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It is well known that complex supermanifolds appear as deformations of split complex
supermanifolds (M,OΛE) with E→M being a complex vector bundle andOΛE standing
for the sheaf of holomorphic sections of ΛE. It is also well known that these deformations
of a split complex supermanifold are to be parametrized by H0(M,Aut(E))-orbits in a
non-abelian first Čech cohomology H1(M,GE) [P. S. Green, Proc. Amer. Math. Soc.
85 (1982), no. 4, 587–590; MR0660609]. Its cocycles appear as exponentials of nilpotent
derivations u in C1(M,Der2(ΛE)) with Der2(ΛE) standing for the even derivations
of OΛE that increase the degree by at least two [M. J. Rothstein, Proc. Amer. Math.
Soc. 95 (1985), no. 2, 255–260; MR0801334]. This paper focuses on the following two
questions in connection with the computation of a suitable u.

(1) Is it possible to express the non-abelian cocycle condition on up to non-abelian
coboundaries as conditions in the abelian cohomology given by H1(M,Der2(ΛE))?
This paper answers the question for split complex supermanifolds with no global
even vector fields that increase the degree by two or more.

(2) The Z-grading of OΛE induces a Z-grading on Der2(ΛE) so that u is the finite sum
u2 +u4 +u6 + · · ·. What are the necessary and sufficient conditions for a sum u2 +
· · ·+ u2q−2 with 2 ≤ 2q ≤ rank(E) to be extendable to a u ∈ C1(M,Der2(ΛE))
that defines a supermanifold structure? Necessary conditions for a recursive con-
struction of these cochains of derivations are analyzed up to terms of degree six in
this paper.
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