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The original motivation for derived algebraic geometry was the fact that certain moduli
spaces M appearing in enumerative invariant problems might be realized as a 1-
categorical truncation of a certain derived moduli space M inhabiting a certain higher
category. Early work on derived algebraic geometry was concerned with dg-schemes [I.

Ciocan-Fontanine and M. M. Kapranov, Ann. Sci. École Norm. Sup. (4) 34 (2001),
no. 3, 403–440; MR1839580], which have been replaced by derived stacks [B. Toën,
in Algebraic geometry—Seattle 2005. Part 1, 435–487, Proc. Sympos. Pure Math., 80,
Part 1, Amer. Math. Soc., Providence, RI, 2009; MR2483943; B. Toën and G. Vezzosi,
Mem. Amer. Math. Soc. 193 (2008), no. 902, x+224 pp.; MR2394633] and structured
spaces [J. Lurie, Higher topos theory, Ann. of Math. Stud., 170, Princeton Univ. Press,
Princeton, NJ, 2009; MR2522659; “Derived algebraic geometry V: Structured spaces”,
preprint, arXiv:0905.0459]. The author is now writing a book on derived differential
geometry [D-manifolds and d-orbifolds: a theory of derived differential geometry, people.
maths.ox.ac.uk/∼joyce/dmanifolds.html], and this paper is intended as a survey of it.

The author is active in symplectic differential geometry, many important areas of
which—including Gromov-Witten invariants, Lagrangian Floer cohomology, symplectic
field theory, contact homology and Fukaya categories—are concerned with moduli spaces
Mg,m(J, β) of J-holomorphic curves in some symplectic manifolds (M,ω) possibly with
boundary in a Lagrangian L in order to get invariants with considerably interesting
properties. In order to count these moduli spaces, one is forced to impose an appropriate
geometric structure, which might be called a derived moduli space, on Mg,m(J, β).
However, derived differential geometry is in a mess, there being no agreement on what
geometric structure to exploit.

Inspired by [J. Lurie, op. cit.; D. I. Spivak, Duke Math. J. 153 (2010), no. 1, 55–
128; MR2641940] but daunted by their formidable formality, the author considers
a 2-category truncation of Spivak’s derived manifolds, called d-manifolds, as well as
d-manifolds with boundary or corners and their orbifolds versions, though this intro-
duction is concerned almost exclusively with d-manifolds for the sake of brevity. After
a readable introduction (§1), a survey of C∞-algebraic geometry is given in §2. In §3
the author discusses what are derived C∞-schemes, which are to be called d-spaces. The
main topic in §4 is d-manifolds and their differential geometry. The concluding three
subsections of the section are concerned with d-manifolds with boundaries or corners
and their orbifold versions (§4.9), d-manifold bordism and virtual classes for d-manifolds
and d-orbifolds (§4.10), and the relationship between d-manifolds and d-orbifolds and
other classes of geometric spaces in the literature (§4.11). An appendix on basics of
2-categories is given.
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