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We present the calculation of the Kl3 form factors with Nf ¼ 2þ 1 nonperturbatively OðaÞ-improved
Wilson quark action and Iwasaki gauge action at the physical point on a large volume of ð10.9 fmÞ3 at one
lattice spacing of a ¼ 0.085 fm. We extract the form factors from 3-point functions with three different
time separations between the source and sink operators to confirm suppression of excited state
contributions. The form factors are calculated in very close to the zero momentum transfer, q2 ¼ 0,
thanks to the large volume, so that stable interpolations to q2 ¼ 0 are carried out. Using our form factors,
we obtain the form factor at q2 ¼ 0, fþð0Þ ¼ 0.9603ð16Þð þ14−4 Þð44Þð19Þð1Þ, where the first, second, and
fifth errors are statistical, systematic errors from fit functions and the isospin breaking effect, respectively.
The third and fourth errors denote the finite lattice spacing effects estimated from the renormalization factor
and contribution beyond the leading order SU(3) chiral perturbation theory. The result of fþð0Þ yields the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element, jVusj ¼ 0.2255ð13Þð4Þ, where the first error
comes from our calculation and the second from the experiment. This value is consistent with
the ones determined from the unitarity of the CKM matrix and the Kl2 decay within one standard
deviation, while it is slightly larger than recent lattice calculations by at most 1.5σ. Furthermore, we
evaluate the shape of the form factors and the phase space integral from our results. We confirm that those
results are consistent with the experiment, and also jVusj determined with our phase space integral agrees
with the one in the above.

DOI: 10.1103/PhysRevD.101.094504

I. INTRODUCTION

Search for signals beyond the standardmodel (BSM) is an
important task in the field of the particle physics. In indirect
search for the BSM physics, it is necessary to precisely
compare physical quantities obtained from experiments and
their predictions in the standard model (SM). Currently one
of the indirect searches is carried out through the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element jVusj. Its SM
prediction is evaluated by the unitarity of the CKMmatrix in

the first row, i.e., jVudj2 þ jVusj2 þ jVubj2 ¼ 1. Using the
precisely determined value of jVudj ¼ 0.97420ð21Þ [1,2],
the SM prediction is jVusj ¼ 0.2257ð9Þ, where jVubj is
neglected in the estimate due to jVubj ≪ jVudj.
Experimentally, jVusj is related to kaon decay processes,

such as theKl2 decay,K → lν, and theKl3 decay,K → πlν,
processes, where K, π, l, and ν are the kaon, pion, lepton,
and neutrino, respectively. In both cases, jVusj is not
determined from the experiments only, and lattice QCD
calculation also plays an important role, which is the first
principle calculation of the strong interaction. For the Kl2
decay, the ratio of the decay constants for the kaon and
pion, FK=Fπ , is required to determine the value of jVusj.
Using current lattice results, for example FK=Fπ ¼
1.1933ð29Þ in Ref. [2], jVusj from the Kl2 decay well
agrees with the SM prediction in the above.
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For the Kl3 decay, jVusj is related to the decay rate of the
K decay ΓKl3

, as

ΓKl3
¼ CKl3

ðjVusjfþð0ÞÞ2IlK; ð1Þ

where fþð0Þ is the value of the Kl3 form factor at q2 ¼ 0
with q being the momentum transfer, CKl3

is a known factor
including the electromagnetic correction and the SU(2)
breaking effect, and IlK is the phase space integral calcu-
lated from the shape of the Kl3 form factors. The experi-
ment determines ΓKl3

and also IlK. The value of fþð0Þ,
however, is not obtained from the experiment. Currently a
precise calculation of fþð0Þ can be performed by lat-
tice QCD.
So far various lattice QCD calculations with dynamical

quarks have been carried out to evaluate the value of fþð0Þ
[3–12]. The most recent study in the Nf ¼ 2þ 1þ 1 QCD
[10] using the staggered-type quark action reported
that using their value of fþð0Þ there is a clear deviation
of jVusj in more than 2σ from the ones in the SM prediction
and the Kl2 decay. Another Nf ¼ 2þ 1þ 1 calculation
using the twisted quark action [9] obtained a similar result.
Therefore, it is an urgent task for the search for BSM
signals to confirm those results by several lattice calcu-
lations using different types of quark actions with small
statistical and systematic uncertainties.
For this purpose we calculate the Kl3 form factors in

the Nf ¼ 2þ 1 QCD using a nonperturbatively OðaÞ-
improved Wilson quark action and Iwasaki gauge action
at one lattice spacing of a ¼ 0.085 fm. The gauge con-
figurations employed in this work are a subset of the
PACS10 configurations [13]. Our calculation is carried out
at the physical light and strange quark masses, and on a
larger physical volume of ð10.9 fmÞ3 than typical current
lattice QCD calculations. Thus, our result significantly
suppresses the uncertainties coming from the chiral
extrapolation and finite volume effect. Another advantage
using the large volume is that it is possible to access the
small q2 region without resort to the twisted boundary
condition. Thanks to the large volume, one piece of our
data is very close to q2 ¼ 0, so that we can perform
reliable interpolations of the form factors to q2 ¼ 0. Using
our result of fþð0Þ, we determine jVusj and compare it
with the SM prediction, the Kl2 decay, and also the
previous lattice QCD results. Furthermore, since we
calculate the form factors in a wide range of q2, the shape
of the form factors and also the phase space integral are
successfully evaluated from our results. Those values are
compared with the experiment and previous lattice QCD
results. We also determine jVusj using our result of the
phase space integral. Our preliminary result has been
already reported in Ref. [14].
This paper is organized as follows. Section II explains

our calculation method of the form factors from meson

2- and 3-point functions. In Sec. III simulation parameters
and technical details of our calculation are presented.
The result of the form factors is shown in Sec. IV. The
interpolations of the form factors are discussed in Sec. V.
Our results for fþð0Þ, and the shape of the form factors,
and phase space integral are also presented in this section.
The result of jVusj and its comparison with other deter-
minations are discussed in Sec. VI. Section VII is devoted
to conclusion. Appendices explain interpolating functions
based on the SU(3) chiral perturbation theory (ChPT) used
in our analysis and tables for some interpolation results.

II. CALCULATION METHOD

The Kl3 form factors fþðq2Þ and f−ðq2Þ are defined by
the matrix element of the weak vector current Vμ, as

hπðp⃗πÞjVμjKðp⃗KÞi
¼ ðpK þ pπÞμfþðq2Þ þ ðpK − pπÞμf−ðq2Þ; ð2Þ

where q ¼ pK − pπ is the momentum transfer. The scalar
form factor f0ðq2Þ is defined by fþðq2Þ and f−ðq2Þ, as

f0ðq2Þ ¼ fþðq2Þ þ
−q2

m2
K −m2

π
f−ðq2Þ

¼ fþðq2Þ
�
1þ −q2

m2
K −m2

π
ξðq2Þ

�
; ð3Þ

where ξðq2Þ ¼ f−ðq2Þ=fþðq2Þ, and mπ and mK are the
masses for π and K, respectively. At q2 ¼ 0, the two form
factors fþðq2Þ and f0ðq2Þ give the same value, fþð0Þ ¼
f0ð0Þ.
The Kl3 form factors are calculated from 3-point

function CKπ
μ ðp⃗; tÞ with the weak vector current given by

CKπ
μ ðp⃗; tÞ ¼ h0jOKð0⃗; tfÞVμðp⃗; tÞO†

πðp⃗; tiÞj0i; ð4Þ

where

Oπðp⃗; tÞ ¼
X
x⃗

ūðx⃗; tÞγ5dðx⃗; tÞeip⃗·x⃗; ð5Þ

OKðp⃗; tÞ ¼
X
x⃗

s̄ðx⃗; tÞγ5dðx⃗; tÞeip⃗·x⃗; ð6Þ

Vμðp⃗; tÞ ¼
X
x⃗

ūðx⃗; tÞγμsðx⃗; tÞeip⃗·x⃗: ð7Þ

We use only the periodic boundary condition in the spatial
directions for quark propagators in contrast to the recent
calculations of the Kl3 form factors using the twisted
boundary condition [7,9,10], because the spatial extent L
in our calculation is large enough to obtain the form factors
near the q2 ¼ 0 region. Thus, p⃗ is labeled by an integer
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vector n⃗p with p ¼ jp⃗j as p⃗ ¼ ð2π=LÞn⃗p. While we have
also calculated the 3-point functions with moving K and π
at rest, their form factors are much noisier than the ones
from CKπ

μ ðp⃗; tÞ. Therefore, we will not discuss those results
in this paper.
For the renormalization factor of the vector current ZV ,

we compute 3-point functions for the π and K electro-
magnetic form factors at q2 ¼ 0 in a similar way, which are
given by

Cππ
4 ðtÞ ¼ h0jOπð0⃗; tfÞVem

4 ðtÞO†
πð0⃗; tiÞj0i; ð8Þ

CKK
4 ðtÞ ¼ h0jOKð0⃗; tfÞVem

4 ðtÞO†
Kð0⃗; tiÞj0i; ð9Þ

where Vem
4 ðtÞ is the temporal component of the electro-

magnetic current.
The 2-point functions for π and K are calculated as

Cπðp⃗; t − tiÞ ¼ h0jOπðp⃗; tÞO†
πðp⃗; tiÞj0i; ð10Þ

CKðp⃗; t − tiÞ ¼ h0jOKðp⃗; tÞO†
Kðp⃗; tiÞj0i: ð11Þ

We average the 2-point functions with the periodic and
antiperiodic boundary conditions in the temporal direction
to make the periodicity in the temporal direction of the
2-point functions effectively doubled. The asymptotic form
of CXðp⃗; tÞ for X ¼ π and K in the t ≫ 1 region is given by

CXðp⃗; tÞ ¼ Z2
X

2EXðpÞ
ðe−EXðpÞt þ e−EXðpÞð2T−tÞÞ; ð12Þ

with EXðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

X þ p2
p

and the temporal extent T. The
mass mX and amplitude ZX are obtained from a fit of
CXð0⃗; tÞ in a large t region with the asymptotic form.
The matrix element in Eq. (2) is obtained from the

ground state contribution of CKπ
μ ðp⃗; tÞ, which needs to

avoid excited state contributions by investigating time
dependences of CKπ

μ ðp⃗; tÞ. To do this, we define a ratio
RBC
μ ðp⃗; tÞ, which has the following time dependence as:

RBC
μ ðp⃗; tÞ ¼ Nμðp⃗ÞCKπ

μ;BCðp⃗; tÞ
Cπðp⃗; t − tiÞCKð0⃗; tf − tÞ

ð13Þ

¼ Nμðp⃗Þ
ZVZπZK

ðhπðp⃗ÞjVμjKð0⃗Þi þ ΔAμðp⃗; tÞ

þ bBCΔBμðp⃗; tÞ þ � � �Þ; ð14Þ

where N4ðp⃗Þ ¼ 1 and Niðp⃗Þ ¼ 1=pi with i ¼ 1, 2, 3, and
Zπ and ZK are defined in Eq. (12). CKπ

μ;BCðp⃗; tÞ is the 3-point
function in Eq. (4) with the (anti)periodic boundary
condition in the temporal direction, which is represented
by BC ¼ ðAÞPBC in the following. In Eq. (14) it is
assumed that ti ≤ t ≤ tf and two excited state contributions

for the radial excited mesons and wrapping around effect,
expressed by ΔAμðp⃗; tÞ and ΔBμðp⃗; tÞ, respectively, are
leading contributions of excited states in the ratio. Other
excited state contributions are denoted by the dots ð� � �Þ
term. The sign of the wrapping around effect in the
temporal direction depends on the temporal boundary
condition of CKπ

μ;BCðp⃗; tÞ; i.e., bPBC ¼ 1 and bAPBC ¼ −1,
because in the wrapping around contribution one of the
mesons in CKπ

μ;BCðp⃗; tÞ crosses the temporal boundary. A
similar wrapping around effect was discussed in the 3-point
function of the BK calculation [15].
The time dependence of the two excited state contribu-

tions is given by

ΔAμðp⃗; tÞ ¼ Aπ
μðp⃗Þe−ðE0

πðpÞ−EπðpÞÞðt−tiÞ

þ AK
μ ðp⃗Þe−ðm0

K−mKÞðtf−tÞ; ð15Þ

ΔBμðp⃗; tÞ¼Bπ
μðp⃗Þe−EπðpÞðTþ2ti−2tÞ þBK

μ ðp⃗Þe−mKðTþ2t−2tfÞ;

ð16Þ

where E0
πðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0

πÞ2 þ p2
p

, and m0
X is the mass of the

radial excitation of X ¼ π and K. In the second equation,
we assume that the finite volume effect in the energy of the
πK scattering state is negligible in our volume. In a small p,
the first term of the right hand side in Eq. (16) has a non-
negligible effect in RBC

μ ðp⃗; tÞ, which will be presented later.
This is because mπT ¼ 7.5 is not enough to suppress the
wrapping around effect at the physical mπ . We remove the
wrapping around effect ΔBμðp⃗; tÞ by averaging the ratios
RPBC
μ ðp⃗; tÞ and RAPBC

μ ðp⃗; tÞ. On the other hand, another
excited state contrition ΔAμðp⃗; tÞ remains in the averaged
ratio. This contribution needs to be removed, and it will be
discussed in a later section.

III. SET UP

We use the configurations generated with the Iwasaki
gauge action [16] and the stout-smeared Clover quark
action at the physical point on ðL=aÞ3×T=a¼ 1283×128

lattice corresponding to ð10.9 fmÞ4. These configurations
are a subset of the PACS10 configurations. Parameters
for the gauge configuration generation are found in
Ref. [13]. The bare coupling β ¼ 1.82 corresponds to
a−1 ¼ 2.3162ð44Þ GeV [17] determined from the Ξ baryon
mass input. The hopping parameters for the light and
strange quarks are ðκl; κsÞ ¼ ð0.126117; 0.124902Þ, and
the coefficient of the clover term is cSW ¼ 1.11, which is
nonperturbatively determined in the Schrödinger functional
(SF) scheme [18]. It is employed the six-stout-smeared link
[19] with ρ ¼ 0.1 in the quark actions. We use the same
quark actions for the measurement of the Kl3 form factors.
The measured π and K masses, mπ ¼ 0.13511ð72Þ GeV
and mK ¼ 0.49709ð35Þ GeV, in this calculation are con-
sistent with the ones in our spectrum paper [13].
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The measurements for the 2-point and 3-point functions
are performed using 20 configurations separated by
10 molecular dynamics trajectories. To reduce the calcu-
lation cost of the measurements, the Zð2Þ ⊗ Zð2Þ random
source [20] at the source time slice ti is employed, where
random numbers are spread in the color and spin spaces as
well as the spatial volume. For example, the operator
Oπðp⃗; tÞ at the source time slice ti in Eq. (4) is replaced by

Oπðp⃗; t; ηÞ ¼
1

Nr

X
j

�X
x⃗

ūðx⃗; tÞη†jðx⃗Þeip⃗·x⃗
�

× γ5

�X
y⃗

dðy⃗; tÞηjðy⃗Þ
�
; ð17Þ

whereNr is the number of the random source, and the color
and spin indices are omitted. The Zð2Þ ⊗ Zð2Þ random
source ηjðx⃗Þ satisfies the following condition as:

1

Nr

X
j

η†jðx⃗Þηjðy⃗Þ ⟶Nr→∞
δðx⃗ − y⃗Þ: ð18Þ

We use the sequential source method at the sink time
slice tf in CKπ

μ;BCðp⃗; tÞ. The quark propagators are calculated
with the periodic boundary condition in the spatial and also
temporal directions in CKπ

μ;PBCðp⃗; tÞ. On the other hand, in
CKπ
μ;APBCðp⃗; tÞ, though the spatial boundary condition is

periodic for all the quark propagators, one of the three
quark propagators needs to be calculated with the anti-
periodic boundary condition in the temporal direction. In
this work we choose the quark propagator which connects
the source operator with the sink one. This choice is
suitable for our purpose to remove the wrapping around
effect ΔBμðp⃗; tÞ in Eq. (14), because in this case the effect
has a desirable boundary condition dependence as in
Eq. (14). A similar technique using combination of quark
propagators with the periodic and antiperiodic boundary
conditions in the temporal direction was employed in the
BK calculation to effectively double the periodicity of the 3-
point function [21,22]. It is noted that partially quenched
effects due to the different boundary condition from the sea
quarks are expected to be exponentially suppressed as in
the twisted boundary condition discussed in Ref. [23].
In each momentum, the quark propagator of the random

momentum source corresponding to the first square brack-
ets in Eq. (17) is calculated. To improve the statistical error

of CKπ
μ;BCðp⃗; tÞ in a finite momentum, we average

CKπ
μ;BCðp⃗; tÞ in each np ¼ ðLp=2πÞ2 with several momen-

tum assignments. The number of the momentum assign-
ment is listed in Table I together with the values of
q2 ¼ −ðmK − EπðpÞÞ2 þ p2 calculated using the measured
mK and mπ with EπðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2
p

. The value of q2 for
each np is labeled by q2np in the following.
We vary the time separation between the source and sink

operators, tsep ¼ tf − ti ¼ 36, 42, and 48, corresponding to
3.1, 3.6, and 4.1 fm in the physical unit, to study the excited
state contributions of RBC

μ ðp⃗; tÞ in Eq. (13). Since the
statistical error increases for larger tsep, the number of the
random source Nr ¼ 2 is chosen in the tsep ¼ 42 and 48
cases, while Nr ¼ 1 in tsep ¼ 36.
In order to increase statistics effectively, on each con-

figuration we perform the measurements with 8 different ti
equally separated by 16 time separation, 4 temporal
directions by rotating the configuration, and also average
CKπ
μ;BCðp⃗; tÞwith its backward 3-point function calculated in

tf ≤ t ≤ ti with the same tsep. In total the numbers of the
measurements are 2560 for tsep ¼ 36 and 5120 for tsep ¼
42 and 48, where the different choice of Nr explained
above is included. The statistical errors for all the observ-
ables are evaluated by the jackknife method with the bin
size of 10 trajectories.

IV. Kl3 FORM FACTORS

In this section we discuss the two kinds of excited state
contributions in the ratio of the 3-point function RBC

μ ðp⃗; tÞ
as explained in Sec. II, which are the wrapping around
effect and the radial excited state contributions. We also
present the results for the Kl3 form factors, fþðq2Þ and
f0ðq2Þ. In the following discussions, we choose ti ¼ 0 so
that tsep ¼ tf.

A. Wrapping around effect

A typical example of the wrapping around effect in
RPBC
4 ðp⃗; tÞ and RAPBC

4 ðp⃗; tÞ defined in Eq. (13) is shown
in Fig. 1, where the ratios with tsep ¼ 42 at q2 ¼ q20 are
plotted. A clear discrepancy between RPBC

4 ðp⃗; tÞ and
RAPBC
4 ðp⃗; tÞ is observed in the region of t > tsep=2, where

the first term in the right hand side of Eq. (16) is expected to
have a large contribution. The averaged ratio,

TABLE I. Momentum transfer squared q2 in each np ¼ ðLp=2πÞ2. νp is the number of the momentum assignment in the
calculation of CKπ

μ;BCðp⃗; tÞ.

q20 q21 q22 q23 q24 q25 q26

np 0 1 2 3 4 5 6
νp 1 6 12 8 6 9 9
q2½GeV2� −0.13103ð48Þ −0.08980ð33Þ −0.05656ð25Þ −0.02792ð20Þ −0.00239ð17Þ 0.02087(15) 0.04239(13)
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Rμðp⃗; tÞ ¼
RPBC
μ ðp⃗; tÞ þ RAPBC

μ ðp⃗; tÞ
2

; ð19Þ

has a milder t dependence than the two ratios, because the
wrapping around effect ΔBμðp⃗; tÞ in Eq. (14) cancels in the
average.
Since the effect decreases as p2 increases expected from

Eq. (16), the discrepancy between the two ratios becomes
smaller at q2 ¼ q21 as shown in Fig. 2. Although the effect is
small in large p2, we always adopt the averaged ratio
Rμðp⃗; tÞ in the following analyses.

B. tsep dependence

Figure 3 shows tsep dependence of the averaged ratio
Rμðp⃗; tÞ in Eq. (19) at q2 ¼ q21. For R4ðp⃗; tÞ, we observe a
reasonable consistency of the data with the different tsep in
flat regions between the source at t ¼ 0 and sink at t ¼ tsep.
For Riðp⃗; tÞ, flat regions are shorter than those of R4ðp⃗; tÞ,
and their shapes are nonsymmetric. In contrast to R4ðp⃗; tÞ
the central values of Riðp⃗; tÞ in the flat region of t ¼ 10–15

with tsep ¼ 36 are about 1% smaller than those with
tsep ¼ 42 and 48. We consider that it is caused by excited
state contributions in Riðp⃗; tÞ, and at first assume that it is
the radial excitation of the mesons as explained in Sec. II.
To remove the contribution and extract the matrix

element hπðp⃗ÞjVμjKð0⃗Þi corresponding to the constant part
in Rμðp⃗; tÞ, we fit Rμðp⃗; tÞ with a fit form given by,

Rμðp⃗; tÞ ¼ RμðpÞ þ Ãπ
μðpÞe−ðE0

πðpÞ−EπðpÞÞt

þ ÃK
μ ðpÞe−ðm0

K−mKÞðtsep−tÞ; ð20Þ

where RμðpÞ, Ãπ
μðpÞ, and ÃK

μ ðpÞ are fit parameters, and

E0
πðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0

πÞ2 þ p2
p

.
Since our simulation is carried out at the physical point,

the masses for the radial excited mesons, m0
π and m0

K , are
fixed to the experimental values m0

π ¼ 1.3 GeV and m0
K ¼

1.46 GeV in PDG18 [2]. We examine if these masses are
appropriate in our calculation by effective masses for the

0 10 20 30 40
t

2.35 10
-5

2.40 10
-5

2.45 10
-5

2.50 10
-5

PBC
APBC
Average

FIG. 1. t dependences for RPBC
4 ðp⃗; tÞ (circle), RAPBC

4 ðp⃗; tÞ
(square), and R4ðp⃗; tÞ (diamond) at q2 ¼ q20 with tsep ¼ 42.
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FIG. 2. Same as Fig. 1, but at q2 ¼ q21.
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FIG. 3. t dependences for R4ðtÞ (top) and RiðtÞ (bottom) at
q2 ¼ q21 with tsep ¼ 36 (circle), 42 (square), and 48 (diamond),
respectively. Fit curves with the fit form of Eq. (20) with the
experimental m0

π and m0
K are also plotted. The shaded band

corresponds to the fit result of RμðpÞ with the one standard
error, and the t region of the band expresses the fit range of
tsep ¼ 48 data.
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first excited states in the 2-point functions. The effective
mass is evaluated from CXð0⃗; tÞ without the ground state
contribution defined as

m0
X;eff ¼ log

�
C̄Xð0⃗; tÞ

C̄Xð0⃗; tþ 1Þ

�
; ð21Þ

where

C̄Xð0⃗; tÞ ¼ CXð0⃗; tÞ − Z2
X

2mX
ðe−mXt þ e−mXð2T−tÞÞ; ð22Þ

with ZX and mX obtained from a fit using the asymptotic
form in Eq. (12). As shown in Fig. 4, we observe that the
effective masses and also the fit results for the first excited
states show reasonable consistencies with these experimen-
tal values.
The simultaneous fit results using all the tsep data with

the fit form in Eq. (20) are presented for μ ¼ 4 and i at q21 in
Fig. 3. We employ uncorrelated fits in this analysis, because

our statistics are not enough to determine the covariance
matrix precisely. It should be noted that in the fits the
correlations among the data at different time slices and in
different tsep are taken into account by the jackknife method.
Thus, the effect of the uncorrelated fit is only a smaller value
of χ2=d.o.f. than that of the correlated fit with the correct
covariance matrix. The minimum time slice tmin of the fit
range is fixed for all tsep, while the maximum time slice tmax

is changed for each tsep as tmax ¼ tsep − tfit. In the q2 ¼ q21
case as shown in the figure, ðtmin; tfitÞ ¼ ð7; 12Þ and (6,18)
are chosen for μ ¼ 4 and i, respectively. The fit result of
RμðpÞ represented by the shaded band in the figure agrees
with the data in the flat region with the larger tsep in
both cases.
Although the above fit using the experimental m0

π and
m0

K works well in our data, their contributions might not be
the leading excited state contributions in the ratios. In order
to test the possibility, we also fit RμðpÞ with E0

πðpÞ and m0
K

as fit parameters in the fit form Eq. (20), and compare the
results from the two analyses. In this case we can choose
wider fit ranges as ðtmin; tfitÞ ¼ ð5; 7Þ and (4,14) for μ ¼ 4
and i, respectively, than the ones with the experimental m0

π

and m0
K . The fit curves are presented in Fig. 5. The results
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FIG. 4. Effective masses defined by Eqs. (21) and (22) for the
first excited states for π (top) and K (bottom). The solid lines
express the fit results of the correlator in Eq. (22) with the one
standard error. The t region of the lines denotes the fit range.
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FIG. 5. Same as Fig. 3, but using fits with E0
πðpÞ and m0

K in
Eq. (20) as free parameters.
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of RμðpÞ agree with those in Fig. 3, although the error of
RiðpÞ becomes larger.
For later convenience, we call the data obtained from the

fit with the fixed m0
π and m0

K as “A1”, and ones from
another fit as “A2”. In the following, we use these two data
to estimate a systematic error originating from the choice of
the fitting form. In each q2, we carry out similar analyses to
obtain RμðpÞ for μ ¼ 4 and i, except for at q2 ¼ q20 where
only R4ðpÞ is available.
We also perform the same analysis without the data of

tsep ¼ 36 to study effects from the smallest tsep data in our
analysis. It is found that the effect is not significant in our
result, because the fit result agrees with the above ones
within the error. Furthermore, we fit the data by adding a
cross term of the second and third terms in Eq. (20), and
also adding the second excited state contributions corre-
sponding to mπð2Þ ¼ 1.8 GeV and mKð2Þ ¼ 1.86 GeV. The
results of RμðpÞ from those fits are statistically consistent
with the ones in the above.

C. Form factors

For the renormalization of the local vector current, the
renormalization factor ZV is calculated from the 3-point
functions for π and K with the electromagnetic current as
presented in Eqs. (8) and (9). To determine ZV , a ratio
RZV

ðtÞ is defined as

RZV
ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cπð0⃗; tsepÞCKð0⃗; tsepÞ

Cππ
4 ðtÞCKK

4 ðtÞ

s
; ð23Þ

whose value in a plateau region corresponds to ZV . Figure 6
shows that the data of RZV

ðtÞ with tsep ¼ 36 and 48 agree
with each other. Thus, we determine ZV from a constant

fit with RZV
ðtÞ of tsep ¼ 36 in the middle t region of

10 ≤ t ≤ 24. The result of ZV ¼ 0.95587ð18Þ is 0.45%
larger than the value obtained by the SF scheme [24],
ZSF
V ¼ 0.95153ð76Þ, which is also shown in the figure.
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FIG. 6. Renormalization factor of the vector current RZV
ðtÞ

defined in Eq. (23) with tsep ¼ 36 (circle) and 48 (square). The
solid and dashed lines represent the central value and error band
of ZSF

V ¼ 0.95153ð76Þ obtained by the SF scheme [24].
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FIG. 7. Kl3 form factors of fþðq2Þ (top), f0ðq2Þ (middle), and
the ratio ξðq2Þ (bottom) as a function of q2. Circle and square
symbols represent A1 and A2 data sets, respectively. The square
symbols in the top and middle panels are slightly shifted in the
x direction for clarity.
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From the discrepancy we will estimate a systematic error of
the form factors in a later section.
Combining ZV , Zπ , and ZK from the 2-point functions,

and the results for R4ðpÞ and RiðpÞ, we calculate the
matrix elements hπðp⃗ÞjV4jKð0⃗Þi and hπðp⃗ÞjVijKð0⃗Þi=pi,
and then evaluate fþðq2Þ and f0ðq2Þ with Eqs. (2) and
(3) at each q2, except at q2 ¼ q20 where only f0ðq20Þ is
obtained. The form factors fþðq2Þ and f0ðq2Þ obtained
from the two data sets, A1 and A2, are plotted in Fig. 7
as a function of q2 together with the ratio of the form
factors ξðq2Þ defined in Eq. (3). Their numerical values
are presented in Table II. The results for fþðq2Þ and
f0ðq2Þ with the A1 data, which are taken to be the central
values in our analysis, are obtained within less than 0.3%
statistical error.

V. q2 Dependence of form factors

It is necessary for the determination of jVusj to extract
fþð0Þ from fþðq2Þ and f0ðq2Þ. Although in our calculation
q24 is very close to zero, we need a small interpolation using
some fit function. In this section we explain the interpo-
lation procedures and give the results for fþð0Þ with
systematic errors. All the interpolations are carried out
with uncorrelated fits due to a lack of enough statistics to
determine a precise covariance matrix. We note that, as in
the fits in Sec. IV B, the correlation among the data is
treated by the jackknife method, so that the value of
χ2=d.o.f. in this fit can be smaller than the one in the
correlated fit. Furthermore, we also discuss the shape of the
form factors and the phase space integral evaluated with our
form factors.

A. Interpolations to q2 = 0

For the form factors, fþðq2Þ and f0ðq2Þ, the next-to-
leading order (NLO) formulas are available in the SU(3)
ChPT [25,26]. We employ the following fit functions for
the interpolations to q2 ¼ 0, which are based on the NLO
ChPT formulas:

fþðq2Þ ¼ 1 −
4

F2
0

L9q2 þ Kþðq2Þ þ c0 þ cþ2 q
4; ð24Þ

TABLE II. Results for the form factors fþðq2Þ and f0ðq2Þ together with the ratio ξðq2Þ ¼ f−ðq2Þ=fþðq2Þ defined in Eq. (3) at each
q2. A1 and A2 data sets are explained in Sec. IV B.

A1 A2

q2 fþðq2Þ f0ðq2Þ ξðq2Þ fþðq2Þ f0ðq2Þ ξðq2Þ
q20 � � � 1.0605(16) � � � � � � 1.0608(16) � � �
q21 1.0872(21) 1.0260(16) −0.1433ð13Þ 1.0881(25) 1.0264(17) −0.1447ð25Þ
q22 1.0372(20) 1.0004(16) −0.1434ð20Þ 1.0398(34) 1.0015(20) −0.1491ð61Þ
q23 0.9978(19) 0.9803(18) −0.1438ð25Þ 1.0009(39) 0.9822(29) −0.1524ð91Þ
q24 0.9634(17) 0.9620(17) −0.1428ð32Þ 0.9642(25) 0.9627(25) −0.1462ð75Þ
q25 0.9334(18) 0.9458(19) −0.1448ð33Þ 0.9343(23) 0.9470(27) −0.1493ð72Þ
q26 0.9082(19) 0.9325(21) −0.1442ð49Þ 0.9107(37) 0.9375(65) −0.159ð17Þ
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FIG. 8. Interpolation of Kl3 form factors with the fit forms
based on the NLO SU(3) ChPT formulas in Eqs. (24) and (25)
with the fixed F0 using the A1 data. The top and bottom panels
present the fit results in all q2 regions we calculated and the ones
near the q2 ¼ 0 region, respectively. The cross expresses the fit
result of fþð0Þ.
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f0ðq2Þ ¼ 1 −
8

F2
0

L5q2 þ K0ðq2Þ þ c0 þ c02q
4; ð25Þ

where F0 is the pion decay constant
1 in the chiral limit, and

L9, L5, c0, and cþ;0
2 are free parameters. The constraint of

fþð0Þ ¼ f0ð0Þ is required, so that the same c0 appears in
the two fit functions. The functions Kþðq2Þ and K0ðq2Þ are
given in Appendix A, which depend onmπ,mK , q2, F0, and
the scale μ. In our analyses we fix μ ¼ 0.77 GeV. The last
two terms in each fit function can be regarded as a part of
the next-to-next-to-leading order (NNLO) analytic terms in
the SU(3) ChPT. In this point of view, the constant term c0
represents a sum of m4

π , m4
K , and m2

πm2
K terms, because m2

π

and m2
K are constant in our analysis due to the physical

point calculation.
In an interpolation we fix F0 ¼ 0.11205 GeV, which is

determined from the average of the ratios, F=F0 ¼
1.229ð59Þ [27] and F=F0 ¼ 1.078ð44Þ [28], summarized
in the FLAG review 2019 [29], and using F ¼
0.12925 GeV from our SU(2) ChPT analysis [30]. F is
the pion decay constant of the SU(2) ChPT in the chiral
limit. We carry out a simultaneous fit using all the A1 data
for fþðq2Þ and f0ðq2Þ including f0ðq20Þ. The fit results are
presented in Fig. 8. The top panel shows that the fit works
well in all the q2 region for both the form factors. The
interpolated result of fþð0Þ ¼ 0.9603ð16Þ has a compa-
rable error with the nearest data to q2 ¼ 0 as shown in the

bottom panel, which is an enlarged figure of the top panel
near the q2 ¼ 0 region. The values for the fit results are
tabulated in Table III. It is noted that the validity of the
constraint fþð0Þ ¼ f0ð0Þ in the fit is confirmed by the fact
that the independent fit results for fþð0Þ and f0ð0Þ agree
with each other. They are also consistent with the simulta-
neous fit result in the above.
We also carry out another fit using the same fit forms of

Eqs. (24) and (25), while setting F0 as a free parameter and
c0 ¼ 0. This fit result of fþð0Þ is consistent with the one
obtained from the above fit. The fit result of F0 ¼
0.1006ð20Þ GeV is compatible to the one assumed in
the above fit. This observation indicates that a systematic
error due to the fixed F0 should be small in the above fit.
The fit results are summarized in Table III. The table also
contains the fit results using the A2 data. The results of
fþð0Þ with the A2 data agree with the ones with the A1
data, while they have larger errors than those with the A1
data. Our results for L9 and L5 show similar values to the
previous lattice QCD results for the low energy constants in
the SU(3) ChPT summarized in the FLAG review 2019
[29], i.e., L9 ∼ ð2.4–3.8)×10−3 and L5 ∼ ð0.9–1.5)×10−3.
Note that these values are given in the chiral limit for all the
quark masses, so that they cannot be directly compared
with our results obtained at the physical quark masses.
We also employ several different fit forms for the

interpolation, such as a mono-pole function, a simple
quadratic function of q2, and variations of the z-parameter
expansion [31]. The fit forms and the fit results are
summarized in Appendix B. The results of fþð0Þ obtained
from these fits are also consistent with the ones obtained

TABLE III. Fit results of Kl3 form factors based on the NLO SU(3) ChPT formulas in Eqs. (24) and (25) together with the value of the
uncorrelated χ2=d.o.f.. A1 and A2 data sets are explained in Sec. IV B. fit-1 and fit-2 denote fits with the fixed and free F0, respectively,
as explained in Sec. VA. We also list the results for fþð0Þ, slope, curvature, and phase space integral.

fit-1 fit-2 fit-1 fit-2

A1 A2

L9 [10−3] 3.924(57) 3.14(14) 3.94(11) 3.27(25)
L5 [10−4] 6.94(28) 4.88(41) 6.73(52) 5.01(55)
cþ2 [GeV−4] 1.19(17) 1.15(17) 1.13(36) 1.10(36)
c02 [GeV−4] −0.40ð11Þ −0.65ð12Þ −0.36ð19Þ −0.57ð21Þ
c0 −0.0077ð16Þ � � � −0.0063ð24Þ � � �
F0 [GeV] � � � 0.1007(20) � � � 0.1024(32)
χ2=d.o.f. 0.05 0.05 0.18 0.18
fþð0Þ 0.9603(16) 0.9603(16) 0.9616(24) 0.9617(24)
λ0þ [10−2] 2.618(37) 2.635(37) 2.627(70) 2.643(70)
λ00 [10−2] 1.384(37) 1.393(37) 1.355(68) 1.365(69)
λ00þ [10−3] 1.06(13) 1.07(13) 1.01(29) 1.02(29)
λ000 [10−3] 0.401(91) 0.381(95) 0.43(15) 0.41(17)
Ie
K0 0.15481(13) 0.15481(13) 0.15482(22) 0.15482(22)
Iμ
K0 0.10249(12) 0.10248(12) 0.10244(21) 0.10243(21)
fþð0Þ

ffiffiffiffiffiffiffi
Ie
K0

p
0.37783(62) 0.37784(62) 0.37837(93) 0.37837(93)

fþð0Þ
ffiffiffiffiffiffiffi
Iμ
K0

q
0.30742(49) 0.30742(49) 0.30777(68) 0.30777(68)

1We adopt the normalization of Fπ ∼ 132 MeV at the physical
point.
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from the above ChPT analyses. Furthermore, we
confirm that the result is not changed, when the fit range
of q2 is squeezed as q22 ≤ q2 ≤ q25 in the NLO ChPT fit with
the fixed F0 using the A1 data, which gives fþð0Þ ¼
0.9604ð16Þ. Based on these fit analyses we conclude that
the systematic error originating from the fit form depend-
ence for the interpolation is as small as the statistical error
in our result of fþð0Þ.

B. Result of f + ð0Þ
From the fit results discussed in Sec. VA, whose values

are tabulated in Table III and Tables in Appendix B, we
obtain the result of fþð0Þ as

fþð0Þ ¼ 0.9603ð16Þð þ14−4 Þð44Þð19Þð1Þ; ð26Þ

where the central value and statistical error (the first error)
are determined from the fit result based on the ChPT
formulas in Eqs. (24) and (25) with the fixed F0 using the
A1 data. The second error is the systematic one for the fit
form dependence, which is estimated from the deviation of
the various fit results, tabulated in Table III and tables in
Appendix B, from the central value.
The third error is the systematic one for the discrepancy

of ZV and ZSF
V , 0.45%, discussed in Sec. IV C. We consider

that it is regarded as the order of a systematic error due to
the finite lattice spacing effect, because the discrepancy
should vanish in the continuum limit. In our calculation
this value is larger than 0.19%, which is an order estima-
tion of a discretization error from the higher order con-
tributions in the ChPT formula as ð1 − fþð0ÞÞ × ðΛaÞ2
with Λ ¼ 0.5 GeV. Since fþð0Þ ¼ 1 is fixed from the
symmetry in the LO ChPT, 1 − fþð0Þ represents the higher

order contributions. This estimation was used in the
previous studies [5–7].2 We quote the ChPT estimation
as the fourth error, because it comes from a different effect
of the discretization error rather than that in ZV .
We also estimate a systematic error of the isospin

symmetry breaking effect by replacing the NLO functions
Kþðq2Þ and K0ðq2Þ in Eqs. (24) and (25) by the ones for
fK

0π−þ and fK
0π−

0 in the NLO ChPTwith the isospin breaking
[25,32]. We evaluate fK

0π−þ ð0Þ¼ 0.9604 using the fit param-
eters obtained from the fit with the fixed F0 for the A1 data
and the experimental π and K masses3 in PDG [2].
Comparing fK

0π−þ ð0Þ with fþð0Þ, it is found that the effect
is much smaller than other errors. We quote their deviation
as the fifth error in Eq. (26). It is an important future work
for a nonperturbative estimation of this error to perform
calculation including QED effect, such as one in the Kl2
decay [33].
We do not include the systematic error of the finite

volume effect, because our physical volume is large enough
to suppress the effect. The estimate based on ChPT,
ð1 − fþð0ÞÞ × e−mπL, gives 0.002%, which is much smaller
than other errors. In the following we will not discuss this
systematic error.
Figure 9 shows comparison of our result with the previous

dynamical lattice QCD calculations [3–12]. Our result is
reasonably consistent with the previousNf ¼ 2 [11,12] and
Nf ¼ 2þ 1 [3–7] calculations, while it is slightly smaller
than the recent Nf ¼ 2þ 1þ 1 results [8–10]. The largest
discrepancy in comparison with the previous results is 1.7σ
from the one in Ref. [10] in the total error. At present the
reason of the discrepancy is not clear. However, an analysis
using only the physical point data inRef. [10] gives a smaller
value than their result in the figure, so that the discrepancy
would become smaller with larger systematic errors [10]. In
order to understand the source of the discrepancy, it is
important to reduce our uncertainties, especially the finite
lattice spacing effect, which is the largest error in our
calculation. For this purpose, in the next step we will
calculate the form factors using other sets of PACS10
configurations with the finer lattice spacings at the physical
point to evaluate fþð0Þ in the continuum limit.

C. Shape of form factors

The slopes for the form factors are defined by the Taylor
expansion in a vicinity of q2 ¼ 0, as

fsðq2Þ¼ fþð0Þ
�
1þλ0s

�
−q2

m2
π−

�
þλ00s

�
−q2

m2
π−

�
2

þ���
�
; ð27Þ

where s ¼ þ and 0, and mπ− ¼ 0.13957061 GeV.
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FIG. 9. Comparison of fþð0Þ with the previous results in
dynamical quark calculations. Our result is represented by the
circle symbol. Square, up triangle, diamond, and left triangle
symbols denote staggered [3,8,10], twisted [9,12], overlap [7],
and domain wall [4–6,11] quark calculations, respectively. The
filled symbols represent the results at a finite lattice spacing.
The inner and outer errors express the statistical and total errors.
The total error is evaluated by adding the statistical and
systematic errors in quadrature.

2Λ ¼ 0.3 GeV was employed in Ref. [5].
3We use the π0 − η mixing angle ε ¼ 0.0116, which is

estimated using the quark masses in PDG [2].
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The fit of the form factors discussed in Sec. VA gives the
slope λ0s and curvature λ00s , whose results are presented in
Table III and Tables in Appendix B. For λ0s, we obtain

λ0þ ¼ 2.618ð37Þð þ26−68Þð118Þð5Þ × 10−2; ð28Þ

λ00 ¼ 1.384ð37Þð þ20−93Þð62Þð5Þ × 10−2; ð29Þ

where the central value, the first, and second errors are
determined in a similar way to the fþð0Þ case shown in
Sec. V B. Since the systematic error coming from ZV affects
only the overall constant fþð0Þ, there is no corresponding
systematic error for λ0s and λ00s . The third and fourth errors are
discretization effects estimated from the higher order in
ChPTand the isospin symmetry breaking effect evaluated as
in fþð0Þ, respectively. Note that since the slopes and
curvatures originate from the higher order contributions
in ChPT, the corresponding discretization errors, 5%, are
much larger than the one in fþð0Þ, 0.19%. Those results are
well consistent with the experimental ones [34],4 λ0þ ¼
2.575ð36Þ × 10−2 and λ00 ¼ 1.355ð71Þ × 10−2, and the pre-
vious lattice ones [7,9,12] as shown in Fig. 10.
For λ00s , we obtain

λ00þ ¼ 1.06ð13Þð þ32−16Þð5Þð0Þ × 10−3; ð30Þ

λ000 ¼ 0.40ð9Þð þ26−8 Þð2Þð0Þ × 10−3; ð31Þ

where the results and errors are determined in a similar
way to λ0s. For the curvatures, the isospin symmetry
breaking effects are negligible in our precision. Those
results agree with the experimental ones calculated with the
dispersive representation [35],5 λ00þ ¼ 1.24ð þ19−10Þ × 10−3

and λ000 ¼ 0.600ð59Þ × 10−3, and also an average of the
experimental results [36], λ00þ ¼ 1.57ð48Þ × 10−3.

D. Phase space integral

Since our results for the slopes and the curvatures of the
form factors agree with the experiment, we evaluate the
phase space integral, IlK in Eq. (1), which is usually
calculated using the q2 dependence of the experimental
form factors. The phase space integral [37] is given by

IlK ¼
Z

tmax

m2
l

dt
λ3=2

M8
K

�
1þm2

l

2t

��
1 −

m2
l

t

�
2

×

�
F̄2þðtÞ þ

3m2
lΔ2

Kπ

ð2tþm2
l Þλ

F̄2
0ðtÞ

�
; ð32Þ

where λ ¼ ðt − ΣÞðt − tmaxÞ with Σ ¼ ðMK þMπÞ2 and
tmax ¼ ðMK −MπÞ2, F̄sðtÞ ¼ fsð−tÞ=fþð0Þ with s ¼ þ
and 0, t ¼ −q2, and ml is the mass of the lepton l.
Substituting the fit results for the form factors into the
equation, we calculate IlK for the K0 → π−eþνe and K0 →
π−μþνμ processes and obtain each integral, as

Ie
K0 ¼ 0.15481ð13Þð þ1−11Þð60Þð3Þ; ð33Þ

Iμ
K0 ¼ 0.10249ð12Þð þ4−16Þð50Þð3Þ; ð34Þ

using MK ¼ mK0 ¼ 0.497611 GeV, Mπ ¼ mπ− ¼
0.13957061 GeV, me ¼ 0.000511 GeV, and mμ ¼
0.10566 GeV. The result for each fitting form is presented
in Table III and Tables in Appendix B. The central value,
statistical, and systematic errors are determined in a similar
way to the cases for the slope and curvature as presented in
Sec. V C, and there is no systematic error coming from
the choice of ZV . These results agree well with the
experimental values in the dispersive representation of the
form factors, IeK0 ¼ 0.15476ð18Þ and IμK0 ¼ 0.10253ð16Þ,
in Ref. [36].
We also show the results for the un-normalized phase

space integrals, as

fþð0Þ
ffiffiffiffiffiffiffi
IeK0

q
¼ 0.37783ð62Þð þ54−16Þð171Þð11Þð9Þ; ð35Þ

fþð0Þ
ffiffiffiffiffiffiffi
Iμ
K0

q
¼ 0.30742ð49Þð þ35−17Þð139Þð27Þð9Þ; ð36Þ

which will be used for evaluation of jVusj in Sec. VI. The
errors are estimated in similar ways to the ones of fþð0Þ.

0.005 0.01 0.015 0.02 0.025

0
’

0.015 0.02 0.025 0.03 0.035

+
’

This work Nf=2+1

JLQCD Nf=2+1

ETM Nf=2+1+1

ETM Nf=2

FIG. 10. Comparison for the slopes of the form factors, λ00 and
λ0þ, with previous lattice QCD results [7,9,12]. The experimental
results [34] are denoted by the shaded bands. The inner and outer
errors express the statistical and total errors. The total error is
evaluated by adding the statistical and systematic errors in
quadrature.

4λ00 is evaluated using λ00 ¼ ðm2
π−=ΔKπÞðlog C − 0.0398ð44ÞÞ

[35] withΔKπ ¼ m2
K0 − m2

π− and log C ¼ 0.1985ð70Þ andmK0 ¼
0.497611GeV.

5λ00s is expressed by λ0s in the dispersive representation [35], as
λ00þ¼ðλ0þÞ2þð5.79þ1.91

−0.97Þ×10−4 and λ000¼ðλ00Þ2þð4.16�0.56Þ×10−4.
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Their numerical values for each fit form are summarized in
Table III and Tables in Appendix B.

VI. RESULT OF jVusj
Using our result of fþð0Þ in Sec. V B and the exper-

imental value jVusjfþð0Þ ¼ 0.21654ð41Þ [34], the result of
jVusj in our study is given by

jVusj ¼ 0.22550ð37Þð þ10−34Þð103Þð43Þð3Þð43Þ; ð37Þ

where the errors from the first to fifth inherit those of fþð0Þ
in Eq. (26). The last error comes from the experimental one.
The result can be expressed as jVusj ¼ 0.2255ð13Þð4Þ,
where the first error is given by the combined error of the
five errors in our calculation.
Figure 11 shows that our result is consistent with the

value estimated by assuming the unitarity condition of the
first row of the CKM matrix:

jVusj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jVudj2

q
; ð38Þ

where jVubj is neglected due to jVubj ≪ jVudj and we use
jVudj ¼ 0.97420ð21Þ [1,2]. Furthermore, our result agrees
with the results determined from the Kl2 decay process
through jVusj=jVudj × FK=Fπ ¼ 0.27599ð38Þ [2]. In the
figure we plot two data: one is obtained with the use of
the value of FK=Fπ in PDG18 [2] and the other is from the
result of FK=Fπ calculated with the same configuration as
in this work [13]. These observations suggest that our result

is consistent with the SM prediction within the error. Using
a new evaluation of jVudj ¼ 0.97370ð14Þ [38], however,
the value from the unitarity condition significantly changes
as jVusj ¼ 0.2278ð6Þ, while the ones from the Kl2 decay do
not move within the error. In this case, our result is smaller
than the unitarity condition by 1.7σ. More recent evaluation
of jVudj ¼ 0.97389ð18Þ [39] leads to the unitarity value of
jVusj ¼ 0.2270ð8Þ, which is consistent with our result
within 1.0σ.
Figure 11 also presents the comparison of our result with

the recent Nf ¼ 2þ 1 [5–7] and Nf ¼ 2þ 1þ 1 [9,10]
calculations. Our result is reasonably consistent with all the
results, although it is 1.5σ larger than the recent result in
Ref. [10] as for the result of fþð0Þ presented in Sec. V B.
To understand the difference, it is an important future work
to reduce the uncertainties in our calculation. We will
remove our largest systematic error by measuring the form
factors at a finer lattice spacing in the next calculation.
We also determine jVusj using the phase space integral

calculated with our form factors, fþð0Þ
ffiffiffiffiffiffiffi
Il
K0

q
in Sec. V D.

The results for l ¼ e and μ are

jVusj ¼
(
0.22524ð37Þð þ10−32Þð103Þð28Þð5Þð58Þ ðl ¼ eÞ
0.22558ð36Þð þ13−26Þð103Þð87Þð6Þð67Þ ðl ¼ μÞ ;

ð39Þ

where we use jVusjfþð0Þ
ffiffiffiffiffiffiffi
Ie
K0

p ¼ 0.08510ð22Þ and

jVusjfþð0Þ
ffiffiffiffiffiffiffi
Iμ
K0

q
¼ 0.06935ð21Þ, which are evaluated from

the experimental results and correction factors in Ref. [36].
The meaning of the errors is the same as in the above jVusj.
A weighted average of the two decay processes using the
experimental error gives

jVusj ¼ 0.22539ð37Þð þ11−29Þð103Þð54Þð6Þð44Þ: ð40Þ

This value is well consistent with that in Eq. (37) including
the sizes for the uncertainties. It is encouraging that the Kl3
form factors calculated in the lattice QCD can be used for
not only the determination of fþð0Þ, but also the evaluation
of the phase space integral.

VII. CONCLUSION

We have calculated the Kl3 form factors in the Nf ¼
2þ 1 QCD at the physical point on the ð10.9 fmÞ3 volume
with the nonperturbatively OðaÞ-improved Wilson quark
action and Iwasaki gauge action at one lattice spacing
corresponding to a−1 ¼ 2.3 GeV. Thanks to the large
volume, we can access the form factors near q2 ¼ 0without
the twisted boundary technique. For extraction of precise
matrix elements for the Kl3 decay, we have analyzed the
corresponding 3-point functions avoiding excited state

0.221 0.222 0.223 0.224 0.225 0.226 0.227 0.228 0.229 0.230
|Vus|

FNAL/MILC19
ETM16
This work
JLQCD
RBC-UKQCD15
FNAL/MILC13
PACS Nf=2+1

PDG18

Kl3 Nf=2+1+1

Kl3 Nf=2+1

Kl2

FIG. 11. Comparison of jVusj with recent lattice QCD results
obtained from Kl3 form factors [5–7,9,10] and the Kl2 decay
using FK=Fπ in our calculation [13] and PDG18 [2]. The inner
and outer errors in the Kl3 calculations express the error of the
lattice calculation and total error. The total error is evaluated by
adding the lattice QCD and experimental errors in quadrature.
The unitarity value using jVudj in PDG18 [2] is presented by the
shaded band. The filled symbols represent the results at a finite
lattice spacing.

JUNPEI KAKAZU et al. PHYS. REV. D 101, 094504 (2020)

094504-12



contributions, such as the wrapping around effect of π and
the radial excited states for π and K.
To obtain the value of the form factors at q2 ¼ 0, which

is essential to evaluate jVusj, we have interpolated the form
factors to q2 ¼ 0 employing several fit forms. These
interpolations also contribute to determination of the shape
of the form factors as a function of q2. The chiral
extrapolation is not necessary in our analysis thanks to
the calculation at the physical point. The central value
of the form factor at q2 ¼ 0 is determined with less
than 0.2% statistical error. Since one of our data is very
close to q2 ¼ 0, the interpolations are fairly stable,
and the systematic error from the interpolations is as
small as the statistical error. The final result of fþð0Þ in this
work is

fþð0Þ ¼ 0.9603ð16Þð þ14−4 Þð44Þð19Þð1Þ; ð41Þ

where the first error is statistical, and the second error is the
systematic one for the choice of the fit forms. The third
error is the largest systematic error in our result, which
comes from a finite lattice spacing effect estimated from
the different determination of ZV . Another finite lattice
spacing effect is estimated using higher order effect of
ChPT corresponding to the fourth error. The isospin
breaking effect in the fifth error is smaller compared to
other ones. Our result is reasonably consistent with the
recent Nf ¼ 2þ 1 and Nf ¼ 2þ 1þ 1 QCD calcula-
tions. The largest deviation from the recent results is
1.7σ. It is important to reduce the uncertainties in our
calculation to understand the source of the deviation.
Thus, in the next calculation, we will measure the form
factors at a finer lattice spacing.
The slope and curvature for the form factors at q2 ¼ 0

are determined from the interpolations. Their results are
well consistent with the experimental values. The inter-
polated result allows us to evaluate the phase space
integral and make a comparison with the experiment.
This evaluation can be regarded as comparison with the
experimental form factors in nonzero q2 region. Our
values of the phase space integral agree with the
experimental ones.
We have obtained jVusj from the result of fþð0Þ, as

jVusj ¼ 0.2255ð13Þð4Þ; ð42Þ

where the first error is the combined error in our calcu-
lation, and the second comes from the experiment. This
result agrees with jVusj determined from the unitarity
condition of the CKM matrix and also from the Kl2 decay.
On the other hand, using a new evaluation of jVudj, our
result differs from the unitarity value by 1.7σ. To make the
comparison with the SM predictions more stringent, we
would need to reduce the uncertainties in our calculation.

Thus, our next calculation with the finer lattice spacing is
important also from this point of view. Furthermore,
nonperturbative evaluations of the isosing breaking effect
including the QED effect would be important to search for
BSM signal.
It is encouraging that another determination of jVusj

using the phase space integral evaluated with our form
factors completely agrees with the above conventional
determination. This suggests that the lattice calculation
could contribute to not only a precise determination of
fþð0Þ, but also the phase space integral.
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APPENDIX A: FUNCTIONS
OF NLO ChPT FORMULAS

The functions Kþðq2Þ and K0ðq2Þ in Eqs. (24) and (25)
are summarized in this appendix, which appears in the
NLO SU(3) ChPT formulas [25,26].
The function Kþðq2Þ of fþðq2Þ in Eq. (24) is given by

Kþðq2Þ ¼
3

32π2F2
0

ðHπKðtÞ þHKηðtÞÞ; ðA1Þ

with t ¼ −q2 and

HabðtÞ¼
1

12

�
t−2Σabþ

Δ2
ab

t

�
JabðtÞ−

1

3
J0ab−

t
6
kabþ

t
9
;

ðA2Þ

where

JabðtÞ ¼ 2 −
�
Δab

t
−
Σab

Δab

�
ln
m2

a

m2
b

−
ν

t
ln
ðtþ νÞ2 − Δ2

ab

ðt − νÞ2 − Δ2
ab

;

ðA3Þ

J0ab ¼ Σab þ
2m2

am2
b

Δab
ln
m2

b

m2
a
; ðA4Þ

kab ¼
μa − μb
Δab

; ðA5Þ

6http://luscher.web.cern.ch/luscher/openQCD/.
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Σab ¼ m2
a þm2

b; ðA6Þ

Δab ¼ m2
a −m2

b; ðA7Þ

with

ν2 ¼ Δ2
ab − 2Σabtþ t2; ðA8Þ

μa ¼ m2
a lnðm2

a=μ2Þ: ðA9Þ

K0ðq2Þ of f0ðq2Þ in Eq. (25) is defined by

K0ðq2Þ ¼
1

32π2F2
0

�
1

4

�
5t − 2ΣπK −

3Δ2
πK

t

�
JπKðtÞ

þ 1

12

�
3t − 2ΣπK −

Δ2
πK

t

�
JKηðtÞ

−
t

2ΔπK
ð5μπ − 2μK − 3μηÞ

�
: ðA10Þ

We adoptm2
η ¼ð4m2

K −m2
πÞ=3 and μ ¼ 770 MeV. The two

functions give the same value at q2 ¼ 0, Kþð0Þ ¼ K0ð0Þ,
in this choice of m2

η.

APPENDIX B: RESULTS
OF q2 INTERPOLATION

In this appendix several fit results for the interpolations
of the form factors are summarized. In addition to the fit
forms based on the NLO SU(3) ChPT formulas in Eqs. (24)
and (25), we also employ several fit forms for the
interpolation, such as mono-pole functions,

fþðq2Þ ¼
fþð0Þ

q2 þM2þ
and f0ðq2Þ ¼

fþð0Þ
q2 þM2

0

; ðB1Þ

simple quadratic functions of q2,

fþðq2Þ ¼ fþð0Þ þ cþ1 q
2 þ cþ2 q

4 and

f0ðq2Þ ¼ fþð0Þ þ c01q
2 þ c02q

4; ðB2Þ

and variations of the z-parameter expansion [31],

fþðq2Þ ¼ fþð0Þ þ
XNz

i¼1

cþi z
iðq2Þ and

f0ðq2Þ ¼ fþð0Þ þ
XNz

i¼1

c0i z
iðq2Þ; ðB3Þ

where Nz ¼ 1 or 2 and

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmK þmπÞ2 þ q2

p
− ðmK þmπÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmK þmπÞ2 þ q2
p

þ ðmK þmπÞ
: ðB4Þ

Our choice of zðq2Þ corresponds to the one with t0 ¼ 0 in
the general representation of zðq2Þ [31]. The parameters
fþð0Þ, cþ;0

i , and Mþ;0 are fit parameters. These fit results
are summarized in Tables IV–VI.

TABLE IV. Fit results of Kl3 form factors using monopole fit
forms in Eq. (B1) together with the values of the uncorrelated
χ2=d.o.f.. A1 and A2 data sets are explained in Sec. IV B. We
also list the results for slope, curvature, and phase space integral.

A1 A2

fþð0Þ 0.9599(16) 0.9612(24)

M2þ [GeV2] 1.311(11) 1.309(16)

M2
0 [GeV2] 0.7210(92) 0.714(16)

χ2=d.o.f. 0.16 0.24

λ0þ [10−2] 2.554(21) 2.550(30)

λ00 [10−2] 1.405(18) 1.390(32)

λ00þ [10−3] 1.359(23) 1.353(34)

λ000 [10−3] 0.411(11) 0.402(19)

Ie
K0 0.15475(13) 0.15472(19)

Iμ
K0 0.10251(12) 0.10246(18)

fþð0Þ
ffiffiffiffiffiffiffi
Ie
K0

p
0.37759(61) 0.37810(87)

fþð0Þ
ffiffiffiffiffiffiffi
Iμ
K0

q
0.30732(48) 0.30768(64)

TABLE V. Same as Table IV, but for quadratic fit forms
in Eq. (B2).

A1 A2

fþð0Þ 0.9600(16) 0.9615(24)

cþ1 [GeV−2] −1.283ð18Þ −1.296ð35Þ
cþ2 [GeV−4] 1.45(17) 1.31(36)

c01 [GeV−2] −0.677ð18Þ −0.664ð33Þ
c02 [GeV−4] 0.68(12) 0.71(19)

χ2=d.o.f. 0.05 0.18

λ0þ [10−2] 2.620(37) 2.642(70)

λ00 [10−2] 1.383(37) 1.353(69)

λ00þ [10−3] 1.16(14) 1.05(29)

λ000 [10−3] 0.543(94) 0.57(15)

Ie
K0 0.15480(12) 0.15483(22)

Iμ
K0 0.10249(12) 0.10245(21)

fþð0Þ
ffiffiffiffiffiffiffi
Ie
K0

p
0.37769(61) 0.37835(93)

fþð0Þ
ffiffiffiffiffiffiffi
Iμ
K0

q
0.30732(49) 0.30776(68)
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