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DNA N6-methyladenine (6mA) is closely involved with various biological processes.

Identifying the distributions of 6mA modifications in genome-scale is of great significance

to in-depth understand the functions. In recent years, various experimental and

computational methods have been proposed for this purpose. Unfortunately, existing

methods cannot provide accurate and fast 6mA prediction. In this study, we present

6mAPred-FO, a bioinformatics tool that enables researchers to make predictions based

on sequences only. To sufficiently capture the characteristics of 6mA sites, we integrate

the sequence-order information with nucleotide positional specificity information for

feature encoding, and further improve the feature representation capacity by analysis

of variance-based feature optimization protocol. The experimental results show that

using this feature protocol, we can significantly improve the predictive performance. Via

further feature analysis, we found that the sequence-order information and positional

specificity information are complementary to each other, contributing to the performance

improvement. On the other hand, the improvement is also due to the use of the feature

optimization protocol, which is capable of effectively capturing the most informative

features from the original feature space. Moreover, benchmarking comparison results

demonstrate that our 6mAPred-FO outperforms several existing predictors. Finally,

we establish a web-server that implements the proposed method for convenience of

researchers’ use, which is currently available at http://server.malab.cn/6mAPred-FO.

Keywords: DNA N6-methyladenine site, machine learning, feature representation, sequence-based predictor,

feature fusion

KEYPOINTS

- In this study, we present 6mAPred-FO, a powerful bioinformatics tool for the prediction of
6mA sites.

- In 6mAPred-FO, we integrate the sequence-order information with nucleotide positional
specificity information for feature encoding, and further improve the feature representation
capacity by feature optimization.

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00502
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00502&domain=pdf&date_stamp=2020-06-04
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gbx@mju.edu.cn
mailto:weileyi@tju.edu.cn
https://doi.org/10.3389/fbioe.2020.00502
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00502/full
http://loop.frontiersin.org/people/966323/overview
http://loop.frontiersin.org/people/589586/overview
http://server.malab.cn/6mAPred-FO


Cai et al. DNA 6mA Predictor

- Comparative results showed that the proposed 6mAPred-FO
significantly outperforms several existing predictors.

- We have established a webserver implementing the proposed
6mAPred-FO. It is publicly accessible at http://server.malab.
cn/6mAPred-FO.

INTRODUCTION

N6-methyladenine (6mA), as a dynamic DNA epigenetic
modification, has been extensively discovered in the following
three species: bacteria, archaea and eukaryotes (O’Brown and
Greer, 2016). The newly studies have indicated that 6mA
modification participates in a wide spectrum of important
biological processes. In prokaryotes, for example, 6mA has been
found to be closely correlated with a series of DNA activities,
such as replication (Campbell and Kleckner, 1990; Li et al., 2019),
repair (Pukkila et al., 1983), transcription (Robbins-Manke et al.,
2005), and cellular defense (Luria and Human, 1952; Linn and
Arber, 1968; Meselson and Yuan, 1968). In addition, some
studies have demonstrated that 6mA can act as an epigenetic
mark in Phytophthora genomes and there may be a relationship
between patterns of 6mA methylation and adaptive evolution
in these important plant pathogens (Chen H. et al., 2018).
Besides, recent study demonstrated that DNA 6mA modification
plays a significant role in cell fate transition of mammalian
cells as well (Liang et al., 2016; Liao et al., 2016). Therefore,
it is very indispensable to determine the distribution of 6mA
modification sites in genome-scale to systematically interpret its
biological functions.

To solve this problem, experimental efforts have
been proposed, such as ultra-high performance liquid
chromatography coupled with mass spectrometry (UHPLC-
ms/ms) (Greer et al., 2015), capillary electrophoresis and
laser-induced fluorescence (CE-LIF) (Krais et al., 2010),
methylated DNA immunoprecipitation sequencing (MeDIP-
seq) (Pomraning et al., 2009), and single-molecule real-time
sequencing (SMRT-seq) (Flusberg et al., 2010). Notably, using
mass spectrometry together with SMRT-seq, Zhou et al.
obtained the first 6mA profile in rice genome (Zhou et al.,
2018). Currently, there is a publicly available database namely
“MethSMRT” that integrates multiple 6mA datasets derived
from SMRT-seq (Ye et al., 2017). Although considerable progress
has been made, the use of the high-throughput sequencing
techniques is very limited as it is laborious and expensive.

Recently, as the rapid increase of the experimentally validated
6mA sites, more research efforts have been focused on the
development of data-driven computational methods, especially
machine learning based prediction methods. For instance, Chen
et al., proposed the first machine learning based 6mA site
predictor, named “i6mA-Pred,” to predict 6mA sites in rice
genome (Chen et al., 2019). The i6mA-Pred used nucleotide
chemical properties and nucleotide frequency as features to
formulate DNA sequences (Chen et al., 2017) and utilized
support vector machine (SVM) to train the predictive model
(Chen et al., 2019). The i6mA-Pred model achieved 83.13% in
terms of the overall accuracy for identifying 6mA sites (Chen
et al., 2019). More recently, researchers have proposed to use
deep learning to identify 6mA sites, like iDNA6mA (5-step rule)

(Tahir et al., 2019). This model can automatically extract features
from DNA sequences by convolution neural network (CNN).
Although these models have been proven to be effective and
efficient in identifying DNA 6mA sites, the accuracy was not high
enough to perform the genome-wide prediction.

In this study, we propose a new bioinformatics predictor,
namely “6mAPred-FO.” In this predictor, we aim to capture
the discriminative characteristics of 6mA sites by different-
view information integration and optimization. Based on the
sequential features we extracted, we trained an SVM-based
prediction model. Benchmarking comparative results have
shown that under the 10-fold cross-validation, our model
improves the exiting performance to 87.44% in the overall
accuracy. Via further experimental analysis, we found that
our performance improvement contributes mainly to our
feature integration and optimization strategy. In particular, the
nucleotide positional specificity information is complementary to
sequence-order information to effectively distinguish 6mA sites
from non-6mA sites. We anticipate this tool can be useful to
discover new 6mA sites in other species, at least complementary
to the high-throughput techniques.

MATERIALS AND METHODS

Benchmark Dataset
A high-quality benchmark dataset is essential for building
an effective and unbiased supervised learning model. In this
study, we used the same stringent benchmark dataset, which is
originally proposed in Chen’s study (Chen et al., 2019). In the
dataset, the positive samples (sequences with 6mA sites) were
obtained from NCBI Gene Expression Omnibus and the single-
molecule real-time sequencing (Zhou et al., 2018). Afterwards,
they separated out the sites with a modification score of <30
according to the Methylome Analysis Technical Note, and used
the CD-HIT (Fu et al., 2012) software to eliminate sequences with
the similarity of more than 60% (Chen et al., 2019). The negative
samples (sequences without 6mA sites) were obtained from
sub-sequences containing GAGG motifs in coding sequences
(CDSs) of the rice genome (Zhou et al., 2018). Ultimately, 880
6mA sequences (positive samples) and 880 non-6mA sequences
(negative samples) were retained in the dataset.

Framework of the Proposed 6mAPred-FO
Figure 1 illustrates the overall framework of the 6mAPred-
FO method for DNA 6mA site prediction. The predictive
procedure can be concluded as two phases: model training
and prediction. In the training phase, the training samples
are encoded and integrated by two feature representation
algorithms: NPS (Nucleotide Positional Specificity) and PseDNC
(Pseudo Dinucleotide Composition). Afterwards, the features are
optimized to obtain the best feature subset for the training set.
The resulting feature vectors are then fed into the SVM algorithm
to train predictive model. In prediction phase, given the query
sequences that are not characterized, we followed the similar
procedure to encode the sequences, and used the trained model
to predict whether the query sequences are 6mA sites or not.
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FIGURE 1 | Framework of the proposed 6mAPred-FO. The overall framework is divided into two phases: (1) model training phase and (2) prediction phase. In the

model training phase, each DNA sequence is fed to two feature representation algorithms NPS and PseDNC to generate the corresponding features. Afterwards,

through the feature fusion and optimization protocol, we yielded the optimal features for each sequence sample. To this end, we train an SVM model with the resulting

feature set. In the prediction phase, the model predicts whether the sequence in the test dataset contains 6mA site. And then, compare our model with previous

models in terms of ACC, etc. Finally, build a user-friendly web server to provide convenient 6mA site identification and prediction.

Feature Representation Algorithms
To convert DNA sequences into feature vectors that machine
learning methods can handle, two feature representation
algorithms, Nucleotide Positional Specificity (NPS) and Pseudo
Dinucleotide Composition (PseDNC), are introduced for feature
representation. Here is a brief introduction to the two algorithms.

Nucleotide Positional Specificity (NPS)
In this algorithm, two feature representation descriptors are used
to encode the sequences.

The first feature is the positional binary encoding of flanking
nucleotide sequence.We adopt the traditionalmethod of flanking
window to represent the 6mA site. On the premise that the
minimum length 41 can perform well, if the 6mA site is located
at both ends of the sequence, we fill the end of the sequence with
the gap character “N.” Therefore, in the orthogonal binary coding
scheme, we transform nucleotide sequences into numeric vectors
by the following rules: the codes of “A (adenine),” “T (thymine),”
“C (cytosine),” “G (guanine)” and “N” are “(0, 0, 0, 1),” “(0, 0, 1,
0),” “(0, 1, 0, 0),” “(1, 0, 0, 0),” and “(0, 0, 0, 0),” respectively.

The second feature descriptor of NPS was the position-
independent k-mer frequency. We calculated the frequencies of
all possible k-mer nucleotides in a site-centered nearby flanking
window. However, the vector dimension increases rapidly with
the increase of k value, which leads to over-fitting. Thus, we set k
to 2, 3, and 4. Finally, the 41-length DNA sequence is transformed
into a 500-dimensional vector. More details about this method
are available in the Xiang et al. (2016).

Pseudo Dinucleotide Composition (PseDNC)
PseDNC combines local and global pattern information of
sequences. We use a vector to represent the DNA sequence as
given below,

R = [d1 d2 · · · d16 d16+1 · · · d16+λ]
T

where

du =







fu
∑16

i=1 fi+w
∑λ

j=1 θj
(1 ≤ u ≤ 16)

wθu−16
∑16

i=1 fi+w
∑λ

j=1 θj
(16 < u ≤ 16+ λ)
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In the formulation above, fu(u = 1, 2, · · · , 16) is the normalized
occurrence frequency of the u-th non-overlapping dinucleotides
in the sequence. The w is the weight factor for balancing the
component action of pseudo nucleotides. The θj is the j-th tier
correlation factor that reflects the sequence order correlation
between all the j-th most contiguous dinucleotides. What’s more,

θj =
1

L− j− 1

L−j−1
∑

i=1

Ci, i+j (j = 1, 2, · · · , λ; λ < L)

where

Ci,i+j =
1

µ

µ
∑

g=1

[Pg (Di) − Pg(Di+j)]
2

In the above two formulations, L is the length of DNA sequence
and the number λ is an integer to reflect the correlation rank
which is smaller than L. The Ci,i+j is correlation function which
is given above, where Pg (Di) is the numerical value of the g-
th physicochemical property for the dinucleotide sequence Di

in the DNA, and so as Pg(Di+j). The µ is the total number of
correlation functions counted. It should be noticed that these
values of physicochemical property were all subjected into a
standard conversion by the formula below before substituting
into the Pg (Di ),

Pg (Di) =
P0g (Di) − ave(P0g (Di))

SD{ave
(

P0g (Di)

)

}

where the symbol ave() means getting the average of the
values over the 16 different dinucleotides and SD{ } means
the corresponding standard deviation. In the above equation,
P0g (Di) is the original physicochemical property value for the
dinucleotide. In this study, the following three physicochemical
properties, namely enthalpy, entropy and free energy, are used
to calculate the global or long-range sequence-order effects of
the DNA. And their original values are given in Table S1 of
Supplementary material.

Ultimately, using this feature descriptor, we obtained 22
features. More details about these formulas can be found in the
references Chen et al. (2014, 2015a,b), Liu (2019), Liu et al.
(2019b).

Feature Fusion and Optimization Protocol
Feature fusion has been successfully applied into bio-sequence
analysis (Zhang et al., 2017; Tang et al., 2018; Wei et al., 2018a,b;
Liu et al., 2019d) and other bioinformatics tasks (Liang et al.,
2018; Zhang et al., 2018, 2019a,b; Gong et al., 2019; Wang et al.,
2019). It refers to merge different types of feature representations
to more comprehensively capture the characteristics of samples
from different perspectives. In this study, to make better use
of different information, we fused the following two feature
representations. One is 500-dimensional feature vector via NPS
and the other is 22-dimensional feature vector via PseDNC.
Accordingly, we yielded 522-dimensional features.

Generally, the fused feature space probably contains irrelevant
or mutual information, impacting the predictive performance.
Therefore, feature optimization is a necessary step forwards
capturing the most discriminative features from the original
feature space, building the optimal predictive model. It can
help to eliminate irrelevant or redundant features, so as to
reduce feature dimension, improve model accuracy as well as
reduce computational cost. On the other hand, selecting relevant
features can simplify the model and make it easier to understand
the process of data generation. So far, in order to solve these
problems, various effective feature optimization methods have
been proposed, such as analysis of variance (Feng et al., 2019),
binomial distribution (Su et al., 2018), minimal redundancy
maximal relevance (Peng et al., 2005), and maximum relevance
maximum distance (MRMD) (Zou et al., 2016; Chen W. et al.,
2018).

To improve the feature representation ability, we used
variance analysis in the filter method for feature selection.
Its main idea is to calculate the variance of each feature
by function f_classif in sklearn package. By doing so, we
obtained the predictive contribution of each feature according
to the corresponding f-value. The higher the f-value, the
stronger the prediction ability. Afterwards, we selected the
features one by one from high to low according to their f-
values, and trained the SVM model for each feature subset.
Different feature subsets of different dimensions can produce
different models, and thus different prediction results can
be obtained. The feature subset with the highest accuracy
is yielded as the optimal feature subset. The analysis of
feature optimization results is discussed in section “RESULTS
AND DISCUSSION”.

Support Vector Machine (SVM)
SVM is a powerful machine learning method for classification,
regression and other machine learning tasks. It has been
successfully applied in various fields to deal with a series of
supervised learning problems (Zhang et al., 2016; Bu et al.,
2018; Liu and Li, 2019; Manavalan et al., 2019a,b). The main
principle of SVM is to transform the import data into high-
dimensional feature space, and then determine the most suitable
hyperplane for separating the samples in one class from another.
After that, the trained hyperplane can be used to predict the
unknown data. Based on this idea, a package namely LibSVM
(Chih-chung and Chih-jen, 2011) was established to make the
SVM more convenient to use. In this study, we implemented
the SVM algorithm by using the LibSVM package. We chose the
radial basis kernel (RBF) as a learning function, and optimized
the parameters like cost and gamma by grid search to determine
the optimal classification hyperplane of SVM. Given a sequence
sample, the SVM model can calculate its probability score to
be true 6mA sequence. If the probability is more than 50%, it
is considered to be the 6mA sequence; otherwise, it is not the
6mA sequence.

Assessment of Predictive Ability
There are three cross-validation methods namely independent
dataset test, n-fold cross-validation test and jackknife test
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TABLE 1 | Comparison of single feature and fused features.

Features Sn (%) Sp (%) ACC (%) MCC AUC

NPS 84.09 83.86 83.98 0.68 0.908

PseDNC 55.91 72.39 64.15 0.29 0.673

Fused Features 84.43 85.45 84.94 0.70 0.917

FIGURE 2 | ROC curves of single and fused features. This figure shows the

ROC curve results of different features. The green curve characterizes ROC

result of PseDNC and the orange one for NPS. The ROC curve of fused

features is represented by blue.

in statistical prediction to evaluate expected success rate of
predictors (Manavalan and Lee, 2017; Wei et al., 2017a,d; He
et al., 2018; Manavalan et al., 2018; Liu and Zhu, 2019; Liu
et al., 2019a). In this study, we used n-fold cross-validation to
examine the quality of the model. In the n-fold cross-validation,
the dataset was randomly divided into n subsets, of which n-
1 subsets were used as training data and the remaining one
as testing data. This process would be repeated n times, each
time using different testing data in turn. Corresponding accuracy
and other evaluation metrics will be obtained in each test, and
the average value of the evaluation index obtained from n-time
results was used to evaluate the predictor. Generally, multiple n-
fold cross-validation (such as 10 times n-fold cross-validation)
is needed, and then its mean value is calculated to estimate the
accuracy of the predictor.

Four metrics, sensitivity (Sn), specificity (Sp), accuracy (Acc)
and Matthew’s correlation coefficient (MCC), were used to
evaluate the performance of the proposed method. The formulas

FIGURE 3 | The relationship curve of prediction accuracy and dimension of

feature subset. The curve in this figure reflects the change of predictor

accuracy with dimension of feature subset.

of these metrics are given below:



























Sn = TP
TP+FN 0 ≤ Sn ≤ 1

Sp = TN
TN+FP 0 ≤ Sp ≤ 1

ACC = TP+TN
TP+FP+TN+FN 0 ≤ ACC ≤ 1

MCC = TP×TN−FP×FN√
(TN+FN)×(TN+FP)×(TP+FN)×(TP+FP)

−1 ≤ MCC ≤ 1

where, TP (True Positive) represents the number of positive
samples correctly predicted; TN (True Negative) represents
the number of negative samples correctly predicted; FP (False
Positive) represents the number of negative samples incorrectly
predicted to be the positives; FN (False Negative) represents
the number of positive samples incorrectly predicted to be
the negatives.

Moreover, we used the Receiver Operating Characteristic
(ROC) curve to measure the overall performance of the
predictive model. The area under the ROC curve (AUC) is
to quantitively measure the quality of binary classifier. The
closer the ROC curve is to the upper left corner, the better the
performance of the predictor is. When the AUC value is closer to
0.5, it means that this is a random predictor (Hanley and Mcneil,
1982).

RESULTS AND DISCUSSION

Comparison of Single and Fused Features
In this section, we investigated the impact of the feature fusion
protocol on the predictive performance. We compared two
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FIGURE 4 | T-SNE visualization of the feature space before and after feature

optimization. (A) represents the distribution of the positives and negatives in

original feature space. (B) represents the distribution of the positives and

negatives in optimal feature space.

feature representations (NPS and PseDNC) with their fusion.
They are evaluated with 10-fold cross validation on the same
benchmark dataset used in this study. The comparison results
are presented in Table 1. It can be seen that the fused features
improve the performances in all the metrics. To be specific, the
Sn, Sp, ACC, MCC, and AUC is enhanced by 0.34, 1.59, 1, 2, and
0.9%, as compared with the runner-up feature descriptor—NPS.
For intuitive comparison, we further compared the ROC curves
of different features in Figure 2. Similarly, the fused features
show better performance than the single features. From the
specific point of view in the Figure 2, the fused feature curve (the
blue one) is closer to the upper left corner than the single feature
curve. What’s more, the AUC value of the fused feature is 0.917,
which is higher than that of the single feature. This figure and
accurate data can more intuitively support the conclusion above.
Together, the results suggest that the information in different
features is complementary to better capture the characteristics
specificity of 6mA sites.

Feature Optimization Results
In the proposed feature optimization strategy, we firstly
calculated the classification importance score of each feature in

the feature set, and then the features are sorted from high to
low according to their scores. Secondly, the feature in the sorted
feature set is added to the feature subset one by one. Once a new
feature is added to the feature subset, we obtained a new feature
subset and train a new SVM model under its default parameters.
We evaluated the performance of all feature subsets, respectively.
The relationship between prediction accuracy and dimension of
feature subset is illustrated in Figure 3.

As shown in Figure 3, we observed that the accuracy of
the model increased rapidly as the feature number grows.
Afterwards, the accuracy slightly declined as the feature number
increases. When the feature number reached to 131, the model
achieved the highest accuracy of 87.44%. Thus, the 131 features
are considered as the optimal and used to train our predictive
model. Moreover, the feature optimization results evaluated with
other evaluation metrics, like MCC and ROC, can be found in
Table S2 of Supporting Information. To visually see how the
feature space changes using feature optimization, we further
compared the sample distribution between the original feature
space and the optimal feature space, as depicted in Figure 4.
It can be seen that the positives and negatives in the optimal
feature space are more clearly distributed in two clear clusters as
the original feature space. It demonstrates that using the feature
optimization strategy, it helps to remove the irrelevant features
and improve the feature representation ability.

Comparison of Different Kernel Functions
In this section, we compared the impact of RBF kernel function
and other three kernel functions on the performance of our
proposed model. They are Linear, Polynomial and Sigmoid. In
this study, we used the same dataset to evaluate them. At the same
time, they used the best feature subset after our fusion to show the
performance. The 10-fold cross validation results can be found in
Table S3 of Supplementary material. According to the results in
Table S3, we can find easily that SVM model using RBF kernel
function achieves the highest prediction accuracy of 87.44% and
performs better in other prediction factors. Moreover, with the
help of RBF kernel function, AUC of the model is also the
highest among several other kernel functions. In general, these
results show that RBF kernel function is superior to other kernel
functions in this study.

Comparison With Other Classifiers
To measure the superiority of SVM, we selected several other
classifiers to compare with SVM. There are Gradient Boosting
Decision Tree (GBDT) (Liao et al., 2017), K-Nearest Neighbor
(KNN), Logistic Regression (LR), Naive Bayes (NB), and Random
Forest (RF) (Wei et al., 2017b,c; Lv et al., 2019; Ru et al., 2019).
They are evaluated based on the same dataset used in this
study with our fused feature set. The 10-flod cross validation
results of prediction accuracy and AUC value are illustrated
in Figure 5. In Figure 5A represents the comparison results of
prediction accuracy of six classifiers, and Figure 5B represents
the AUC value. As shown in Figure 5, we observed that the
SVM got the highest score among the six classifiers not only in
predictive accuracy but also AUC. The 10-fold cross validation
results of other evaluation factors are illustrated in Table S4 of
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FIGURE 5 | Performance comparison of different classifiers. (A) represents the comparison results of prediction accuracy of six classifiers, and (B) represents the

comparison results of auROC.

Supplementary material, which provide us with more specific
classifier performance information. From Table S4, we can see
that the SVM also performs better than other classifiers in other
performance indicators. For intuitive comparison, we further
compared their ROC curves as illustrated in Figure 6. As seen,
SVM achieved 0.917 in terms of AUC, which is higher than
GBDT and other classifiers. It can be seen from the figure
that the ROC curve corresponding to SVM is at the top,

which means that SVM has better classification performance
than other classifiers. In general, these results demonstrate
that SVM is better than other commonly used classifiers in
this study.

Comparison With Existing Predictors
To measure the effectiveness of our predictive model-
−6mAPred-FO, we compared the model with i6mA-Pred
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FIGURE 6 | ROC curves of different classifiers. This figure shows the ROC

curve results of different classifiers. For example, according to legend, the blue

curve characterizes ROC result of SVM and the orange one for GBDT. The

value of auROC is also calculated after the name in the legend.

TABLE 2 | Comparison of the proposed 6mAPred-FO with existing predictors.

Method Sn (%) Sp (%) ACC (%) MCC AUC

i6mA-Pred 82.95 83.30 83.13 0.66 0.886

iDNA6mA (5-step rule) 86.70 86.59 86.64 0.732 0.931

6mAPred-FO 86.93 87.95 87.44 0.75 0.929

(Chen et al., 2019) and iDNA6mA (5-step rule) on the same
dataset, which are the best two among existing predictors to
identify the 6mA site. The results are presented in Table 2. As
shown in Table 2, i6mA-Pred obtains the accuracy of 83.13%,
sensitivity of 82.95%, specificity of 83.30%, MCC of 0.66 and
AUC of 0.886, while our prediction model obtains the accuracy
of 87.44%, sensitivity of 86.93%, specificity of 87.95%, MCC
of 0.75 and AUC of 0.929. Obviously, our method is superior
to i6mA-Pred in all the metrics. Specifically, as compared to
i6mA-Pred, our model achieved 4.31%, 3.98%, 4.65%, 0.09
and 0.043 higher in terms of ACC, Sn, Sp, MCC, and AUC,
respectively. This demonstrated that our feature representations
are more effective to capture the characteristic specificity of
6mA sites. In the Table 2, we also compared our predictor
model with iDNA6mA (5-step rule). It can be seen that the
accuracy of our 6mAPred-FO is 0.8% higher than iDNA6mA
(5-step rule). All the other performance indicators except AUC
value are slightly higher than those of iDNA6mA (5-step rule).
Generally, it can be concluded that our 6mAPred-FO is better

than existing predictors in distinguishing 6mA sites from
non-6mA sites.

CONCLUSIONS

In this study, we have proposed a new machine learning
based 6mA site predictor namely 6mAPred-FO. To sufficiently
capture the characteristics of 6mA sites, we have combined
the information from two feature representations NPS and
PseDNC, and further optimized the features by feature selection.
Feature analysis results showed that as compared with the
single feature descriptor, the fused features perform better,
demonstrating that different information are complementary to
improve the predictive performance. Moreover, feature selection
is an effective strategy to optimize the feature space and improve
the feature representation ability. We have also compared our
6mAPred-FO with existing predictors on benchmark datasets.
The comparative results showed that our approach improved
the performance significantly in terms of multiple metrics
like SN, SP, MCC, and AUC. This suggests that our feature
fusion and selection scheme is more effective to represent
6mA sites in comparison with existing features. From our
study results, we can make a reasonable inference that the
recognition of 6mA site is closely related to the local and
global pattern information represented by PseDNC. Then, the
position specific information represented by NPS is fused to
make our proposed algorithm more accurate for the recognition
of 6mA sites. In general, our method provides a more
accurate model for biological scientists to identify 6mA site
in rice genome. In the future, we will pay more attention
on deep learning (Liu et al., 2019c; Zou et al., 2019) for the
accuracy improvement.
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