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Background: In order to study structure of proto-neutron stars and those in subsequent cooling
stages, it is of great interest to calculate inhomogeneous hot and cold nuclear matter in a variety
of phases. The finite-temperature Hartree-Fock-Bogoliubov (FT-HFB) theory is a primary choice
for this purpose, however, its numerical calculation for superfluid (superconducting) many-fermion
systems in three dimensions requires enormous computational costs.
Purpose: To study a variety of phases in the crust of hot and cold neutron stars, we propose an
efficient method to perform the FT-HFB calculation with the three-dimensional (3D) coordinate-
space representation.
Methods: Recently, an efficient method based on the contour integral of Green’s function with
the shifted conjugate-orthogonal conjugate-gradient method has been proposed [Phys. Rev. C
95, 044302 (2017)]. We extend the method to the finite temperature, using the shifted conjugate-
orthogonal conjugate-residual method.
Results: We benchmark the 3D coordinate-space solver of the FT-HFB calculation for hot isolated
nuclei and fcc phase in the inner crust of neutron stars at finite temperature. The computational per-
formance of the present method is demonstrated. Different critical temperatures of the quadrupole
and the octupole deformations are confirmed for 146Ba. The robustness of the shape coexistence
feature in 184Hg is examined. For the neutron-star crust, the deformed neutron-rich Se nuclei em-
bedded in the sea of superfluid low-density neutrons appear in the fcc phase at the nucleon density
of 0.045 fm−3 and the temperature of kBT = 200 keV.
Conclusions: The efficiency of the developed solver is demonstrated for nuclei and inhomogeneous
nuclear matter at finite temperature. It may provide a standard tool for nuclear physics, especially
for the structure of the hot and cold neutron-star matters.

I. INTRODUCTION

The mean-field approaches, such as Hartree-Fock (HF)
and Hartree-Fock-Bogoliubov (HFB) theories, have been
playing a central role in studying heavy nuclei and nu-
clear matter [1]. They are especially useful for stud-
ies of the ground (stationary) states. In addition, the
time-dependent extension of the mean-field theories is
straightforward and provides a powerful tool for stud-
ies of nuclear response and reaction [2–5]. Including the
pairing correlations, a number of calculations have been
performed with the BCS approximation [6–9]. Recently,
studies of three-dimensional (3D) nuclear dynamics using
the full time-dependent Hartree-Fock-Bogoliubov (TD-
HFB) method have become available [10–17]. The time
evolution of the TDHFB states requires calculations of all
the time-dependent quasiparticle states, which is compu-
tationally very demanding.

The static HFB calculation seems to be easier than
the time-dependent problems, at first sight. However,
in fact, it is often more difficult than the the time-
dependent calculation. This is due to requirement of
the self-consistency between the HFB state and the HFB
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Hamiltonian. A standard procedure is as follows. The
diagonalization of the HFB Hamiltonian produces the
quasiparticle states. The quasiparticle states define the
normal and pair densities which determine the HFB
Hamiltonian. The iteration is necessary to reach the self-
consistency. For the full 3D unrestricted calculations,
finding a self-consistent solution is not as simple as it
might seem. It involves successive diagonalization of ma-
trices with large dimension N , which normally needs op-
erations of O(N3). Most of available codes of the HFB
calculation utilize some symmetry restriction on the den-
sities, such as spatial symmetry and time-reversal sym-
metry, in order to reduce both the matrix dimension
and the number of iteration [18–20]. The HFB program
hfodd [21] is able to perform the unrestricted calcula-
tion, however, since it is based on the harmonic-oscillator
basis, it is difficult to calculate nuclei near the neutron
drip line and various phases of nuclear matter in the neu-
tron stars.

Recently, a novel computational approach to the HFB
iterative problem has been proposed by Jin, Bulgac,
Roche, and Wlaz lowski [22]. In contrast to the con-
ventional methods, this approach has several favorable
aspects, especially in large-scale calculations. (1) The
densities are calculated by the contour integral in the
complex energy plane, without quasiparticle wave func-
tions. The matrix diagonalization is unnecessary. (2)
It is based on the shifted Krylov subspace method for
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calculating the Green’s function G(r, r′; z) with com-
plex energies z. The shifted method allows us to ob-
tain simultaneously the Green’s function with differ-
ent energies z. (3) It is suited for parallel comput-
ing, because the Green’s function G(r, r′; z) is calcula-
ble independently for each point r′. In Ref. [22], they
explored the shifted conjugate-orthogonal conjugate-
gradient (COCG) method, and showed a few benchmark
calculations with the coordinate-space representation.

In this paper, we propose an extension of the 3D
coordinate-space HFB method of Ref. [22] to that at
finite temperature, namely the finite-temperature HFB
(FT-HFB) calculation. The FT-HFB method is valuable
for studying a variety of aspects in nuclear and many-
fermion systems. For example, the structure and the
composition of the (proto-)neutron stars depend on the
equation of state (EOS) of baryonic matter at finite tem-
perature. In order to calculate inhomogeneous baryonic
matter in the crust region, the 3D coordinate-space FT-
HFB solver is highly desired. For experimental studies
on nuclear structure, giant dipole resonances in hot nu-
clei provide us information on nuclear shapes at finite
temperature [23]. In order to study shape change to-
gether with pairing and shell quenching in hot nuclei,
the FT-HFB is a valuable tool. The shape dynamics at
finite temperature may play an important role in induced
fission processes [24, 25]. The FT-HFB has been also uti-
lized to study the level density [26, 27], which is one of
the key ingredients in the statistical reaction model.

The paper is organized as follows. In Sec. II, we re-
capitulate the FT-HFB theory, then, present a compu-
tational method of the contour integral to produce the
normal and abnormal densities. It is slightly more com-
plicated than the zero-temperature HFB in Ref. [22], be-
cause we need to remove contributions from the Matsub-
ara frequencies on the imaginary axis. In Sec. III, we
demonstrate some numerical results. Finally, the sum-
mary and the perspectives are given in Sec. III F.

II. THEORETICAL FORMULATION

In this section, we first recapitulate the FT-HFB the-
ory, then, introduce the Green’s function method for
that. Readers are referred to Ref. [22] for the zero-
temperature formulation.

A. Finite temperature HFB theory

Considering a system of spin 1/2 particles with the vol-

ume V and the Hamiltonian Ĥ, in a thermal equilibrium
with a heat bath of the temperature T and the chem-
ical potential µ. The grand partition function is given

by Z(T, V, µ) ≡ Tr
[
e−β(Ĥ−µN̂ )

]
, where β ≡ (kBT )−1,

and N̂ ≡
∑
σ

∫
V
ψ̂†(rσ)ψ̂(rσ)dr is the particle number

operator. In nuclear physics, we need to treat both pro-

tons and neutrons (isospin degrees of freedom). This ex-
tension can be easily done by incorporating both proton
and neutron densities when we calculate potentials in
Eq. (13).

The mean-field approximation replaces Ĥ−µN̂ by the
HFB Hamiltonian which is given in terms of independent
quasiparticles. Using the quasiparticle number operator

n̂k ≡ γ̂†kγ̂k with the creation and annihilation operators

(γ̂†k, γ̂k), The HFB Hamiltonian is simply written as

ĤHFB = E0 − µN0 +
∑
k>0

Ekn̂k, (1)

where E0 is the energy of the HFB ground state |0〉 with

the particle number N0 = 〈0| N̂ |0〉, and k > 0 means the
quasiparticle states with positive energies Ek > 0. The
state |0〉 is defined as the quasiparticle vacuum.

γ̂k |0〉 = 0 for k > 0. (2)

The trace in the partition function is calculated by sum-
ming up expectation values with respect to all the n-
quasiparticle states with n = 0, 1, · · · .

ZHFB(T, V, µ) = e−β(E0−µN0)
∏
k>0

(
1 + e−βEk

)
, (3)

which leads to the density matrix,

ρ̂HFB(T, V, µ) =
e−βĤHFB

ZHFB(T, V, µ)
=

∏
k>0 e

−βEkn̂k∏
k>0 (1 + e−βEk)

.

(4)
Thus, the one-body densities are given as

ρT (ξ, ξ′) ≡ Tr
[
ρ̂HFBψ̂

†(ξ′)ψ̂(ξ)
]

=
∑
k>0

{fkuk(ξ)u∗k(ξ′) + (1− fk)v∗k(ξ)vk(ξ′)} , (5)

κT (ξ, ξ′) ≡ Tr
[
ρ̂HFBψ̂(ξ′)ψ̂(ξ)

]
=
∑
k>0

{(1− fk)v∗k(ξ)uk(ξ′) + fkuk(ξ)v∗k(ξ′)} , (6)

where ξ indicates the coordinate and spin, ξ = (r, σ),
and the quasiparticle occupation is given by

fk ≡
1

eβEk + 1
. (7)

For Eqs. (5) and (6), we use the Bogoliubov transforma-
tion,

ψ̂†(ξ) =
∑
k>0

[
u∗k(ξ)γ̂†k + vk(ξ)γ̂k

]
, (8)

ψ̂(ξ) =
∑
k>0

[
uk(ξ)γ̂k + v∗k(ξ)γ̂†k

]
. (9)

Using the matrix notation of

Uξk = uk(ξ), Vξk = vk(ξ), fkk′ = fkδkk′ , (10)
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Eqs. (5) and (6) can be denoted in a compact form.

ρT = UfU†+V ∗(1−f)V T , κT = UfV †+V ∗(1−f)UT .
(11)

The quasiparticle energies and wave functions are ob-
tained by solving the HFB equation[

h ∆
−∆∗ −h∗

] [
uk
vk

]
= Ek

[
uk
vk

]
, (12)

where h(ξ, ξ′) and ∆(ξ, ξ′) are formally given by the
derivatives of the energy density functional (EDF)
E [ρ, κ],

h(ξ, ξ′) =
δE

δρ(ξ′, ξ)
− µδ(ξ, ξ′), ∆(ξ, ξ′) =

δE
δκ∗(ξ, ξ′)

.

(13)
Here, we use a simplified notation δ(ξ, ξ′) ≡ δ(r−r′)δσσ′ .

B. HFB Hamiltonian for Skyrme EDF

In the Skyrme functional, the nuclear energy is written
as E[ρ, κ] =

∫
drE(r), where the energy density is given

by the sum of kinetic, nuclear potential, Coulomb, and
pairing energies.

E = Ekin + Enuclear + ECoul + Epair. (14)

The energy density is a functional of local densities,
such as normal density ρq(r), kinetic density τq(r), spin-
current density Jq(r), and the pair (abnormal) density
νq(r), with q = n and p. These densities are calculated
from the one-body densities, Eqs. (5) and (6). The en-
ergy density of the Coulomb exchange is given by the
Slater approximation,

ECoul(r) =
e2

2

∫
ρp(r)ρp(r

′)

|r − r′|
dr′ − 3e2

4

(
3

π

)1/3

ρ4/3
p (r).

(15)

The pairing energy density depends on the local pairing
density,

Epair(r) =
∑
q=n,p

geff(r) |νq(r)|2 , (16)

where the effective pairing strength geff is determined
via a renormalization [28] of the bare pairing strength
g0. The adopted value for g0 in the present manuscript
is given in Sec. III. The local nature of the Skyrme energy
density leads to the HFB equation (12) in the coordinate
representation of the form

HHFB

 uk↑
uk↓
vk↑
vk↓

 = Ek

 uk↑
uk↓
vk↑
vk↓

 , (17)

HHFB =


h↑↑ h↑↓ 0 ∆
h↓↑ h↓↓ −∆ 0
0 −∆∗ −h∗↑↑ −h∗↑↓

∆∗ 0 −h∗↓↑ −h∗↓↓

 . (18)

Here and hereafter in this section, the isospin index q =
n, p is omitted for simplicity. hσσ′ ≡ h(ξ, ξ′) of Eq. (13)
with ξ = (rσ) and ξ′ = (r′σ′), which are diagonal in the
coordinate except for the derivative terms. ∆ is strictly
diagonal, ∆(r, r′) = ∆(r)δ(r − r′) with

∆(r) = geff(r)ν(r). (19)

All the local densities are calculable from the one-body
densities, (5) and (6), at temperature T .

ρ(r) =
∑
σ

ρT (rσ, rσ), (20)

ν(r) = κT (r ↑, r ↓), (21)

τ(r) =
∑
σ

∇1 · ∇2ρT (rσ, rσ), (22)

J(r) =
1

2i
(∇1 −∇2)× s(r, r) (23)

where ∇1(2) indicates the differentiation on the first (sec-
ond) argument r of the densities. Here, the spin density
s(r, r′) is defined in terms of the Pauli matrix σ as,

s(r, r′) =
∑
σσ′

ρT (rσ, r′σ′) 〈σ′|σ |σ〉 . (24)

In the present paper, we assume the time-reversal sym-
metry. We use the following relations to reduce the com-
putational cost:

ρT (rσ, r′σ′) = sσsσ′ρ∗T (rσ̄, r′σ̄′), (25)

κT (rσ, r′σ′) = sσsσ′κ∗T (rσ̄, r′σ̄′), (26)

where σ̄ = (↓, ↑) for σ = (↑, ↓), and s↑ = −s↓ = 1. Thus,
we need to calculate only those with σ′ =↑. All the time-
odd densities vanish.

C. Green’s functions and local densities

Now, let us present a method using the Green’s func-
tion to calculate the local densities at finite temperature.
The Green’s functions of the HFB equation (17),

G(z) =

(
Guu(z; ξ, ξ′) Guv(z; ξ, ξ

′)
Gvu(z; ξ, ξ′) Gvv(z; ξ, ξ

′)

)
, (27)

are defined by a solution of

(zI −HHFB)G(z) = I, (28)

with a proper boundary condition. Here, I is the unit
matrix. Each element of Eq. (27) can be expressed as

Guu(z; ξ; ξ′) =
∑
k>0

[
uk(ξ)u∗k(ξ′)

z − Ek
+
v∗k(ξ)vk(ξ′)

z + Ek

]
,
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Guv(z; ξ, ξ
′) =

∑
k>0

[
uk(ξ)v∗k(ξ′)

z − Ek
+
v∗k(ξ)uk(ξ′)

z + Ek

]
,

Gvu(z; ξ, ξ′) =
∑
k>0

[
vk(ξ)u∗k(ξ′)

z − Ek
+
u∗k(ξ)vk(ξ′)

z + Ek

]
,

Gvv(z; ξ, ξ
′) =

∑
k>0

[
vk(ξ)v∗k(ξ′)

z − Ek
+
u∗k(ξ)uk(ξ′)

z + Ek

]
. (29)

For the zero temperature, the densities are given by
Eq. (11) with fkk′ = fkδkk′ = 0, namely, ρ0 = V ∗V T

and κ0 = V ∗UT . Consider a contour C1 that encloses
the section [−Ecut,−E1] on the real axis, and C2 that
does the section [E1, Ecut], where E1 > 0 is the lowest
quasiparticle energy and Ecut is the cut-off energy of the
pairing model space. It is easy to find from Eq. (29)
that the generalized density matrix R0 = RT=0 can be
calculated as

1

2πi

∫
C1

G(z)dz =

(
ρ0 κ0

−κ∗0 1− ρ∗0

)
≡ RT=0, (30)

1

2πi

∫
C2

G(z)dz =

(
1− ρ0 −κ0

κ∗0 ρ∗0

)
= I −RT=0. (31)

Utilizing this property, the authors in Ref. [22] proposed
a coordinate-space solver of the HFB calculation.

1. Finite temperature and Matsubara frequencies

The idea to extend this formulation to the finite tem-
perature is formally straightforward. Using the Fermi-
Dirac distribution function fT (z) ≡ (1 + eβz)−1,

1

2πi

∮
C1+C2

fT (z)G(z)dz = RT , (32)

1

2πi

∮
C1+C2

fT (−z)G(z)dz = I −RT , (33)

where we assume that the contour C1 (C2) is confined
in the left (right) half plane of Re(z) < 0 (Re(z) > 0).
Note that fT (−z) = 1− fT (z). Equations (32) and (33)
are formally correct, however, it is not so useful in ac-
tual numerical calculations. Since we do not know the
lowest quasiparticle energy E1, we must adopt the con-
tours, C1 and C2, passing through the origin z = 0. The
Fermi-Dirac function fT (z) has poles at the Matsubara
frequencies z = iωn = i(2n + 1)π/β with the integer
n ≷ 0. At lower temperature (β → ∞), the Matsubara
poles are closer to the origin, and the numerical integra-
tion becomes more demanding.

The integrand in Eqs. (32) and (33) is a smooth func-
tion far away from the real axis. Even near the Matsub-
ara frequencies on the imaginary axis, the absolute value
is reduced as 1/z. Therefore, numerically, the contour in-
tegration is easier with a contour further away from the
real axis. We consider here the contour C that encloses
the section [−Ecut, Ecut] on the real axis and [−ih, ih]

C

Re z

Im z

Ecut‒Ecut

ih

‒ih

iωn

Ek

FIG. 1. Schematic illustration of the contour C and poles of
the Green’s function G(z) (closed circles) and of the Fermi-
Dirac function fT (z) (open circles) in the complex plane.

on the imaginary axis. See Fig. 1. Since the function
fT (±z) has residues ∓β−1 at z = iωn, we have

RT =
1

2πi

∮
C

fT (z)G(z)dz +
1

β

∑
|ωn|<h

G(iωn), (34)

I −RT =
1

2πi

∮
C

fT (−z)G(z)dz − 1

β

∑
|ωn|<h

G(iωn).(35)

The sum of these leads to an identity for the Green’s
function

1

2πi

∮
C

G(z)dz = I. (36)

According to Eqs. (34) and (35), the normal and pair
densities are calculated in various ways. Since we paral-
lelized the computation with respect to the second argu-
ment ξ′, each processor can calculate column vectors of
Eq. (27) with fixed ξ′. For instance, from Eq. (35),

ρ∗T (ξ, ξ′) =
1

2πi

∮
C

Gvv(z; ξ, ξ
′)

1 + exp (−βz)
dz

−kBT
∑
|ωn|<h

Gvv(iωn; ξ, ξ′), (37)

−κT (ξ, ξ′) =
1

2πi

∮
C

Guv(z; ξ, ξ
′)

1 + exp (−βz)
dz

−kBT
∑
|ωn|<h

Guv(iωn; ξ, ξ′), (38)

with

ωn = ±πkBT,±3πkBT,±5πkBT · · · . (39)

The densities, Eqs. (37) and (38), can be obtained from
the solution of the linear equations (28) without finding
wave functions (uk(ξ), vk(ξ)). We parameterize the con-
tour C as an ellipse of

z(θ) = Ecut cos θ + ih sin θ, (40)



5

C’

Re z

Im z

Ecut‒Ecut

ih

‒ih

Ek

FIG. 2. Schematic illustration of the contour C′ and poles of
the Green’s function G(z) (closed circles).

where 0 ≤ θ ≤ 2π and the height of ellipse h is chosen as
the midpoint of two neighboring Matsubara frequencies,

h = 2mπ/β, m = integer. (41)

In practice, the contour integral is performed by dividing
C into four intervals, (0, π/2), (π/2, π), (π, 3π/2), and
(3π/2, 2π). We adopt the Gauss-Legendre integration
for each of these intervals. The value of the integrand
rapidly changes near the end points of these intervals,
φ = 0, π/2, π, 3π/2, 2π, where the number of the Gauss-
Legendre integral points increases.

It is instructive to consider the limit of T → 0. In
this limit, the Fermi-Dirac function fT (z) is nothing but
a step function θ(−Re(z)). It vanishes in the half plane
of Re(z) > 0, while it is unity in the other half plane of
Re(z) < 0. Thus, in the first term of Eq. (34), the inte-
grand can be replaced by G(z), then, the closed contour
C can be changed into the open one (π/2 < θ < 3π/2) in
the Re(z) < 0 and terminated on the imaginary axis at
z = ±ih. It is known that the summation with respect
to the Matsubara frequencies becomes the integration of
the Green’s function on the imaginary axis at T → 0. So,
the second term of Eq. (34) becomes

1

2πi

∑
|ωn|<h

G(iωn)
2πi

β
→ 1

2πi

∫ ih

−ih
G(z)dz, β →∞.

(42)
Therefore, Eq. (34) at the zero-temperature limit is iden-
tical to

RT =
1

2πi

∫
C′
G(z)dz, (43)

where the contour C is shown in Fig. 2. In this way, we
recover the zero-temperature formula, (30). Following
the same argument, it is easy to obtain Eq. (31) from
the zero-temperature limit of Eq. (35).

2. Kinetic and spin-current densities in parallel computing

The numerical calculation is parallelized by allocating
the calculation of densities ρT (ξ, ξ′) and κT (ξ, ξ′) with

different r′ of the second argument ξ′ = (r′, σ′) on dif-
ferent processors. Therefore, it is useful to eliminate the
derivative ∇2 in expressions of Eqs. (22) and (23). The
calculation of the spin-current density J(r) is done by

Jx (r) = −Im

[
∂

∂y1
ρ∗T (r ↑; r ↑)− ∂

∂y1
ρ∗T (r ↓; r ↓)

]
+ Re

[
∂

∂z1
ρ∗T (r ↓; r ↑)− ∂

∂z1
ρ∗T (r ↑; r ↓)

]
,(44)

Jy (r) = Im

[
∂

∂x1
ρ∗T (r ↑; r ↑)− ∂

∂x1
ρ∗T (r ↓; r ↓)

]
− Im

[
∂

∂z1
ρ∗T (r ↓; r ↑) +

∂

∂z1
ρ∗T (r ↑; r ↓)

]
,(45)

Jz (r) = Im

[
∂

∂y1
ρ∗T (r ↓; r ↑) +

∂

∂y1
ρ∗T (r ↑; r ↓)

]
− Re

[
∂

∂x1
ρ∗T (r ↓; r ↑)− ∂

∂x1
ρ∗T (r ↑; r ↓)

]
.(46)

The densities of Eqs. (20), (21), and (23) at r = r′ can be
computed by each processor without any communication.
The kinetic density is calculated according to

τ(r) =
1

2
∇2ρ(r)− Re

∑
σ

∇2
1ρT (rσ; rσ). (47)

Here, the calculation of the first time is performed after
broadcasting ρ(r) to all the processors.

The local densities necessary for construction of the
HFB Hamiltonian, Eqs. (20-23), are obtained locally
(r = r′) at each processor, then, broadcast to all the
processors, to construct an updated HFB Hamiltonian.

D. Shifted-COCR method

In numerical calculations, the most computationally
demanding parts are solutions of the linear equations
(28). It is suitable for massively parallel computing, be-
cause Eq. (28) can be solved independently for different
values of r′ in the calculation of G(z; ξ, ξ′).

Another advantageous feature of Eq. (28) is that the
shifted Krylov subspace method is applicable to these
linear equations, in which a family of the linear alge-
braic equations (28) for different values of z are solved
simultaneously. For the numerical integration in Eqs.
(34) or (35), we need to solve Eq. (28) with many
values of z, at discretized contour points zm (m =
0, 1, ...,M). In Ref. [22], the shifted conjugate-orthogonal
conjugate-gradient (COCG) method [29] is adopted. In
this paper, we use a similar but different algorithm, the
shifted conjugate-orthogonal conjugate-residual (COCR)
method [30]. The COCG method is an efficient method
for positive-definite symmetric matrices. In the present
case, the Hamiltonian HHFB is clearly not positive defi-
nite, and we have found that the COCR method is more
stable than the COCG method for our purpose. Here,
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we briefly present the algorithm of the shifted COCR
method.

Given a symmetric matrix A, we solve the reference
equation

Ax = b, (48)

and shifted equations

(A+ σI)xσ = b, (49)

where σ is a complex scalar factor. In the present case,
σ is nothing but z. The reference equation (48) is solved
by COCR method. An approximate solution xk+1 and
its residual vector rk+1 in the (k + 1)-th iteration are
calculated according to the following iterative algorithm.

αk = (Ark, rk)/(Apk, Apk), (50)

xk+1 = xk + αkpk, (51)

rk+1 = rk − αkApk, (52)

βk = (Ark+1, rk+1)/(Ark, rk), (53)

pk+1 = rk+1 + βkpk, (54)

Apk+1 = Ark+1 + βkApk, (55)

with the initial condition, x0 = 0, r0 = b, α0 = 1, β0 = 0.
Here, the inner product (v,v′) is defined by a scalar prod-
uct vT · v′ without complex conjugation. The matrix-
vector operation is necessary only for evaluating Ark,
which is the most time-consuming part in this iteration.

We can also solve shifted equations (49) using COCR
method with the same initial condition as the reference
system. However the residual vectors in shifted systems
have a linear relation with the reference system,

rσk = ρσkrk, (56)

ρσk+1 =
ρσkρ

σ
k−1αk−1

ρσk−1αk−1 (1 + αkσ) + αkβk−1

(
ρσk−1 − ρσk

) .
(57)

with the initial conditions ρσ0 = 1. This linear rela-
tion reduces the computational cost, from O(N2M) to
O(N2 + NM), where N is the dimension of the matrix
A and M is the number of complex shifts σ, because we
can avoid the time-consuming calculation of the matrix-
vector product Arσk . The coefficients, ασk and βσk , are
also obtained from those of the reference system. Thus,
for the shifted systems, we simply perform the following
calculations:

ασk =
ρσk+1

ρσk
αk, (58)

βσk =

(
ρσk+1

ρσk

)2

βk, (59)

xσk+1 = xσk + ασkp
σ
k , (60)

pσk+1 = rσk − ασkpσk . (61)

The iterations for the reference and the shifted systems
are performed simultaneously.

In practice, it is unnecessary to calculate all the el-
ements of xσk and pσk for the shifted systems (σ 6= 0),
because physical quantities in want are often sparse in
the coordinate space. For instance, any quantity local in
the coordinate requires us to calculate only one compo-
nent for each r′. This is similar to the reduced-shifted
COCG method proposed in Ref. [31].

The COCR method is designed for a symmetric matrix
A, but the HFB Hamiltonian is a Hermitian matrix, in
general. Following Ref. [22], we also transform linear
Hermitian problems into real symmetric ones. Dividing
a Hermitian matrix A into real and imaginary parts, the
equation Ax = b can be converted into(

Re[A] −Im[A]
Im[A] Re[A]

)(
Re[x]
Im[x]

)
=

(
Re[b]
Im[b]

)
. (62)

Because ReA (ImA) is symmetric (anti-symmetric), the
matrix in Eq. (62) is a real symmetric matrix. The
shifted systems with complex scalar shifts σ are defined
as(

σI + Re[A] −Im[A]
Im[A] σI + Re[A]

)(
x1

x2

)
=

(
Re[b]
Im[b]

)
, (63)

where x1 and x2 are no longer real but complex vectors.
The solution of the original problem (σI + A)x = b is
constructed by the relation x = x1 + ix2.

The performance of the shifted-COCR method will be
shown in Sec. III B. In practice, it is not necessary to
obtain a full convergence of the shifted-COCR method
with all the complex shifts σ, because what we need is
the accurate estimation of the densities, ρ and κ, by the
contour integration, Eqs. (37) and (38). Therefore, we
calculate the densities every 100 iterations, and estimate
the difference between the “old” and the “new” densities,
δρ ≡ ρ(new) − ρ(old) and δν ≡ ν(new) − ν(old). Then, the
convergence condition is set as follows:

|δρ(r′ ↑)| < ε1, |δν(r′))| < ε′1, (64)

∣∣∣∣ δρ(r′ ↑)
ρ(old)(r′ ↑)

∣∣∣∣ < ε2,

∣∣∣∣ δν(r′)

ν(old)(r′)

∣∣∣∣ < ε′2, (65)

with ε1 = 10−8 fm−3, ε′1 = 10−6 fm−3, and ε2 = ε′2 =
10−6. We stop the COCR iteration when either Eq. (64)
or (65) is satisfied.

E. Self-consistent solutions

The iterative calculation is performed according to the
following procedure.

1. Input the initial densities and chemical potentials,

V (i) = {ρ(i)(r), ν(i)(r), τ (i)(r),J (i)(r), µ
(i)
q } (i =

0).
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2. Calculate the HFB Hamiltonian, hσσ′(r) and
∆q(r), and the total energy E(i).

3. Solve the shifted linear equations (28) to determine
the Green’s functions G(z).

4. Calculate the contour integrals of Eqs. (37)
and (38) to determine the densities and the

chemical potentials, V
(i)
out. The updated chem-

ical potential is given by (µq)
(i)
out = µ

(i)
q +

α0 tanh [α1/α0 (〈Nq〉 −Nq)].

5. Calculate the energy Eout. If the convergence con-

dition, |Eout − E(i)
in | < η, is satisfied, the iteration

stops.

6. Determine the new densities and chemical poten-
tials using the modified Broyden mixing,

V (i+1) = V (i) +
∑i
j=i−n wj [V

(j)
out − V (j)]. Go back

to the step 2.

In Step.4, α0 and α1 are the parameter to ensure conver-
gence, whose typical values are α0 = 5 and α1 = 0.1 ∼
1.0. In Step.6, wj are obtained by the modified Broyden
method [32]. We store the densities and the chemical po-
tentials of last n iteration for the Broyden mixing, with
n = 10.

III. NUMERICAL RESULTS

We present a few benchmark results of the FT-HFB
calculation in this paper, with some numerical details and
its computational performance. In the following calcula-
tions, the Skyrme energy density functional of SLy4 [33]
is adopted. The pairing energy functional is in a form of
Eq. (16) with the bare pairing strength g0 = −250 MeV
fm3. This pairing energy functional well reproduces the
two-neutron separation energies for Sn and Pb isotopes
[34]. We adopt either the square or the rectangular box
with the square mesh, and impose the periodic boundary
condition.

A. Symmetry restriction

We have constructed a computer program of the full 3D
coordinate-space representation. This is used for the FT-
HFB calculation for 146Ba in Sec. III C. However, in order
to speed up the calculation, the reflection symmetry with
respect to the three planes, x = 0, y = 0, and z = 0, is
assumed in the calculations in Secs. III D and III E.

In the conventional calculation of the quasiparticle
wave functions, to be benefited by this restriction, we
need to take care of symmetry properties of the wave
functions. Each of the three types of reflection produces
eigenvalues (quantum numbers) of πk = ±1 (k = x, y, z)
for the wave functions. Therefore, the HFB Hamiltonian
is block-diagonal into eight blocks, which means that the

dimension of each block is 1/8 of the full 3D Hamiltonian
matrix. The coordinate space can be also reduced into
the first octant (x > 0, y > 0, z > 0), however, we need
to impose a proper symmetry on the wave functions of
each block; (πx, πy, πz) = (+++), (++−), · · · , (−−−).

In contrast, the symmetry restriction can be treated
much easier in the present Green’s function method, be-
cause we do not calculate the quasiparticle wave func-
tions. The Hamiltonian is invariant with respect to the
three reflections. Therefore, the Hamiltonian in the first
octant can be simply copied to the other spatial regions.
Then, Eq. (28) is solved only for G(z; ξ, ξ′) with r′ in the
first octant. This reduces the computational cost into 1/8
of the full calculation. Here, we do not need to take care
of different symmetry properties of the wave functions,
according to their quantum numbers.

B. Performance of shifted-COCR method

In this paper, we adopt the shifted-COCR method for
the solution of the linear algebraic equations (28). In
contrast, the shifted-COCG method was adopted for the
zero-temperature HFB calculation in Ref. [22]. First, let
us show differences in their convergence behavior.

In Fig. 3, we show an example of convergence prop-
erties. The HFB Hamiltonian HHFB at the converged
solution is used for showing performance of the shifted-
COCR and the shifted-COCG methods to solve Eq. (28).
The pure imaginary shift of z = ih = 16πikBT (θ = π/2)
with the COCR method shows the fastest convergence.
The convergence behavior at z = 0 best demonstrates
superiority of the COCR method over the COCG. The
convergence with the COCR is faster by about 1000 it-
erations than the COCG. Moreover, it indicates a mono-
tonic decrease of the residue, while the COCG shows a
strong oscillating behavior. In general, we may expect
that the convergence is slower when the shift z is closer
to the pole of the integrand. In this respect, z = Ecut

represents the worst case. In fact, Fig. 3 shows that the
solution at z = Ecut = 100 MeV (θ = 0) fails to con-
verge within 4000 iterations in both the COCG and the
COCR methods, and the residue |rσn/rσ0 | keeps oscillat-
ing between 10−2 and 1. This is not a serious problem
in the calculation, because the quasiparticle states with
Ek ≈ Ecut hardly contributes to the densities. In addi-
tion, moving z away from the real axis, the convergence
property is quickly improved.

We calculate the normal and pair densities, ρ(r ↑) and
ν(r), using the Green’s function G(z) at each iteration
before the convergence. In Fig. 4, we show the densities
as functions of the iteration number for the COCG and
the COCR methods. Note that the HFB Hamiltonian
HHFB is not updated during the iteration. The densi-
ties are well converged after a few hundreds of iterations
in the scale of Fig. 4. Again, the convergence is faster
and more stable with the COCR method than with the
COCG. Even though the shifted COCR/COCG meth-
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FIG. 3. The convergence behavior of the shifted COCG
and shifted COCR methods for solutions of Eq. (28). Three
typical points, z(θ = 0) (COCG/COCR: purple/green) and
z(π/2) (orange/black) on the contour of Eq. (40) with Ecut =
100 MeV and h = 16πkBT , in addition to the reference point
z = 0 (red/blue), have been taken as examples. The norms
of the residual vectors |rσk/rσ0 | are shown as functions of the
iteration number. This is a case of the FT-HFB calculation
for the center of mass of a 146Ba nucleus (r′ = rc) with the
temperature of kBT = 200 keV. The mesh and box sizes are
the same as those in Sec. III C.

ods fail to converge at z very near Ecut, the densities
constructed by the contour integrals, Eqs. (37) and (38),
can be accurately estimated. To achieve the convergence
condition of Eq. (64), typically about 3000 iterations are
required.

In order to reach the final self-consistent solution, an-
other self-consistent iteration is necessary. In Sec. II E,
we present the iterative procedure with the Broyden mix-
ing to obtain the self-consistent solutions. This self-
consistent iteration requires about several tens to hun-
dreds of iterations.

C. Octupole deformation in 146Ba at finite
temperature

We perform the FT-HFB calculation for a neutron-
rich nucleus of 146Ba as the first benchmark calculation.
The full 3D box of the lattice size 25 × 25 × 30 with
the square mesh of ∆x = ∆y = ∆z = 1 fm is used in
the calculation. The calculations are performed with the
temperature spacing of kBT = 100 keV.

The nucleus of 146Ba has Z = 56 and N = 90, which is
in a region of strong octupole correlations [35]. The ex-
citation energies of negative-parity states decrease as the
neutron number approaches to 90, and a signature of the
octupole instability, alternating parity bands, were ob-
served in experiments at spins higher than I = 6 [36, 37].
This is due to particle-hole octupole correlations asso-
ciated with π[h11/2(d5/2)−1] and ν[i13/2(f7/2)−1]. Thus,
we may expect an octupole deformed shape in the ground
state of the zero-temperature HFB theory [38] and it is
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FIG. 4. The convergence behavior of (a) the neutron spin-
up density ρ(r′ ↑, r′ ↑), and (b) the neutron pair density
ν(r′) = κ(r′ ↑, r′ ↓) at the center of mass of a 146Ba nucleus
(r′ = rc) with kBT = 200 keV. The shifted COCG method is
shown by red lines and the shifted COCR methods by black
lines. See text for details.

interesting to see effects of finite temperature on its struc-
ture.

The proton pair density is calculated to vanish. We
show the neutron average pairing gap in Fig. 5(a). The
neutron gap is finite at low temperature but disappears
at kBT = 500 keV. In this calculation, the transition
from super to normal phases for neutrons is predicted at
400 < kBT ≤ 500 keV. In contrast, the nuclear defor-
mation is more stable against the temperature. At the
ground state (zero temperature), the calculation predicts
finite values for both quadrupole and octupole deforma-
tions, β2 ≈ β3 ≈ 0.13. Figure 5(b) shows the temper-
ature dependence of these deformation parameters. At
kBT = 500 keV, where the neutron pairing collapses, the
temperature effect on β2 and β3 are very little. They
are almost identical to their values at T = 0. Beyond
kBT = 500 keV, the octupole deformation starts de-
creasing and becomes negligibly small at kBT > 1 MeV.
The quadrupole deformation is even more robust but sud-
denly vanishes at kBT = 1.6 MeV. At temperature be-
tween 1 MeV and 1.6 MeV, the nuclear shape is almost
prolate. Beyond kBT = 1.6 MeV, the shape becomes
spherical. These shape changes can be clearly seen in
the density distributions in Fig 6.

The quadrupole deformation is finite and slightly in-
creases with temperature at kBT > 1.6 MeV. This is due
to effects of dripped neutrons at finite temperature. Be-
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FIG. 5. (a) Calculated neutron average paring gap, (b)
quadrupole and octupole deformation parameters, and (c)
specific heat as functions of temperature for 146Ba. In the
panel (b), the quadrupole deformation of the dripped uniform
neutrons is shown by the solid line.

cause of the adopted rectangular box, the dripped “free”
neutrons form the rectangular shape which has a non-
zero value of β2. To confirm this, assuming a uniform
density distribution of neutrons with calculated density
values at the box boundary, we estimate the β2 value
which is shown by the solid line in Fig. 5(b).

Finally, the specific heat CV (T ) is shown in Fig. 5(c).
The specific heat is estimated by the finite difference of
the total energies calculated at kBT±0.01 MeV. The cal-
culated CV (T ) is approximately a linear function of the
temperature T , similar to that of the Fermi gas. How-
ever, at very low temperature T ≈ 0, because of the
proton shell gap and the neutron pairing gap, it is de-
viated from the linear dependence. In addition, we ob-
serve sudden decreases of CV (T ) at special points of T ,
where abrupt changes in nuclear structure take place.
The first drop is associated with the collapse of the neu-
tron pairing at kBT ≈ 500 keV, while the second one is
with the shape change from prolate to spherical shapes at
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FIG. 6. Nucleon density profiles in the z−x plane for 146Ba
at different temperature; (a) T = 0, (b) kBT = 0.8 MeV, (c)
kBT = 1.2 MeV, and (d) kBT = 1.6 MeV.

kBT ≈ 1.6 MeV. On the other hand, the disappearance
of the octupole shape around kBT ≈ 1 MeV have very
little influence on it. In contrast, the shape transition to
the spherical shape (kBT ≈ 1.6 MeV) leads to a signif-
icant impact on the specific heat, a sudden decrease by
more than 30 %. This may be due to an enhanced shell
effect by the recovered spherical symmetry.

D. Shape coexistence in 184Hg at finite
temperature

The neutron-deficient Hg isotopes are known to be a
typical nuclei showing shape coexistence phenomena [39–
41]. Many evidences of the shape coexistence were ob-
served, including coexisting bands with different defor-
mation in even isotopes and anomalously large isotope
shifts in odd-A isotopes. Note that the Hg isotopes also
exhibit superdeformed bands at high spins [42] on which
octupole vibrations are built [43].

We have studied the temperature effect on the shape
coexistence, with the FT-HFB calculation using a con-
straint on the quadrupole deformation β20. The 3D
box of the lattice size 303 with the square mesh of
∆x = ∆y = ∆z = 1 fm is adopted, however, we as-
sume the reflection symmetry with respect to the three
planes (x = 0, y = 0, and z = 0), and reduce the compu-
tational cost. The calculations are performed with differ-
ent temperatures; kBT = 0, 0.4, 0.8, 1.6, 3.2 MeV. The
quadratic constraint on the deformation β20 is used with
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the spacing of ∆β20 = 0.04.
Figure 7 shows the temperature dependence of the

potential energy surface for 184Hg. The total energy
E(β, T ) is calculated at each deformation and temper-
ature, then, the energy relative to the value at β20 = 0
is plotted in the panel (a), while the free energy F (β, T )
is shown in the panel (b). We can clearly see two lo-
cal minima at prolate and oblate shapes. At T = 0,
the deformation and the pairing gaps at the oblate min-
imum are calculated as β20 ≈ −0.1, ∆n ≈ 1.4 MeV, and
∆p = 0. Those at the prolate minimum are β20 ≈ 0.2,
∆n ≈ 0.8 MeV, and ∆p ≈ 1 MeV. The shape coexistence
feature is quite robust against the finite temperature. Al-
though the lowest minimum at zero temperature is in the
oblate side, the prolate minima is more stable as increas-
ing the temperature. The oblate minima are lower than
the prolate ones at kBT ≤ 400 keV, while the prolate
becomes lower at kBT ≥ 800 keV. The main features are
the same for E(β, T ) and F (β, T ), except that a shallow
prolate minimum exists for E(β, T ) but not for F (β, T ).

It is interesting to see that the non-zero temperature
not necessarily favors the spherical shape. The potential
energy surfaces E(β, T ) at kBT = 0.8 and 1.6 MeV in-
dicate deeper prolate minima than that of the zero tem-
perature. It is also true for the free energy F (β, T ) at
kBT = 0.8. This may be partially due to the pairing col-
lapse at finite temperature. For instance, at kBT = 0.8
MeV, the proton pairing vanishes for all the values of
deformation β20. The neutron pairing gap still has non-
zero values but only in the vicinity of the spherical shape
(β20 ≈ 0). The vanishing pairing may lead to stronger
shell energy that favors the deformation.

We should note that the calculation of the free energy
F requires an additional computation. In order to calcu-
late F ≡ E − TS, we evaluate the entropy S using the
formula

S = −kB
∑
k>0

[fk ln fk + (1− fk) ln(1− fk)] , (66)

where fk is given by Eq. (7) in which the quasiparticle
energies Ek are defined as the eigenvalues of the con-
strained HFB Hamiltonian, namely, the mean-field ap-
proximation to Ĥ − µN̂ − λQ̂20. In the present Green’s
function method, since we do not explicitly calculate the
quasiparticle states (and their energies), an additional
diagonalization of the constrained HFB Hamiltonian is
needed after the self-consistent iteration converges. We
use the ScaLAPACK library for this diagonalization.

E. Neutron-star inner crust at finite temperature

The neutron stars are a sort of macroscopic nucleus in
the universe. They are supposed to be synthesized by ex-
plosive stellar phenomena, such as supernovae. The proto
neutron stars are hot, but subsequently cooled down to
the cold neutron stars. It would be of great interest to
study neutron star matters at a variety of temperature,
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FIG. 7. Potential energy surface, calculated with the con-
strained FT-HFB method, as a function of the quadrupole
deformation, for 184Hg. The panel (a) is the total energy E,
while the panel (b) is the free energy F . See text for details.

especially various inhomogeneous phases predicted to ex-
ist in the crust region near the surface.

Microscopic studies of the inner crust is theoretically
very challenging, because the calculation requires a large
space in which extremely neutron-rich nuclei and free
neutrons coexist. In addition, the energy difference be-
tween different configurations is very small. Thus, to
predict the structure of the inner crust, the large-scale
and highly accurate calculations are needed.

In this subsection, we present our first benchmark FT-
HFB calculation for the inner crust. The full 3D box of
(45 fm)3 with the square mesh of ∆x = ∆y = ∆z = 1.5
fm is reduced by 1/8 assuming the reflection symme-
try. The calculation is performed for the temperature
of kBT = 200 keV. We use an initial state for the it-
eration with the face centered configuration (fcc). The
adopted square box contains 4 nuclei. We fix the neutron
chemical potential as µn = 10 MeV, and determine the
proton chemical potential µp to satisfy the beta equilib-
rium condition, µp +mpc

2 + µe = µn +mnc
2, where the

electrons are assumed to be uniform with the chemical
potential, µe =

√
mec4 + p2

F c
2 − e2(3ne/π)1/3.

The self-consistent procedure converges to a fcc state
shown in Fig. 8(a). The neutron and proton density dis-
tributions in the z = 0 plane are shown in Fig. 8(b) and
(c), respectively. The protons are localized and form an
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same as (b) but for protons.

fcc crystalline structure. The neutrons are dripped with
a large number of free neutrons. The average nucleon
density is 0.045 fm−3, and the lowest neutron density
between the nuclei is 0.036 fm−3. The obtained average
pairing gap for neutrons is 1.48 MeV and the proton gap
vanishes. The proton and neutron numbers in the box
shown in Fig. 8(a) are approximately 136 and 3936. Since
the protons are all confined in the crust nuclei, we may
say that emergent nuclei are very neutron-rich Se nuclei
(Z = 34).

The most interesting feature we find in this result is
that those Se nuclei are well deformed. This can be
clearly seen in the density distributions on the z = 0
plane shown in Fig. 8(b) and (c). They are in the prolate
shape. We naively expect that, near the transition to
the rod phase, elongated nuclei may appear. This result
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FIG. 9. Calculated neutron gap ∆n(r) on the x axis. The
protons are clustered near the both edges.

is a microscopic calculation to confirm this. This is cer-
tainly a self-consistent solution of the FT-HFB with the
beta equilibrium at kBT = 200 keV. However, we have
not confirmed yet that this is really the optimal configu-
ration at the given density. Further studies with various
configurations, such as bcc and pasta phases, is necessary
to find the structure of the inner crust.

In this state, the protons are in the normal phase, while
the neutrons are in the superfluid phase. These super-
fluid neutrons are supposed to be responsible for the pul-
sar glitches [44]. Figure 9 shows the neutron pairing gap
∆n(r) on the x axis. The left and the right ends corre-
spond to the center of the Se nuclei, while only dripped
neutrons exist near the center (x = 0). The magnitude
of the gap is about 1 MeV for dripped neutrons and even
larger inside the nuclei. This is somewhat opposite to
our naive expectation, since the pairing gap calculated
with the bare force for the uniform matter is larger at
low density (ρn < ρ0 ≈ 0.08 fm−3) than at high density
(ρn & ρ0) [45, 46]. However, it is premature to conclude
the pairing property in the inner crust from this calcula-
tion. Since the present pairing energy functional is based
on a simple zero-range interaction fitted to specific re-
gions of finite nuclei [34], it is desired to test the other
functionals as well. Especially, the explicit density de-
pendence of the coupling constant g0 may be necessary
to simulate its density dependence [47, 48].

F. Summary

We have developed the finite temperature Hartree-
Fock-Bogoliubov (FT-HFB) method in the three-
dimensional coordinate-space representation with the
Green’s function. This is an extension of the method
proposed in Ref. [22] to the finite temperature. In this
method, neither quasiparticle wave functions nor the
quasiparticle energies are necessary to calculate. Thus,
we can avoid the diagonalization of the HFB Hamilto-
nian. Various kinds of densities are evaluated by the
contour integral in the complex energy plane. For the
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calculation of the Green’s function with the complex en-
ergy, we have tested two different shifted Krylov meth-
ods, shifted COCG and COCR methods. The shifted
COCR methods are more stable and faster to reach the
convergence.

For the benchmark calculations, we showed the struc-
ture change in 146Ba as a function of the temperature.
The octupole deformation at the ground state disappears
at kBT ≈ 500 keV, while the quadrupole deformation is
much more stable and persists up to kBT ≈ 1.6 MeV.
The effect of the shape transition to the spherical shape
is clearly visible in its specific heat.

The shape coexistence in 184Hg is also studied with
the FT-HFB calculation. It is somewhat surprising that
the deformation minima become even deeper at finite
temperature compared to those at zero temperature.
The shape coexistence is quite robust with respect to
the increasing temperature and seems to sustain up to
kBT ≈ 2 − 3 MeV. The barrier height between prolate
and oblate shapes is calculated to be more than 3 MeV,
even at kBT = 1.6 MeV.

The structure of inner crust of (hot and cold) neutron
stars is a prime motivation of the present development

[49]. The method has a significant advantage over the
conventional methods for systems requiring such large
spatial lattice sizes. As for the benchmark, we have pre-
sented a beta-equilibrium fcc state at the nucleon density
of 0.045 fm−3 and kBT = 200 keV. Neutron-rich Se nuclei
emerge and they are well deformed in the prolate shape.
The transition from spherical to deformed nuclei is an in-
teresting issue in the future study of the structure of the
inner crust, as a function of density and temperature.
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