step 1-2: If κ(Ω) is a Lipschitz hypograph for some rigid motion κ :

Rn → Rn, then we can define the Besov spaces Bs,p(∂Ω) for 0 < s ≤ 1

in the same way except that

φζ(x
′) := φ

(
κ−1(x′, ζ(x′))

)
for x′ ∈ Rn−1.

Step 2: We consider the general case where Ω is a bounded Lipschitz

domain. By using the notation of Definition 5.1, we choose a partition

of unity {ϕj}Jj=1 subordinate to the open covering {Uj}Jj=1 of ∂Ω (see

Figure 5.4). Then we define the Besov spaces Bs,p(∂Ω) for 0 < s ≤ 1 as

follows:

Bs,p(∂Ω) = {φ ∈ Lp(∂Ω) : ϕjφ ∈ Bs,p(∂Ωj), 1 ≤ j ≤ J} ,

where the norm |φ|Bs,p(∂Ω) is defined by the formula

|φBs,p(∂Ω) =
J∑

j=1

|ϕjφ|Bs,p(∂Ωj).

It should be emphasized that the Besov spaces Bs,p(∂Ω) are independent

of the open covering {Uj} and the partition of unity {ϕj} used.

Step 3: Furthermore, we shall require Besov spaces Bs,p(∂Ω) for

1 < s < 2 defined on a bounded C1,1 domain Ω.

Step 3-1: If Ω is a C1,1 hypograph defined by formula (5.1) for some

function ζ ∈ C1,1(Rn−1), then we define the Besov spaces Bs,p(∂Ω) for

s = 1 + θ with 0 < θ < 1 in the same way by replacing the norm (7.10)

by the norm

|φ|Bs,p(∂Ω) = |φζ |Bs,p(Rn−1)

=

(∑
|α|≤1

∫
Rn−1

|Dαφζ(x
′)|p dx′

+
∑
|α|=1

∫∫
Rn−1×Rn−1

|Dαφζ(x
′)−Dαφζ(y

′)|p

|x′ − y′|(n−1)+pθ
dx′ dy′

)1/p

.

Step 3-2: If Ω is a bounded C1,1 domain, then the Besov spaces

Bs,p(∂Ω) for 1 < s < 2 are defined to be locally the Besov spaces

Bs,p(∂Ωj), 1 ≤ j ≤ J , just as in Step 3. Here it should be emphasized

that the boundary ∂Ω is an (n − 1)-dimensional, C1,1 submanifold of

Rn.

The norm of Bs,p(∂Ω) for 0 ≤ s < 2 will be denoted by | · |s,p.
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7.3 Trace Theorems

In this section we prove an important trace theorem which will be used

in the study of boundary value problems in the framework of Lp Sobolev

spaces (cf. [2], [7], [67], [72], [92]):

Theorem 7.5. Let 1 < p < ∞. For every function f ∈ Hs,p(Rn) with

s > 1/p, the restriction

g := Rf = f |Rn−1

is well defined almost everywhere in Rn−1, and g ∈ Bs−1/p,p(Rn−1).

Furthermore, the restriction mapping R so defined is continuous, that

is, there exists a positive constant C such that

∥Rf∥Bs−1/p,p(Rn−1) ≤ C ∥f∥Hs,p(Rn) for all f ∈ Hs,p(Rn).

An elementary proof of Theorem 7.5 is given in [79, Theorem 6.6].

Under certain hypotheses on the domain Ω, functions in Sobolev

spaces Hs,p(Ω) may be extended as functions in Hs,p(Rn). In this way,

the trace theorem remains valid for Hs,p(Ω) and Bs−1/p,p(∂Ω). More

precisely, we have the following (see [2, Remarks 7.45]):

Theorem 7.6 (the trace theorem). Let Ω be a bounded, C1,1 domain

of Rn. If 1 < p <∞, then the trace map

γ = (γ0, γ1) :W
2,p(Ω) −→ B2−1/p,p(∂Ω)⊕B1−1/p,p(∂Ω)

u 7−→
(
u|∂Ω,

∂u

∂ν

∣∣∣∣
∂Ω

)
is continuous and surjective. Here ν = −n is the unit outward normal

to the boundary ∂Ω (see Figure 7.2).

Indeed, it suffices to note that we have, by Theorem 7.2,

H2,p(Ω) =W 2,p(Ω).

7.4 VMO Functions Revisited

In this last section we prove part (iv) of Examples 4.1. Namely, we prove

the following:

Proposition 7.7. We have, for 0 < θ ≤ 1,

W θ,n/θ(Rn) ⊂ VMO .

--
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ν = −n

∂Ω

Ω

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...............

•

.

..

.

..

.

...

..

..

..

..

...

..

..

..

...

..

..

..

..

...

..

..

..

..

...

..

..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
....
...
...
...
....
...
...
...
....
...
...
...
...
.....
....
....
....
......
.....
.....
......
.....
.....
........

.......
.........

..........
................

..................................................................................................................................................................................................................................................................
.
..
.
..
..
.
..
.
..
.
.........................................................................................................................................................................................................................................................................

.............
.........
........
.......
.......
.....
.....
......
....
.....
.....
....
....
....
.....
...
...
...
...
....
...
...
...
....
...
...
...
....
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
...
..
..
..
..
...
..
..
..
..
...
..
..
..
...
..
..
..
..
..
.
..
.
..
.
..
.
..
.
..
.
.

Fig. 7.2. The unit outward normal ν = −n to the boundary ∂Ω

Proof. The proof of Proposition 7.7 is divided into two steps.

Step (1): First, we consider the case θ = 1. The proof is based on

the following Poincaré inequality (see [33, Chapter 7, formula (7.45)],

[45, Chapter 1, Theorem 1.51]):

Lemma 7.8 (Poincaré). Let B be an open ball with diameter d. Let

1 ≤ p <∞. Then we have, for all u ∈W 1,p(Rn),

∥u− uB∥p ≤ 2n−1 d ∥∇u∥p , (7.12)

where

uB =
1

|B|

∫
B

u(x) dx

is the integral average of u over B.

By using Poincaré’s inequality (7.12) with p := n, we obtain that∫
B

|u(x)− uB |n dx ≤
(
2n−1d

)n ∫
B

|∇u(x)|n dx.

Hence it follows from an application of Hölder’s inequality p := n and

q := n/(n− 1) (Theorem 3.14) that∫
B

|u(x)− uB | dx

≤
(∫

B

|u(x)− uB |n dx
)1/n(∫

B

dx

)1−1/n

=

(∫
B

|u(x)− uB |n dx
)1/n

|B|1−1/n

--
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≤ 2n−1 d ·
(∫

B

|∇u(x)|n dx
)1/n(

2nnΓ(n/2)

2dnπn/2

)1/n

|B| ,

so that

1

|B|

∫
B

|u(x)− uB| dx ≤ 2n√
π

(n
2
Γ
(n
2

))1/n(∫
B

|∇u(x)|n dx
)1/n

.

However, we find that the integral∫
B

|∇u(x)|n dx

is absolutely continuous.

Therefore, we have proved that u ∈ VMO if u ∈W 1,n(Rn).

Step (2): Secondly, we consider the case where 0 < θ < 1. By

applying Hölder’s inequality for p := n/θ and q := n/(n− θ), we obtain

that∫
B

|u(x)− uB | dx ≤
(∫

B

|u(x)− uB|n/θ dx
)θ/n(∫

B

dx

)1−θ/n

=

(∫
B

|u(x)− uB|n/ϵ dx
)θ/n

|B|1−θ/n
,

so that

1

|B|

∫
B

|u(x)− uB | dx ≤
(

1

|B|

∫
B

|u(x)− uB |n/ϵ dx
)θ/n

.

Moreover, we have, by Fubini’s theorem (Theorem 3.10),

1

|B|

∫
B

|u(x)− uB | dx ≤
(

1

|B|

∫
B

|u(x)− uB |n/ϵ dx
)θ/n

(7.13)

=

(
1

|B|

(∫
B

1

|B|

∣∣∣∣∫
B

(u(x)− u(y)) dy

∣∣∣∣)n/θ

dx

)θ/n

≤

(
1

|B|1+n/θ

∫
B

[∫
B

|u(x)− u(y)| dy
]n/θ

dx

)θ/n

≤
(

1

|B|1+n/θ

∫
B

[(∫
B

|u(x)− u(y)|n/θ dy
)θ/n

×
(∫

B

dy

)1−θ/n]n/θ
dx

)θ/n

=

(
1

|B|2
∫
B

∫
B

|u(x)− u(y)|n/θ dy dx

)θ/n

.
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However, it is easy to see that we have, for the open ball B with diameter

d,

|x− y|2n ≤ c(n) |B|2 for all x, y ∈ B,

where

c(n) =
4n−1n2Γ

(
n
2

)2
πn

.

Hence, by combining this inequality with inequality (7.13) we obtain

that

1

|B|

∫
B

|u(x)− uB| dx ≤

(
1

|B|2
∫
B

∫
B

|u(x)− u(y)|n/θ dy dx

)θ/n

≤ c(n)

(∫ ∫
B×B

|u(x)− u(y)|n/θ

|x− y|2n
dx dy

)θ/n

.

However, by formula (7.2) with p := n/θ we find that the integral∫ ∫
B×B

|u(x)− u(y)|n/θ

|x− y|2n
dx dy

is absolutely continuous.

Therefore, we have proved that u ∈ VMO if u ∈ W θ,n/θ(Rn) for

0 < θ < 1.

The proof of Proposition 7.7 is complete.

7.5 Notes and Comments

For more thorough treatments of the subject in this chapter, the reader

might be referred to Adams–Fournier [2], Aronszajn–Smith [5], Bergh–

Löfström [7], Stein [68], Taibleson [72] and Triebel [92].

□ 
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Maximum Principles in Sobolev spaces

In this chapter we prove various maximum principles for second-order,

elliptic differential operators with discontinuous coefficients such as the

weak and strong maximum principles (Theorems 8.5 and 8.9) and Hopf’s

boundary point lemma (Lemma 8.8) in the framework of Lp Sobolev

spaces that will play an important role in the proof of uniqueness theo-

rems for the Dirichlet problem in Part IV.

Let Ω be a bounded domain in Euclidean space Rn, n ≥ 2, with

boundary ∂Ω of class C1,1. We consider a second-order, elliptic Walden-

fels integro-differential operator W with real discontinuous coefficients

of the form

Wu(x) = Au(x) + Su(x) for x ∈ Ω, (8.1)

where

Au(x) =
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x)

and

Su(x) =

∫
Rn\{0}

u(x+ z)− u(x)−
n∑

j=1

zj
∂u

∂xj
(x)

K(x, z)µ(dz).

More precisely, we assume that the coefficients aij(x), bi(x) and c(x) of

the differential operator A satisfy the following three conditions (1), (2)

and (3):

(1) aij(x) ∈ L∞(Ω), aij(x) = aji(x) for all 1 ≤ i, j ≤ n and for

almost all x ∈ Ω and there exist a constant λ > 0 such that

1

λ
|ξ|2 ≤

n∑
i,j=1

aij(x)ξiξj ≤ λ |ξ|2 (8.2)

239
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for almost all x ∈ Ω and all ξ ∈ Rn.

(2) bi(x) ∈ L∞(Ω) for all 1 ≤ i ≤ n.

(3) c(x) ∈ L∞(Ω) and c(x) ≤ 0 for almost all x ∈ Ω.

Moreover, we assume that the integral kernel K(x, z) and the measure

µ(·) of the integro-differential operator S satisfy the following two con-

ditions (4) and (5):

(4) K ∈ L∞(Rn ×Rn) with K(x, y) ≥ 0 almost everywhere in Rn ×
Rn, and satisfies the condition

K(x, z) = 0 if x ∈ Ω and x+ z ̸∈ Ω. (8.3)

Probabilistically, the condition (8.3) implies that all jumps from Ω

are within Ω. Analytically, the condition (8.3) guarantees that the

operator S can be interpreted as a mapping acting on functions

u which are defined in Ω.

(5) µ(dz) is a Radon measure on Rn \ {0} which has a density with

respect to the Lebesgue measure dz on Rn and satisfies the mo-

ment condition∫
0<|z|≤1

|z|2 µ(dz) +
∫
|z|≥1

|z| µ(dz) <∞. (8.4)

The moment condition (8.4) implies that the measure µ(·) admits a

singularity of order 2 at the origin, and this singularity at the origin

is produced by the accumulation of small jumps of Markovian particles,

while the measure µ(·) admits a singularity of order 1 at infinity, and this

singularity at infinity is produced by the accumulation of large jumps of

Markovian particles.

Example 8.1. A typical example of the Radon measure µ(dz) which

satisfies the moment condition (8.4) is given by the formula

µ(dz) =


1

|z|n+2−ε
dz for 0 < |z| ≤ 1,

1

|z|n+1+ε
dz for |z| > 1,

where ε > 0.

The operator W is called a second-order, Waldenfels integro-differen-

tial operator (cf. [96], [11], [79]). The differential operator A is called a

diffusion operator which describes analytically a strong Markov process

with continuous paths (diffusion process) in the interior Ω. In fact,
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we remark that the differential operator A is local, that is, the value

Au(x0) at an interior point x0 ∈ Ω is determined by the values of u

in an arbitrary small neighborhood of x0. Moreover, it is known from

Peetre’s theorem ([56]) that a linear operator is local if and only if it

is a differential operator. The operator S is called a second-order, Lévy

integro-differential operator which is supposed to correspond to the jump

phenomenon in the interior Ω; a Markovian particle moves by jumps to a

random point, chosen with kernel K(x, y), in the interior Ω. Therefore,

the Waldenfels integro-differential operatorW is supposed to correspond

to such a diffusion phenomenon that a Markovian particle moves both

by jumps and continuously in the state space Ω.

8.1 Mapping properties of Lévy operators

In this section, we consider the Lévy integro-differential operator

Su(x) =

∫
Rn\{0}

u(x+ z)− u(x)−
n∑

j=1

zj
∂u

∂xj
(x)

K(x, z)µ(dz),

in the framework of Lp Sobolev spaces. The essential point in the proof

is how to estimate the Lévy integral operator Su in terms of Sobolev

norms (Theorem 8.1). We show that the operator W = (W,γ0) may

be considered as a perturbation of a compact operator to the operator

A = (A, γ0) in the framework of Sobolev spaces (Theorem 8.3).

8.1.1 Boundedness of Lévy operators defined on Rn

Our main result in this subsection is stated as follows:

Theorem 8.1. Assume that the moment condition (8.4) is satisfied.

Then the Lévy operator

S :W 2,p(Rn) −→ Lp(Rn)

is bounded for all 1 < p < ∞. More recisely, there exists a constant

C > 0 such that we have the inequality

∥Su∥Lp(Rn) (8.5)

≤ C ∥K∥∞

(∫
|z|≥1

|z| µ(dz) +
∫
0<|z|≤1

|z|2 µ(dz)

)
∥u∥W 2,p(Rn)

for all u ∈W 2,p(Rn).

--
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Proof. In order to prove the Lp-boundedness, we write the integral term

Su(x) in the form

Su(x) = S1u(x) + S2u(x).

Here:

S1u(x) :=

∫
|z|≥1

u(x+ z)− u(x)−
n∑

j=1

zj
∂u

∂xj
(x)

K(x, z)µ(dz),

S2u(x) :=

∫
0<|z|≤1

u(x+ z)− u(x)−
n∑

j=1

zj
∂u

∂xj
(x)

K(x, z)µ(dz).

First, we need the the following well-known lemma (see Ziemer [100,

p. 45-46]):

Lemma 8.2. Let 0 ≤ γ ≤ 1 and 1 < p <∞. If we let

Th(f)(x) := f(x+ h)− f(x) for h ∈ Rn,

then there exists a constant C > 0 such that

∥Th(f)∥Hγ,p ≤ C |h| ∥f∥H1+γ,p (8.6)

for all f ∈ H1+γ,p(Rn).

(1) First, we estimate the norm ∥S1u∥Lp(Rn): If we let

g1(x) :=

∫
|z|≥1

|u(x+ z)− u(x)| µ(dz)

and

g2(x) :=
n∑

j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣ ∫

|z|≥1

|zj | µ(dz),

then we have the inequality

|S1u(x)| ≤ ∥K∥∞ (g1(x) + g2(x)) . (8.7)

However, it follows from an application of Minkowskii’s inequality for

integrals and inequality (8.6) with γ := 0 that

∥g1∥Lp(Rn) ≤
∫
|z|≥1

(∫
Rn

|u(x+ z)− u(x)|p dx
)1/p

µ(dz) (8.8)

≤ C

(∫
|z|≥1

|z|µ(dz)

)
∥u∥W 1,p(Rn) .
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Here and in the following the letter C denotes a generic positive constant

independent of u ∈W 2,p(Rn).

Moreover, we have the inequality

∥g2∥Lp(Rn) ≤
n∑

j=1

∥∥∥∥ ∂u∂xj
∥∥∥∥
Lp(Rn)

 n∑
j=1

∫
|z|≥1

|zj | µ(dz)

 (8.9)

≤ C

(∫
|z|≥1

|z|µ(dz)

)
∥u∥W 1,p(Rn) .

By combining inequalities (8.7), (8.8) and (8.9), we obtain that

∥S1u∥Lp(Rn) ≤ ∥K∥∞
(
∥g1∥Lp(Rn) + ∥g2∥Lp(Rn)

)
(8.10)

≤ C ∥K∥∞

(∫
|z|≥1

|z| µ(dz)

)
∥u∥W 1,p(Rn) .

(2) In order to estimate the norm ∥S2u∥p, by using Taylor’s formula

we obtain that

u(x+ z)− u(x)−
n∑

j=1

zj
∂u

∂xj
(x)

=
n∑

j=1

zj

∫ 1

0

(
∂u

∂xj
(x+ tz)− ∂u

∂xj
(x)

)
dt.

Hence we have the inequality

|S2u(x)|

≤ ∥K∥∞
n∑

j=1

∫ 1

0

∫
0<|z|≤1

|z|
∣∣∣∣ ∂u∂xj (x+ tz)− ∂u

∂xj
(x)

∣∣∣∣ µ(dz) dt.
By Minkowskii’s inequality for integrals, it follows that

∥S2u∥Lp(Rn) (8.11)

≤ C ∥K∥∞
∫ 1

0

∫
0<|z|≤1

|z|
n∑

j=1

(∫
Rn

∣∣∣∣ ∂u∂xj (x+ tz)− ∂u

∂xj
(x)

∣∣∣∣p dx)1/p

× µ(dz) dt.

However, by applying inequality (8.6) with γ := 0 we obtain that

n∑
j=1

(∫
Rn

∣∣∣∣ ∂u∂xj (x+ tz)− ∂u

∂xj
(x)

∣∣∣∣p dx)1/p
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≤ Ct |z|
n∑

j=1

∥∥∥∥ ∂u∂xj
∥∥∥∥
W 1,p(Rn)

≤ Ct |z| ∥u∥W 2,p(Rn) for all 0 ≤ t ≤ 1.

Therefore, we have, by inequality (8.11),

∥S2u∥Lp(Rn) (8.12)

≤ C ∥K∥∞ ∥u∥W 2,p(Rn)

∫ 1

0

∫
0<|z|≤1

t |z|2 µ(dz) dt

=
1

2
C ∥K∥∞

(∫
0<|z|≤1

|z|2 µ(dz)

)
∥u∥W 2,p(Rn) .

The desired inequality (8.5) follows by combining inequalities (8.10)

and (8.12):

∥Su∥Lp(Rn)

≤ ∥S1u∥Lp(Rn) + ∥S2u∥Lp(Rn)

≤ C ∥K∥∞

(∫
|z|≥1

|z| µ(dz) +
∫
0<|z|≤1

|z|2 µ(dz)

)
∥u∥W 2,p(Rn) .

The proof of Theorem 8.1 is complete.

8.1.2 The case of a bounded domain

In this subsection, we prove the following version of Theorem 8.1 with

respect to the bounded domain Ω:

Theorem 8.3. Assume that the moment condition (8.4) is satisfied.

Then the operator

S :W 2,p(Ω) −→ Lp(Ω)

is bounded for all 1 < p < ∞. Moreover, if n < p < ∞, then the

operator

S :W 2,p(Ω) −→ Lp(Ω)

is compact.

Proof. The proof of Theorem 8.3 is divided into two steps.

Step 1: By restriction arguments, we find from inequality (8.5) that

the operator

S :W 2,p(Ω) −→W 2,p(Rn)
S−→ Lp(Rn) −→ Lp(Ω)

□ 
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is bounded.

Step 2: In order to prove the compactness, we make use of Bony–

Courrège–Priouret [11, Théorème XXI]. We show that the operator

S :W 2,p(Ω) −→ Lp(Ω)

is compact for n < p <∞.

We recall that K(x, z) = 0 if x+ z ̸∈ Ω. Hence there exists a compact

set M ⊂ Rn such that

Su(x) =

∫
M

u(x+ z)− u(x)−
n∑

j=1

zj
∂u

∂xj
(x)

K(x, z)µ(dz)

may be interpreted as a mapping acting on functions u defined Ω. In-

deed, we may take

M = ∪x∈Ω

{
Ω− x

}
.

First, we take a smooth function χ in C∞
0 (R) such that

χ(t) =

{
1 if |t| ≤ 1,

0 if |t| ≥ 2.

For every 0 < ε < 1, we let

Φε(z) := 1− χ

(
|z|
ε

)
.

We remark that

Φε(z) =

{
0 if |z| ≤ ε,

1 if |z| ≥ 2ε.

Moreover, by Dini’s theorem it follows that the sequence Φε(x, z) con-

verges uniformly to 1 for z ̸= 0, as ε ↓ 0.

Now we introduce a family of truncation operators given by the for-

mula

SΦεu(x) =

∫
M

u(x+ z)− u(x)−
n∑

j=1

zj
∂u

∂xj
(x)

K(x, z)Φε(z)µ(dz).

Then it is easy to see that the operator

SΦε : C1(Ω) −→ L∞(Ω)

is bounded. Indeed, we have, by the mean value theorem,

|SΦεu(x)|
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≤
∫
M

∣∣∣∣∣∣u(x+ z)− u(x)−
n∑

j=1

zj
∂u

∂xj
(x)

∣∣∣∣∣∣ |K(x, z)|Φε(z)µ(dz)

≤
∫
z∈M,|z|≥ε

|u(x+ z)− u(x)| |K(x, z)| µ(dz)

+
n∑

j=1

∫
z∈M,|z|≥ε

|zj | |K(x, z)| µ(dz)
∣∣∣∣ ∂u∂xj (x)

∣∣∣∣
≤ C ∥K∥∞

(∫
z∈M,|z|≥ε

|z| µ(dz)

)
∥u∥C1(Ω)

≤ C ∥K∥∞

(
1

ε

∫
ε≤|z|<1

|z|2 µ(dz)) +
∫
|z|≥1

|z| µ(dz)

)
∥u∥C1(Ω)

for all x ∈ Ω.

Since the embedding W 2,p(Ω) ↪→ C1(Ω) is compact for n < p < ∞
and since the embedding L∞(Ω) ↪→ Lp(Ω) is continuous, we obtain that

the operator

SΦε :W 2,p(Ω) −→ Lp(Ω)

is compact. The situation can be visualized as follows:

SΦε :W 2,p(Ω) ↪→↪→
compactly

C1(Ω)
SΦε−→ L∞(Ω) −→ Lp(Ω).

On the other hand, we obtain from inequality (8.5) that

∥SΦεu∥Lp(Ω) ≤ C ∥u∥W 2,p(Ω) for all u ∈W 2,p(Ω) and all 0 < ε < 1.

Furthermore, it follows from an application of Lebesgue’s dominated

convergence theorem that

SΦε −→ S as ε ↓ 0 (8.13)

with respect to the operator norm in the space L
(
W 2,p(Ω), Lp(Ω)

)
of

bounded linear operators on W 2,p(Ω) into Lp(Ω). Indeed, just as in the

proof of inequality (8.5) we obtain that

∥Su− SΦεu∥Lp(Ω)

≤ C ∥K∥∞

(∫
|z|≥1

|z|χ
(
|z|
ε

)
µ(dz) +

∫
0<|z|≤1

|z|2 χ
(
|z|
ε

)
µ(dz)

)
× ∥u∥W 2,p(Ω) for all u ∈W 2,p(Ω).
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However, by condition (8.4) it follows from the Lebesgue dominated

convergence theorem that

lim
ε↓0

(∫
|z|≥1

|z|χ
(
|z|
ε

)
µ(dz) +

∫
0<|z|≤1

|z|2 χ
(
|z|
ε

)
µ(dz)

)
= 0.

Summing up, we obtain from assertion (8.13) that the operator

S :W 2,p(Ω) −→ Lp(Ω)

is compact for n < p <∞.

The proof of Theorem 8.3 is complete.

Furthermore, we can obtain an L∞-version of Theorem 8.1 as follows:

Lemma 8.4. For every ε > 0, there exists a constant C(ε) > 0 such

that we have, for all u ∈ C2(Ω),

∥Su∥L∞(Ω) (8.14)

≤ 1

2
σ(ε) ∥K∥∞

∥∥∇2u
∥∥
L∞(Ω)

+ C(ε) ∥K∥∞ ∥∇u∥L∞(Ω) .

Here

σ(ε) =

∫
0<|z|≤ε

|z|2 µ(dz).

Proof. For each ε > 0, we decompose the integral term Su(x) into the

two terms S
(1)
ε u and S

(2)
ε u as follows:

Su(x) = S(1)
ε u(x) + S(2)

ε u(x).

Here:

S(1)
ε u(x) :=

∫
0<|z|≤ε

u(x+ z)− u(x)−
n∑

j=1

zj
∂u

∂xj
(x)

K(x, z)µ(dz)

=

∫ 1

0

(1− t) dt

∫
0<|z|≤ε

z · ∇2u(x+ tz)z K(x, z)µ(dz)

and

S(2)
ε u(x) :=

∫
|z|>ε

(u(x+ z)− u(x)− z · ∇u)µ(dz).

(1) First, we have the inequality∥∥∥S(1)
ε u

∥∥∥
Lp(Ω)

≤ 1

2
∥K∥∞

(∫
0<|z|≤ε

|z|2 µ(dz)

)∥∥∇2u
∥∥
L∞(Ω)

(8.15)

□ 
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=
1

2
σ(ε) ∥K∥∞

∥∥∇2u
∥∥
L∞(Ω)

.

By condition (8.4), it follows from an application of Lebesgue’s domi-

nated convergence theorem that

lim
ε↓0

σ(ε) = 0. (8.16)

(2) Secondly, we rewrite the term S
(2)
ε u in the form

S(2)
ε u(x) =

∫
|z|>ε

K(x, z) (u(x+ z)− u(x))µ(dz)

+

n∑
j=1

∫
|z|>ε

K(x, z)zj
∂u

∂xj
(x)µ(dz)

:= A(x) +B(x).

Then, by using condition (8.4) we can estimate the term B(x) as

follows:

|B(x)| ≤
∫
|z|>ε

K(x, z)|z| ·
n∑

j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣µ(dz)

≤ ∥K∥∞

(∫
|z|>ε

|z|µ(dz)

)
∥∇u∥L∞(Ω)

= δ(ε) ∥K∥∞ ∥∇u∥L∞(Ω) for all x ∈ Ω,

where

δ(ε) :=

∫
|z|>ε

|z|µ(dz).

However, the term δ(ε) can be estimated as follows:

δ(ε) =

∫
|z|>1

|z|µ(dz) +
∫
ε<|z|≤1

|z|µ(dz)

≤
∫
|z|>1

|z|µ(dz) + 1

ε

∫
ε<|z|≤1

|z|2 µ(dz)

≤
∫
|z|>1

|z|µ(dz) + 1

ε

∫
0<|z|≤1

|z|2 µ(dz)

= C2 +
C1

ε
.

Hence we obtain the inequality

∥B∥L∞(Ω) ≤
(
C1

ε
+ C2

)
∥K∥∞ ∥∇u∥L∞(Ω). (8.17)
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On the other hand, by Morrey’s imbedding theorem (see [2, Lemma

4.28], [33, Theorem 7.17], [80, Lemma 4.7]) we can find a constant C > 0

such that

|u(x+ z)− u(x)| ≤ C |z|1−n/p ∥∇u∥Lp(Ω) .

Hence it follows that

|A(x)| ≤
∫
|z|>ε

K(x, z) (u(x+ z)− u(x))µ(dz)

≤ C ∥K∥∞
∫
|z|>ε

|z|1−n/p
µ(dz) · ∥∇u∥Lp(Ω)

= C ∥K∥∞
∫
|z|>ε

|z| · 1

|z|n/p
µ(dz) ∥∇u∥Lp(Ω)

≤
C ∥K∥∞
εn/p

(∫
|z|>ε

|z|µ(dz)

)
∥∇u∥Lp(Ω)

= δ(ε)
C ∥K∥∞
εn/p

∥∇u∥Lp(Ω)

≤
(
C1

ε
+ C2

)
C ∥K∥∞
εn/p

∥∇u∥Lp(Ω) for all x ∈ Ω.

This proves that

∥A∥L∞(Ω) ≤
(
C1

ε
+ C2

)
C ∥K∥∞
εn/p

∥∇u∥Lp(Ω) (8.18)

= Cε ∥K∥∞ ∥∇u∥Lp(Ω)

≤ Cε ∥K∥∞ C3 |Ω|1/p ∥∇u∥L∞(Ω) ,

where

Cε =
C

εn/p

(
C1

ε
+ C2

)
and |Ω| is the volume of the domain Ω.

By combining estimates (8.17) and (8.18), we obtain that∥∥∥S(2)
ε u

∥∥∥
L∞(Ω)

≤ ∥A∥L∞(Ω) + ∥B∥L∞(Ω) (8.19)

≤ C(ε) ∥K∥∞ ∥∇u∥L∞(Ω) ,

with some constant C(ε) > 0 depending on ε.

(3) The desired estimate (8.14) follows by combining estimates (8.15)

and (8.19):

∥Su∥L∞(Ω) ≤ ∥S(1)
ε u∥L∞(Ω) + ∥S(2)

ε u∥L∞(Ω)
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≤ 1

2
σ(ε) ∥K∥∞

∥∥∇2u
∥∥
L∞(Ω)

+ C(ε) ∥K∥∞ ∥∇u∥L∞(Ω) .

The proof of Lemma 8.4 is complete.

8.2 Weak Maximum Principle

The purpose of this section is to prove a variant of the weak maximum

principle in the framework of Lp Sobolev spaces, essentially due to Bony

[9] (cf. [9, Théorème 2], [33, Section 9.1, Theorem 9.1], [93, Chapter 3,

Lemma 3.25]):

Theorem 8.5 (the weak maximum principle). Assume that a function

u ∈W 2,p(Ω), with n < p <∞, satisfies the condition

Wu(x) ≥ 0 for almost all x ∈ Ω. (8.20)

Then we have the inequality

max
Ω

u ≤ max
∂Ω

u+,

where

u+(x) = max{u(x), 0} for x ∈ Ω.

Here it should be noticed that we have, by Sobolev’s imbedding the-

orem (see Theorem 7.3),

W 2,p(Ω) ⊂ C1(Ω),

since 2− n/p > 1 for n < p <∞.

The proof of Theorem 8.5 is divided into Step (I) and Step (II).

Step (I): The next lemma, due to Bony [9, Théorème 1], plays an

essential role in the proof of Theorem 8.5 (cf. [93, Chapter 3, Lemma

3.24]):

Proposition 8.6 (Bony). If a function u ∈W 2,p(Ω), with n < p <∞,

attains a local maximum at a point x0 ∈ Ω, then we have the assertion

lim ess infx→x0

 n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(x)


= lim

ρ↓0

ess infB(x0,ρ)

 n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(x)


≤ 0,

□ 
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where B(x0, ρ) denote the open ball of radius ρ about x0. More precisely,

for every neighborhood U(x0) of x0 there exists a subsetM of U(x0), with

positive Lebesgue measure, such that

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(x) ≤ 0 for all x ∈M.

Proof. The proof of Proposition 8.6 is divided into four steps.

Step 1: First, we may assume that u ∈W 2,p(Ω) attains a strict local

maximum at a point x0 ∈ Ω. Indeed, if we consider the function

ũ(x) := u(x)− φ(x) = u(x)− |x− x0|4 for x ∈ Ω,

then it is easy to verify that ũ ∈W 2,p(Ω) attains a strict local maximum

at a point x0 and further that

lim ess infx→x0

n∑
i,j=1

aij(x)
∂2ũ

∂xi∂xj
(x)

= lim ess infx→x0

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(x),

since we have the assertion

lim ess infx→x0

n∑
i,j=1

aij(x)
∂2φ

∂xi∂xj
(x) = 0.

Step 2: Now we assume that u ∈ W 2,p(Ω) attains a strict local

maximum at the point x0 in an open neighborhood U(x0 in Ω. We

define the upper contact set W of u by the formula

W (8.21)

:= {x ∈ U(x0) : u(y) ≤ u(x) + ⟨∇u(x), y − x⟩ for all y ∈ Ω} .

Then we can find a constant r > 0 such that we have, for each η ∈ Rn

satisfying |η| < r,

u(x) < u(x0) + ⟨η, x− x0⟩ for all x ∈ Ω. (8.22)

If we let

φ(x, η) = u(x)− ⟨x, η⟩ for x ∈ Ω,

then inequality (8.22) can be rewritten in the form

φ(x, η) < φ(x0, η) for all x ∈ Ω.
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This implies that the function φ(x, η) takes its maximum in the interior

Ω. Hence there exists a point x̃ ∈ Ω, depending on η, such that

φ(y, η) ≤ φ(x̃, η) for all y ∈ Ω,

or equivalently, we have, for each η ∈ Rn satisfying |η| < r,

u(y) ≤ u(x̃) + ⟨η, y − x̃⟩ for all y ∈ Ω. (8.23)

In other words, we may translate vertically the plane

z = u(x) + ⟨η, y − x⟩

to the highest such position x̃, that is, the surface

z = u(y) for y ∈ Ω,

lies below the plane.

More precisely, we have the following claim (see [9, Lemme 2]):

Claim 8.1. η = ∇u(x̃).

Proof. If we let

Φ(y) := u(x̃)− u(y) + ⟨η, y − x̃⟩ for y ∈ Ω,

then it follows from inequality (8.23) that

Φ(y) ≥ 0 for all y ∈ Ω,

Φ(x̃) = 0.

This implies that ∇yΦ(x̃) = 0, so that η = ∇u(x̃).
The proof of Claim 8.1 is complete.

By Claim 8.1, we can rewrite inequality (8.23) as follows:

u(y) ≤ u(x̃) + ⟨∇u(x̃), y − x̃⟩ for all y ∈ Ω.

This proves that x̃ ∈ W.

Summing up, we have proved the following claim:

Claim 8.2. LetW be the upper contact set of u defined by formula (8.21).

Then we have, for some constant r,

B(0, r) ⊂ {∇u(x̃) : x̃ ∈ W}.

Step 3: We prove that the Lebesgue measure of |W| is positive. To

do this, we introduce a mapping

F :U(x0) −→ Rn

x 7−→ ∇u(x),

□ 



8.2 Weak Maximum Principle 253

where u ∈W 2,p(Ω) with n < p <∞. Then we have, by Claim 8.2,

B(0, r) ⊂ F (W).

This proves that |F (W)| > 0, since the set F (W) contains the open ball

B(0, r).

Furthermore, the next lemma, due to Bony [9, Lemme 1], proves that

|W| > 0:

Lemma 8.7 (Bony). Let F = (f1, f2, . . . , fn) be a W 1,p mapping of an

open subset Ω of Rn into Rn, where n < p < ∞. If S is a subset of

zero Lebesgue measure, then the Lebesgue measure of the image F (S) is
equal to zero, that is,

|S| = 0 =⇒ |F (S)| = 0.

Proof. (1) If γ > 0, we let (see Figure 8.1)

Cγ := a compact cube with sides parallel to the axes

and non-empty interior, with side length γ,

and we estimate the Lebesgue measure µ(F (Cγ)) of the image F (Cγ):

F (Cγ) = {(f1(x), f2(x), . . . , fn(x) : x ∈ Cγ}.
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Fig. 8.1. The compact cube Cγ with sides parallel to the axes and the image
F (Cγ)

To do this, we make use of a special case of Morrey’s theorem (see [2,

Lemma 4.28], [33, Theorem 7.17]; [80, Lemma 4.7]):

Claim 8.3 (Morrey). Let Ω be a cube in Rn and n < p < ∞. Then

there exists a positive constant C = C(p, n) such that we have, for all

u ∈W 1,p(Ω),

sup
x,y∈Ω
x̸=y

|u(x)− u(y)|
|x− y|1−n/p

≤ C ∥∇u∥Lp(Ω) . (8.24)
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Proof. By a density argument, it suffices to show that we have, for all

u ∈ C1(Ω),

|u(x)− u(y)| ≤ C ∥∇u∥Lp(Ω) |x− y|1−n/p for x, y ∈ Ω. (8.24′)

Furthermore, by a non-singular linear transformation we may assume

that Ω is a cube having unit side length.

For 0 < t < 1, we denote by Qt a subset of Ω which is a closed cube

having side length t and faces parallel to those to Ω. If x, y ∈ Ω and

σ := |x− y| < 1,

we can find a cube Qσ such that x, y ∈ Qσ. Then we have, for all

z ∈ Qσ,

u(x)− u(z) = −
∫ 1

0

d

dt
u(x+ t(z − x)) dt

= −
∫ 1

0

n∑
j=1

(zj − xj) ·
∂u

∂xj
(x+ t(z − x)) dt,

and so, by Schwarz’s inequality (Theorem 3.14 with p = q := 2),

|u(x)− u(z)| ≤
√
nσ

∫ 1

0

|∇u(x+ t(z − x))| dt.

Hence it follows from an application of Hölder’s inequality (Theorem

3.14) with q := p/(p− 1) that∣∣∣∣u(x)− 1

σn

∫
Qσ

u(z) dz

∣∣∣∣ (8.25)

=

∣∣∣∣ 1σn

∫
Qσ

(u(x)− u(z)) dz

∣∣∣∣
≤ 1

σn

∫
Qσ

|u(x)− u(z)| dz

≤
√
n

σn−1

∫
Qσ

dz

∫ 1

0

|∇u(x+ t(z − x))| dt

=

√
n

σn−1

∫ 1

0

(∫
Qσ

|∇u(x+ t(z − x))| dz
)
dt

=

√
n

σn−1

∫ 1

0

(∫
Qtσ+(1−t)x

|∇u(ζ)| dζ

)
t−n dt

≤
√
n

σn−1

(∫
Ω

|∇u(z)|p dz
)1/p ∫ 1

0

t−n (|Qtσ + (1− t)x|)1/q dt
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=

√
n

σn−1

(∫
Ω

|∇u(z)|p dz
)1/p ∫ 1

0

t−n ((tσ)n)
1/q

dt

= Kσ1−n/p ∥∇u∥Lp(Ω) ,

with

K := K(n, p) =
√
n

∫ 1

0

t−n/p dt =

√
n p

p− n
.

Similarly, we have, with y in place of x in inequality (8.25),∣∣∣∣u(y)− 1

σn

∫
Qσ

u(z) dz

∣∣∣∣ ≤ Kσ1−n/p ∥∇u∥Lp(Ω) . (8.26)

Therefore, by combining inequalities (8.25) and (8.26) we obtain that

|u(x)− u(y)| ≤
∣∣∣∣u(x)− 1

σn

∫
Qσ

u(z) dz

∣∣∣∣+ ∣∣∣∣ 1σn

∫
Qσ

u(z) dz − u(y)

∣∣∣∣
≤ 2K ∥∇u∥Lp(Ω) σ

1−n/p

= 2K ∥∇u∥Lp(Ω) |x− y|1−n/p for all x, y ∈ Ω.

This proves the desired inequality (8.24′) with C := 2K.

The proof of Claim 8.3 is complete.

By applying Claim 8.3 with

n := n, Ω := Cγ , u := fi for 1 ≤ i ≤ n,

we obtain that, for some positive constant K = K(p, n),

osc fi := sup
x,y∈Cγ

|fi(x)− fi(y)| ≤ Kγ1−n/p ∥∇fi∥Lp(Cγ)
, (8.27)

1 ≤ i ≤ n.

Since the Lebesgue measure µ(F (Cγ)) is estimated by osc f1 × osc f2 ×
· · · × osc fn, it follows from an application of inequality (8.27) that

|F (Cγ)| (8.28)

≤ Knγn(1−n/p) ∥∇f1∥Lp(Cγ)
× . . .× ∥∇fn∥Lp(Cγ)

.

(2) Now we assume that

|S| = 0.

Then, for any ε > 0 we can find a family of non-overlapping cubes Cα

with side length γα, α ∈ Λ, such that

S ⊂
∪
α∈Λ

Cα,

□ 
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γnα ≤ ε.

By the subadditivity of the Lebesgue measure, it follows from inequality

(8.28) that

|F (S)| (8.29)

≤
∑
α∈Λ

|F (Cα)|

≤ Kn
∑
α∈Λ

γn(1−n/p)
α ∥∇f1∥Lp(Cα) × . . .× ∥∇fn∥Lp(Cα)

≤ Kn
∑
α∈Λ

γn(1−n/p)
α

(
∥∇f1∥

p
Lp(Cα) + . . .+ ∥∇fn∥

p
Lp(Cα)

)n/p
.

However, by applying a discrete version of Hölder’s inequality (Theorem

3.14) to the last term of inequality (8.29) we obtain that∑
α∈Λ

γn(1−n/p)
α

(
∥∇f1∥

p
Lp(Cα) + . . .+ ∥∇fn∥

p
Lp(Cα)

)n/p
(8.30)

≤

(∑
α∈Λ

γnα

)1−n/p(∑
α∈Λ

(
∥∇f1∥

p
Lp(Cα) + . . .+ ∥∇fn∥

p
Lp(Cα)

))n/p

≤

(∑
α∈Λ

γnα

)1−n/p (
∥∇f1∥

p
Lp(∪α∈ΛCα) + . . .+ ∥∇fn∥

p
Lp(∪α∈ΛCα)

)n/p
≤ ε1−n/p

(
∥∇f1∥

p
Lp(Ω) + . . .+ ∥∇fn∥

p
Lp(Ω)

)n/p
.

Therefore, we have, by inequalities (8.29) and (8.30),

|F (S)|

≤ Kn
∑
α∈Λ

γn(1−n/p)
α

(
∥∇f1∥Lp(Cα) × . . .× ∥∇fn∥Lp(Cα)

)n/p
≤ Kn ε1−n/p

(∑
α∈Λ

(
∥∇f1∥

p
Lp(Cα) + . . .+ ∥∇fn∥

p
Lp(Cα)

))n/p
≤ Kn ε1−n/p

(
∥∇f1∥

p
Lp(Ω) + . . .+ ∥∇fn∥

p
Lp(Ω)

)n/p
= Kn ε1−n/p

(
∥∇F∥Lp(Ω)

)n
.

This implies that |F (S)| = 0, since ε > 0 is arbitrary.

The proof of Lemma 8.7 is complete. □ 
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By applying Lemma 8.7 to our situation, we obtain that |W| > 0. In

other words, for every neighborhood U(x0) of x0 there exists a subset

W of U(x0), with positive Lebesgue measure, such that

u(y) ≤ u(x) + ⟨∇u(x), y − x⟩ for all x ∈ W and all y ∈ Ω. (8.31)

Step 4: Moreover, we need the following claim (see [16, Theorem 12],

[45, Theorem 1.72]):

Claim 8.4 (Calderón–Zygmund). If u ∈W 2,p(Ω) with n < p <∞, then

it is almost everywhere two times differentiable in the usual sense.

By Claim 8.4, we may assume that u(x) is two times differentiable

almost everywhere in W.

Now we take an arbitrary vector ξ in the unit sphere Σn−1 in Rn, and

let

ϕ(t) := u(x+ tξ) for x ∈ M̃ and |t| < dist (x, ∂U(x0)).

By the change of variables, we may assume that, at almost all x ∈
W each first partial derivative ∂u/∂xi, 1 ≤ i ≤ n, has a directional

derivative with respect to ξ in the usual sense. Then we have, by Taylor’s

formula,

ϕ(t) = ϕ(0) + t
∂ϕ

∂t
(0) +

t2

2!

∂2ϕ

∂t2
(0) + o

(
t2
)

as t→ 0,

that is,

u(x+ tξ) = u(x) + ⟨∇u(x), y − x⟩+ t2

2!

n∑
i,j=1

∂2u

∂xi∂xj
(x)ξiξj + o

(
t2
)

as t→ 0.

By inequality (8.31) with y := x + tξ, we have, for any given vector

ξ ∈ Σn−1,

n∑
i,j=1

∂2u

∂xi∂xj
(x)ξi ξj ≤ 0 for almost all x ∈ W. (8.32)

Let {ξ(n)} be a countable dense subset of Σn−1. By assertion (8.32),

for every neighborhood U(x0) of x0 we can find a subset M̃ of U(x0),

with |M̃ | > 0, such that

n∑
i,j=1

∂2u

∂xi∂xj
(x)ξ

(n)
i ξ

(n)
j ≤ 0 for all x ∈ M̃ and all ξ(n) ∈ Σn−1.
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By passing to the limit in this inequality, we obtain that

n∑
i,j=1

∂2u

∂xi∂xj
(x)ξiξj ≤ 0 for all x ∈ M̃ and all ξ ∈ Σn−1.

Summing up, we have proved ([9, Proposition 1]) that, for every neigh-

borhood U(x0) of x0 there exists a subset M̃ of U(x0), with |M̃ | > 0,

such that the Hessian matrix(
∂2u

∂xi∂xj
(x)

)
is negative semi-definite for all x ∈ M̃ .

On the other hand, condition (8.2) implies that the matrix (aij(x)) is

positive definite for almost all x ∈ Ω.

Therefore, for every neighborhood U(x0) of x0 we can find a subset

M of U(x0), with |M | > 0, such that

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(x) ≤ 0 for all x ∈M.

The proof of Lemma 8.7 is complete.

Step (II) (End of Proof of Theorem 8.5): We divide the proof of

Theorem 8.5 into Case II-1 and Case II-2.

Case II-1: First, we consider the case where

A0u :=
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
,

W0u := A0u+ Su.

(1) We assume that a function u ∈W 2,p(Ω), with n < p <∞, satisfies

the condition

W0u(x) = (A0 + S)u(x) ≥ 0 for almost all x ∈ Ω, (8.33)

and takes a local maximum at an interior point x0 ∈ Ω. Then we have,

by Proposition 8.6,

lim ess infx→x0

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(x) ≤ 0. (8.34)

However, it should be noticed that

bi(x) ∈ L∞(Ω),

□ 
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∂u

∂xi
(x0) = 0, 1 ≤ i ≤ n.

Therefore, we obtain from assertion (8.34) that

lim ess infx→x0 A0u(x) ≤ 0. (8.35)

On the other hand, it follows from inequality (8.31) that

Su(x) (8.36)

=

∫
Rn\{0}

u(x+ z)− u(x)−
n∑

j=1

zj
∂u

∂xj
(x)

K(x, z)µ(dz)

≤ 0 for all x ∈ W.

(2) We choose a positive constant γ so large that

γ > λ
∥∥b1∥∥

L∞(Ω)
, (8.37)

and let, for any ε > 0,

uε(x) := u(x) + εeγx1 .

Then, by conditions (8.2), inequalities (8.33), (8.36) and (8.37) we can

find a constant η = η(ε) > 0 such that

A0uε(x) = A0u(x) + ε
[
a11(x)γ2 + b1(x)γ

]
eγx1

≥ −Su(x) + ε
[
a11(x)γ2 + b1(x)γ

]
eγx1

≥ ε
[
a11(x)γ2 + b1(x)γ

]
eγx1 ≥ ε

[
γ2

λ
−
∥∥b1∥∥

L∞(Ω)
γ

]
eγx1

≥ η(ε) > 0 for almost all x ∈ Ω.

In view of inequality (8.35), this proves that the function uε(x) does

not take a maximum at any interior point of Ω. Hence we have the

inequality

uε(x) = u(x) + εeγx1 ≤ max
y∈∂Ω

(u(y)) + εeγy1) for all x ∈ Ω. (8.38)

Therefore, by letting ε ↓ 0 in inequality (8.38) we obtain that

u(x) ≤ max
y∈∂Ω

u(y) for all x ∈ Ω.

This proves that

max
Ω

u = max
∂Ω

u. (8.39)
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Here it should be emphasized that we do not make any regularity as-

sumption on the boundary ∂Ω.

Case II-2: Secondly, we consider the general case where

A =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x).

Here we recall that c(x) ∈ L∞(Ω) and c(x) ≤ 0 for almost all x ∈ Ω.

We assume that a function u ∈ W 2,p(Ω), with n < p < ∞, satisfies

the condition

Wu(x) = (A+ S)u(x) ≥ 0 for almost all x ∈ Ω. (8.20)

(1) If u(x) ≤ 0 in Ω, then it follows that

max
Ω

u ≤ 0 ≤ max
∂Ω

u+.

(2) We consider the case where the subdomain

Ω+ = {x ∈ Ω : u(x) > 0}

is not empty. If we define a differential operator

A0 := A− c(x) =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

then it follows from condition (8.20) that

(A0 + S)u(x) =Wu(x)− c(x)u(x) ≥ −c(x)u(x)
≥ 0 for almost all x ∈ Ω+.

Hence, by applying assertion (8.39) to our situation we obtain (see Figure

8.2 below) that

max
Ω

u = max
Ω+

u = max
∂Ω+

u = max
∂Ω

u+.

Summing up, we have proved the desired inequality

max
Ω

u ≤ max
∂Ω

u+.

Now the proof of Theorem 8.5 is complete. □ 
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Fig. 8.2. The subdomain Ω+ = {u > 0} of Ω

8.3 Hopf’s Boundary Point Lemma

In this section, we study the inward normal derivative ∂u/∂n(x′0) at

a boundary point x′0 where the function u(x) takes its non-negative

maximum.

The Hopf boundary point lemma reads as follows (cf. Hopf [34],

Olĕınik [54]):

Lemma 8.8 (Hopf). Assume that a function u ∈ W 2,p(Ω), with n <

p <∞, satisfies the condition

Wu(x) ≥ 0 for almost all x ∈ Ω. (8.20)

If u(x) attains a non-negative, strict local maximum at a point x′0 of ∂Ω,

then we have the inequality

∂u

∂n
(x′0) < 0, (8.40)

where n = (n1, n2, . . . , nn) is the unit inward normal to the boundary

∂Ω (see Figure 8.3 below).

Proof. By Theorem 8.5, it suffices to consider the case{
u(x′0) = m := maxx∈Ω u(x) ≥ 0,

u(y) < u(x′0) for all y ∈ Ω.
(8.41)

The proof of inequality (8.40) is divided into three steps.

Step 1: By condition (8.41), we can find an open ball B(y, r) con-

tained in the domain Ω, centered at y, such that (see Figure 8.4)
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Fig. 8.3. The unit inward normal n to the boundary ∂Ω at x′
0

(a) The point x′0 is on the boundary S(y, r) = {z ∈ Ω : |z − y| = r}
of B(y, r);

(b) n = s(y − x′0) for some s > 0.
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Fig. 8.4. The open ball B(y, r) contained in the domain Ω centered at y

Step 2: Near the boundary point x′0, we introduce local coordinate

systems (x′, xn) such that x′ = (x1, x2, . . . , xn−1) give local coordinates

for the boundary ∂Ω and that (see Figure 8.5 below)

Ω = {(x′, xn) : xn > 0} ,
∂Ω = {(x′, xn) : xn = 0} ,
x′0 = (0, . . . , 0, 0) ,

y = (0, . . . , 0, r) ,

|x′0 − y| = r.

Now we introduce a function v(x) by the formula

v(x) = v(x′, xN ) = exp
[
−γ|x− y|2

]
− exp

[
−γR2

]
, (8.42)
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x′
= (x

1

, . . . , xn−1
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Ω = {xn > 0}
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Fig. 8.5. The local coordinate systems (x′, xn) such that Ω = {xn > 0} and
∂Ω = {xn = 0}

0 < R <
1

2
,

where γ is a positive constant to be chosen later on. Then it is easy to

see that

Av(x) =

n∑
i,j=1

aij(x)
∂2v

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂v

∂xi
(x) + c(x)v(x) (8.43)

= exp
[
−γ|x− y|2

]
×

[
4γ2

 n∑
i,j=1

aij(x)(xi − yi)(xj − yj)


− 2γ

(
n∑

i=1

(
aii(x) + bi(x)(xi − yi)

))]
+ c(x)v(x).

However, we have, by formula (8.42) and condition (8.2),

v(x) ≤ exp
[
−γ|x− y|2

]
for all x ∈ Ω,

and

n∑
i,j=1

aij(x)(xi − yi)(xj − yj) ≥
1

λ
|x− y|2 for almost all x ∈ Ω.

Hence, it follows from formula (8.43) that

Av(x) (8.44)

≥ exp
[
−γ|x− y|2

]
×

[
4γ2

λ
|x− y|2 − 2γ

(
n∑

i=1

(
aii(x) + |bi(x)(xi − yi)|

)
+ |c(x)|

)]
for almost all x ∈ Ω.

----
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Moreover, for any ρ > 0, we can choose a constant γ = γ(ρ) so large

that we have, for ρ < |x− y| < R,

4γ2

λ
|x− y|2 − 2γ

(
n∑

i=1

(
aii(x) + |bi(x)(xi − yi)|

)
+ |c(x)|

)
(8.45)

≥ 4ρ2

λ
γ2 − 2γ

(
n∑

i=1

(∥∥aii∥∥
L∞(Ω)

+ |
∥∥bi∥∥

L∞(Ω)
R
)
+ ∥c∥L∞(Ω)

)
≥ 0 for almost all x ∈ Ω.

Therefore, by combining inequalities (8.44) and (8.45) we obtain that,

for any ρ > 0 there exists a positive constant γ = γ(ρ) such that (see

Figure 8.6)

Av(x) ≥ 0 (8.46)

for almost all x ∈ ΓρR := {z ∈ Ω : ρ < |z − y| < R}.
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Fig. 8.6. The annular domain ΓρR = B(y,R) \B(y, ρ)

On the other hand, by combining inequality (8.14) with assertion

(8.16) we can find that, for every small η > 0 there exists a constant

Cη > 0 such that

|Sv(x)| ≤
(
ηγ2 + Cηγ

)
exp

[
−γ|x− y|2

]
(8.47)

for almost all x ∈ Γρr := {z ∈ Ω : ρ < |z − y| < r}.
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Therefore, by taking

η :=
2ρ2

λ
,

γ >
λ

2ρ2
(C + Cη) ,

we obtain from inequalities (8.46) and (8.47) that

Wv(x) = Av(x) + Sv(x) (8.48)

≥ Av(x)− |Sv(x)|

≥
(
2ρ2

λ
γ2 − (C + Cη) γ

)
exp

[
−γ|x− y|2

]
=

2ρ2

λ
γ

(
γ − λ(C + Cη)

2ρ2

)
exp

[
−γ|x− y|2

]
> 0 for almost all x ∈ Γρr := {z ∈ Ω : ρ < |z − y| < r}.

Step 3: Without loss of generality, we may assume that, for 0 < R <

1/2 sufficiently small,

u(x) < u(x0) in B(y,R). (8.49)

If ε > 0, we let

w(x) := u(x)− u(x0) + εv(x).

(a) First, we have, by condition (8.49),

w(x) = u(x)− u(x0) + εv(x) ≤ 0 on S(y, ρ) = {z ∈ Ω : |z − y| = ρ},

if ε > 0 is chosen sufficiently small.

(b) Secondly, it follows that

w(x) = u(x)− u(x0) + εv(x)

≤ 0 on S(y, r) = {z ∈ Ω : |z − y| = r},

since v(x) = 0 on S(y, r).

Hence we have, by assertions (a) and (b),

w(x) ≤ 0 on ∂Γρr = S(y, ρ) ∪ S(y, r).

On the other hand, by conditions (8.20) and (8.48) it follows that

Ww(x) =Wu(x) + εWv(x)− u(x0) (W1) (x) ≥ εWv(x)− c(x)u(x0)

> −c(x)u(x0)

≥ 0 for almost all x ∈ Γρr = B(y, r) \B(y, ρ).
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Therefore, by applying Theorem 8.5 with Ω := Γρr we obtain that

w(x) ≤ 0 in Γρr = B(y, r) \B(y, ρ). (8.50)

(c) On the other hand, we have, by formula (8.38),

w(x0) = εv(x0) = 0. (8.51)

Therefore, it follows from assertions (8.50) and (8.51) that

∂w

∂n
(x′0) =

∂u

∂n
(x′0) + ε

∂v

∂n
(x′0) ≤ 0. (8.52)

However, we have, by formula (8.42),

∂v

∂n
(x′0) = 2γre−γr2 > 0. (8.53)

Summing up, we obtain from inequalities (8.52) and (8.53) that

∂u

∂n
(x′0) ≤ −ε ∂v

∂n
(x′0) = −2εγre−γr2 < 0.

Now the proof of Lemma 8.8 is complete.

8.4 Strong Maximum Principle

Finally, we can prove the following strong maximum principle for the

operator A ([9, Théorème 2]):

Theorem 8.9 (the strong maximum principle). Assume that a function

u ∈W 2,p(Ω), with n < p <∞, satisfies the condition

Wu(x) ≥ 0 for almost all x ∈ Ω. (8.20)

If u(x) attains a non-negative maximum at an interior point of Ω, then

it is a (non-negative) constant function.

Proof. Our proof is based on a reduction to absurdity. We let

m := max
x∈Ω

u(x) ≥ 0,

S := {x ∈ Ω : u(x) = m},

and assume, to the contrary, that

S ⫋ Ω.

Since S is closed in Ω, we can find a point x0 of S and an open ball

B(y,R) contained in the set Ω \ S, centered at y, such that (see Figure

8.7)

□ 
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(a) B(y,R) ⊂ Ω \ S;
(b) x0 is on the boundary S(y,R) = {z ∈ Ω : |z − y| = R} of B(y,R).

Ω B(y, R)

S = {x ∈ Ω : u(x) = M}
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Fig. 8.7. The open ball B(y,R) contained in the set Ω \ S, centered at y

By applying Hopf’s boundary point lemma (Lemma 8.8) with Ω :=

B(y,R), we obtain that

n∑
i=1

νi
∂u

∂xi
(x0) < 0, (8.54)

where

ν =
y − x0
|y − x0|

.

However, since u(x0) = m for some interior point x0 ∈ Ω, it follows that

∂u

∂xi
(x0) = 0, 1 ≤ i ≤ n.

Hence we have the assertion
n∑

i=1

νi
∂u

∂xi
(x0) = 0.

This contradicts inequality (8.54).

The proof of Theorem 8.9 is complete.

8.5 Notes and Comments

The results of this chapter are adapted from Bony [9], Bony–Courrège–

Priouret [11], Troianiello [93] and also Taira [73], [79], [81] and [82].

□ 






