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Summary

Themixed effect models for repeated measures (MMRM) analysis is sometimes used
as a primary analysis in longitudinal randomized clinical trials. The standard error
(SE) for the treatment effect in the MMRM analysis is usually estimated by assum-
ing the orthogonality of the fixed effect and variance-covariance parameters, which
is the orthogonality property of a multivariate normal distribution, because of default
settings of most standard statistical software. However, this property might be lost
when analysis models are misspecified and/or data include missing values with the
mechanism of being missing at random. In this study, we investigated the effect of
the assumption of the orthogonality property on the estimation of the SE for the
MMRManalysis. From simulation and case studies, it was shown that the SEwith the
assumption of orthogonality property had non-negligible bias, especially when the
analysis models assuming heteroscedasticity between treatment groups were applied.
We also introduce the SAS code for the MMRM analysis without assuming the
orthogonality property. Assuming the orthogonality property in the MMRM analy-
sis would lead to invalid statistical inference, and it is necessary to be careful when
applying the MMRM analysis with most standard software.
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1 INTRODUCTION

In longitudinal randomized clinical trials, subjects are evaluated longitudinally at a number of time points and multivariate cor-

related outcome data are observed. Although a primary time point is usually specified, data must be treated as longitudinal

multivariate data including the time points other than the primary one due to missingness. The mixed model for repeated mea-

sures (MMRM) analysis1 provides valid inference results for the treatment effect, that is, the adjusted mean difference for a
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continuous outcome between treatment groups at a specified time point, when the missing mechanism for the outcome variable

is missing at random (MAR)2. Therefore, the MMRM analysis is sometimes used as the primary analysis method for incomplete

longitudinal clinical trial data.

The MMRM analysis assumes multivariate normality for the error term in the analysis model. The orthogonality of mean and

variance-covariance parameters is one of the important properties of the multivariate normal distribution. However, this property

does not necessarily hold when an analysis model is misspecified. For example, the mean and variance are not orthogonal when

a true error distribution is an exponential distribution. Furthermore, Kenward and Molenberghs3 show that orthogonality of the

mean and variance-covariance parameters is lost under the MARmechanism even when an analysis model is correctly specified.

For the implementation of the MMRM analysis, packages for linear mixed effect models in most standard statistical software

(e.g. MIXED procedure in SAS software or lme4 package4 in R software) are generally used. These packages estimate the naïve

variance, that is, the variance estimator under the assumption that the analysis model is correctly specified, and the robust vari-

ance for the fixed effect parameters under the assumption of orthogonality property. Although this assumption is not valid if

the missing mechanism is MAR and the true error distribution is not the multivariate normal distribution, the MMRM analy-

sis is usually applied with the above software under the assumption of MAR missingness. Gosho and Maruo5 compared the

performances of several variance estimation methods for the MMRM analysis under the situation of heteroscedasticity between

treatment groups. In their simulation studies, it was shown that the naïve and robust standard errors (SE) for the MMRM anal-

ysis with assumed heteroscedasticity between treatment groups had bias under the MAR missingness, even when the analysis

model was correctly specified and the sample size was not small. Our subsequent investigation revealed that the bias was caused

by estimating the SEs with standard software packages for linear mixed effect models, wherein the orthogonality property was

assumed.

In this study, we evaluate the effect of the assumption of orthogonality for theMMRManalysis on the SE estimator of the treat-

ment effect. The remainder of the paper proceeds as follows. In Section 2, we provide a brief explanation of the MMRM analysis

and the variance estimator for the treatment effect with or without the assumption of orthogonality property. We describe the

evaluation of the effect of the assumption of orthogonality through simulation and case studies in Sections 3 and 4, respectively.

We then provide a method to apply the MMRM analysis without assuming the orthogonality property using SAS in Section 5

and conclude the paper in Section 6.
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2 MMRM ANALYSIS

2.1 Analysis model

Now, we focus on the continuous outcome of a certain disease and consider a situation in which the efficacy of some treatments

(group index: g = 1, ..., G) is compared based on a randomized, parallel group clinical trial. The outcomes are measured over

time for each subject i = 1,… , n, and the number of planned measurement time points is T (time point index: t = 1,… , T ). The

outcome vector for the ith subject is denoted by Yi = (Yi1,… , Yini)
T, where Yij is the jth observation of the ith subject measured

at time tij (tij ∈ {1,… , T }), ni is the number of measurements for the ith subject, and T denotes the transpose. We have ni ≤ T

due to missingness. We then consider applying the following model:

Yi = Xi� +Wibi + �i, (1)

whereXi is the ni×p designmatrix relating to the fixed effects that includes variables for treatment groups, time points, treatment

by time interaction, and some covariates, and � is the p-dimensional parameter vector for the fixed effects.Wi is the ni×q design

matrix relating to random effects, and bi is the q-dimensional vector of random effects distributed as MVNq(0q , D), where

MVNq denotes a q-dimensional multivariate normal distribution. �i is the ni-dimensional vector of random errors distributed as

MVNni(0ni ,Σi). bi and �i are independent. From Formula (1), it is derived that yi marginally followsMVNni(Xi�, Vi), where

Vi = WiDW T
i + Σi. In the MMRM analysis, we usually have little interest in random effects and are interested in assessing

fixed effects. In such cases, a simple formulation of the linear mixed model (1) can be implemented, wherein the random effects

are not explicitly modeled, but rather are included as part of the covariance matrix Vi. In the following, we focus on such a

“marginal” mean model. The MMRM analysis is usually defined as the inference on the difference of the model means (or least

square means) between the treatment groups at the specified time point based on the marginal model.

The covariance parameter vector in V = Vi for ni = T (i.e. subjects with no missing values) is denoted as � = (�1,… , �m)T.

The dimension of �, m, depends on T and the specified covariance structure. For example, m = 2 when the specified structure

is the compound symmetry (CS) or the first-order autoregression (AR(1)), and m = T (T + 1)∕2 when the specified structure

is unstructured (UN). The UN structure is usually preferred because no assumptions are made on the covariance structure (e.g.

see O’Kelly and Ratitch6). Furthermore, we sometimes assume heteroscedasticity between treatment groups. In such cases,

covariance matrices are fitted individually by each treatment group (e.g. see Gosho and Maruo5).
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2.2 Parameter inference

Inference on a misspecified model based on maximum likelihood estimation

First, we focus on complete data without missingness. Let Yi (i = 1,… , n) be independent and identically distributed random

variable vectors, and let the probability density function (pdf) of Yi be f (yi; �), where � is a k-dimensional parameter vector.

Furthermore, g(yi; �) is a pdf of a specified statistical model for Yi, where � is an l-dimensional parameter vector. Model g is

generally misspecified unless f is known. Let lf (�) and lg(�) be log-likelihood functions of f and g for an arbitrary one unit

(subject), respectively, and let �̂ and �̂ bemaximum likelihood (ML) estimators for f and g, respectively. Under several regularity

conditions, �̂ and �̂ converge in probability to � and ��, respectively, where �� is a solution for the equation,Ef
[

)lg(�)∕)�
]

= 0l,

and Ef denotes the expectation under the pdf f . Also, the asymptotic distribution of
√
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Now, we describe the variance-covariance estimator of �̂ for the specified model, which is the estimator of (1∕n)ℐ −
� J�ℐ

−
� . The

variance estimator of �̂, V (R)
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Moreover, l(n)g (�) and l
(n)
g(i)(�) are the log likelihood for all n subjects and ith subject, respectively. Because the expectation under

the truemodel cannot be obtained unless the truemodel is known, arithmeticmeans are used, which are the observed information.

If statistical model g is correctly specified, we obtain ℐ� = J� ; therefore, V
(N)
� = I−� can be regarded as the variance estimator.

V (N)
� and V (R)

� are called the naïve and robust variance estimators, respectively. The robust variance estimator has consistency

for any model misspecification under certain regularity conditions, whereas the naïve variance estimator is not asymptotically

valid unless the model is specified correctly. Note that the robust variance estimator based on the expected information under

the specified model (i.e. based on Eg) is not asymptotically valid unless the model is correctly specified. These properties are

true for missing data with the MAR mechanism (e.g. see Takai and Kano9).

Inference on MMRM

Let � denote the whole parameter vector for the MMRM, � = (�T,�T)T. Here, � is estimated with the ML or restricted ML

(REML) method. We focus on the ML in this study. The naïve and robust variance-covariance estimators for the ML estimators



MARUO ET AL 5

of �, �̂ = (�̂T, �̂T)T, are given by V (N)
� = I−� and V (R)

� = I−� J�I
−
� , respectively, where I� and J� are obtained along with

Equation (2). I� and J� are resolved to the components for � and � as follows:
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As for the detail of each component, refer to Lindstrom and Bates10. The naïve and robust variance estimators of �̂, V (N)
� and

V (R)
� are obtained as parts of �� in V (N)

� and V (R)
� as follows:
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� = I−�� − I
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�� ,
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� = V (N)
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If there are no missing data or the missing mechanism is missing completely at random (MCAR), and the analysis model is

correctly specified, then we have E[I��] = E[J��] = O, that is the orthogonality property for the normal distribution. If we

assume I�� = J�� = O using the orthogonality property, the naïve and robust variance estimators of �̂, V (N)
�(O) and V

(R)
�(O) are

given by
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respectively, where "̂i = Yi −Xi�̂. Although these variance estimators are widely used in ordinary statistical software, they are

valid only when the above described strict conditions are true. When we use the MMRM analyses, however, the assumption of

missingness is usually MAR, not MCAR.

Small sample adjustment

Let lR(�) = lM (�) +  (�) denote the log likelihood function for the REML method, where lM is the log likelihood for the ML

method,  (�) = −1∕2 log |
|

∑

iXT
i V

−1
i Xi

|

|

+ c, and c is the constant. Because  (�) does not depend on �, the naïve and robust

variance estimators of �̂ for the REML method are same as those for the ML method under the assumption of orthogonality

property. However, J� in the robust variance estimator using the REML method cannot be calculated without the orthogonality

property, because the contribution of each subject to  (�) cannot be evaluated. Thus, only the naïve variance estimator for the

MMRM analysis with the REML method can be calculated when the orthogonality property cannot be assumed. Furthermore,
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any adjustments of degree of freedom for statistical tests cannot be applied straightforwardly when the orthogonality property

is not assumed.

There are several small sample bias adjusted estimators of the robust variance while assuming the orthogonality property11,12,

and Gosho et al.13 compared the performance of these estimators in the context of the MMRM analysis. However, there is no

small sample bias adjusted robust variance without assuming the orthogonality property.

Thus, we focus only on the ML method and asymptotic Wald type statistical tests in the following.

3 SIMULATION STUDY

3.1 Simulation design

We conducted a simulation study to evaluate the effect of the assumption of orthogonality property on the estimation of SE of

the treatment effect for the MMRM analysis. The simulation design was as follows. The efficacy of two groups (G = 2), control

(g = 1) and active (g = 2), were compared based on a parallel group, randomized clinical trial. The efficacy indexes were

measured over time, where the number of measurement time points was 3 (T = 3). A higher value of the index meant a better

state of the targeted disease, and the motivation of treatment was to increase the efficacy index. The primary endpoint was the

measurement value of the efficacy index at the last time point (t = 3).

Random numbers of outcomes were generated with multivariate normal and exponential distributions. The heteroscedasticity

settings were used by reference to the result of Gosho and Maruo5. As for the settings of the normal distribution, distributions

for the control and active groups at each time point were set asN(0, 1) andN(d(1+ st∕3), (1+dst∕3)2), respectively, whereN

denotes a univariate normal distribution, d = 0, 1, and s = 0, 1, 2. The settings for the exponential distribution were as follows.

The distributions for the control and active groups at each time point were set as Ex(1) and Ex(1 + kt∕3), respectively, where

Ex denotes a univariate exponential distribution and k = 0, 1, 2. The relationship between the time periods for the exponential

distribution was specified with the Gaussian copula. For both types of distributions, the correlation structure for the three time

points was the first order autoregression (AR(1)), where the correlation parameter was 0.7.

The missing structure was monotone and MAR. The missing probability was modeled by

logit
{

Pr
(

Ri(t) = 1|Ri(t−1) = 0
)}

= �I − yi(t−1),

where �I was the intercept term, yi(t−1) was the outcome for the ith subject at the (t−1)th time point, and Ri(t) was the indicator

random variable for the ith subject such that Ri(t) = 1 when yi(t) was missing, otherwise, Ri(t) = 0. We set Ri(1) = 0 (i.e. no

missing for t = 1), and if Ri(t−1) = 1 then Ri(t) = 1 (i.e. monotone missing). �I was calculated such that the missing proportion

at the last time point (t = 3) became 0% (i.e. �I = −∞), 20%, and 40%. This missing structure meant dropout from the trial
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due to lack of efficacy. We set the number of subjects for each group (n∕2) as 200 so that the small sample bias for the ML

methods and naïve and robust variance estimators would be negligible to evaluate only the effect of the model misspecification

and assumption of orthogonality property. The number of all simulation settings was 21: 3 dropout settings (0%, 20%, and 40%)

times 7 distribution settings (d = 0, {d = 1, s = 0}, {d = 1, s = 1}, {d = 1, s = 2} for normal distribution, and k = 1, 2, 3 for

exponential distribution).

Under each condition, we conducted 10,000 trial simulations. On each simulation, the MMRM methods using the CS and

UN covariance structures with and without the assumption of heteroscedasticity between the groups were applied, where the

mean structure was modeled by the group, time point, and group-by-time interaction effects, and marginal error distribution was

specified as the normal distribution. The CS and UN structures assuming heteroscedasticity were denoted by CSG and UNG,

respectively. Models with the CS and CSG structures were misspecified for all the settings. Models with the UN structure were

misspecifiedwhen {d = 1, s = 1} or {d = 1, s = 2} for the normal distribution and for all settings of the exponential distribution.

Models with the UNG structure were misspecified for the settings of the exponential distribution. TheML estimator of the model

mean difference at the last time point (t = 3), �̂, was calculated. The true value of � is � = d(s + 1) for the normal distribution

and � = k for the exponential distribution. The naïve and robust SEs of �̂ with and without the assumption of orthogonality

property were estimated. The naïve and robust SEs without the assumption are denoted by NV and RB, respectively, and those

with the assumption are denoted by NVO and RBO, respectively. The number of SEs calculated for each simulation setting was

16: 4 analysis models (CS, UN, CSG, and UNG) times 4 SEs (NVO, NV, RBO, and RB).

We evaluated the simulated mean of �̂ and four types of SEs, and simulated the standard deviation (SD) of �̂ for each analysis

model and simulation setting. The biases of SEs were evaluated with the percentage scale 100[{mean of SE}−{SD of �̂}]/{SD

of �̂}. We then evaluated the simulated coverage probabilities (CP) for the 95% Wald-type confidence intervals with each SE.

We also calculated the correlations between the estimated fixed effects and variance-covariance parameters for each analysis

model and simulation setting. In the analysis model with the CS structure, for example, 6 (number of the fixed effects) × 2

(number of the variance-covariance parameters) = 12 correlation coefficients were estimated. We then evaluated the range of

the correlations.

3.2 Simulation result

The simulation results for the normal and exponential distributions are shown in Tables 1 and 2, respectively.

The correlations between the fixed effect and variance-covariance parameters were almost zero (range: −0.02 to 0.02, which

was considered as the simulation error) only when the error distribution was the normal distribution and there were no missing

data. In the other settings, the correlations were not zero, and it was shown that the orthogonality property was lost when the

analysis models were misspecified and/or under MAR missingness.
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TABLE 1 Simulation results for normal distribution. Correlation: range of estimated correlations between fixed effect and
variance-covariance parameters. �: treatment effect; d = 0: no treatment effect, d = 1: non-zero treatment effect; s = 0:
homoscedasticity, s = 1, 2: heteroscedasticity; true value of � is d(1 + s). NVO: naïve SE assuming orthogonality, NV: naïve
SE without assuming orthogonality, RBO: robust SE assuming orthogonality, RB: robust SE without assuming orthogonality,
CS: compound symmetry, UN: unstructured, CSG: CS structure assuming heteroscedasticity, UNG: UN structure assuming
heteroscedasticity.

d s Dropout(%) Covariance �̂ Bias of SE (%) Coverage probability (%) Correlation
structure NVO NV RBO RB NVO NV RBO RB Min. Max.

0 0 0 CS 0.00 1.0 1.0 1.0 1.0 95.1 95.1 95.1 95.1 −0.02 0.02
0 UN* 0.00 1.0 1.0 1.0 1.0 95.1 95.1 95.1 95.1 −0.02 0.02
0 CSG 0.00 1.0 1.0 1.0 1.0 95.1 95.1 95.1 95.1 −0.01 0.02
0 UNG* 0.00 1.0 1.0 1.0 1.0 95.1 95.1 95.1 95.1 −0.02 0.02
20 CS 0.00 −2.5 −2.5 0.4 0.4 94.4 94.4 95.1 95.1 −0.10 0.06
20 UN* 0.00 0.1 0.2 0.1 0.2 95.0 95.0 95.0 95.0 −0.15 0.02
20 CSG 0.00 −4.1 −1.3 −1.3 2.3 94.0 94.7 94.7 95.5 −0.15 0.11
20 UNG* 0.00 −3.8 −0.3 −3.8 −0.4 93.9 94.9 93.9 94.8 −0.21 0.15
40 CS 0.00 −5.9 −5.8 −0.3 −0.2 93.3 93.4 94.8 94.8 −0.19 0.14
40 UN* 0.00 −0.7 −0.4 −0.7 −0.4 94.7 94.7 94.6 94.7 −0.31 0.01
40 CSG 0.00 −9.4 −1.8 −4.0 6.5 92.3 94.7 94.0 96.3 −0.26 0.19
40 UNG* 0.00 −13.4 −0.8 −13.4 −1.2 90.8 94.7 90.8 94.6 −0.42 0.29

1 0 0 CS 1.00 −0.7 −0.7 −0.7 −0.7 94.6 94.6 94.6 94.6 −0.01 0.01
0 UN* 1.00 −0.7 −0.7 −0.7 −0.7 94.6 94.6 94.6 94.6 −0.02 0.02
0 CSG 1.00 −0.7 −0.7 −0.7 −0.7 94.6 94.6 94.6 94.6 −0.02 0.01
0 UNG* 1.00 −0.7 −0.7 −0.7 −0.7 94.6 94.6 94.6 94.6 −0.02 0.02
20 CS 1.01 −3.5 −3.2 −0.6 −0.3 93.9 94.0 94.8 94.8 −0.12 0.09
20 UN* 1.00 −0.9 −0.6 −1.0 −0.6 94.6 94.6 94.6 94.7 −0.17 0.07
20 CSG 1.01 −5.0 −1.8 −2.1 2.0 93.4 94.3 94.3 95.1 −0.19 0.15
20 UNG* 1.00 −5.1 −1.0 −5.1 −1.1 93.8 94.7 93.8 94.7 −0.28 0.22
40 CS 1.02 −6.1 −5.8 −0.5 −0.1 93.1 93.2 94.5 94.6 −0.19 0.14
40 UN* 1.00 −1.7 −0.8 −1.8 −0.9 94.4 94.6 94.4 94.6 −0.32 0.11
40 CSG 1.02 −10.1 −2.3 −4.5 6.2 91.9 94.2 93.3 95.8 −0.28 0.23
40 UNG* 1.00 −16.7 −2.0 −16.7 −2.6 89.8 94.4 89.8 94.0 −0.50 0.42

1 1 0 CS 2.00 −13.1 −13.1 −1.0 −1.0 91.1 91.1 94.4 94.4 −0.01 0.01
0 UN 2.00 −1.0 −1.0 −1.0 −1.0 94.4 94.4 94.4 94.4 −0.02 0.02
0 CSG 2.00 −13.1 −13.1 −1.0 −1.0 91.1 91.1 94.4 94.4 −0.02 0.01
0 UNG* 2.00 −1.0 −1.0 −1.0 −1.0 94.4 94.4 94.4 94.4 −0.02 0.02
20 CS 2.09 −9.8 −9.8 −0.2 −0.2 88.4 88.5 91.8 91.9 −0.10 0.10
20 UN 2.08 7.7 7.9 −0.5 −0.3 94.7 94.7 92.3 92.3 −0.27 0.05
20 CSG 2.11 −14.7 −12.5 −1.0 1.0 83.9 85.0 89.9 90.8 −0.19 0.13
20 UNG* 2.00 −4.2 −0.8 −4.2 −0.8 93.9 94.8 93.9 94.8 −0.29 0.18
40 CS 2.18 −4.9 −4.9 −0.7 −0.7 84.3 84.3 86.1 86.0 −0.17 0.17
40 UN 2.16 19.0 19.4 −1.3 −0.8 94.6 94.7 88.3 88.4 −0.46 0.08
40 CSG 2.24 −18.3 −12.0 −3.3 3.1 68.7 72.9 78.0 81.7 −0.28 0.24
40 UNG* 2.00 −16.2 −2.3 −16.2 −2.7 89.9 94.3 89.9 94.3 −0.53 0.35

1 2 0 CS 3.00 −18.7 −18.7 −1.0 −1.0 88.7 88.7 94.4 94.4 −0.01 0.01
0 UN 3.00 −1.0 −1.0 −1.0 −1.0 94.4 94.4 94.4 94.4 −0.02 0.02
0 CSG 3.00 −18.7 −18.7 −1.0 −1.0 88.7 88.7 94.4 94.4 −0.02 0.01
0 UNG* 3.00 −1.0 −1.0 −1.0 −1.0 94.4 94.4 94.4 94.4 −0.02 0.02
20 CS 3.20 −12.8 −12.8 −0.1 −0.2 80.2 80.2 86.3 86.3 −0.10 0.12
20 UN 3.14 11.4 11.5 −0.4 −0.2 94.4 94.5 90.9 91.0 −0.34 0.07
20 CSG 3.24 −19.6 −17.9 −0.4 0.6 71.3 72.6 82.9 83.4 −0.19 0.14
20 UNG* 3.00 −4.0 −0.6 −4.0 −0.6 94.1 95.1 94.1 94.9 −0.29 0.13
40 CS 3.38 −1.2 −1.0 −0.8 −0.9 71.5 71.6 71.2 71.1 −0.18 0.17
40 UN 3.27 32.6 33.1 −1.4 −0.8 95.2 95.3 83.8 84.1 −0.55 0.09
40 CSG 3.48 −22.6 −17.3 −2.4 1.6 42.5 46.7 58.4 61.2 −0.29 0.26
40 UNG* 3.00 −16.0 −2.2 −16.0 −2.5 89.8 94.4 89.8 94.3 −0.56 0.30

*: Correctly specified models.

The ML estimators of treatment effects, �̂, for the CS, UN, and CSG models had bias for the misspecified models when the

treatment effect existed, and the missing probabilities were large. On the other hand, the biases of �̂ for the UNG models were

negligible for all the settings.
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TABLE 2 Simulation results for exponential distribution. Correlation: range of estimated correlations between fixed effect
and variance-covariance parameters. �: treatment effect; k = 0: no treatment effect and homoscedasticity, k = 1, 2: non-zero
treatment effect and heteroscedasticity; true value of � is k. NVO: naïve SE assuming orthogonality, NV: naïve SE without
assuming orthogonality, RBO: robust SE assuming orthogonality, RB: robust SEwithout assuming orthogonality, CS: compound
symmetry, UN: unstructured, CSG: CS structure assuming heteroscedasticity, UNG: UN structure assuming heteroscedasticity.

k Dropout(%) Covariance �̂ Bias of SE (%) Coverage probability (%) Correlation
structure NVO NV RBO RB NVO NV RBO RB Min. Max.

0 0 CS 0.00 0.3 0.3 0.2 0.2 95.1 95.1 95.1 95.1 −0.01 0.37
0 UN 0.00 0.2 0.2 0.2 0.2 95.1 95.1 95.1 95.1 −0.29 0.50
0 CSG 0.00 0.3 0.3 0.2 0.2 95.1 95.1 95.1 95.1 −0.36 0.52
0 UNG 0.00 0.2 0.2 0.2 0.2 95.1 95.1 95.1 95.1 −0.49 0.70
20 CS 0.00 −1.9 −1.9 0.3 0.3 94.3 94.3 95.0 95.0 −0.03 0.36
20 UN 0.00 0.2 0.2 0.1 0.1 95.0 95.0 95.0 95.0 −0.26 0.50
20 CSG 0.00 −1.3 −1.0 0.9 −1.2 94.6 94.7 95.2 94.7 −0.36 0.51
20 UNG 0.00 4.2 4.6 4.2 0.3 95.9 95.9 95.9 95.1 −0.49 0.70
40 CS 0.00 −5.3 −5.2 0.1 0.1 93.5 93.5 95.0 95.0 −0.07 0.37
40 UN 0.00 −0.2 −0.1 −0.2 −0.2 95.0 95.0 94.9 94.9 −0.23 0.50
40 CSG 0.00 −5.0 −3.8 0.3 −1.2 93.5 93.9 95.2 94.7 −0.37 0.52
40 UNG 0.00 7.8 10.0 7.8 −0.1 96.5 97.0 96.5 95.0 −0.49 0.70

1 0 CS 1.00 −12.0 −12.0 0.1 0.1 91.2 91.2 94.7 94.7 0.00 0.35
0 UN 1.00 0.1 0.1 0.1 0.1 94.7 94.7 94.7 94.7 −0.20 0.42
0 CSG 1.00 −12.0 −12.0 0.1 0.1 91.2 91.2 94.7 94.7 −0.30 0.52
0 UNG 1.00 0.1 0.1 0.1 0.1 94.7 94.7 94.7 94.7 −0.42 0.70
20 CS 1.05 −14.3 −14.3 0.1 0.0 89.9 90.0 94.6 94.6 −0.03 0.35
20 UN 1.04 1.9 2.0 0.8 0.1 95.1 95.2 94.9 94.8 −0.17 0.42
20 CSG 1.05 −14.7 −14.5 0.3 −1.0 89.4 89.5 94.5 94.2 −0.31 0.51
20 UNG 1.01 4.4 4.9 4.4 0.2 95.8 95.9 95.8 94.8 −0.42 0.70
40 CS 1.11 −17.3 −17.3 −0.3 −0.3 85.7 85.7 93.0 93.0 −0.07 0.36
40 UN 1.08 4.2 4.3 1.3 −0.2 95.2 95.2 94.3 93.8 −0.17 0.41
40 CSG 1.11 −18.9 −18.0 −0.7 −1.2 84.3 84.8 92.3 92.2 −0.31 0.52
40 UNG 1.02 7.8 10.4 7.8 −0.2 96.6 96.9 96.6 94.9 −0.42 0.70

2 0 CS 2.00 −17.8 −17.8 0.1 0.1 88.8 88.8 94.7 94.7 0.00 0.50
0 UN 2.00 0.1 0.1 0.1 0.1 94.7 94.7 94.7 94.7 −0.14 0.55
0 CSG 2.00 −17.8 −17.8 0.1 0.1 88.8 88.8 94.7 94.7 −0.26 0.52
0 UNG 2.00 0.1 0.1 0.1 0.1 94.7 94.7 94.7 94.7 −0.42 0.70
20 CS 2.09 −19.2 −19.2 0.1 −0.1 86.9 86.9 94.1 94.0 −0.03 0.49
20 UN 2.06 4.2 4.2 1.5 0.1 95.7 95.7 95.0 94.8 −0.11 0.53
20 CSG 2.10 −20.5 −20.3 0.1 −0.8 85.7 85.9 93.9 93.6 −0.26 0.51
20 UNG 2.02 4.4 4.9 4.4 0.2 95.8 96.0 95.8 94.9 −0.38 0.70
40 CS 2.22 −20.9 −20.9 −0.6 −0.6 78.6 78.6 89.8 89.8 −0.08 0.50
40 UN 2.15 9.6 9.8 2.5 −0.3 95.7 95.7 93.5 92.8 −0.25 0.51
40 CSG 2.24 −24.6 −23.8 −1.0 −1.2 74.5 75.2 88.9 88.8 −0.27 0.53
40 UNG 2.05 7.3 10.0 7.3 −0.4 96.2 96.8 96.2 94.9 −0.36 0.70

No correctly specified models.

As for the NVO and NV methods, the SEs had bias when the analysis models were misspecified. The SEs using the RB

method had little bias for almost all the settings. The discrepancies of SEs between the RBO and RB methods were very large

for the UNG models when the missing probabilities were large. The discrepancies between the RBO and RB methods were

small for the other models (CS, UN, and CSG). The model misspecification for the error distribution had little influence on the

discrepancy in our settings.

Under the settings for correctly specified models, the deviations of the CP for the RBO method from the nominal level were

up to about 5 points. On the contrary, the CP for the RB method was sufficiently close to the nominal level for the same settings.

These results were caused by the bias of SEs due to the assumption of orthogonality. Under the model misspecification settings,

the results depended on the bias of �̂ and SEs.
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TABLE 3 Summary statistics for AIDS clinical trial data.N : number of subjects,Nt: number of observations in each week.

Group Week Nt Mean Median SD Skewness
Alternating Baseline 289 25.63 21.00 18.88 1.92
(N = 289) 8 224 25.84 18.50 25.65 3.09

16 235 24.66 18.00 24.12 3.52
24 167 19.32 15.00 17.03 2.40
32 196 18.33 14.00 16.06 2.15

Combination Baseline 293 27.41 21.00 23.64 2.58
(N = 293) 8 224 41.25 21.50 53.22 2.84

16 251 35.49 21.00 40.57 2.19
24 174 28.79 17.50 34.91 2.53
32 187 30.39 18.00 37.67 2.98

4 CASE STUDY

In this section, we evaluate the effect of non-orthogonality with real data14,15. The data are from a randomized, double-blind

study of acquired immune deficiency syndrome (AIDS) patients with advanced immune suppression (cluster of differentiation

4 [CD4] counts of less than or equal to 50 cells/mm3). Patients in the AIDS Clinical Trial Group Study 193A were random-

ized to dual or triple combinations of human immunodeficiency virus-1 reverse transcriptase inhibitors. Specifically, patients

were randomized to one of four daily regimens containing 600 mg of zidovudine: zidovudine alternating monthly with 400-mg

didanosine; zidovudine plus 2.25mg of zalcitabine; zidovudine plus 400mg of didanosine; or zidovudine plus 400mg of didano-

sine plus 400 mg of nevirapine (triple therapy). We focused on the measurements of CD4 counts, which were scheduled to be

collected at the baseline and at eight-week intervals during follow-up. We also focused on the zidovudine alternating monthly

with the didanosine group and the zidovudine plus didanosine group, wherein the motivation of our analysis was to compare the

alternating and combination regimens for zidovudine and didanosine. We refer to these groups as alternating and combination

groups, respectively. We focused on four time points: 8, 16, 24, and 32 weeks. As for the more detailed data handling process,

see Maruo et al.16. The original data can be downloaded from https://content.sph.harvard.edu/fitzmaur/ala/ (Datasets->AIDS

Clinical Trial Group (ACTG) Study 193A), and the reshaped data are available from the Supporting Information material of

this article.

Table 3 shows the summary statistics for the data. Discrepancies between the means and medians were large, and the values

of skewness were far from 0, which indicated that the normality assumption did not hold obviously. Heteroscedasticity between

the groups was also apparent. The missing proportion for each group and week was not small (14% to 42%). Furthermore, the

missing mechanism might not be MCAR. Thus, the ordinal MMRM analysis model was misspecified, and the orthogonality

property would be lost in this case.

https://content.sph.harvard.edu/fitzmaur/ala/
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TABLE 4 Analysis results at week 32 based on the mixed effect models for repeated measures (MMRM) method for AIDS
clinical trial data. �̂: model mean differences between groups at week 32, NVO: naïve SE assuming orthogonality, NV: naïve SE
without assuming orthogonality, RBO: robust SE assuming orthogonality, RB: robust SE without assuming orthogonality, Boot:
SE based on the nonparametric bootstrap method, CS: compound symmetry, UN: unstructured, CSG: CS structure assuming
heteroscedasticity, UNG: UN structure assuming heteroscedasticity.

Covariance �̂ SE
structure NVO NV RBO RB Boot

CS 8.65 3.07 3.08 2.46 2.37 2.41
CSG 8.15 3.07 3.07 2.45 2.34 2.35
UN 8.78 2.46 2.46 2.46 2.30 2.29
UNG 8.01 2.45 2.46 2.45 2.18 2.17

The MMRM models using the CS and UN covariance structures with and without the assumption of heteroscedasticity

between groups were applied to the data, where the mean structure and marginal error distribution were the same as in the mod-

els in the simulation studies. Then, inferences on the model mean differences between groups at week 32 (treatment effect: �)

were obtained, where the SEs of � were estimated based on the NVO, NV, RBO, and RB methods. The SEs were also estimated

with the nonparametric bootstrap method, where the subject ID was resampled with replacement, and resampling was conducted

with 10,000 iterations. Such nonparametric SE for mean estimation with the linear models can be regarded as the quasi-true

value for a sufficiently large sample.

Table 4 shows the analysis results based on the MMRMmethods. The treatment effects for the heteroscedasticity models were

smaller than those for the homoscedasticity models. The SEs based on the NVO and NV methods were much different from

those based on the RB method for the CS and CSG structures, which suggested that the naïve SEs had misspecification bias.

The SEs based on the RB method were smaller than those based on the RBO method especially for the UNG setting and close

to the those based on the nonparametric bootstrap method.

5 APPLYING MMRMWITH SAS

In this section, we introduce the specifications for several procedures in the SAS software (SAS/STAT 14.3) that can be used to

conduct the MMRM analysis. The MMRM analysis is probably most frequently conducted with the MIXED procedure, which

is the procedure applying linear mixed effect models. However, the MIXED procedure only provides the naïve and robust SE

assuming the orthogonality. The GLIMMIX procedure applies generalized linear mixed models (GLMM). Although the orthog-

onality property does not hold generally in GLMM, the GLIMMIX procedure also provides the SE assuming the orthogonality

when applying the MMRM analysis. The NLMIXED procedure applies non-linear mixed effect models that include GLMM. The

NLMIXED procedure does "not" assume the orthogonality property even when models based on normal distributions are applied.
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Therefore, the NLMIXED procedure is one available option when we want to conduct the MMRM analysis without assuming the

orthogonality property. A sample SAS code for the AIDS data analysis is provided as the Supporting Information, where the

robust SEs for the UN and UNG models without assuming the orthogonality property are calculated with the NLMIXED proce-

dure. Note that the codes used for the simulation and case studies in this article are not based on the NLMIXED procedure but

our original programs. In the NLMIXED procedure, all specified parameters are estimated simultaneously, while the covariance

parameters are estimated separately based on the profile likelihood in the MIXED and GLIMMIX procedures. Therefore, conver-

gence problems for the parameter estimation process might occur, especially when the analysis model is complicated (e.g. the

number of time points is large) unless the initial values for the parameters are adequately specified. In our sample code, the initial

values used in the NLMIXED procedure are the solutions derived with the MIXED procedure. Furthermore, the marginal models

are easily applied using the REPEATED statement in the MIXED procedure or the _RESIDUAL_ option in the GLIMMIX procedure.

In the NLMIXED procedure, however, marginal models cannot be applied easily, and so code becomes rather complicated. See

our sample code in the Supporting Information for further details.

6 CONCLUSION

In this study, we investigated the effect of the assumption of orthogonality property on the variance estimation for the MMRM

analysis. From the simulation and case studies, it was shown that the robust SEs had non-negligible bias due to the assumption of

orthogonality property, especially for the analysis models assuming the UN structure and heteroscedasticity between treatment

groups regardless of the actual degree of heteroscedasticity. The SEs for the analysis models assuming homoscedasticity did not

have large bias in our simulation settings. However, the analysis models assuming homoscedasticity might lead to bias for the

treatment effect estimation when heteroscedasticity between treatment groups is suspected (e.g. see Gosho and Maruo5). There-

fore, robust SEs without assuming the orthogonality property for the analysis models with the UNG structure are recommended,

especially when there is heteroscedasticity between treatment groups.

Although the model misspecification for the error distribution did not have a large influence on the bias of SE when assum-

ing the orthogonality property in our simulation settings, this would not always be true. The simulation settings in this article

were limited. However, they would be sufficient to reveal the risk of bias for assuming the orthogonality property in the MMRM

analysis. The robust SE assuming the orthogonality property had underestimation bias for our simulation settings; on the other

hand, the SE had overestimation bias for our case study. Note that the direction of bias of the robust SE assuming the orthog-

onality property depends on the situation. Although we investigated the effect of the assumption of the orthogonality property

in the framework of MMRM analysis, this issue may arise in more general situations (i.e. likelihood-based linear mixed effect
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modelling with multivariate normal distribution). In addition, the issue is not confined to missing data for longitudinal stud-

ies. The issue may also arise when the linear mixed model is used with unbalanced data. The effect of the assumption of the

orthogonality property under these settings should be investigated in future work. The robust variance estimator with the REML

method and the small sample bias adjustments for the robust variance estimator without assuming the orthogonality property in

the linear mixed effect models have not yet been developed. Future research for these topics is therefore expected.

In conclusion, assuming the orthogonality property in the MMRM analysis—which is usually applied in the context of MAR,

not MCAR—might lead to invalid statistical inferences. Therefore, it is necessary to be careful when applying the MMRM

analysis with the most standard software package, especially for analysis models with heteroscedasticity between treatment

groups. One available option to apply the MMRM analysis without assuming the orthogonality property is using the NLMIXED

procedure of the SAS software.
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