
A Study on XSLT Transformation Method
for Distributed XML

Mizumoto Hiroki

Graduate School of Library, Information and Media Studies
University of Tsukuba

March 2015

i

Contents

Chapter 1 Introduction 1

Chapter 2 Definitions 6

Chapter 3 Transformation Method 10

3.1 Master-XSLT and Slave-XSLT . 10

3.2 Evaluation of pattern . 15

3.3 Correctness of the Method . 19

3.4 Comparison with Distributed XPath Evaluation Algorithms 21

Chapter 4 Evaluation Experiment 23

Chapter 5 Conclusion 28

Acknowledgment 29

Bibliography 30

1

Chapter 1

Introduction

XML has been a de-fact standard format on the Web, and the sizes of XML documents have rapidly been

increasing. Distributed XML[5, 2, 1, 6] is a novel form of XML document, in which an XML document is

partitioned into fragments and managed separately in plural sites. Figures 1.1 and 1.2 show a simple example

of a distributed XML document of multinational corporation clientele. In this example, one XML document

is partitioned into four fragments f1, f2, f3, and f4, and f1 is stored in site S 1, f2 is stored in site S 2, and so on.

Due to geographical and/or administrative factors, distributed XML is much suitable for managing some kind

of XML documents, e.g., an XML document containing some separable subcontents that should be managed

by different admins[1].

In this thesis, we consider XSLT transformation for distributed XML documents. A conventional approach

for performing an XSLT transformation on a distributed XML document is to send all fragments to a specific

site, then merge all the fragments into one XML document, and perform an XSLT transformation on the

merged document. However, this “centralized” approach is inefficient due to the following reasons. First,

in this approach an XSLT transformation processing is not load-balanced. Second, an XSLT transformation

becomes inefficient if the size of the target XML document is large[17]. This implies that the centralized

approach is inefficient even if the size of each XML fragment is small, whenever the merged document is

large. In this pater, we propose a method for performing XSLT transformation efficiently for distributed

XML documents. Our basic strategy is to transform each fragment at the site storing the fragment, send the

transformed fragments to a specific site, and merge all the transformed fragments on the specific site. To

achieve this strategy, however, we have a problem attributed to XSLT pattern. In our data model, a location

path can be used as an XSLT pattern instead of a single label. Due to this, a site has to access other sites

many times to evaluate an XSLT pattern, which causes a serious performance problem. Let S be a site, f be

the fragment in S , and pat be an XSLT pattern, and consider checking if a node v in f matches pat. We need

to find the ancestors v′ of v (and some descendants of v′) such that v is reachable from v′ via pat. Since v′ is

often a node outside S , many accesses to sites outside S are required to check if v matches pat. For example,

consider the XML fragments in Figs. 1.1 and 1.2, and suppose that we have the following XSLT template.

<xsl:template match=“branches/branch[currency]//deal”>

Chapter 1 Introduction 2

clientele

client

currency

name

branches

branch

location

JPY JPN

deals

deal

amount date

100,000

2014 11 11

year month day

J.inc

clientele

client

currency

name

branch

location

CHY CHN

deals

deal

amount
date

100,000

2014 11 30

year month day

C.inc

client

name deals

deal

amount
date

4,000,000

2014 12 15

year month day

P.inc

clientele

client

currency

name

branch

location

USD USA

deals

deal

amount date

1,000,000

2014 11 30

year month day

U.inc

f1

f2

f3

f4

incomplete incomplete

Figure 1.1 Multinational corporation clientele

...

</xsl:template>

To check if the node labeled by “deal” in f4 matches the above template, we need to access S 2 and S 1 from

S 4. To reduce such accesses, we propose two novel techniques; (1) precomputation of ancestors and (2)

cache for predicate evaluation. For (1), each site S having a fragment f precomputes a path from the root

of f to the root of the input XML document, called root path. By using a root path, ancestors v′ of a node

v can be obtained efficiently even if v′ is stored in a site different from the site having v. As for (2), each

site maintains a cache that stores results of predicate evaluations. In an XML document, sibling nodes tend

to have the same label. Therefore, if a pattern matching such sibling nodes accesses ”outside” sites, a lot of

similar communications between sites may occur to evaluate the pattern. For example, consider evaluating

pattern “↓∗::branch[↓::currency]/↓∗::deal” for five sibling nodes v8, · · · , v12 (Fig. 1.3). Without cache, due

to the predicate “↓∗::currency” an access from f ′4 to f ′2 is required for each of the five siblings. By storing

the results of such predicate evaluations in a cache we can reduce accessing “outside” sites when evaluating

predicates. We implemented our method in Ruby and made evaluation experiments. The result suggests that

our method is more efficient than the centralized approach.

To show how XSLT is applied to distributed XML, consider again the XML tree shown in Fig. 1.1. It

is often preferable that such trees are decomposed into a number of fragments and are distributed over the

Internet for geographical or administrative reasons. For example, a client may request that his data is stored

in a site located in his country since the site and its data must obey the laws of the country where the site is

located (e.g., USA Patriot Act). In this example, we assume that f1 is stored in American site S 1, f2 is stored

in Japanese site S 2, and so on. Here, suppose that the manager of this corporation requests a list consisting of,

for each currency, the sales amounts of “incomplete” deals. By using the XSLT stylesheet shown in Fig. 1.4,

we can easily obtain the list of sales amounts associated with currency of incomplete deals (Fig. 1.5). Note

Chapter 1 Introduction 3

S1

S2

f2

f1

S3

f3

S4

f4

URL: http://server1.us/f1

URL: http://server3.cn/f3

URL: http://server2.jp/f2

URL: http://server4.jp/f4

Figure 1.2 Four sites storing the fragments in Fig. 1.1

clientele
currency

branch

location

f’2

v1

v2 v3 v4

client

name deals
f’4

deal

v5

v6 v7

v8 v9 v10 v11 v12

dealdealdealdeal

c1CONNECT

Figure 1.3 Sibling nodes labeled as same

that such a result cannot be obtained if we use XPath instead of XSLT.

Since XSLT is Turing complete[7], it is hard to plan a complete strategy of XSLT transformation for dis-

tributed XML. In this thesis, we focus on the top down transformation with node selection by using patterns,

and thus use a top down tree transducer instead of the full XSLT. This tree transducer is an extended version

of the unranked top-down tree transducer used in [11]. Our tree transducer is extended so that, in addition to

a single label, a location path can be used as a match attribute of an XSLT template. Thus, this thesis adopts

the “core” of XSLT transformation to focus on the distributed evaluation of XSLT pattern. However, our tree

transducer can easily be extended so that it covers about a half of XSLT instructions/functions. Table 1.1

classifies the instructions/functions of XSLT 1.0 into two types A and B. Here, the instructions/functions f of

type A can locally be calculated within the fragment in which f is evaluated, e.g., xsl:text. On the other

hand, the instructions/functions f of type B may accesses several fragments beyond the fragment in which

the f is evaluated, e.g., the select attribute of xsl:for-each may access outside of the fragment having the

current node. Since the instructions/functions of Type A are not affected by how fragments are distributed,

the instructions/functions can easily be incorporated into our tree transducer. Taking this into account, we

believe that our tree transducer represents a practical class of XSLT transformation.

Table 1.1 XSLT 1.0 instructions and functions

instruction function

Type A 18 18

Type B 17 16

Total 35 34

Chapter 1 Introduction 4

<xsl:template match="branches">

<data>

<xsl:apply-templates/>

</data>

</xsl:template>

<xsl:template match="branch">

<branch>

<xsl:apply-templates/>

</branch>

</xsl:template>

<xsl:template match="currency">

<currency>

<xsl:apply-templates/>

</currency>

</xsl:template>

<xsl:template match="deal[incomplete]/amount">

<amount>

<xsl:apply-templates/>

</amount>

</xsl:template>

Figure 1.4 An example of XSLT stylesheet

<data>

<branch>

<currency>JPY</currency>

<amount>100,000</amount>

</branch>

<branch>

<currency>USD</currency>

<amount>1,000,000</amount>

</branch>

</data>

Figure 1.5 List of sales amounts with currency of incomplete deals

Related Work

A distribution design of XML documents is firstly proposed in [3]. There have been several studies on

evaluations of XPath and other languages for distributed XML. [4, 5, 6, 8, 10] propose efficient XPath evalu-

Chapter 1 Introduction 5

ation algorithms for distributed XML. Given a tree t and an XPath query q, the algorithm in [4, 5, 6] traverses

t and computes, for each node v in t, several vectors which records the evaluation values of subexpressions

of q at v. The algorithm in [10] partitions an XML tree into fragments, selects appropriate fragments con-

taining answers to the query, then performs a query processing on the fragments in parallel. [8] proposes,

assuming that an XML tree is stored in relational tables, a scheme for parallel processing of XML tree using

PC-clusters. [9] proposes a method for evaluating XQ, a subset of XPath, for vertically partitioned XML

documents. [14] considers a regular path query evaluation in an distributed environment. [12] proposes a

data-parallel approach for the processing of streaming XPath queries based on push down transducers. This

approach permits XML data to be split into arbitrarily-sized chunks. [15] extensively studies the complexities

of regular path query and structural recursion over distributed semistructured data. Besides query languages,

[2] and [1] study on the complexities of schema design problems for distributed XML. To the best of the

authors’ knowledge, there is no study on XSLT evaluation for distributed XML.

6

Chapter 2

Definitions

Since our method is based on unranked top-down tree transducer, we first show related definitions. Let Σ

be a set of labels. By TΣ we mean the set of unranked Σ-trees. A tree whose root is labeled with a ∈ Σ and has

n subtrees t1, · · · , tn is denoted by a(t1 · · · tn). In the following, we always mean Σ-tree whenever we say tree.

A hedge is a finite sequence of trees. The set of hedges is denoted by HΣ. For a set Q, by HΣ(Q) we mean the

set of Σ-hedges such that leaf nodes can be labeled with elements from Q. In the following, we use t, t1, t2, · · ·
to denote trees and h, h1, h2, · · · to denote hedges. We denote by λ(u) the label of a node u. An XSLT pattern is

specified as the match attribute value of an XSLT template. Formally, an XSLT pattern (pattern for short) is

a subset of XPath location path defined as follows, where ↓ and ↓∗ denote child and descendant-or-self axes,

respectively.

LocationPath ::= LocationStep |LocationPath ‘/’ LocationStep
LocationStep ::= AxisName ‘::’ NodeTest Predicate*

AxisName ::= ↓ | ↓∗

NodeTest ::= Any label in Σ
Predicate ::= ‘[’ LocationPath ‘]’

From the above definition, a pattern pat can be expressed as pat = ls1/ · · · /lsn, where lsi =

axi :: li[pdi,1] · · · [pdi,mi], axi is an axis, li is a label, and pdi, j is a predicate. The selection path

of pat, denoted sel(pat), is the pattern obtained by dropping every predicate from pat, that is,

sel(pat) = ax1 :: l1/ · · · /axn :: ln.

Let t be a tree, pat = ls1/ · · · /lsn be a pattern with lsi = axi :: li[pdi,1] · · · [pdi,mi](1 ≤ i ≤ m), and v be

a node of t. Suppose that we have an XSLT template whose match attribute value is pat. Then the XSLT

template can be applied to v if there is an ancestor v′ of v such that v is reachable from v′ via pat. Mpat(t, v, pat)

denotes the set of such ancestors of v. Formally, Mpat(t, v, pat) is defined as follows.

Mpat(t, v, pat) =
{

V(t, v, lsn) if n = 1,
{v′′ | v′′ ∈ Mpat(t, v′, pat′), v′ ∈ V(t, v, lsn)} otherwise,

where pat′ = ls1/ · · · /lsn−1 and V(t, v, lsi) is the set of ancestors v′ of v such that v is reachable from v′ via lsi,

Chapter 2 Definitions 7

v1

branch

v4

clientele

v3

location
v5

client

v6 name v7 deels

v2

currency

Figure 2.1 Tree te

defined as follows. First, if i = 1 (i.e., the leftmost location step), then

V(t, v, ls1) =

{v} if λ(v) = l1 and
∧

k=1,···,m1

Mpd(t, v, pd1,k) , ∅,

∅ otherwise,

where Mpd(t, v, pdi,k) denotes the set of nodes reachable from v via predicate pdi,k in t (defined later). Thus, v

satisfies pdi,k iff Mpd(t, v, pdi,k) , ∅. Second, if i > 1, then

V(t, v, lsi) =


{v′ | v′ is a parent of v in t, λ(v) = li,

∧
k=1,···,mi

Mpd(t, v, pdi,k) , ∅} if axi = ↓,

{v′ | v′ is an ancestor of v, λ(v) = li,
∧

k=1,···,mi

Mpd(t, v, pdi,k) , ∅} if axi = ↓∗,

where, axi is the axis of lsi.

Then let us show the definition of Mpd(t, v, pat).

Mpd(t, v, pat) =
{

V ′(t, v, ls1) if n = 1,
{v′′ | v′′ ∈ Mpd(t, v′, pat′′), v′ ∈ V ′(t, v, ls1)} otherwise,

where pat′′ = ls2/ · · · /lsn and V ′(t, v, lsi) denotes the set of nodes reachable from v via lsi, that is,

V ′(t, v, lsi)=


{v′ | v′ is a child of v in t, λ(v′) = li,

∧
k=1,···,mi

Mpd(t, v′, pdi,k) , ∅} if axi =↓,
{v′ | v′ is a descendant of v in t, λ(v′) = li,

∧
k=1,···,mi

Mpd(t, v′, pdi,k) , ∅} if axi =↓∗.

For example, let te be the tree shown in Fig. 2.1, pat = ↓∗::branch/↓::currency and pd = ↓∗::clientele/↓∗::deals.

Then Mpat(te, v2, pat) = {v1} and Mpd(te, v1, pd) = {v7}.
In this thesis, we use an extended version of the unranked tree transducer used in [11]. Formally, a tree

transducer is a quadruple (Q,Σ, q0,R), where Q is a finite set of states, q0 ∈ Q is the initial state, and R is

a finite set of rules of the form (q, pat) → h, where pat is a pattern, q ∈ Q and h ∈ HΣ(Q) (in the original

transducer[11], pat is restricted to a single label). A state corresponds to the mode attribute value of an XSLT

template.

The translation defined by a tree transducer Tr = (Q,Σ, q0,R) on a tree t in state q, denoted by Trq(t), is

inductively defined as follows.

R1: If t = ϵ, then Trq(t) := ϵ.

Chapter 2 Definitions 8

R2: If t = a(t1 · · · tn) and there is a rule (q, pat) → h in R with Mpat(t, a, pat) , ∅ for some pattern pat,

some q ∈ Q, and some h ∈ HΣ, then Trq(t) is obtained from h by replacing every node u in h labeled

with p ∈ Q by the hedge Trp(t1) · · · Trp(tn).

R3: If Mpat(t, a, pat) = ∅ for every pattern pat, every q ∈ Q, and every h ∈ HΣ, (q, pat) → h in R, then

Trp(t) := ϵ.

The transformation of t by Tr, denoted by Tr(t), is defined as Trq0 (t).

Example 1 Let Tr = (Q,Σ, p,R) be a tree transducer, where

Q = {p, q},
Σ = {branch, currency, location, clientele, client, name, deals, x, y, z},
R = {(p, ↓∗::branch)→ x(p q), (q, ↓∗::currency)→ z,

(p, ↓∗::branch[↓::location]/↓::clientele)→ y(p),
(p, ↓∗::branch/↓∗::client)→ x(y)}.

Tr corresponds to the XSLT script shown in Fig. 2.2. For example, consider the rule (p, ↓∗::branch)→ x(p q)

in R. This corresponds to the first template in Fig. 2.2. The state p in the left-hand side of the rule corresponds

to the mode attribute value of the template, and the pattern “↓∗::branch” in the left-hand side of the rule

corresponds to the match attribute value. Consider transforming the tree te shown in Fig. 2.1 by Tr. Since

the initial state of Tr is p and the root v1 of te is labeled by “branch”, the first rule (p, ↓∗::branch) → x(p q)

is applied to te and we obtain the tree shown in Fig. 2.3(1), where t1 is the subtrees rooted at v4 of te. Since

there is no rule applicable to v2 in state p, Trp(v2) = ∅. Similarly Trp(v3) = ∅, Trq(v3) = ∅ and Trq(t1) = ∅.
Consider Trp(t1). Since the third rule (p, ↓∗::branch[↓::location]/↓::clientele)→ y(p) can be applied to t1, we

obtain the tree shown in Fig. 2.3(2), where t2 is the subtree of te rooted at v5. Proceeding this transformation,

we obtain Tr(te) shown in Fig. 2.3(3).

In this thesis, we consider a setting in which an XML tree t is partitioned into a set Ft of disjoint subtrees

of t, where each subtree is called fragment. For example, the XML tree t ∈ TΣ in Fig. 1.1 is partitioned into

four fragments, f1, f2, f3, f4. We allow arbitrary “nesting” of fragments. Thus, fragments can appear at any

level of the tree. For a tree t, the fragment containing the root node of t is called root fragment. In Fig. 1.2,

the root fragment is f1. Each fragment is stored in a site. The site having the root fragment is called root site

and the other sites are called slave sites. For example, in Fig. 1.2 S 1 is the root site and S 2, S 3, S 4 are slave

sites. We assume that no two fragments are stored in the same site.

For two fragments fi and f j, we say that f j is a child fragment of fi if the root node of f j corresponds to

a leaf node v of fi. In order to represent a connection between fi and f j, we use a connecting node at the

position of v which refers the root node of f j. Every connecting node is labeled by “CONNECT” and has

a url attribute that represents the URL of the site having f j. For example, in Fig. 3.1 connecting node c1 is

inserted into fe,1 at the position of v5. If the fragment in site S has a child fragment stored in S ′, then S ′ is a

child site of S (S is the parent site of S ′). For example, in Fig. 1.2 S 1 has two child sites S 2 and S 3.

Chapter 2 Definitions 9

<xsl:template match="branch" mode="p">

<x>

<xsl:apply-templates mode="p" />

<xsl:apply-templates mode="q" />

</x>

</xsl:template>

<xsl:template match="currency" mode="q">

<z>

<xsl:apply-templates mode="q" />

</z>

</xsl:template>

<xsl:template match="branch[location]/clientele"

mode="p">

<y>

<xsl:apply-templates mode="p" />

</y>

</xsl:template>

<xsl:template match="branch//client"

mode="p">

<x>

<y />

</x>

</xsl:template>

Figure 2.2 An example XSLT script

x

y z

x

y

x

x

y

(1)

(2) (3)

Tr(v2)
p

Tr(t1)
p

Tr(v3)
p

Tr(t2)
p

Tr(v2)
q

Tr(v2)
q

Tr(t1)
q

Tr(v3)
q

Figure 2.3 Tree transformation by Tr

10

Chapter 3

Transformation Method

In our transformation method, all the sites S transform the fragment f stored in S in parallel, in order to

avoid transformation processes being centralized on a specific site. If the pattern of each transformation rule

is a single element, it is rather easy to achieve this strategy; transform each fragment f at the site storing f ,

send all the transformed fragments to the root site, and merge all the transformed fragments on the root site.

However, if a location path can be used as a pattern instead of a single label, a site has to access other sites to

evaluate the pattern. Let S be a site, f be the fragment in S , and pat = ls1/ · · · /lsn be a pattern, and consider

checking if a node v in f matches pat. We need to do the following.

a) Find the ancestors v′ of v such that v is reachable from v′ via sel(pat).
b) For each node v′′ on the path from v′ to v, check if v′′ satisfies predicates of pat.

Both (a) and (b) may require accesses to sites outside S . In order to do (a) efficiently, S precomputes a path

called root path, from the root node of f to the root node of the input tree. By using this root path, (a) can be

done without accessing sites outside S . For (b), each site maintains a cache that stores, for nodes v′ such that

v is reachable from v′ via lsi/ · · · /lsn and predicates pd of lsi−1, if v′ satisfies pd. This can reduce accesses to

sites outside S .

3.1 Master-XSLT and Slave-XSLT

We now present the details of our method. We first show two “main” XSLT processors Master-XSLT and

Slave-XSLT. Master-XSLT is used in the root site and Slave-XSLT is used in the slave sites, as follows.

1. In the root site, Master-XSLT transforms the root fragment.
2. In each slave site S Slave-XSLT transforms the fragment in S and send the transformed result to the

root site.
3. Master-XSLT merges (1) the transformed root fragment and (2) the transformed fragments received

from the slave sites.

Chapter 3 Transformation Method 11

clientele
currency

branch

location

v1

v2 v3 v4

client

name deals

fe,2

v5

v6 v7

c1

CONNECT

fe,1

Figure 3.1 Fragments fe,1, fe,2 of te

Se,1

fe,1

Se,2

fe,2

URL: http://server1.com/fe1

URL: http://server2.com/fe2

c1

v5

Figure 3.2 Sites S e,1 and S e,2

For example, consider the fragments and the sites shown in Fig. 1.2. First, Master-XSLT transforms the root

fragment f1 to f ′1 in the root site S 1. Second, in S 2 (resp., S 3 and S 4) Slave-XSLT transforms the fragment

f2 (resp., f3 and f4) and send the transformed result f ′2 (resp., f ′3 and f ′4) to S 1. Among each transformation

process, some communications between sites may occur by evaluating patterns. Finally, Master-XSLT merges

the transformed fragment f ′1 and the received fragments f ′2 , f ′3 and f ′4 .

To describe the “precomputation” of a root path, we need some definitions. Let t ∈ TΣ be a tree, Ft be the

set of fragments obtained from t, f ∈ Ft be a fragment, and v be a node of f . We use the following notation.

• child(f , v) = {v′ | v′ is a child of v in f }

• parent(f , v) =

the parent of v in f if v is not the root of f ,

nil otherwise.
• anc(f , v) = {v′ | v′ is an ancestor of v in f }
• desc(f , v, l) = {v′ | λ(v′) = l, v′ is a descendant of v in f }
• attr(v, name) = the value of name attribute of v

Let c be a connecting node in f . A sequence of nodes from c to the root node r of f , called connecting path

of c, is defined as cp(f , c) = [parent(f , c), parent(f , parent(f , c)), · · · , r]. For example, consider fe,1 shown in

Fig. 3.1. Then cp(fe,1, c1) = [v4, v1].

A connecting node c in f has a url attribute, whose value is the URL of the child site connected by c. For

example, consider node c1 in Fig. 3.1. We have attr(c1, “url”) = “http://server2.com/fe2” (see Fig. 3.2). By

CP(f), we mean the set of pairs of such a URL and connecting path of c in f , that is,

CP(f) = {⟨attr(c, “url”), cp(f , c)⟩ | c is a connecting node in f }

For example, for the fragment fe,1 in Fig. 3.1, CP(fe,1) = {⟨http://server2.com/fe2, [v4, v1]⟩}. Let H = CP(f).

A function cpH and a set of URLs Url(H) are defined as follows.

cpH(url) =
{

cp if ⟨url, cp⟩ ∈ H,
nil otherwise.

Url(H) = {url | cpH(url) , nil}

Chapter 3 Transformation Method 12

Let t be a tree and f ∈ Ft be a fragment. A sequence of nodes from the root node r of f to the root node

r′ of t, called root path of f , is defined as rp(t, f) = [parent(t, r), parent(t, parent(t, r)), · · · , r′] (if f is the

root fragment, rp(t, f) = nil). For example, rp(te, fe,2) = [v4, v1] (Fig. 3.1). Let url be the URL of the site

storing f , and f ′ be the parent fragment of f . By the definition, rp(t, f) is obtained by appending the root

path of f ′ to cpCP(f ′)(url). The i-th node of root path rp is denoted rpi and the next node of rpi is denoted

next(rpi) = rpi+1. For example, if rp = [v4, v1], then next(v4) = rp2 = v1.

Let us now present Master-XSLT. This procedure first sends a tree transducer to each slave site (line 1),

then sends the root path to each site, which is used for path precomputation (lines 2 to 5). S (url) in line 4

denotes the site whose url is url. Then transforms the root fragment by procedure Transform (line 8, shown

later). The last parameter M of Transform is the cache storing the result of predicate evaluations (details are

shown in the next section). Finally, all the transformed fragments are merged into one tree, which is the final

result (line 10).

Master-XSLT

Input : Tree transducer Tr = (Q,Σ, q0,R), the root fragment f of tree t

Output : Tree t′ = Tr(t)

1. Send tree transducer Tr to each slave site.
2. H ← CP(f);
3. for each url ∈ Url(H) do
4. Send cpH(url) to S (url).
5. end
6. v← the root node of f ;
7. M ← ∅;
8. f ′ ← Transform(Tr, f , v, q0, nil,M);
9. Wait until a transformed fragment is received from each slave site. Let f1, · · · , fk be the received

fragments.
10. Merge f ′ and f1, · · · , fk into t′.
11. Return t′;

Next, we present procedure Transform used in line 8 of Master-XSLT (and Slave-XSLT shown later). Let

Tr = (Q,Σ, q0,R) be a tree transducer, t be a tree, f ∈ Ft be a fragment, and rp be the root path of f . To

transform the subtree rooted at a node v of f or rp in state q, we need to determine a rule applied to v and

obtain the hedge that is the right-hand side of the rule. Such a hedge is denoted by h(f , Tr, q, v, rp,M). More

specifically, if there is a pattern pat such that (q, pat)→ h ∈ R and that there is an ancestor v′ of v such that v

is reachable from v′ via pat in t, then h(f ,Tr, q, v, rp,M) coincides with h, that is,

h(f ,Tr, q, v, rp,M) =
{

h if ∃pat((q, pat)→h ∈ R ∧ Eval-Mpat(f , v, pat, rp,M)),
ϵ otherwise, (3.1)

Chapter 3 Transformation Method 13

where Eval-Mpat(f , v, pat, rp,M) is the distributed version of Mpat(T, v, pat) and takes the following value

(defined in the next section).

Eval-Mpat(f , v, pat, rp,M) =
{

true if Mpat(t, v, pat) , ∅,
f alse otherwise.

The correctness of the above equation is shown in Sect. 3.3. rp and cache M do not appear in the right-hand

side, since they are required for only the evaluation of Eval-Mpat in a distributed context. As an example of (1),

consider the fragment fe,1 shown in Fig. 3.1 and the tree transducer Tr of Example 1. Since (p, ↓∗::branch)→
x(p q) ∈ R and v1 satisfies pattern “↓∗::branch”, we have h(fe,1, Tr, p, v1, nil,M) = x(p q). Since fe,1 is the root

fragment, the fifth parameter is nil.

Let us show procedure Transform, which transforms a given fragment recursively according to the defi-

nition of tree transducer. In line 2, S t(h) denotes the set of states in h. For example, if h = x(p q), then

S t(h) = {p, q}. Lines 3 to 7 apply rule R1 and lines 8 to 14 apply rule R2 of the definition of tree transducer.

Procedure Transform

Input : Tree transducer Tr = (Q,Σ, q0,R), fragment f , context node v, state q, the root path rp of f , cache M

Output : Hedge h obtained by transforming f with Tr

1. h← h(f ,Tr, q, v, rp,M);
2. Q′ ← S t(h);
3. if Q′ , ∅ and child(f , v) = ∅ then
4. for each q′ ∈ Q′ do
5. Replace node q′ in h with ϵ.
6. end
7. end
8. Let child(f , v) = {v′1, · · · , v′k}.
9. for each q′ ∈ Q′ do

10. for each v′i ∈ child(f , v) do
11. hv′i ← Transform(Tr, f , v′i , q

′, rp,M);
12. end
13. Replace node q′ in h with hedge hv′1 · · · hv′k .
14. end
15. Return h;

Finally, we present Slave-XSLT. This procedure runs in each slave site S and transforms the fragment f

stored in S . First, we show a definition. Let f be a fragment and Tr = (Q,Σ, q,R) be a tree transducer. To

transform f , it needs to determine the set of states applied to the root node of f . The set can be obtained by

applying rules of Tr to the root path rp = [rp1, · · · , rpn] of f from rpn to rp1 (recall that rpn is the root of the

input tree). Formally, let Q′ be the initial states applied to rpn. Then the set of states applied to the root node

of f is recursively obtained as follows. First, if n = 1, then

Qr(f ,Tr,Q′, rp,M) = {q′′ | q′′ ∈ S t(h(f ,Tr, q′, rpn, rp,M)), q′ ∈ Q′}. (3.2)

Chapter 3 Transformation Method 14

Second, if n > 1, then

Qr(f ,Tr,Q′, rp,M) = {q′′ | q′′ ∈ Qr(f ,Tr,Q′′, rp′,M),
Q′′ = {q | q ∈ S t(h(f , Tr, q′, rpn, rp,M)), q′ ∈ Q′}}, (3.3)

where rp′ = [rp1, · · · , rpn−1] and h(f ,Tr, q′, rpn, rp,M) is the hedge defined in (3.1).

Example 2 Let rp = [v4, v1] be the root path of fe,2 in Fig. 3.1, Tr = (Q,Σ, q0,R) be the tree transducer in

Example 1, and Q′ = {p}. Consider computing Qr(fe,2,Tr,Q′, rp,M). By (3), we have

Qr(fe,2,Tr,Q′, rp,M) = {q′′ | q′′ ∈ Qr(fe,2,Tr,Q′′, [v4],M)}, (3.4)

where Q′′ = {q | q ∈ S t(h(fe,2,Tr, p, v1, rp,M))}. As shown in Example 1, (p, ↓∗::branch) → x(p q) is

applicable to v1 in state p. Thus we have h(fe,2,Tr, p, v1, rp,M) = x(p q) and Q′′ = {p, q}. Consider the

right-hand side of (4). By (2), we have

Qr(fe,2,Tr,Q′′, [v4],M) = {q′′ | q′′ ∈ S t(h(fe,2,Tr, q′, v4, [v4],M)), q′ ∈ Q′′}, (3.5)

where Q′′ = {p, q}. Since (p, ↓∗::branch[↓::location]/↓::clientele)→ y(p) is applicable to v4 in state p,

h(fe,2,Tr, p, v4, [v4],M) = y(p). On the other hand, there is no rule applicable to v4 in state q, thus

h(fe,2,Tr, q, v4, [v4],M) = nil. Thus, we have Qr(fe,2,Tr,Q′′, [v4],M) = {p} by (5), which implies that

Qr(fe,2,Tr,Q′, rp,M) = {p} by (4). Hence only state p is applicable to the root of fe,2.

We now present Slave-XSLT. This procedure first receives tree transducer Tr from the root site and root

path rp from the parent site (lines 1 to 2). rp is send from line 4 of Master-XSLT (when the parent site is the

root site), or line 6 of Slave-XSLT (when the parent site is a slave site). If f has a child fragment, say f ′, send

the root path of f ′ to the child site storing f ′ (lines 4 to 7). From this, each child site can obtain the root path

of its own fragment. Then the set of states applied to the root of f is calculated and f is transformed (lines 10

to 13). Finally, the transformed fragment of f is send to the root site (line 14).

Slave-XSLT

Input : Fragment f .

Output : none (transformed fragments are sent to the root site).

1. Wait until tree transducer Tr = (Q,Σ, q0,R) is received from the root site.
2. Wait until the root path rp is received from the parent site.
3. H ← CP(f);
4. for each url ∈ Url(H) do
5. Let rp′ be the root path of the fragment in S (url), obtained by appending rp to cpH(url);
6. Send rp′ to S (url).
7. end
8. v← the root node of f ;
9. M ← ∅;

10. Q′ ← Qr(f ,Tr, {q0}, rp,M);
11. for each q′ ∈ Q′ do
12. f ′q′ ← Transform(Tr, f , v, q′, rp,M);

Chapter 3 Transformation Method 15

13. end
14. Send all f ′q′(q

′ ∈ Q′) to the root site.

3.2 Evaluation of pattern

To check if a node matches a pattern, we have to evaluate Mpat and Mpd in a distributed environment, as

used in (1). Thus we define procedures Eval-Mpat and Eval-Mpd, which are distributed versions of Mpat and

Mpd, respectively. First, we show several definitions. Let f be a fragment, rp = [rp1, · · · , rpn] be the root

path of f , and v be a node of f or rp. The set of parent nodes of v, denoted parent′(f , v, rp), is defined as

follows.

parent′(f , v, rp) =


{rp1} if v is the root node in f and rp , nil,
{next(v)} if v is a node in rp,
{parent(f , v)} otherwise.

By Anc(f , v, ax, rp) we mean the set of ancestors v′ of v such that v is reachable from v′ via axis ax, that is,

Anc(f , v, ax, rp) =
{

parent′(f , v, rp) if ax =↓,
anc(f , v) ∪ {rp1, · · · , rpn} if ax =↓∗ .

For example, let fe,2 be the fragment shown in Fig. 3.1, v7 be the node in fe,2, and rp = [v4, v1] be the root path

of fe,2. Then Anc(fe,1, v7, ↓∗, rp) = {v5, v4, v1}, where v5 is the ancestor of v7 in fe,2, v4 and v1 are the nodes in

rp.

Next, we define cache used for evaluating predicates. A cache is created in each site (line 9 of Master-

XSLT, line 9 of Slave-XSLT). A cache is passed by reference, and thus all the procedures running in the same

site share the same cache. Let v be a node and pd be a predicate. A string “v+ pd” is called predicate inquiry.

This is sent to the site having v to ask if v satisfies pd. Let query be a predicate inquiry and res ∈ {true, f alse}
be the result of the predicate inquiry. Then a cache M holds a set of pairs ⟨query, res⟩, and fM(query) denotes

the result of query to M, that is,

fM(query) =
{

res if ⟨query, res⟩ ∈ M,
nil otherwise.

We present procedure Eval-Mpat. Let pat = ls1/ · · · /lsn be a pattern, where lsi = axi :: li[pdi,1] · · · [pdi,mi].

This procedure decides if a context node v matches pat by examining pat from lsn to ls1 recursively. Lines

1 to 17 check if v satisfies the conditions described in lsn. If v is a node in rp (i.e., v is in an outside site),

for each j = 1, · · · ,mn predicate inquiry “v + pdn, j” is sent to the site having v in case of a cache miss (lines

6 to 9, pat inq is shown later). If v is a node in f , then this procedure checks if v satisfies pdn,1, · · · , pdn,mn

by Eval-Mpd (line 12, Eval-Mpd is shown later). When the checks for lsn are completed, then the procedure

checks if there is an ancestor v′ ∈ Anc(f , v, axn, rp) of v such that v′ matches ls1/ · · · /lsn−1 (lines 21 to 23).

Procedure Eval-Mpat

Input : Fragment f , context node v, pattern pat = ls1/ · · · /lsn with lsi = axi :: li[pdi,1] · · · [pdi,mi], the root

Chapter 3 Transformation Method 16

path rp of f , cache M

Output : true if v matches pat, f alse otherwise

1. if λ(v) , ln then
2. Return f alse;
3. end
4. for each j = 1, · · · ,mn do
5. if v is a node in rp then
6. if fM(“v + pdn, j”) = nil then
7. Ask the site S having v if v satisfies pdn, j, by calling pat inq(f ′, v, pdn, j,M) in S , where f ′ is th

fragment stored in S . Let res be the result.
8. M ← M ∪ ⟨“v + pdn, j”, res⟩;
9. end

10. pred result ← fM(“v + pdn, j”);
11. else
12. pred result ←Eval-Mpd(f , v, pdn, j,M);
13. end
14. if pred result = f alse then
15. Return f alse;
16. end
17. end
18. if n = 1 then
19. Return true;
20. end
21. V ← Anc(f , v, axn, rp);
22. pat′ ← ls1/ · · · /lsn−1;
23. if Eval-Mpat(f , v′, pat′, rp,M) = true for some v′ ∈ V then
24. Return true;
25. else
26. Return f alse;
27. end

Procedure pat inq in line 7 is defined as follows. This procedure runs in parallel using native threads.

Procedure pat inq

Input : Fragment f , context node v, predicate pred = ls1/ · · · /lsn with lsi = axi :: li[pdi,1] · · · [pdi,mi], cache

M

Output : none

1. res←Eval-Mpd(f , v, pred,M)
2. Send res to the calling procedure.

Function h defined by (3.1) uses Eval-Mpat to determine the rule (and the hedge) matched by the current

node. Although the formal definition of Eval-Mpat is a bit complicated due to the distribution of fragments

and predicates (lines 4 to 17), we can implement the procedure and the function so that the rule matched by

Chapter 3 Transformation Method 17

{

currency : { branch : r1},

name : {

client : {

clientele : r2,

}

},

deals : {

client : {

clientele : r3,

}

}

}

Figure 3.3 Nested hash structure constructed from three patterns

the current node can be identified efficiently, especially if patterns consist of only labels and child axes. For

example, suppose that we have the following three rules.

• r1: (q, ↓:: branch/↓:: currency)→ h1

• r2: (q, ↓:: clientele/↓:: client/↓:: name)→ h2

• r3: (q, ↓:: clientele/↓:: client/↓:: deals)→ h3

From the three patterns above, we construct nested hash functions as shown in Fig. 3.3. Here, suppose that the

current node v is labeled by “name”, its parent v′ is labeled by “client”, and that the parent v′′ of v′ is labeled

by “clientele”. These labels can be obtained immediately by using a root path, even if v′ or v′′ is not in the

fragment having v. Then we can easily identify r2 as the rule matched by v, by applying the labels of v, v′, v′′

to the hash functions in Fig. 3.3. In general, if patterns consist of only labels and child axes, the rule matched

by the current node can be identified in O(|pmax|), where |pmax| is the maximum length (i.e., the number of

location steps) of patterns.

Next, we present procedure Eval-Mpd used in line 12 of Eval-Mpat and line 1 of pat inq. This procedure

evaluates predicates of a pattern. By Desc(f , v, ax, l), we mean the set of descendants v′ such that v′ is either

reachable from v via location step ax::l or a connecting node, that is,

Desc(f , v, ax, l) =
{
{v′ | v′ ∈ child(f , v), λ(v′) ∈ {l, “CONNECT”}} if ax =↓,
desc(f , v, l) ∪ desc(f , v, “CONNECT”) if ax =↓∗ .

For example, consider the fragment fe,1 shown in Fig. 3.1. Then Desc(fe,1, v1, ↓∗, “currency”) = {v2, c1}.
Let pred = ls1/ · · · /lsn, where lsi = axi :: li[pdi,1] · · · [pdi,mi]. This procedure decides if a context node v

satisfies pred by examining pred from ls1 to lsn recursively. First, the procedure calculates the set V of nodes

reachable from v via ax1::l1 (line 1). Then this procedure checks for each v′ ∈ V ,

a) whether v′ satisfies pd1,1, · · · , pd1,m1 , and

Chapter 3 Transformation Method 18

b) whether v′ satisfies ls2/ · · · /lsn.

Suppose that v′ is a connecting node. Since the checks of (a) and (b) require accessing to outside sites, we

use another kind of predicate inquiry of the form “url + pred” to ask if v′ satisfies (a) and (b), where url is

the value of the url attribute of v′ (the result is stored in the same cache M as used in Eval-Mpat). Predicate

inquiry “url + pred” is send to S (url) in case of a cache miss (lines 6 to 9, pd inq is shown later). By this

predicate inquiry, fM(“url + pred”) = true if (a) and (b) hold (line 10). If v′ is not a connecting node, (a) is

obtained in line 12 and (b) is obtained in line 15.

Procedure Eval-Mpd

Input : Fragment f , context node v, predicate pred = ls1/ · · · /lsn with lsi = axi :: li[pdi,1] · · · [pdi,mi], cache

M

Output : true if v satisfies pred, f alse otherwise

1. V ← Desc(f , v, ax1, l1);
2. result ← f alse;
3. for each v′ ∈ V do
4. if λ(v′) = “CONNECT” then
5. url← attr(v, “url”);
6. if fM(“url + pred”) = nil then
7. Ask S (url) if v′ satisfies above (a) and (b), by calling pd inq(f ′, pred,M), where f ′ is the

fragment stored in S (url). Let res be the result.
8. M ← M ∪ ⟨“url + pred”, res⟩;
9. end

10. result ← result ∨ fM(“url + pred”);
11. else
12. p res← true ∧ ∧

j=1,···,m1

Eval-Mpd(f , v′, pd1, j,M);

13. if n > 1 and p res then
14. pred′ ← ls2/ · · · /lsn;
15. result ← result ∨ Eval-Mpd(f , v′, pred′,M);
16. else if p res then
17. Return true;
18. end
19. end
20. end
21. Return result;

Finally, we present procedure pd inq used in procedure Eval-Mpd. This procedure runs in parallel using

native threads.

Procedure pd inq

Input : Fragment f , predicate pred = ls1/ · · · /lsn with lsi = axi :: li[pdi,1] · · · [pdi,mi], cache M

Output : none

1. v← the root node of f ;

Chapter 3 Transformation Method 19

2. if ax1 =↓ then
3. if l1 = λ(v) then
4. p res← ∧

j=1,···,m1

Eval-Mpd(f , v, pd1, j,M);

5. if n > 1 and p res then
6. pred′ ← ls2/ · · · /lsn;
7. res←Eval-Mpd(f , v, pred′,M);
8. else if p res then
9. res← true;

10. end
11. end
12. else
13. res←Eval-Mpd(f , v, pred,M)
14. end
15. Send res to the calling site.

Example 3 Let fe,1 be the fragment shown in Fig. 3.1, pat=↓∗::branch[↓∗::name]/↓::currency be a pattern,

and v2 be the node of fe,1. Then Eval-Mpat(fe,1, v2, pat, nil,M) is evaluated by the following steps.

1. Check if v2 matches ↓::currency.

a. We have λ(v2) = “currency” in line 1 of Eval-Mpat.

b. We have Anc(fe,1, v2, “child”, nil) = {v1} in line 21 of Eval-Mpat.

Then Eval-Mpat(fe,1, v1, ↓∗::branch[↓∗::name], nil,M) is called in line 23.

2. By step (1-b) above, check if v1 matches ↓∗::branch[↓∗::name].

a. We have λ(v1) = “branch” in line 1 of Eval-Mpat. Since rp = nil, Eval-Mpd(fe,1, v1, ↓∗

::name, nil,M) is called in line 12.

b. There is no descendant of v1 labeled by “name” but there is a connecting node c1 in fe,1.

Thus we use a predicate inquiry “url + pred” in lines 4 to 9 of Eval-Mpd, where url =

“http://server2.com/fe2” and pred= “↓∗:: name”.

c. If fM(“url + pred”) = nil in line 6, S e,2 is asked to call pd inq(fe,2, ↓∗ ::name,M).

d. In S e,2, pd inq(fe,2, ↓∗::name,M) returns true since the label of v6 is “name”.

3. Since the result of (1-b) is true by step (2) above, Eval-Mpat(fe,1, v2, pat, nil,M) returns true.

3.3 Correctness of the Method

We show the correctness of our method. We first show the correctness of Eval-Mpd. Let t be a tree, f be a

fragment of t, v be a node of f , and pred = ls1/ · · · /lsn be a predicate with lsi = axi :: li[pdi,1] · · · [pdi,mi].

To show the correctness, we have to handle two parameters: the nesting level of f and the size of pred. First,

the nesting level of f , denoted ns(f), is defined as follows.

ns(f) =

 0 if f has no child fragment,
max

f ′
ns(f ′) + 1 otherwise,

Chapter 3 Transformation Method 20

where f ′ ranges over the child fragments of f . Second, the size of pred, denoted size(pred), is defined as

follows.

size(pred) =


1 +
∑

1≤ j≤m1

size(pd1, j) if pred = ax1 :: l1[pd1,1] · · · [pd1,m1],∑
1≤i≤n

size(lsi) otherwise.

In Lemma 2, we show that Eval-Mpd(f , v, pred,M) returns true iff Mpd(t, v, pred) , ∅ by double induction

on ns(f) and size(pred). The following Lemma 1 is required to show the basis cases of Lemma 2.

Lemma 1 Let ls = ax :: l be a location step. Then Eval-Mpd(f , v, ls,M) returns true iff Mpd(t, v, ls) , ∅.

Proof(sketch): We show that Eval-Mpd(f , v, ls,M) returns true iff Mpd(t, v, ls) , ∅ by induction on ns(f).

Basis : ns(f) = 0. Since f has no child fragment, the descendants of v in f coincide with those of v in t.

Therefore, Eval-Mpd(f , v, pred,M) returns true iff Mpd(t, v, pred) , ∅.
Induction : Assume as the induction hypothesis that if ns(f) ≤ k, then Eval-Mpd(f , v, ls,M) returns true iff

Mpd(t, v, ls) , ∅. Consider the case where ns(f) = k+1. Let S be the site storing f , c be a connecting node of

f , S ′ be the child site of S connected by c, and f ′ be the fragment stored in S ′. Consider the set V of nodes

obtained in line 1 of Eval-Mpd. If V contains connecting node c, ls is sent to S ′ by calling pd inq (line 7 of

Eval-Mpd). In S ′, ls is evaluated to the root node r of f ′ by pd inq. Since ns(f ′) ≤ k and thus Eval-Mpd is

correct by the induction hypothesis, pd inq sends true to S iff Mpd(t, r, ls) , ∅. Hence Eval-Mpd(f , v, ls,M)

returns true iff Mpd(t, v, ls) , ∅. □

We next have the following lemma, which shows the correctness of Eval-Mpd.

Lemma 2 Let pred = ls1/ · · · /lsn, where lsi = axi :: li[pdi,1] · · · [pdi,mi] (1 ≤ i ≤ n). Then Eval-

Mpd(f , v, pred,M) returns true iff Mpd(t, v, pred) , ∅.

Proof(sketch): We show that Eval-Mpd(f , v, pred,M) returns true iff Mpd(t, v, pred) , ∅ by double induc-

tion on size(pred) and ns(f).

Basis : First, consider the case where ns(f) = 0 and size(pred) = j. Since f has no child fragment,

the descendants of v in f coincide with those of v in t. Therefore, Eval-Mpd(f , v, pred,M) returns true iff

Mpd(t, v, pred) , ∅. Consider next the case where ns(f) = k and size(pred) = 1. Since size(pred) = 1, by

Lemma 1 Eval-Mpd(f , v, pred,M) returns true iff Mpd(t, v, pred) , ∅.
Induction : Assume the following as the induction hypotheses.

2.1. If ns(f) = x + 1 and size(pred) ≤ y, then Eval-Mpd(f , v, pred,M) returns true iff Mpd(t, v, pred) , ∅.
2.2. If ns(f) ≤ x and size(pred) = y + 1, then Eval-Mpd(f , v, pred,M) returns true iff Mpd(t, v, pred) , ∅.

Consider the case where ns(f) = x + 1 and size(pred) = y + 1. Let pred = ls1/ · · · /lsn, where lsi = axi ::

li[pdi,1] · · · [pdi,mi]. Moreover, let S be the site storing f , c be a connecting node of f , S ′ be the child site

of S connected by c, and f ′ be the fragment stored in S ′. Consider the set V of nodes obtained in line 1 of

Eval-Mpd.

Chapter 3 Transformation Method 21

• If V contains connecting node c, pred is sent to S ′ by calling pd inq (line 7 of Eval-Mpd).

• The other (non-connecting) nodes in V are (a) evaluated with each predicate pd1,1, · · · , pd1,m1 (line 12

of Eval-Mpd) and (b) evaluated with pred′ = ls2/ · · · /lsn (line 15 of Eval-Mpd).

In S ′, pred is evaluated to the root node r of f ′ by pd inq. Since ns(f ′) ≤ x and thus Eval-Mpd is correct

by the induction hypothesis 2.2, pd inq sends true to S iff Mpd(t, r, pred) , ∅. As for non-connecting nodes,

since size(pd1, j) ≤ y for each j = 1, · · · ,m1, (a) is correct by induction hypothesis 2.1. Since size(pred′) ≤ y,
(b) is correct similarly. Thus, the evaluation is correct for each v′ ∈ V . Hence Eval-Mpd(f , v, pred,M) returns

true iff Mpd(t, v, pred) , ∅. □

Let pat = ls1/ · · · /lsn be a pattern with lsi = axi :: li[pdi,1] · · · [pdi,mi] and rp be the root path of f . We now

have the following theorem.

Theorem 1 Eval-Mpat(f , v, pat, rp,M) returns true iff Mpt(t, v, pat) , ∅.

Proof(sketch): Since the ancestors of v in t coincide with the union of (a) the ancestors of v in f and

(b) the nodes of rp, Eval-Mpat(f , v, sel(pat), rp,M) returns true iff Mpat(t, v, sel(pat)) , ∅. By Lemma 2,

for each j = 1, · · · ,mn, Eval-Mpd(f , v, pdn, j,M) (line 12 of Eval-Mpat) returns true iff Mpd(t, v, pdn, j) , ∅.
Similarly, pat inq(f ′, v, pdn, j,M) (line 7 of Eval-Mpat) returns true iff Mpd(t, v, pdn, j) , ∅. Hence Eval-

Mpat(f , v, pat, rp,M) returns true iff Mpt(t, v, pat) , ∅. □

Table 3.1 Summary of XSLT patterns

W3C Recommen-
dation (XSLT 1.0)

W3C Recommen-
dation (XSLT 2.0)

XSLT 2nd Ed.

Single label 35 41 127
Pattern using no predicate Pattern using labels and child axis 7 6 5

Pattern using “//” 2 2 0
Pattern using predicates 0 1 0
Other (@text, etc.) 7 7 12
Total 51 57 144

3.4 Comparison with Distributed XPath Evaluation Algorithms

Let us consider the difference between distributed XPath evaluation algorithms and our method, from the

perspective of XSLT pattern evaluation. First of all, we have the following observations about XPath and

XSLT evaluations.

(a) Distributed XPath evaluation algorithms are designed for processing a single XPath query efficiently,

while an XSLT stylesheet usually contains more than one pattern.

(b) In general, a pattern used in an XSLT stylesheet is much simpler than an XPath query. Table 3.1 shows

a summary of the patterns appearing in XSLT 1.0/2.0 W3C recommendations*1 and the examples used

*1 http://www.w3.org/TR/xslt/ (XSLT 1.0) and http://www.w3.org/TR/xslt20/ (XSLT 2.0)

Chapter 3 Transformation Method 22

in [16]. This table indicates that (i) most patterns use only labels and child axes and that (ii) few

patterns use “//” or predicates.

Assuming (a) and (b), the main difference between distributed XPath evaluation algorithms and our method

is that, w.r.t. XSLT pattern evaluation, the computation cost of the former algorithms grow proportional to the

number of patterns in an XSLT stylesheet while the latter is not. In the following, we compare the algorithm

in [4, 5, 6] with our method, since no formal computation cost is presented in [8, 10].

Given a tree t and an XPath query q, the XPath evaluation algorithm [4, 5, 6] traverses t and computes,

for each node v in t, several vectors of size O(|q|) which hold the evaluation values of subexpressions of q at

v. Thus, to evaluate an XSLT stylesheet xs on t by using the XPath evaluation algorithm, we have to do the

following.

1. For each XSLT pattern pat in xs, calculate vectors of each node for pat by using the algorithm.

2. Perform a top-down XSLT transformation along with xs. During the transformation, the template

matched by current node v can be identified by the vectors associated with v.

Now let us consider the parallel computation costs of evaluating XSLT patterns by the above approach and

our method in detail. Let k be the number of distinct patterns in xs, pat be the longest pattern of the patterns

in xs, and fmax be the maximum fragment of t. First, consider the parallel computation cost of the above

approach. Since the parallel computation cost per pattern is in O(|pat| · | fmax|) [6], the parallel computation

cost of evaluating k patterns is in O(k · |pat| · | fmax|)*2. Second, consider the parallel computation cost of

evaluating XSLT patterns by our method. To evaluate XSLT patterns by our method, we need a root path

for each fragment. Assuming that the height of t is in O(log |t|), the computation cost of obtaining the root

path of a fragment is in O(log |t|). Then, given the root path of a fragment, consider the parallel computation

cost of evaluating XSLT patterns. This cost depends on the size of transformed fragment, but for simplicity

we assume that the size of the transformed result of fmax is in O(| fmax|) (this is not too restrictive since the

resulting tree transformed by XSLT is usually smaller then the input tree). Moreover, since an XSLT pattern

is simple as mentioned in (b), we can assume that the template matched by the current node can be identified

in O(|pat|) as shown in Sect. 3.2. Hence the parallel computation cost of evaluating the patterns in xs by our

method is in O(log |t| + |pat| · | fmax|).
Thus, the parallel computation cost of evaluating XSLT patterns by the above approach grows proportion-

ally to the number of distinct patterns in an XSLT stylesheet, which is undesirable since an XSLT stylesheet

may contain arbitrary number of templates and patterns. On the other hand, our method have to pay the cost of

preparing a root path, but this is usually small in practice, e.g., the height of the DBLP XML data*3 (1.52GB)

is only 7 and that of XMark*4 is 13 regardless the size of data. Therefore, we believe that our method is more

suitable for performing XSLT transformations unless an XML tree has an extremely deep structure.

*2 This complexity remains the same if pat uses no predicate and consists of only labels and child axes.
*3 http://dblp.uni-trier.de/xml/dblp.xml.gz
*4 http://www.xml-benchmark.org/

23

S1

S2

fA,2

(fB,2)
S3

S4

fA,1

(fB,1)

fA,3

(fB,3)

fA,4

(fB,4)

Figure 4.1 Four sites storing the fragments in evaluation experiment

Chapter 4

Evaluation Experiment

In this chapter, we present experimental results on our method. We implemented our method in Ruby

1.9.3. We used 4 Linux machines (S 1 to S 4), distributed over a local LAN (100base-TX). Each machine has a

2.4GHz Intel Xeon CPU and 4GB of memory. First, we generated five XML documents of different sizes by

XMark[13]. Since all the sites transform their fragments in parallel, the efficiency of our method may depend

on whether the sizes of fragments are even or not. Thus, we create two datasets (A) and (B) from the XMark

documents. In dataset (A), the sizes of the fragments are relatively even (Table. 4.1), while in dataset (B)

the root fragment is remarkably heavy (Table. 4.2). Tables 4.3 and 4.4 show the root nodes of the fragments,

where fA,1 (fB,1) is the root fragment and has three child fragments fA,2, fA,3 and fA,4 (resp., fB,2, fB,3 and fB,4).

The four sites S 1 to S 4 are configured as shown in Fig. 4.1, where S 1 is the root site storing fA,1 (fB,1) and S i

(i=2,3,4) is a slave site storing fA,i (fB.i).

We used eleven synthetic XSLT stylesheets denoted s0, s10, · · · , s100, generated by our Ruby program. Each

si has the following properties (0 ≤ i ≤ 100).

1. For every element m of an XML document, si has at least one template applicable to m.
2. si consists of 218 templates and i% of the templates have a pattern having one predicate (the rest of

the templates have a pattern having no predicate).
3. The average length of each selection path is 6 and the average length of each predicate is 5.

Chapter 4 Evaluation Experiment 24

Table 4.1 Sizes of distributed XML documents (dataset A)

Fragment size

f option fA,1 (root) fA,2 fA,3 fA,4 Total size

0.5 6.0MB 27.3MB 13.9MB 7.9MB 55.3MB

1.0 12.2MB 54.8MB 27.8MB 16.1MB 111.0MB

1.5 18.6MB 82.2MB 42.2MB 23.9MB 167.0MB

2.0 24.8MB 109.7MB 56.1MB 32.0MB 222.8MB

2.5 31.0MB 137.4MB 70.1MB 40.6MB 279.1MB

4. The predicates of each template are distinct.

We measure the response times of a centralized method and our transformation method. In the centralized

method, three child fragments are first sent to the root site S 1, then root and child fragments are merged into

one document t and an XSLT transformation is performed on t in S 1. We have the following two settings of

evaluation experiments.

a) Fix the stylesheet and measure the response time under various sizes of XML documents.
b) Fix the XML document and measure the response time of different stylesheets.

We used the stylesheet s10 under setting (a). The results are shown in Figs. 4.2 and 4.3. For dataset (A),

our method is about 6 times faster than the centralized method. Even for dataset (B), our method is about 1.8

times faster than the centralized method. Under setting (b), we used the distributed XML whose total size is

55.3MB. Figures 4.4 and 4.5 show the results. Our method is faster than centralized method regardless the

stylesheets. These suggest that our method works well for distributed XML documents.

Tables 4.5 and 4.6 show the details of the response time of the centralized method under setting (a). The

tables show the following.

• The details of the response time of the centralized method

– Time for transferring fragments to the root site

– Time for merging the fragments into one XML document

– Time for transforming the merged document

• The response time of our method

These tables show that the response time of our method is smaller than the transformation time of the central-

ized method for any cases. This suggests that our method is applicable to non-distributed XML documents,

by partitioning such documents into fragments and transform them in parallel.

Chapter 4 Evaluation Experiment 25

0	

50	

100	

150	

200	

250	

300	

350	

400	

0	
 50	
 100	
 150	
 200	
 250	
 300	

Ti
m
e(
se
c)
	

Merged	
 fragment	
 data	
 size	
 (MB)	

Our	
 Method	
 	
 Centralized	
 Method	

Figure 4.2 Experimental result of (a) (dataset A)

0	

50	

100	

150	

200	

250	

300	

350	

400	

0	
 50	
 100	
 150	
 200	
 250	
 300	

Ti
m
e(
se
c)
	

Merged	
 fragment	
 data	
 size	
 (MB)	

Our	
 Method	
 	
 Centralized	
 Method	

Figure 4.3 Experimental result of (a) (dataset B)

Chapter 4 Evaluation Experiment 26

0	

5	

10	

15	

20	

25	

30	

35	

0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Ti
m
e	

(s
ec
)	

Predicate	
 rate	
 of	
 tempmlates	

Our	
 Method	
 Centralized	
 Method	

Figure 4.4 Experimental result of (b) (dataset A)

0	

5	

10	

15	

20	

25	

30	

35	

0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Ti
m
e	

(s
ec
)	

Predicate	
 rate	
 of	
 templates	

Our	
 Method	
 Centralized	
 Method	

Figure 4.5 Experimental result of (b) (dataset B)

Chapter 4 Evaluation Experiment 27

Table 4.2 Sizes of distributed XML documents (dataset B)

Fragment size

f option fB,1 (root) fB,2 fB,3 fB,4 Total size

0.5 44.5MB 2.5MB 2.7MB 5.4MB 55.3MB

1.0 89.6MB 5.0MB 5.6MB 10.8MB 111.0MB

1.5 134.7MB 7.5MB 8.4MB 16.3MB 167.0MB

2.0 179.8MB 10.1MB 10.9MB 21.8MB 222.8MB

2.5 225.4MB 12.6MB 13.8MB 27.3MB 279.1MB

Table 4.3 The root nodes of the fragments (dataset A)

Fragments Label of nodes

fA,1 site

fA,2 regions

fA,3 open auctions

fA,4 closed auctions

Table 4.4 The root nodes of the fragments (dataset B)

Fragments Label of nodes

fB,1 site

fB,2 asia

fB,3 australia

fB,4 people

Table 4.5 Details of response time for dataset A (sec)

Centralized method Our method

f option (datasize) Transfer Merge Transform Total

0.5 (55.3MB) 1.88 0.73 27.04 29.65 7.99

1.0 (111.0MB) 4.71 1.45 73.04 79.2 17.94

1.5 (167.0MB) 8.63 2.51 142.87 154.01 28.98

2.0 (222.8MB) 13.85 2.89 230.06 246.8 41.53

2.5 (279.1MB) 20.05 3.62 343.42 367.09 56.02

Table 4.6 Details of response time for dataset B (sec)

Centralized method Our method

f option (datasize) Transfer Merge Transform Total

0.5 (55.3MB) 0.67 0.79 24.85 26.31 17.69

1.0 (111.0MB) 1.69 1.85 68.55 72.09 37.13

1.5 (167.0MB) 3.02 2.44 141.26 146.72 77.05

2.0 (222.8MB) 4.91 3.13 215.88 223.92 91.4

2.5 (279.1MB) 6.8 4.05 321.74 332.59 189.01

28

Chapter 5

Conclusion

In this thesis, we proposed a method for performing XSLT transformation for distributed XML documents.

The experimental results suggest that our method work well for distributed XML documents.

However, we have a lot of future work to do. First, in this thesis the expressive power of XSLT is restricted

to extended unranked top-down tree transducer. In particular, we have to handle XSLT instructions/functions

of Type B in Table 1.1 carefully in order to extend the expressive power of our method. Another future work

relates to experimentation. In our experimentation we use only three synthetic XSLT stylesheets. Thus we

need to make more experiments using real-world XSLT stylesheets.

29

Acknowledgements

The author would first like to express my sincere gratitude to warm encouragement and support of my

adviser, Associate Professor Nobutaka Suzuki in pursuing this study. Completion of this thesis would be

impossible without his help. The author would especially like to thank Assistant Professor Kei Wakabayashi

for his valuable suggestions and support. The author is also grateful to Associate Professor Tetsuo Sakaguchi

for his daily perceptive comments.

30

Bibliography

[1] Abiteboul, S., Gottlob, G. and Manna, M.: Distributed XML design, JCSS, Vol. 77, No. 6, pp. 936–964

(2011).

[2] Abiteboul, S., Gottlob, G. and Manna, M.: Distributed XML design, Proc. PODS, pp. 247–258 (2009).

[3] Bremer, J. M. and Gertz, M.: On distributing XML repositories, Proc. WebDB, pp. 73–78 (2003).

[4] Buneman, P., Cong, G., Fan, W. and Kementsietsidis, A.: Using Partial Evaluation in Distributed Query

Evaluation, Proc. VLDB, VLDB Endowment, pp. 211–222 (2006).

[5] Cong, G., Fan, W. and Anastasios: Distributed Query Evaluation with Performance Guarantees, Proc.

SIGMOD, pp. 509–520 (2007).

[6] Cong, G., Fan, W., Kementsietsidis, A., Li, J. and Liu, X.: Partial Evaluation for Distributed XPath

Query Processing and Beyond, TODS, Vol. 37, No. 4, pp. 32:1–32:43 (2012).

[7] Kepser, S.: A simple proof for the Turing-completeness of XSLT and XQuery, Extreme Markup Lan-

guages (2004).

[8] Kido, K., Amagasa, T. and Kitagawa, H.: Processing XPath Queries in PC-Clusters Using XML Data

Partitioning, Proceedings of the 22nd International Conference on Data Engineering Workshops, pp.

11–16 (2006).

[9] Kling, P., Özsu, M. T. and Daudjee, K.: Generating efficient execution plans for vertically partitioned

XML databases, PVLDB, Vol. 4, No. 1, pp. 1–11 (2010).

[10] Kurita, H., Hatano, K., Miyazaki, J. and Uemura, S.: Efficient Query Processing for Large XML Data

in Distributed Environments, AINA’07, pp. 317–322 (2007).

[11] Martens, W. and Neven, F.: Typechecking Top-Down Uniform Unranked Tree Transducers, Proc. ICDT,

Lecture Notes in Computer Science, Vol. 2572, Springer Berlin Heidelberg, pp. 64–78 (2003).

[12] Ogden, P., Thomas, D. and Pietzuch, P.: Scalable XML Query Processing Using Parallel Pushdown

Transducers, PVLDB, Vol. 6, No. 14, pp. 1738–1749 (2013).

[13] Schmidt, A., Waas, F., Kersten, M., Carey, M. J., Manolescu, I. and Busse, R.: XMark: a benchmark for

XML data management, Proc. VLDB, pp. 974–985 (2002).

[14] Stefanescu, D. C., Thomo, A. and Thomo, L.: Distributed evaluation of generalized path queries, Proc.

SAC, pp. 610–616 (2005).

[15] Suciu, D.: Distributed query evaluation on semistructured data, TODS, Vol. 27, No. 1, pp. 1–62 (2002).

[16] Tidwell, D.: XSLT, 2nd Edition, O’Reilly Media (2008).

Bibliography 31

[17] Zavoral, F. and Dvorakovam, J.: Perfomance of XSLT processors on large data sets, Proc. ICADIWT,

pp. 110–115 (2009).

