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We present the calculation of the K3 form factors with N, = 2 + 1 nonperturbatively O(a)-improved
Wilson quark action and Iwasaki gauge action at the physical point on a large volume of (10.9 fm)? at one
lattice spacing of a = 0.085 fm. We extract the form factors from 3-point functions with three different
time separations between the source and sink operators to confirm suppression of excited state
contributions. The form factors are calculated in very close to the zero momentum transfer, ¢> = 0,
thanks to the large volume, so that stable interpolations to g> = 0 are carried out. Using our form factors,
we obtain the form factor at ¢g> = 0, £, (0) = 0.9603(16)( ";*)(44)(19)(1), where the first, second, and
fifth errors are statistical, systematic errors from fit functions and the isospin breaking effect, respectively.
The third and fourth errors denote the finite lattice spacing effects estimated from the renormalization factor
and contribution beyond the leading order SU(3) chiral perturbation theory. The result of f, (0) yields the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element, |V, | = 0.2255(13)(4), where the first error
comes from our calculation and the second from the experiment. This value is consistent with
the ones determined from the unitarity of the CKM matrix and the K, decay within one standard
deviation, while it is slightly larger than recent lattice calculations by at most 1.5¢. Furthermore, we
evaluate the shape of the form factors and the phase space integral from our results. We confirm that those
results are consistent with the experiment, and also |V,| determined with our phase space integral agrees

with the one in the above.

DOI: 10.1103/PhysRevD.101.094504

I. INTRODUCTION

Search for signals beyond the standard model (BSM) is an
important task in the field of the particle physics. In indirect
search for the BSM physics, it is necessary to precisely
compare physical quantities obtained from experiments and
their predictions in the standard model (SM). Currently one
of the indirect searches is carried out through the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element |V |. Its SM
prediction is evaluated by the unitarity of the CKM matrix in
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the first row, i.e., |V, 4|> + |Vus|> + [V.p|? = 1. Using the
precisely determined value of |V,,| = 0.97420(21) [1,2],
the SM prediction is |V | = 0.2257(9), where |V ;| is
neglected in the estimate due to |V ;| < |V ,4l-

Experimentally, |V | is related to kaon decay processes,
such as the K, decay, K — [v, and the K 5 decay, K — nlv,
processes, where K, z, [, and v are the kaon, pion, lepton,
and neutrino, respectively. In both cases, |V, | is not
determined from the experiments only, and lattice QCD
calculation also plays an important role, which is the first
principle calculation of the strong interaction. For the K,
decay, the ratio of the decay constants for the kaon and
pion, Fy/F,, is required to determine the value of |V ,]|.
Using current lattice results, for example Fg/F, =
1.1933(29) in Ref. [2], |V,,| from the K decay well
agrees with the SM prediction in the above.
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For the K5 decay, |V | is related to the decay rate of the
K decay I'g,,, as

Tk, = Cry (IVislf1(0))* I (1)

where f(0) is the value of the K3 form factor at ¢g> = 0
with g being the momentum transfer, Cg, is a known factor
including the electromagnetic correction and the SU(2)
breaking effect, and I is the phase space integral calcu-
lated from the shape of the K;; form factors. The experi-
ment determines 'y, and also I%. The value of f(0),
however, is not obtained from the experiment. Currently a
precise calculation of f,(0) can be performed by lat-
tice QCD.

So far various lattice QCD calculations with dynamical
quarks have been carried out to evaluate the value of £, (0)
[3—12]. The most recent study in the Ny =2 + 1 + 1 QCD
[10] using the staggered-type quark action reported
that using their value of f,(0) there is a clear deviation
of |V | in more than 2¢ from the ones in the SM prediction
and the K, decay. Another N, =2+ 1+ 1 calculation
using the twisted quark action [9] obtained a similar result.
Therefore, it is an urgent task for the search for BSM
signals to confirm those results by several lattice calcu-
lations using different types of quark actions with small
statistical and systematic uncertainties.

For this purpose we calculate the K;; form factors in
the Ny =2+ 1 QCD using a nonperturbatively O(a)-
improved Wilson quark action and Iwasaki gauge action
at one lattice spacing of a = 0.085 fm. The gauge con-
figurations employed in this work are a subset of the
PACSI10 configurations [13]. Our calculation is carried out
at the physical light and strange quark masses, and on a
larger physical volume of (10.9 fm)? than typical current
lattice QCD calculations. Thus, our result significantly
suppresses the uncertainties coming from the chiral
extrapolation and finite volume effect. Another advantage
using the large volume is that it is possible to access the
small ¢* region without resort to the twisted boundary
condition. Thanks to the large volume, one piece of our
data is very close to g> =0, so that we can perform
reliable interpolations of the form factors to ¢g> = 0. Using
our result of f,(0), we determine |V,,| and compare it
with the SM prediction, the K, decay, and also the
previous lattice QCD results. Furthermore, since we
calculate the form factors in a wide range of ¢, the shape
of the form factors and also the phase space integral are
successfully evaluated from our results. Those values are
compared with the experiment and previous lattice QCD
results. We also determine |V | using our result of the
phase space integral. Our preliminary result has been
already reported in Ref. [14].

This paper is organized as follows. Section II explains
our calculation method of the form factors from meson

2- and 3-point functions. In Sec. III simulation parameters
and technical details of our calculation are presented.
The result of the form factors is shown in Sec. IV. The
interpolations of the form factors are discussed in Sec. V.
Our results for f,(0), and the shape of the form factors,
and phase space integral are also presented in this section.
The result of |V,| and its comparison with other deter-
minations are discussed in Sec. VI. Section VII is devoted
to conclusion. Appendices explain interpolating functions
based on the SU(3) chiral perturbation theory (ChPT) used
in our analysis and tables for some interpolation results.

II. CALCULATION METHOD

The K3 form factors £, (¢?) and f_(q?) are defined by
the matrix element of the weak vector current V,, as

(#(P) V4K (Pk))
= (px + P)uf (@) + (Pk = Po) f-(47), (2)

where ¢ = px — p, is the momentum transfer. The scalar
form factor f(q?) is defined by £, (¢?) and f_(g?), as

fold?) = f(q?) +2_—m

mK_ T

where £(¢°) = f_(¢°)/f+(¢*), and m, and my are the
masses for 7 and K, respectively. At g*> = 0, the two form
factors f(¢*) and fy(q*) give the same value, f,(0) =
f0(0).

The K, form factors are calculated from 3-point
function Cf*(p., 1) with the weak vector current given by

CK*(.1) = (0]0x (0. 1,)V,(B. 1) O5(P.1,)|0).  (4)

where

Vu(Bo) =S alF. 1)y,s(F 1), (7)

We use only the periodic boundary condition in the spatial
directions for quark propagators in contrast to the recent
calculations of the K3 form factors using the twisted
boundary condition [7,9,10], because the spatial extent L
in our calculation is large enough to obtain the form factors
near the g> = 0 region. Thus, p is labeled by an integer
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vector 71, with p = |p| as p = (2z/L)n,,. While we have
also calculated the 3-point functions with moving K and z
at rest, their form factors are much noisier than the ones
from CX”(p, t). Therefore, we will not discuss those results
in this paper.

For the renormalization factor of the vector current Zy,
we compute 3-point functions for the z and K electro-
magnetic form factors at g> = 0 in a similar way, which are
given by

Cr(1) = (0]04(0.1,)V§™(1)03(0.£,)[0),  (8)
CKK (1) = 0|0k (0, 1) V§"(1) 0%(0.1,)[0),  (9)

where V§™(¢) is the temporal component of the electro-
magnetic current.
The 2-point functions for z and K are calculated as

C*(p.1 = 1;) = (0|04 (p. 1) OR(P. 1)[0),  (10)

CK(p.1—1;) = (0|0 (B. 1) Ok (P, 1)[0).  (11)

We average the 2-point functions with the periodic and
antiperiodic boundary conditions in the temporal direction
to make the periodicity in the temporal direction of the
2-point functions effectively doubled. The asymptotic form
of CX(p, t) for X = 7 and K in the # > 1 region is given by

_ 7
2Ex(p)

with Ex(p) = \/m% + p* and the temporal extent 7. The
mass my and amplitude Zy are obtained from a fit of

(e Ex(P)t  o=Ex(P)2T=0)), (12)

cX (6 t) in a large ¢ region with the asymptotic form.
The matrix element in Eq. (2) is obtained from the
ground state contribution of CX”(p,t), which needs to
avoid excited state contributions by investigating time
dependences of C{f”( p,t). To do this, we define a ratio
RBC(p, 1), which has the following time dependence as:

e = NulPICEC(P.1)
R (p.1) = C*(p.t—1;)CK (0.1, — 1) .
_ zjzié—@zi( (=PI, K (D) + A4, (5.1)
+bBCAB#(13’t) +)s "

where N4y(p) = 1 and N;(p) = 1/p; with i = 1, 2, 3, and
Z, and Zy are defined in Eq. (12). CX(p, 1) is the 3-point
function in Eq. (4) with the (anti)periodic boundary
condition in the temporal direction, which is represented
by BC = (A)PBC in the following. In Eq. (14) it is
assumed that 7; < 1 < 7, and two excited state contributions

for the radial excited mesons and wrapping around effect,
expressed by AA,(p,t) and AB,(p,1), respectively, are
leading contributions of excited states in the ratio. Other
excited state contributions are denoted by the dots (---)
term. The sign of the wrapping around effect in the
temporal direction depends on the temporal boundary
condition of Cx%.(p,1); i.e., bppc = 1 and bpgc = —1,
because in the wrapping around contribution one of the
mesons in Cﬁ’éc(ﬁ, t) crosses the temporal boundary. A
similar wrapping around effect was discussed in the 3-point
function of the By calculation [15].

The time dependence of the two excited state contribu-
tions is given by

AA, (P, 1) = AZ(p)e(Ep)=Ep)(=1)

S 2 R (15)

i

AB” (ﬁ, t) — Bﬁ(ﬁ)e—E,,(p)(TJrzt,-—Zt) 4 Bf(ﬁ)e_m’((TH’_z’f) ,
(16)

where E.(p) = +/(m})? + p?, and m) is the mass of the
radial excitation of X = z and K. In the second equation,

we assume that the finite volume effect in the energy of the
K scattering state is negligible in our volume. In a small p,
the first term of the right hand side in Eq. (16) has a non-
negligible effect in RE(p, t), which will be presented later.
This is because m,T = 7.5 is not enough to suppress the
wrapping around effect at the physical m,. We remove the
wrapping around effect AB,,( D, 1) by averaging the ratios
RYBC(p.1) and RYPBC(p,1). On the other hand, another
excited state contrition AA,(p, 7) remains in the averaged
ratio. This contribution needs to be removed, and it will be
discussed in a later section.

III. SET UP

We use the configurations generated with the Iwasaki
gauge action [16] and the stout-smeared Clover quark
action at the physical point on (L/a)® x T/a = 1283 x 128
lattice corresponding to (10.9 fm)*. These configurations
are a subset of the PACS10 configurations. Parameters
for the gauge configuration generation are found in
Ref. [13]. The bare coupling f = 1.82 corresponds to
a~' =2.3162(44) GeV [17] determined from the Z baryon
mass input. The hopping parameters for the light and
strange quarks are (k;,k,) = (0.126117,0.124902), and
the coefficient of the clover term is cqw = 1.11, which is
nonperturbatively determined in the Schrodinger functional
(SF) scheme [18]. It is employed the six-stout-smeared link
[19] with p = 0.1 in the quark actions. We use the same
quark actions for the measurement of the K ;3 form factors.
The measured 7z and K masses, m, = 0.13511(72) GeV
and my = 0.49709(35) GeV, in this calculation are con-
sistent with the ones in our spectrum paper [13].
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TABLE I. Momentum transfer squared ¢*> in each n, = (Lp/2r)*. v

calculation of Cigc(p. ).

» 1s the number of the momentum assignment in the

4% qai 4 43 4 q? %
n, 0 1 2 3 4 5 6
v, 1 6 12 8 6 9 9
£lGeV?]  —0.13103(48)  —0.08980(33)  —0.05656(25)  —0.02792(20)  —0.00239(17)  0.02087(15)  0.04239(13)

The measurements for the 2-point and 3-point functions
are performed using 20 configurations separated by
10 molecular dynamics trajectories. To reduce the calcu-
lation cost of the measurements, the Z(2) ® Z(2) random
source [20] at the source time slice ¢; is employed, where
random numbers are spread in the color and spin spaces as
well as the spatial volume. For example, the operator
0,(p, t) at the source time slice #; in Eq. (4) is replaced by

0,(p.1.m) = N%Z [Z a( o); (f)eiﬁ]

xrs [Z;@: 0, 3)|

where N, is the number of the random source, and the color
and spin indices are omitted. The Z(2) ® Z(2) random
source 17;(X) satisfies the following condition as:

(17)

@) =G -5, ()

[Se]

We use the sequential source method at the sink time
slice ¢ in C,If,]éc( D, t). The quark propagators are calculated
with the periodic boundary condition in the spatial and also
temporal directions in Cj g (P, ). On the other hand, in

Clappc (P, 1), though the spatial boundary condition is
periodic for all the quark propagators, one of the three
quark propagators needs to be calculated with the anti-
periodic boundary condition in the temporal direction. In
this work we choose the quark propagator which connects
the source operator with the sink one. This choice is
suitable for our purpose to remove the wrapping around
effect AB,(p. 1) in Eq. (14), because in this case the effect
has a desirable boundary condition dependence as in
Eq. (14). A similar technique using combination of quark
propagators with the periodic and antiperiodic boundary
conditions in the temporal direction was employed in the
By calculation to effectively double the periodicity of the 3-
point function [21,22]. It is noted that partially quenched
effects due to the different boundary condition from the sea
quarks are expected to be exponentially suppressed as in
the twisted boundary condition discussed in Ref. [23].

In each momentum, the quark propagator of the random
momentum source corresponding to the first square brack-
ets in Eq. (17) is calculated. To improve the statistical error

of C;%c( p,t) in a finite momentum, we average
Chgc(p,1) in each n, = (Lp/2x)* with several momen-
tum assignments. The number of the momentum assign-
ment is listed in Table I together with the values of
q* = —(mg — E,(p))? + p? calculated using the measured
my and m, with E,(p) = /m2 + p?. The value of ¢* for
each n, is labeled by ¢; in the following.

We vary the time separation between the source and sink
Operators, fy, =ty — t; = 36,42, and 48, corresponding to
3.1, 3.6, and 4.1 fm in the physical unit, to study the excited
state contributions of REC(p,r) in Eq. (13). Since the
statistical error increases for larger f.p, the number of the
random source N, = 2 is chosen in the 7, = 42 and 43
cases, while N, = 1 in 1., = 36.

In order to increase statistics effectively, on each con-
figuration we perform the measurements with 8 different ¢,
equally separated by 16 time separation, 4 temporal
directions by rotating the configuration, and also average
ClEc(p, 1) with its backward 3-point function calculated in
1y <t < t; with the same 7. In total the numbers of the
measurements are 2560 for 7., = 36 and 5120 for 7, =
42 and 48, where the different choice of N, explained
above is included. The statistical errors for all the observ-
ables are evaluated by the jackknife method with the bin
size of 10 trajectories.

IV. K;; FORM FACTORS

In this section we discuss the two kinds of excited state
contributions in the ratio of the 3-point function RE(p, t)
as explained in Sec. II, which are the wrapping around
effect and the radial excited state contributions. We also
present the results for the K3 form factors, f (¢*) and
fo(g?). In the following discussions, we choose t; = 0 so
that fy, = 1;.

A. Wrapping around effect

A typical example of the wrapping around effect in
REBC(P, 1) and R{FBC(p, 1) defined in Eq. (13) is shown
in Fig. 1, where the ratios with t,, = 42 at ¢* = gj are
plotted. A clear discrepancy between RYBC(p,7) and
R{PBE(p, 1) is observed in the region of ¢ > f,/2, where
the first term in the right hand side of Eq. (16) is expected to
have a large contribution. The averaged ratio,
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FIG. 2. Same as Fig. 1, but at ¢> = ¢3.
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Rﬂ(ﬁvt) - 2 ’

(19)

has a milder ¢ dependence than the two ratios, because the
wrapping around effect AB,(p. t) in Eq. (14) cancels in the
average.

Since the effect decreases as p? increases expected from
Eq. (16), the discrepancy between the two ratios becomes
smaller at > = ¢7 as shown in Fig. 2. Although the effect is
small in large p?, we always adopt the averaged ratio
R,(p.t) in the following analyses.

B. t,., dependence

Figure 3 shows 7, dependence of the averaged ratio
R,(p.t) in Eq. (19) at > = ¢3. For R4(p. 1), we observe a
reasonable consistency of the data with the different 7y, in
flat regions between the source at # = 0 and sink at 7 = 7,
For R;(p, t), flat regions are shorter than those of R,(p, 1),
and their shapes are nonsymmetric. In contrast to R, (p, 1)
the central values of R;(p, t) in the flat region of = 10-15

-5
2.52x10 ‘ T
L L] tﬂcp_36
(=42
-5 u sep
2.50x10° *
x | 'S tﬂcp_48
2.48x10° *
2.46x10° .
2.44x10°1 *
2.42x10°[ i .
2.40x10° ‘
AUxiV o 40
1.08x10™ ‘ \ ‘ ‘
Py tsep=36
Ri(t) m =42
1.06x10™ - * =48 o
1.04x10™ -
1.02x10™* E -
1.00x10™ [ *
9.80x10° : : : ‘
S0V o 10 20 30 40
t
FIG. 3. t dependences for R4(¢) (top) and R;(#) (bottom) at

q* = q} with 1, = 36 (circle), 42 (square), and 48 (diamond),
respectively. Fit curves with the fit form of Eq. (20) with the
experimental m, and m), are also plotted. The shaded band
corresponds to the fit result of R,(p) with the one standard
error, and the ¢ region of the band expresses the fit range of
Iep = 48 data.

with 7., =36 are about 1% smaller than those with
fep = 42 and 48. We consider that it is caused by excited
state contributions in R;(p, t), and at first assume that it is
the radial excitation of the mesons as explained in Sec. II.

To remove the contribution and extract the matrix
element (z(p)|V,|K(0)) corresponding to the constant part

in R,(p. 1), we fit R,(p, ) with a fit form given by,
R,(P.1) = R,(p) + AL (p)e~ExlP)E(p))t
"‘A/If( ) K_mk)(tscp_’)’ (20)

where R,(p), AZ(p), and AX(p) are fit parameters, and
Ep(p) = \/(mp) + p2.

Since our simulation is carried out at the physical point,
the masses for the radial excited mesons, m), and m/, are
fixed to the experimental values m}, = 1.3 GeV and m} =
1.46 GeV in PDG18 [2]. We examine if these masses are
appropriate in our calculation by effective masses for the
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JUNPEI KAKAZU et al.

PHYS. REV. D 101, 094504 (2020)

4 T I T
L © -- experiment| |
sk effective m’ _
n
I e - |
2 @ q 1
- m @ T -
_________________ é__ag__f__“___________. [Ep——
1+ g :
0 | | | | | N | |
0 2 4 6 8 10 12 14
t
4— — —
C} -
L -~ experiment| |
b 2
sk effective m _
S
=)
2 e T D
m ol
R T E o ——Q—@H --13
17 - 1 —
0 | | | | | |
0 2 4 6 8 10 12 14

FIG. 4. Effective masses defined by Eqgs. (21) and (22) for the
first excited states for z (top) and K (bottom). The solid lines
express the fit results of the correlator in Eq. (22) with the one
standard error. The ¢ region of the lines denotes the fit range.

first excited states in the 2-point functions. The effective

mass is evaluated from CX (6, t) without the ground state
contribution defined as

CX(0, ¢t
MYy o = 10g <#) s (21)
: CX(0,1+1)
where
o > 73
CX(0,1) = C¥X(0,1) — 72— (el 4 710 (22)
2mX

with Zy and my obtained from a fit using the asymptotic
form in Eq. (12). As shown in Fig. 4, we observe that the
effective masses and also the fit results for the first excited
states show reasonable consistencies with these experimen-
tal values.

The simultaneous fit results using all the 7, data with
the fit form in Eq. (20) are presented for 4 = 4 and i at g7 in
Fig. 3. We employ uncorrelated fits in this analysis, because

5
2.52x10 : :
x | ‘ ) tsep=36 |
5] R (t) u tSEP:42 -
2.50x10 4 o L
2.48x10°[ .
2.46x10° *
2.44x10°[ *
2.42x10°1 *
5
2.40x10°;
-4
1.08x1
08x10 T . ‘scp=36
R() . ) ]
1.06x10" [~ o t,=48]
1.04x10™ - *
1.02x10™ - *
1.00x10™ [ *
-5 | | ; | § |
9.80x10 7 10 20 30 40
t
FIG. 5. Same as Fig. 3, but using fits with E(p) and m in

Eq. (20) as free parameters.

our statistics are not enough to determine the covariance
matrix precisely. It should be noted that in the fits the
correlations among the data at different time slices and in
different 7y, are taken into account by the jackknife method.
Thus, the effect of the uncorrelated fit is only a smaller value
of y?/d.o.f. than that of the correlated fit with the correct
covariance matrix. The minimum time slice ¢, of the fit
range is fixed for all 7., while the maximum time slice 7,
is changed for each fy,, as fy,,x = ey — 5. In the ¢* = g
case as shown in the figure, (¢, ) = (7, 12) and (6,18)
are chosen for u = 4 and i, respectively. The fit result of
R,(p) represented by the shaded band in the figure agrees
with the data in the flat region with the larger 7, in
both cases.

Although the above fit using the experimental m., and
m’K works well in our data, their contributions might not be
the leading excited state contributions in the ratios. In order
to test the possibility, we also fit R, (p) with E(p) and m/
as fit parameters in the fit form Eq. (20), and compare the
results from the two analyses. In this case we can choose
wider fit ranges as (0, f5;) = (5,7) and (4,14) for u = 4
and i, respectively, than the ones with the experimental 2/,
and m/. The fit curves are presented in Fig. 5. The results
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FIG. 6. Renormalization factor of the vector current Ry ()
defined in Eq. (23) with 7., = 36 (circle) and 43 (square). The
solid and dashed lines represent the central value and error band
of Z3F = 0.95153(76) obtained by the SF scheme [24].

of R,(p) agree with those in Fig. 3, although the error of
R;(p) becomes larger.

For later convenience, we call the data obtained from the
fit with the fixed m} and m) as “Al”, and ones from
another fit as “A2”. In the following, we use these two data
to estimate a systematic error originating from the choice of
the fitting form. In each g2, we carry out similar analyses to
obtain R, (p) for u = 4 and i, except for at g> = g} where
only R4(p) is available.

We also perform the same analysis without the data of
lsep = 36 to study effects from the smallest 7y, data in our
analysis. It is found that the effect is not significant in our
result, because the fit result agrees with the above ones
within the error. Furthermore, we fit the data by adding a
cross term of the second and third terms in Eq. (20), and
also adding the second excited state contributions corre-
sponding to m_e = 1.8 GeV and mye = 1.86 GeV. The
results of R, (p) from those fits are statistically consistent
with the ones in the above.

C. Form factors

For the renormalization of the local vector current, the
renormalization factor Zy is calculated from the 3-point
functions for z and K with the electromagnetic current as
presented in Egs. (8) and (9). To determine Zy, a ratio
Ry, (1) is defined as

PR

whose value in a plateau region corresponds to Zy,. Figure 6
shows that the data of R, (¢) with ., = 36 and 48 agree
with each other. Thus, we determine Zy from a constant

1.10 T T

@ 2, [0 Al
f.@) o a2
1.05}-
&
1.00- &
@
0.95|-
@
0.90F &
| | | | |
0.1 -0.05 0 0.05
o’ [GeV’]
1.10 ‘ T ‘
I 2, [0 Al
& (@) o a2
1.05}
@&
1.00} @
&
@
0.95F @ 3
0.90F
| | | |
-0.1 -0.05 0 0.05
o’ [GeV]
-0.10 —— : : : :
2, [0 Al
()
012 O A2
014
P lby
0.6} -
0.18F -
. ‘ \ ‘ \ ‘ \ ‘ \
0.20 -0.1 -0.05 0 0.05
o’ [GeV]
FIG. 7. K form factors of £, (g?) (top), fo(¢*) (middle), and

the ratio &(¢?) (bottom) as a function of ¢®. Circle and square
symbols represent Al and A2 data sets, respectively. The square
symbols in the top and middle panels are slightly shifted in the
x direction for clarity.

fit with Rz () of t., =36 in the middle ¢ region of
10 <1< 24. The result of Zy = 0.95587(18) is 0.45%
larger than the value obtained by the SF scheme [24],
Z3F = 0.95153(76), which is also shown in the figure.
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TABLE II.  Results for the form factors £ (¢?) and f,(g?) together with the ratio £(¢%) = f_(¢?)/f(q?) defined in Eq. (3) at each

g*>. Al and A2 data sets are explained in Sec. IV B.

Al A2
7> f+(q%) fold?) &(q?) f+(q?) folg?) &(q*)
7 1.0605(16) 1.0608(16)
7 1.0872(21) 1.0260(16) —0.1433(13) 1.0881(25) 1.0264(17) ~0.1447(25)
e 1.0372(20) 1.0004(16) —0.1434(20) 1.0398(34) 1.0015(20) ~0.1491(61)
e 0.9978(19) 0.9803(18) —0.1438(25) 1.0009(39) 0.9822(29) ~0.1524(91)
e 0.9634(17) 0.9620(17) —0.1428(32) 0.9642(25) 0.9627(25) —0.1462(75)
e 0.9334(18) 0.9458(19) —0.1448(33) 0.9343(23) 0.9470(27) ~0.1493(72)
. 0.9082(19) 0.9325(21) —0.1442(49) 0.9107(37) 0.9375(65) ~0.159(17)

From the discrepancy we will estimate a systematic error of
the form factors in a later section.

Combining Zy, Z,, and Z from the 2-point functions,
and the results for R,(p) and R;(p), we calculate the
matrix elements (7(3)|V4|K(0)) and (z(B)|V,|K(0))/p:.
and then evaluate f,(¢°) and fy(g¢?) with Egs. (2) and
(3) at each g?, except at ¢> = g where only fo(qg3) is
obtained. The form factors f_ (¢?) and f,(¢*) obtained
from the two data sets, Al and A2, are plotted in Fig. 7
as a function of ¢?> together with the ratio of the form
factors £(g?) defined in Eq. (3). Their numerical values
are presented in Table II. The results for f,(g?) and
fo(q?) with the A1 data, which are taken to be the central
values in our analysis, are obtained within less than 0.3%
statistical error.

V. ¢ Dependence of form factors

It is necessary for the determination of |V | to extract
f+(0) from £, (g?) and f(g?). Although in our calculation
g3 is very close to zero, we need a small interpolation using
some fit function. In this section we explain the interpo-
lation procedures and give the results for f,(0) with
systematic errors. All the interpolations are carried out
with uncorrelated fits due to a lack of enough statistics to
determine a precise covariance matrix. We note that, as in
the fits in Sec. IV B, the correlation among the data is
treated by the jackknife method, so that the value of
x*/d.o.f. in this fit can be smaller than the one in the
correlated fit. Furthermore, we also discuss the shape of the
form factors and the phase space integral evaluated with our
form factors.

A. Interpolations to ¢>=0

For the form factors, f.(¢*) and f,(q?), the next-to-
leading order (NLO) formulas are available in the SU(3)
ChPT [25,26]. We employ the following fit functions for
the interpolations to g* = 0, which are based on the NLO
ChPT formulas:

4

f+(@*) =1 == Log> + K. (¢*) + co+c3q*,  (24)
F
0

F T
TRE AN 5 2] -
21O f(a)

I “ 5 i
1.10+ \\ o fo(q) _
I & | % 1,0
105 e \\Q T
1.001 e e -

TEN
0.951 ‘?‘1‘:\ n
N
0.90F @
| | |
-0.1 -0.05 0 0.05
o’ [GeV?]
T ‘ T ‘ T
M ? 2
;\\@ § O f.(9)
THRS T 2
0.96 | o (@) -
N * f.(0)
0.95 . Tl .
0.94 T .
0.93 L I | L | L | \\\\

‘ |
0 0.005

0.01 0.015 0.02 0.025
o’ [GeV’]
FIG. 8. Interpolation of K form factors with the fit forms

based on the NLO SU(3) ChPT formulas in Egs. (24) and (25)
with the fixed F, using the A1l data. The top and bottom panels
present the fit results in all > regions we calculated and the ones
near the ¢> = 0 region, respectively. The cross expresses the fit
result of £, (0).
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TABLE III.

Fit results of K3 form factors based on the NLO SU(3) ChPT formulas in Egs. (24) and (25) together with the value of the

uncorrelated y*/d.o.f.. Al and A2 data sets are explained in Sec. IV B. fit-1 and fit-2 denote fits with the fixed and free F,,, respectively,
as explained in Sec. VA. We also list the results for f, (0), slope, curvature, and phase space integral.

fit-1 fit-2 fit-1 fit-2
Al A2

Lo [1073] 3.924(57) 3.14(14) 3.94(11) 3.27(25)
Ls [1074] 6.94(28) 4.88(41) 6.73(52) 5.01(55)
§ [GeV™] 1.19(17) 1.15(17) 1.13(36) 1.10(36)
9 [Gev] —0.40(11) —0.65(12) —0.36(19) —0.57(21)
co —0.0077(16) . —0.0063(24) .
Fy [GeV] 0.1007(20) 0.1024(32)
2*/d.o.f. 0.05 0.05 0.18 0.18
£.(0) 0.9603(16) 0.9603(16) 0.9616(24) 0.9617(24)
2. [1072] 2.618(37) 2.635(37) 2.627(70) 2.643(70)
A 11072 1.384(37) 1.393(37) 1.355(68) 1.365(69)
A7 11073 1.06(13) 1.07(13) 1.01(29) 1.02(29)
A [1073] 0.401(91) 0.381(95) 0.43(15) 0.41(17)
I, 0.15481(13) 0.15481(13) 0.15482(22) 0.15482(22)
, 0.10249(12) 0.10248(12) 0.10244(21) 0.10243(21)
£400)/To 0.37783(62) 0.37784(62) 0.37837(93) 0.37837(93)

0.30742(49) 0.30742(49) 0.30777(68) 0.30777(68)

8
folg?) =1- ﬁquz + Ko(q?) +co+ Sq*. (25)
0

where F|, is the pion decay constant’ in the chiral limit, and
Lo, Ls, ¢y, and ¢5 0 are free parameters. The constraint of
f+(0) = £(0) is required, so that the same ¢, appears in
the two fit functions. The functions K, (¢?) and K(g?) are
given in Appendix A, which depend on m,,, mg, g%, F, and
the scale u. In our analyses we fix ¢ = 0.77 GeV. The last
two terms in each fit function can be regarded as a part of
the next-to-next-to-leading order (NNLO) analytic terms in
the SU(3) ChPT. In this point of view, the constant term ¢,
represents a sum of m, my, and m2m?% terms, because m?
and m?% are constant in our analysis due to the physical
point calculation.

In an interpolation we fix Fy = 0.11205 GeV, which is
determined from the average of the ratios, F/F,=
1.229(59) [27] and F/F, = 1.078(44) [28], summarized
in the FLAG review 2019 [29], and using F =
0.12925 GeV from our SU(2) ChPT analysis [30]. F is
the pion decay constant of the SU(2) ChPT in the chiral
limit. We carry out a simultaneous fit using all the A1 data
for £, (¢*) and f,(¢*) including f,(g3). The fit results are
presented in Fig. 8. The top panel shows that the fit works
well in all the ¢* region for both the form factors. The
interpolated result of f,(0) =0.9603(16) has a compa-
rable error with the nearest data to ¢g> = 0 as shown in the

'We adopt the normalization of F, ~ 132 MeV at the physical
point.

bottom panel, which is an enlarged figure of the top panel
near the ¢> = 0 region. The values for the fit results are
tabulated in Table III. It is noted that the validity of the
constraint f (0) = f,(0) in the fit is confirmed by the fact
that the independent fit results for f, (0) and f(0) agree
with each other. They are also consistent with the simulta-
neous fit result in the above.

We also carry out another fit using the same fit forms of
Egs. (24) and (25), while setting F; as a free parameter and
co = 0. This fit result of f(0) is consistent with the one
obtained from the above fit. The fit result of F, =
0.1006(20) GeV is compatible to the one assumed in
the above fit. This observation indicates that a systematic
error due to the fixed F,, should be small in the above fit.
The fit results are summarized in Table III. The table also
contains the fit results using the A2 data. The results of
f+(0) with the A2 data agree with the ones with the Al
data, while they have larger errors than those with the Al
data. Our results for Ly and L5 show similar values to the
previous lattice QCD results for the low energy constants in
the SU(3) ChPT summarized in the FLAG review 2019
[29], i.e., Loy ~ (2.4-3.8)x1073 and Ls ~ (0.9-1.5)x107.
Note that these values are given in the chiral limit for all the
quark masses, so that they cannot be directly compared
with our results obtained at the physical quark masses.

We also employ several different fit forms for the
interpolation, such as a mono-pole function, a simple
quadratic function of g2, and variations of the z-parameter
expansion [31]. The fit forms and the fit results are
summarized in Appendix B. The results of f, (0) obtained
from these fits are also consistent with the ones obtained
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FIG. 9. Comparison of f,(0) with the previous results in
dynamical quark calculations. Our result is represented by the
circle symbol. Square, up triangle, diamond, and left triangle
symbols denote staggered [3,8,10], twisted [9,12], overlap [7],
and domain wall [4-6,11] quark calculations, respectively. The
filled symbols represent the results at a finite lattice spacing.
The inner and outer errors express the statistical and total errors.
The total error is evaluated by adding the statistical and
systematic errors in quadrature.

from the above ChPT analyses. Furthermore, we
confirm that the result is not changed, when the fit range
of ¢* is squeezed as ¢3 < ¢* < ¢2 in the NLO ChPT fit with
the fixed F, using the Al data, which gives f (0) =
0.9604(16). Based on these fit analyses we conclude that
the systematic error originating from the fit form depend-
ence for the interpolation is as small as the statistical error
in our result of f (0).

B. Result of f, (0)

From the fit results discussed in Sec. VA, whose values
are tabulated in Table III and Tables in Appendix B, we
obtain the result of £ (0) as

£1+(0) =0.9603(16)( ;%) (44)(19) (1), (26)

where the central value and statistical error (the first error)
are determined from the fit result based on the ChPT
formulas in Egs. (24) and (25) with the fixed F; using the
Al data. The second error is the systematic one for the fit
form dependence, which is estimated from the deviation of
the various fit results, tabulated in Table III and tables in
Appendix B, from the central value.

The third error is the systematic one for the discrepancy
of Zy and Z3F, 0.45%, discussed in Sec. IV C. We consider
that it is regarded as the order of a systematic error due to
the finite lattice spacing effect, because the discrepancy
should vanish in the continuum limit. In our calculation
this value is larger than 0.19%, which is an order estima-
tion of a discretization error from the higher order con-
tributions in the ChPT formula as (1 —f,(0)) x (Aa)?
with A = 0.5 GeV. Since f,(0) =1 is fixed from the
symmetry in the LO ChPT, 1 — f, (0) represents the higher

order contributions. This estimation was used in the
previous studies [5-7].% We quote the ChPT estimation
as the fourth error, because it comes from a different effect
of the discretization error rather than that in Zy.

We also estimate a systematic error of the isospin
symmetry breaking effect by replacing the NLO functions
K. (q?) and K(g?) in Egs. (24) and (25) by the ones for

50”_ and f§ * in the NLO ChPT with the isospin breaking

[25,32]. We evaluate f f)”_ (0) =0.9604 using the fit param-
eters obtained from the fit with the fixed F for the A1l data
and the experimental 7 and K masses’ in PDG [2].
Comparing fX°7 (0) with £, (0), it is found that the effect
is much smaller than other errors. We quote their deviation
as the fifth error in Eq. (26). It is an important future work
for a nonperturbative estimation of this error to perform
calculation including QED effect, such as one in the K,
decay [33].

We do not include the systematic error of the finite
volume effect, because our physical volume is large enough
to suppress the effect. The estimate based on ChPT,
(1= £.(0)) x e7L, gives 0.002%, which is much smaller
than other errors. In the following we will not discuss this
systematic error.

Figure 9 shows comparison of our result with the previous
dynamical lattice QCD calculations [3—12]. Our result is
reasonably consistent with the previous N, = 2 [11,12] and
Ny =2+ 1 [3-7] calculations, while it is slightly smaller
than the recent Ny =2 + 1 + 1 results [8—10]. The largest
discrepancy in comparison with the previous results is 1.7¢
from the one in Ref. [10] in the total error. At present the
reason of the discrepancy is not clear. However, an analysis
using only the physical point datain Ref. [10] gives a smaller
value than their result in the figure, so that the discrepancy
would become smaller with larger systematic errors [10]. In
order to understand the source of the discrepancy, it is
important to reduce our uncertainties, especially the finite
lattice spacing effect, which is the largest error in our
calculation. For this purpose, in the next step we will
calculate the form factors using other sets of PACS10
configurations with the finer lattice spacings at the physical
point to evaluate f, (0) in the continuum limit.

C. Shape of form factors

The slopes for the form factors are defined by the Taylor
expansion in a vicinity of g> = 0, as

@ =10 (144 (CE) +a(CE) ). @)

4

/4

where s = + and 0, and m,- = 0.13957061 GeV.

’A = 0.3 GeV was employed in Ref. [5].
*We use the 70—y mixing angle & = 0.0116, which is
estimated using the quark masses in PDG [2].
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The fit of the form factors discussed in Sec. V A gives the
slope A; and curvature A7, whose results are presented in
Table IIT and Tables in Appendix B. For 4}, we obtain

A, =2.618(37)(128)(118)(5) x 1072, (28)
Xy = 1.384(37)( 739)(62)(5) x 1072, (29)

where the central value, the first, and second errors are
determined in a similar way to the f(0) case shown in
Sec. V B. Since the systematic error coming from Z, affects
only the overall constant f (0), there is no corresponding
systematic error for A; and A} . The third and fourth errors are
discretization effects estimated from the higher order in
ChPT and the isospin symmetry breaking effect evaluated as
in f,(0), respectively. Note that since the slopes and
curvatures originate from the higher order contributions
in ChPT, the corresponding discretization errors, 5%, are
much larger than the one in £ (0), 0.19%. Those results are
well consistent with the experimental ones [34],4 A=
2.575(36) x 1072 and 4, = 1.355(71) x 1072, and the pre-
vious lattice ones [7,9,12] as shown in Fig. 10.
For 2, we obtain

AL =1.06(13)( 132)(5)(0) x 1073, (30)
A= 0.40(9)( 73°)(2)(0) x 1073, (31)

where the results and errors are determined in a similar
way to A,. For the curvatures, the isospin symmetry
breaking effects are negligible in our precision. Those
results agree with the experimental ones calculated with the
dispersive representation [35],° A} = 1.24(*10) x 107
and AJ = 0.600(59) x 107, and also an average of the
experimental results [36], ] = 1.57(48) x 1073,

D. Phase space integral

Since our results for the slopes and the curvatures of the
form factors agree with the experiment, we evaluate the
phase space integral, I% in Eq. (1), which is usually
calculated using the g> dependence of the experimental
form factors. The phase space integral [37] is given by

o A3/2 m? m?\ 2
Ik = dt=—(1+=L) (1 -
o= [ (0 5) (=)

. 3miN%, -
y (Fm +mF3<z>), (32)

“2) is evaluated using A) = (m2-/A,)(log C — 0.0398(44))
[35] with Ag, = m2, — m2- andlog C = 0.1985(70) and myo =
0.497611 GeV.

32" is expressed by 4. in the dispersive representation [35], as
M =(2)2+(5.795591) x 10~ and A =(2))>+(4.16£0.56)x 10~*.

H@ H@H
—a+— -+

@ This work N'=2+1

o O JLQCD Ngz=2+1 -
& ETMNz=2+1+1
A ETMNz=2

e A
| | | L | | |

0.005 0.01 0.015 0.02 0.0250.015 0.02 0.025 0.03 0.035
N N

0 +
FIG. 10. Comparison for the slopes of the form factors, 4;, and
Ay, with previous lattice QCD results [7,9,12]. The experimental
results [34] are denoted by the shaded bands. The inner and outer
errors express the statistical and total errors. The total error is
evaluated by adding the statistical and systematic errors in
quadrature.

where A = (t — Z)(t — tyax) With £ = (Mg + M,)? and
tmax = (MK - Mn)z’ Fs(t) = fs(_t)/f+(0) with s = +
and 0, t = —¢?, and m, is the mass of the lepton I.
Substituting the fit results for the form factors into the
equation, we calculate /% for the K® - z=e¢"v, and K* —
7~ pty, processes and obtain each integral, as

I = 0.15481(13)( {,)(60)(3), (33)
I’I‘(() = 0.10249(12)(ff6)(50)(3), (34)
using Mg = mgo = 0497611 GeV, M,=m, =
0.13957061 GeV, m, = 0.000511 GeV, and m, =

0.10566 GeV. The result for each fitting form is presented
in Table IIT and Tables in Appendix B. The central value,
statistical, and systematic errors are determined in a similar
way to the cases for the slope and curvature as presented in
Sec. VC, and there is no systematic error coming from
the choice of Zy. These results agree well with the
experimental values in the dispersive representation of the
form factors, 1%, = 0.15476(18) and I*, = 0.10253(16),
in Ref. [36].

We also show the results for the un-normalized phase
space integrals, as

[+(0)4 /1%, = 0.37783(62)(F3¢)(171)(11)(9),  (35)

£(0)4/ 1%, = 0.30742(49)(733)(139)(27)(9).  (36)

which will be used for evaluation of |V | in Sec. VI. The
errors are estimated in similar ways to the ones of f, (0).
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FIG. 11. Comparison of |V,| with recent lattice QCD results
obtained from K3 form factors [5-7,9,10] and the K, decay
using Fg/F, in our calculation [13] and PDG18 [2]. The inner
and outer errors in the K3 calculations express the error of the
lattice calculation and total error. The total error is evaluated by
adding the lattice QCD and experimental errors in quadrature.
The unitarity value using |V,,| in PDG18 [2] is presented by the
shaded band. The filled symbols represent the results at a finite
lattice spacing.

Their numerical values for each fit form are summarized in
Table III and Tables in Appendix B.

VI. RESULT OF |V,,|

Using our result of f,(0) in Sec. VB and the exper-
imental value |V | f, (0) = 0.21654(41) [34], the result of
|V.s| in our study is given by

V.5 = 0.22550(37)( 739)(103)(43)(3)(43), (37)

where the errors from the first to fifth inherit those of £, (0)
in Eq. (26). The last error comes from the experimental one.
The result can be expressed as |V, = 0.2255(13)(4),
where the first error is given by the combined error of the
five errors in our calculation.

Figure 11 shows that our result is consistent with the
value estimated by assuming the unitarity condition of the
first row of the CKM matrix:

|Vus| = \V 1 - |Vud|2’ (38)

where |V ;| is neglected due to |V,,| < |V,4| and we use
|V.al = 0.97420(21) [1,2]. Furthermore, our result agrees
with the results determined from the K, decay process
through |V |/|Vual X Fx/F, = 0.27599(38) [2]. In the
figure we plot two data: one is obtained with the use of
the value of Fg/F, in PDG18 [2] and the other is from the
result of F/F, calculated with the same configuration as
in this work [13]. These observations suggest that our result

is consistent with the SM prediction within the error. Using
a new evaluation of |V 4| = 0.97370(14) [38], however,
the value from the unitarity condition significantly changes
as |V,s| = 0.2278(6), while the ones from the K, decay do
not move within the error. In this case, our result is smaller
than the unitarity condition by 1.7¢. More recent evaluation
of |V,4| = 0.97389(18) [39] leads to the unitarity value of
|V.s| =0.2270(8), which is consistent with our result
within 1.0c.

Figure 11 also presents the comparison of our result with
the recent Ny =2+ 1 [5-7] and Ny =2+ 1+ 1 [9,10]
calculations. Our result is reasonably consistent with all the
results, although it is 1.5¢ larger than the recent result in
Ref. [10] as for the result of f_ (0) presented in Sec. V B.
To understand the difference, it is an important future work
to reduce the uncertainties in our calculation. We will
remove our largest systematic error by measuring the form
factors at a finer lattice spacing in the next calculation.

We also determine |V,| using the phase space integral

calculated with our form factors, f,(0), /Iﬁ(o in Sec. VD.

The results for / = e and u are

Vo 0.22524(37)(+19)(103)(28)(5)(58) (I = e)
Vsl = 0.22558(36)( +13)(103)(87)(6)(67) (I
(39)

where we use |V,[f(0)\/I%, = 0.08510(22) and
[Vius|f(0) /I = 0.06935(21), which are evaluated from

the experimental results and correction factors in Ref. [36].
The meaning of the errors is the same as in the above |V
A weighted average of the two decay processes using the
experimental error gives

|Vs| = 0.22539(37)( 713)(103)(54)(6)(44).  (40)

This value is well consistent with that in Eq. (37) including
the sizes for the uncertainties. It is encouraging that the K3
form factors calculated in the lattice QCD can be used for
not only the determination of f_(0), but also the evaluation
of the phase space integral.

VII. CONCLUSION

We have calculated the K;3 form factors in the N, =
2 + 1 QCD at the physical point on the (10.9 fm)? volume
with the nonperturbatively O(a)-improved Wilson quark
action and Iwasaki gauge action at one lattice spacing
corresponding to a~!' =2.3 GeV. Thanks to the large
volume, we can access the form factors near g> = 0 without
the twisted boundary technique. For extraction of precise
matrix elements for the K;; decay, we have analyzed the
corresponding 3-point functions avoiding excited state
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contributions, such as the wrapping around effect of z and
the radial excited states for 7z and K.

To obtain the value of the form factors at q2 = (0, which
is essential to evaluate |V |, we have interpolated the form
factors to g*> =0 employing several fit forms. These
interpolations also contribute to determination of the shape
of the form factors as a function of g>. The chiral
extrapolation is not necessary in our analysis thanks to
the calculation at the physical point. The central value
of the form factor at g> =0 is determined with less
than 0.2% statistical error. Since one of our data is very
close to g> =0, the interpolations are fairly stable,
and the systematic error from the interpolations is as
small as the statistical error. The final result of £, (0) in this
work is

f+(0) =0.9603(16)( ;%) (44)(19)(1).  (41)

where the first error is statistical, and the second error is the
systematic one for the choice of the fit forms. The third
error is the largest systematic error in our result, which
comes from a finite lattice spacing effect estimated from
the different determination of Zy. Another finite lattice
spacing effect is estimated using higher order effect of
ChPT corresponding to the fourth error. The isospin
breaking effect in the fifth error is smaller compared to
other ones. Our result is reasonably consistent with the
recent Ny =2+1 and Ny =2+1+1 QCD calcula-
tions. The largest deviation from the recent results is
1.76. 1t is important to reduce the uncertainties in our
calculation to understand the source of the deviation.
Thus, in the next calculation, we will measure the form
factors at a finer lattice spacing.

The slope and curvature for the form factors at g> = 0
are determined from the interpolations. Their results are
well consistent with the experimental values. The inter-
polated result allows us to evaluate the phase space
integral and make a comparison with the experiment.
This evaluation can be regarded as comparison with the
experimental form factors in nonzero ¢* region. Our
values of the phase space integral agree with the
experimental ones.

We have obtained |V | from the result of f(0), as

|V.s| = 0.2255(13)(4), (42)

where the first error is the combined error in our calcu-
lation, and the second comes from the experiment. This
result agrees with |V, | determined from the unitarity
condition of the CKM matrix and also from the K, decay.
On the other hand, using a new evaluation of |V |, our
result differs from the unitarity value by 1.7¢. To make the
comparison with the SM predictions more stringent, we
would need to reduce the uncertainties in our calculation.

Thus, our next calculation with the finer lattice spacing is
important also from this point of view. Furthermore,
nonperturbative evaluations of the isosing breaking effect
including the QED effect would be important to search for
BSM signal.

It is encouraging that another determination of |V,
using the phase space integral evaluated with our form
factors completely agrees with the above conventional
determination. This suggests that the lattice calculation
could contribute to not only a precise determination of
f+(0), but also the phase space integral.
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APPENDIX A: FUNCTIONS
OF NLO ChPT FORMULAS

The functions K, (¢*) and K(q?) in Egs. (24) and (25)
are summarized in this appendix, which appears in the
NLO SU(3) ChPT formulas [25,26].

The function K, (¢*) of f,(¢*) in Eq. (24) is given by

3

K. (q*) = 3220 (A1)

(H i (1) + Hpy (1)),
with t = —¢? and

1 A2 1 t t
Huh(t) =75 (t_zzah +Tab)‘,ah(t) _g‘]/ab_gkah +-

12 9’
(A2)
where
A > t 2 A2
J(6) =2 — (Bab_Zab )y ﬁg_ﬁln( +V)2 gb’
t Aab my, t ( - 1/) - Aab
(A3)
2mZmi . m3
‘]lab Zab + Aab lnm_g s (A4)
Ha — Hp
k., = A5
ab Aab ’ ( )

®http://luscher.web.cern.ch/luscher/openQCDY.
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Eab = mgt + mi’ (A6)
Ay = mf —mj, (A7)
with
V=A%, —2% 1+ 12, (A8)
Ha = mg In(mg /pi?). (A9)
Ko(q?) of fo(q?) in Eq. (25) is defined by
1 1 3A2
Ko(q?) = —5—14~ | 5t =22, — —2K ) J £ (1
o(q?) 327‘[2F(2) {4< 7K : > (1)
| A2
+3 <3z — 2% x — IK> Ty (1)
- 5 (e = 2= ) | (A10)

We adopt m2 = (4m% —m2)/3 and u = 770 MeV. The two
functions give the same value at ¢*> = 0, K, (0) = K(0),
in this choice of m;.

APPENDIX B: RESULTS
OF ¢*> INTERPOLATION

In this appendix several fit results for the interpolations
of the form factors are summarized. In addition to the fit
forms based on the NLO SU(3) ChPT formulas in Egs. (24)
and (25), we also employ several fit forms for the
interpolation, such as mono-pole functions,

2 f+ (O> 2 f+ (0)
="’ and =—-——", (Bl
f+(q) q2+Mi fO(Q) q2—|—M% ( )
simple quadratic functions of ¢,
f(@®) = f+(0) +¢ciq* +c5q* and
fol@®) = £4(0) + cg” + 3q", (B2)
and variations of the z-parameter expansion [31],
NZ
() =10+ cfi(g?) and
i=1
Nz
Fold®) = £+(0) + > i (g?), (B3)
i=1
where N, =1 or 2 and
p) 7

\/(mK + mﬂ)2 =+ q2 + (mK + mzr)

TABLE IV. Fit results of K;; form factors using monopole fit
forms in Eq. (B1) together with the values of the uncorrelated
y*/d.o.f.. Al and A2 data sets are explained in Sec. IV B. We
also list the results for slope, curvature, and phase space integral.

Al A2

f£.(0) 0.9599(16) 0.9612(24)
M2 [GeV?] 1.311(11) 1.309(16)
M3 [GeV?] 0.7210(92) 0.714(16)
y*/d.o.f. 0.16 0.24
A [1072] 2.554(21) 2.550(30)
2 [1072] 1.405(18) 1.390(32)
21 11073] 1.359(23) 1.353(34)
25 [1073] 0.411(11) 0.402(19)
14, 0.15475(13) 0.15472(19)
% 0.10251(12) 0.10246(18)
f1(0)y/Te 0.37759(61) 0.37810(87)

0.30732(48) 0.30768(64)

RONS

Our choice of z(g?) corresponds to the one with 7, = 0 in
the general representation of z(g?) [31]. The parameters
f+(0), c;”o, and M,  are fit parameters. These fit results
are summarized in Tables IV-VL

TABLE V. Same as Table IV, but for quadratic fit forms
in Eq. (B2).

Al A2

f+(0) 0.9600(16) 0.9615(24)
¢l [GeV~2] —1.283(18) —1.296(35)
¢y [GeV™] 1.45(17) 1.31(36)
) [GeV~2] —-0.677(18) —0.664(33)
¢y [GeV™] 0.68(12) 0.71(19)
y*/d.o.f. 0.05 0.18
Ao 1072 2.620(37) 2.642(70)
2 [1072] 1.383(37) 1.353(69)
AL T1073] 1.16(14) 1.05(29)
2 [1073] 0.543(94) 0.57(15)
I 0.15480(12) 0.15483(22)
I 0.10249(12) 0.10245(21)
[4(0)/To 0.37769(61) 0.37835(93)

0.30732(49) 0.30776(68)

£+ /T
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TABLE VI. Same as Table IV, but for fits using variations of the z-parameter expansion in Eq. (B3) with N, =1 and 2.
Al A2

N, 1 2 1 2
f4(0) 0.9598(16) 0.9601(16) 0.9615(23) 0.9617(24)
cf —2.017(18) —2.045(29) —2.013(26) —2.073(60)
o e —0.75(40) e —1.21(88)
e’ —1.031(14) —1.084(27) —1.012(23) —1.066(47)
3 e —0.70(23) —0.66(34)
y*/d.o.f. 0.34 0.04 0.35 0.19
A [1072] 2.576(23) 2.612(38) 2.566(34) 2.643(74)
2 [1072] 1.318(18) 1.384(35) 1.290(32) 1.359(62)
AL [1073] 1.263(12) 1.05(11) 1.258(17) 0.92(24)
25 [1073] 0.6461(91) 0.458(56) 0.633(16) 0.460(81)
150 0.15476(13) 0.15475(13) 0.15470(19) 0.15480(23)
I’I’(O 0.10243(12) 0.10246(12) 0.10233(18) 0.10242(22)
fu (0)\/@ 0.37758(61) 0.37768(61) 0.37817(87) 0.37836(95)

0.30717(48) 0.30709(49) 0.30757(64) 0.30776(69)

Fo 0/
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