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The notion of Grothendieck fibration as well as the essentially equivalent notion of pseudo-functor was
introduced in [A. Grothendieck, in: Sem. Bourbaki 12 (1959/60), No. 190, 29 p. (1960; Zbl 0229.14007)]
so as to formulate the notion of descent. Later, Lawvere introduced fibrations into categorical logic with
his theory of hyperdoctrines [F. W. Lawvere, Repr. Theory Appl. Categ. 2006, No. 16, 1–16 (2006; Zbl
1114.18002); Dialectica 23, 281–296 (1969; Zbl 0341.18002)]. This paper aims to exhibit a naturally
occurring 2-categorical structure on the base category of any Grothendieck fibration abiding by certain
assumptions.
The paper, consisting of 15 sections, is divided into four parts. The first part is composed of an introduc-
tion and §1, which is a cursory review on fibrations.
Part II, ranging from §2 through §8, aims to define a 2-category structure on the base category of any
∧ =-fibration

C
C
↓
B

§2 defines the notion of C -homotopy and the vertical composition, showing that they give rise to a
category, which is shown to be a groupoid in §3. §4 defines the horizontal composition, which, together
with the vertical composition, forms a 2-category. In §5 the author gives an alternative presentation of
the 2-categorical structure in terms of internal categories. §6 is engaged in carrying out the extension of
the fibration to a 1-discrete 2-fibration. It is shown in §7 that the 2-category has finite products. §8 is
devoted to presenting the universal property characteristic of the 2-categorical structure.
Part III, occupying §9–§13, is concerned with some examples of ∧ =-fibrations. §9 recalls the definition
of the codomain fibration

F (C)
C→

↓
C

which is a ∧ =-fibration precisely when C has finite limits. However, the resulting 2-categorical structure
is trivial (§9.2). §10 recalls the definition of Quillen model categories and their basic properties. In §11
the author defines the filtration

H oF (C)
Ho(C→)

↓
C

which is shown in §12 to be a ∧-fibration. §13 shows that its restriction to the fibrant objects, denoted
by Cf renders a ∧ =-fibration.
Part IV, taking §14 and §15, relates the 2-categorical structure on a model category arising from Parts
II and III to the standard 2-categorical structure on it. It is suggested but not proved that any functor
from the 1-category Ccf to a 2-category D taking every weak equivalence to an equivalence in D extends
uniquely to the 2-categorical structure on Ccf .
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