Citations From References: $0 \quad$ From Reviews: 0
MR3623659 58H15 17B55
Ji, Xiang [Ji, Xiang ${ }^{3}$] (1-PASNK-NDM)
On equivalence of deforming Lie subalgebroids and deforming coisotropic submanifolds. (English summary)
J. Geom. Phys. 116 (2017), 258-270.

Deformations of Lie subalgebroids were studied in [X. Ji, J. Geom. Phys. 84 (2014), 8-29; MR3231711], while those of coisotropic submanifolds were discussed in [A. S. Cattaneo and G. Felder, Adv. Math. 208 (2007), no. 2, 521-548; MR2304327] and [F. Schätz and M. Zambon, Lett. Math. Phys. 103 (2013), no. 7, 777-791; MR3061506]. This paper considers the relationship between these two types of deformation under two pictures. The first picture is the correspondence

$$
\text { a Lie subalgebroid } E \text { of } A \mapsto \text { its annihilator } E^{\perp} \text { in } A^{*}
$$

under which the two deformations are equivalent (Theorem 4.3, Theorem 4.4 and Corollary 4.5). The second picture is the correspondence
a coisotropic submanifold $S \mapsto$ the Lie subalgebroid $N^{*} S$ of $T^{*} M$
under which there may be deformations other than those of the form of a conormal bundle, though \mathfrak{a}_{S} is isomorphic to an L_{∞}-subalgebra of $\mathfrak{b}_{N * S}$ (Theorem 3.5).

Hirokazu Nishimura

References

1. A.S. Cattaneo, G. Felder, Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math. 208 (2007) 521-548. MR2304327
2. F. Schätz, M. Zambon, Deformations of coisotropic submanifolds for fibrewise entire Poisson structures, Lett. Math. Phys. 103 (7) (2013) 777-791. MR3061506
3. X. Ji, Simultaneous deformations of a Lie algebroid and its Lie subalgebroid, J. Geom. Phys. 84 (2014) 8-29. MR3231711
4. T. Lada, J. Stasheff, Introduction to sh Lie algebras for physicists, Internat. J. Theoret. Phys. 32 (1993) 1087-1104. MR1235010
5. Th. Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra 202 (1-3) (2005) 133-153. MR2163405
6. F. Schätz, Coisotropic Submanifolds and The BFV-complex (dissertation) Universität Zürich, 2009.
7. J. Dufour, N. Zung, Poisson structures and their normal forms, in: Progress in Mathematics, vol. 242, Birkhäuser Verlag, 2000. MR2178041
8. A.C. da Silva, A. Weinstein, Geometric Models for Noncommutative Algebras, in: Berkeley Mathematics Lecture Notes, vol. 10, American Mathematics Society, 1999. MR1747916

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

