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Skew-Aware Collective Communication for MapReduce Shuffling
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SUMMARY This paper proposes and examines the three in-memory
shuffling methods designed to address problems in MapReduce shuffling
caused by skewed data. Coupled Shuffle Architecture (CSA) employs a
single pairwise all-to-all exchange to shuffle both blocks, units of shuf-
fle transfer, and meta-blocks, which contain the metadata of correspond-
ing blocks. Decoupled Shuffle Architecture (DSA) separates the shuffling
of meta-blocks and blocks, and applies different all-to-all exchange algo-
rithms to each shuffling process, attempting to mitigate the impact of strag-
glers in strongly skewed distributions. Decoupled Shuffle Architecture with
Skew-Aware Meta-Shuffle (DSA w/ SMS) autonomously determines the
proper placement of blocks based on the memory consumption of each
worker process. This approach targets extremely skewed situations where
some worker processes could exceed their node memory limitation. This
study evaluates implementations of the three shuffling methods in our pro-
totype in-memory MapReduce engine, which employs high performance
interconnects such as InfiniBand and Intel Omni-Path. Our results suggest
that DSA w/ SMS is the only viable solution for extremely skewed data
distributions. We also present a detailed investigation of the performance
of CSA and DSA in various skew situations.
key words: MapReduce, Shuffle, Skew, libfabric, Intel Omni-Path

1. Introduction

1.1 MapReduce for HPC

MapReduce [1] is the very foundation of numerous com-
puting frameworks [2]–[9]. As suggested by the authors of
[10], now there is a high demand for HPC frameworks capa-
ble of handling so-called “extreme” big data [10] generated
by higher-resolution scientific simulations. MapReduce is
one promising candidate for such a framework, and vari-
ous designs for several supercomputers have been studied
so far [2]–[6].

A typical MapReduce execution consists of three dis-
tinct phases: map, shuffle, and reduce, and the shuffle
phase serves as a collective communication [11]. The com-
munication pattern of shuffling is essentially equivalent to
that of MPI Alltoallv in the message passing interface
(MPI) [12], which performs all-to-all data exchange among
participating processes. The all-to-all collective communi-
cation pattern is essentially important in supercomputing,
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and the work in [13] is one attempt to improve its perfor-
mance with a sophisticated algorithm.

1.2 The Skew Problem

MapReduce frameworks need to tackle a problem called
“skew” - a load imbalance problem in which a large por-
tion of the entire working set could be assigned to a small
number of worker processes over the shuffle phase. The
skew problem is rarely a concern for traditional scientific
applications where problems could be load-balanced either
by nature or with some clever portioning techniques for ini-
tial data. However, with emerging data-intensive applica-
tions, the skew problem is harder to resolve since the data
distribution is often unknown statically, and is highly un-
predictable. In MapReduce, the shuffle phase is a major
cause of skewed distributions. The major MapReduce im-
plementations [7], [8] try to resolve the skew problem by
“spilling” overflowed data to local storage. However, typ-
ical supercomputers such as Oakforest-PACS [14] and K
computer [15] only equip shared file systems, providing no
local storage on computing nodes. Such an environment
makes the spill-to-storage solution less appealing since file
access is relatively expensive.

The existing MapReduce implementations can be di-
vided into the following two groups:
HPC-Oriented [2]–[6]: These implementations use MPI as
communication framework. MPI Alltoallv, the all-to-all
collective communication routine in MPI, is often employed
to implement the shuffle phase. The actual shuffle communi-
cation, therefore, is concealed within the MPI library, mak-
ing it difficult to address MapReduce-specific problems like
skewed distributions. It should be noted that these imple-
mentations maximize the capabilities of high performance
interconnects since major MPI implementations are finely
optimized for such hardware environments.
Commodity-Oriented [7], [8]: These implementations, as
described previously, assume that computing nodes possess
local disks, and utilize the local disks as temporary storage
for data overflows caused by high skew. An in-memory exe-
cution of shuffling on HPC clusters with no node-local stor-
age, therefore, is out of their scope. Moreover, current im-
plementations primarily target commodity cluster environ-
ments with 1 or 10 GbE networks.

Thus, to the best of our knowledge, it is still an un-
solved question whether it is possible to address the skewed
distribution problem of MapReduce shuffling in an in-
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memory manner.

1.3 Proposal

In response to the above question, this study proposes and
examines the following three shuffling methods, specifi-
cally designed to address the problem of skew in in-memory
MapReduce engines:
Coupled Shuffle Architecture (CSA) shuffles both blocks
(units of shuffle transfer) and meta-blocks (metadata of
blocks) in a single pairwise all-to-all exchange.
Decoupled Shuffle Architecture (DSA) separates the shuf-
fling of meta-blocks and blocks into two different all-to-all
exchanges, referred to as meta-shuffle and block-shuffle, re-
spectively. The meta-blocks are shuffled in a pairwise ex-
change, followed by the corresponding block-shuffle, which
uses a naive all-to-all exchange. This design attempts to
mitigate the performance degradation caused by stragglers.
DSA with Skew-Aware Meta-Shuffle (DSA w/ SMS) ex-
tends the meta-shuffle phase of the DSA method, and, in
two consecutive meta-shuffles, autonomously determines
the proper placement of the shuffling blocks based on the
memory consumption of each process. With this design,
shuffling can still be executed in-memory, even in an ex-
tremely skewed situation where some processes could ex-
ceed their memory capacity.

To evaluate these three methods, we implemented a
prototype in-memory MapReduce engine that supports three
network libraries, BSD socket, OFA verbs, and OFI lib-
fabric, to make the most of high performance interconnect
networks. Our codes are available on Bitbucket for repro-
ducibility [16]. We evaluated our implementation of the
three methods on 1024 nodes of the Oakforest-PACS su-
percomputer, showing that only the DSA w/ SMS method
successfully executed in situations of extreme skew.

1.4 Organization

This paper is structured as follows: Section 2 explains
conventional collective communication algorithms for shuf-
fling, and their problems. Section 3 describes design de-
tails of the three proposed shuffling methods, CSA, DSA,
and DSA w/ SMS, followed by their implementation details
on our prototype in-memory MapReduce engine in Sect. 4.
Section 5 reviews the results of the experiments we per-
formed on the OFP cluster, as well as discussion about the
performance and the skew tolerance of each method. Sec-
tion 6 describes existing work on solving the skew problem,
and, finally, concluding remarks are given in Sect. 7.

2. Conventional Collective Communication Algorithms
for Shuffling

2.1 The Skew Problem

Skew is one important problem in the field of distributed

computing, and generally indicates a state in which compu-
tational load notably varies among participating processes.
In this paper, a “skewed” distribution specifically refers to
a state in which a large portion of the entire working set
is assigned to a small number of worker processes over the
shuffle phase.

Under a skewed distribution, some highly loaded pro-
cesses called stragglers could determine the execution time
of the entire shuffling operation. In the worst case, the shuf-
fling just fails to execute because of the stragglers consum-
ing too much resource and exceeding the capacity of the
computing nodes. Thus, resilience to a skewed distribution
is an important aspect when designing collective communi-
cation algorithms for MapReduce shuffling.

2.2 The Naive Algorithm

In a naive algorithm, each process independently fetches
data from the other processes. Since it requires no syn-
chronization among processes, a naive algorithm is suit-
able for a highly skewed situation where the entire shuffling
process could be affected by a few stragglers. Compared
to other collective communication algorithms designed for
MPI [17], the naive algorithm can be considered as the sim-
plest algorithm to realize an all-to-all exchange. The im-
plementation of MPI Alltoallv in MPICH (v3.2.1) [18],
one of the major implementations of MPI, consists of a se-
ries of asynchronous MPI Isend/Irecv calls followed by
an MPI Waitall routine to wait for their completion. Thus,
it can be classified as a naive method. Hadoop and Spark,
the two major engines of MapReduce, employ a simple im-
plementation of the naive algorithm in which each worker
issues HTTP GET requests to the other workers. In contrast
to these simpler implementations, the MPICH implementa-
tion optimizes the algorithm by limiting the number of con-
current send/recv operations and scattering the order of des-
tinations among the ranks, which results in well-balanced
load on the network across the system.

2.3 The Pairwise Algorithm

The pairwise algorithm is another all-to-all exchange algo-
rithms designed for MPI. In a pairwise algorithm, processes
pair and exchange data in a series of steps, and, at the end
of each step, the two processes in each pair are synchro-
nized. Thus, the algorithm is applicable only to a power-
of-two number of processes. MPICH (v3.2.1) utilizes the
pairwise algorithm to implement its MPI Alltoall collec-
tive for long messages and power-of-two number of pro-
cesses [19].

Figure 1 depicts the flow of a pairwise algorithm with
four processes. At first, each process holds four data values
(0, 1, 2, 3), and, going through the procedure, data shar-
ing the same value are transferred to the same process. For
n processes, the algorithm requires n − 1 steps to perform
a complete all-to-all communication, and, in each step, n

2
connections are utilized. The generalized rule for pair for-
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Fig. 1 Pairwise all-to-all exchange algorithm

mation is as follows: In step k, a process with rank i forms
a pair with the process (i XOR k). Although the pairwise al-
gorithm, as described above, is applicable only when there
are power-of-two number of processes, the algorithm can
be generalized for non-power-of-two number of processes
as follows: In step k, a process with rank i receives data
from the process (i − k) mod n, and sends data to the pro-
cess (i + k) mod n.

With synchronization between consecutive steps, the
pairwise algorithm ensures that any process communicates
with at most one process at a time. Specifically, the max-
imum possible number of concurrent data transfers is n

2 in
total, whereas, with the naive method, the number can be
as large as (n − 1) × n. This constraint enables more effi-
cient utilization of network bandwidth. One disadvantage
of the per-step synchronization, however, is that stragglers
will affect the entire exchange process. Hence, the pairwise
algorithm is considered to be only effective in low or zero
skew situations.

In summary, although the pairwise algorithm is more
sophisticated and achieves better network utilization over
the naive algorithm, the algorithm is not optimal for a highly
skewed condition with some stragglers affecting the entire
shuffle execution.

3. Proposal

Based on the two algorithms described in the previous sec-
tion, this study designs the following three all-to-all com-
munication methods, CSA, DSA, and DSA w/ SMS, for
MapReduce shuffling. Figure 2 shows communication flow
of the three methods. First, the following two terms are de-
fined to explain the methods in detail.
- Block: Unit of shuffle transfer
- Meta-block: The metadata of a corresponding block (Such
as size, identifier, etc.)
Coupled Shuffle Architecture (CSA): In CSA, both meta-
blocks and blocks are shuffled in a single pairwise all-to-all
exchange. Following the pairwise algorithm, each process
first exchanges meta-blocks with a peer. Next, the processes
reference the size attribute given by the meta-block, allocate
a receive buffer, and then exchange the blocks themselves.
At the end of the step, each process synchronizes with its
peer, limiting the number of concurrent transfers on each
process to at most one. Thus, this method avoids overload-

ing a certain network path. However, under a highly skewed
situation, stragglers can impede the entire shuffling process.
(Fig. 2 (a))
Decoupled Shuffle Architecture (DSA): DSA separates the
shuffling of meta-blocks and blocks into two distinct all-to-
all exchanges, referred to as meta-shuffle and block-shuffle,
respectively. First, meta-blocks are shuffled in a pairwise
exchange. Since the size of a meta-block is constant and
independent of the size of the corresponding block, it is rea-
sonable to assume that the meta-shuffle phase does not suffer
from skewed distribution. As for the block-shuffle, blocks
are shuffled in a naive all-to-all communication to relieve
the impediment of stragglers in highly skewed situations.
Note that, for a fair share of the network resource, a pro-
cess chooses its communication peer in the same order as
the pairwise-based meta-shuffle. Only a single global bar-
rier operation is performed at the end of the block-shuffle
phase to synchronize the worker processes. (Fig. 2 (b))
DSA with Skew-Aware Meta-Shuffle (DSA w/ SMS):
DSA w/ SMS extends the meta-shuffle phase of the
DSA method, and, in two consecutive meta-shuffles, au-
tonomously determines the proper placement of the shuf-
fling blocks based on the memory consumption of each pro-
cess. (Fig. 2 (c))

Algorithm 1 and 2 explain the procedures of the DSA
w/ SMS meta-shuffle on the receiver and the sender, re-
spectively. The receiver first iterates through the array of
meta-blocks received from the sender, and, for each meta-
block, checks if the corresponding block can fit in its mem-
ory. If the sum of the size attribute given by the meta-
block (meta blk.size) and the current memory consump-
tion (cur size) is bigger than the maximum allowed size
(max size) of the node, the receiver stops accepting the
blocks, and returns the number of blocks accepted to the
sender. Note that the max size parameter can easily be de-
termined based on the memory capacity on each node. The
sender, after receiving the number of blocks accepted by the
receiver, marks rejected blocks as “pending” by inserting
them into the pending blks array. On the second run of the
meta-shuffle, the sender tries to send the pending blocks to
other receivers in a pairwise manner, delegating the blocks
to processes which still have available memory. In other
words, the overflowed blocks have been “spilled” to the re-
mote memory.

After the second meta-shuffle, a block-shuffle is per-
formed in the same way as in the original DSA method.
Blocks are transferred to the process that has accepted the
corresponding meta-block. After the block-shuffle, the user-
defined reduce operation is performed, freeing memory to
accept the blocks which once had been rejected due to lack
of space. The workers then repeat the same series of the
meta-shuffle and the block-shuffle until every block has been
accepted by its primary owner. With the mechanism above,
shuffling can still be performed in-memory, even in an ex-
tremely skewed situation where some processes could ex-
ceed their memory limitation.

Given the above observations, to enable DSA w/ SMS,
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Fig. 2 Communication flow diagrams of CSA, DSA, and DSA w/ SMS

Algorithm 1 Receiver-side Pseudocode of SMS
1: max size = US ER DEFINED
2: cur size = 0
3: function MetaShuffleSrv(peer rank)
4: recv from(peer rank, meta blks)
5: num accepted = 0
6: for meta blk in meta blks do
7: if cur size + meta blk.size > max size then
8: break
9: end if

10: cur size += meta blk.size
11: num accepted++
12: end for
13: send to(peer rank, num accepted)
14: end function

Algorithm 2 Sender-side Pseudocode of SMS
1: pending blks = []
2: function MetaShuffleCli(peer rank)
3: meta blks = get meta blks for(peer rank)
4: send to(peer rank, meta blks)
5: recv from(peer rank, num accepted)
6: for i = num accepted to meta blks.length do
7: pending blks.append(meta blks[i])
8: end for
9: end function

the reduce operation must:
1) Be associative: a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c
2) Generate less data than input
Examples of such workloads include group-by aggregate
tasks, such as word count, or low-selectivity relational join
operations.

4. Implementation

This section describes the implementation of our prototype
MapReduce engine specifically designed for evaluating the
three shuffling methods explained in Sect. 2. The design
of the engine is largely inspired by Resilient Distributed
Datasets (RDD) [20] - the core API of Apache Spark. Our
implementation, which is written in 6020 lines of C/C++
code, is publicly available on Bitbucket [16]. The following
subsections give further explanation on two major internal

modules, RDD and Shuffle Handler.

4.1 Resilient Distributed Datasets (RDD)

This module implements a subset of features provided by
Spark RDD. Our prototype implementation provides three
types of RDD: KeyValueRDD for holding (key, value) pairs,
KeyValuesRDD for holding (key, < value1, value2, . . . >)
pairs, and DummyRDD for generating artificial skewed shuffle
communication. With DummyRDD, data of a user-specified
size is first divided into 32-MiB partitions, and then dis-
tributed across worker processes. The distribution is con-
trolled by another user-defined parameter called skewness.
The skewed distribution of data is reproduced in the follow-
ing manner:
1. Each RDD partition is divided into smaller chunks. The
number of chunks per partition is equal to the total number
of RDD partitions, and thus the size of each chunk is deter-
mined as follows:

chunk size =
partition size

num partitions

2. Each chunk is transferred to a random RDD destination
partition. The random number generator for determining the
destination is weighted with the following function:

w(x) =
1

(x + 1)α

(x ∈ Z, 0 ≤ x < num partitions, α ∈ R, α ≥ 0)

This weight function reflects Zipf’s law, which states that
the i-th most frequently appeared element can occupy as
much as 1

i of the entire dataset. Zipf’s law is known to hold
for many real-world datasets, including the word frequency
of English and the access frequency of WWW pages. Set-
ting α to 0 in the weight function above signifies a zero skew
distribution. Increasing α represents an increasingly skewed
distribution of the data.

4.2 Shuffle Handler

Prior to the shuffle phase, each RDD partition is packed into
a byte array, referred to as “a block”, using the msgpack
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library and put into the Shuffle Handler. After the shuf-
fle completes, each RDD partition gets its own blocks from
the local Shuffle Handler using its partition ID. The Shuffle
Handler updates the total size of the blocks it manages ev-
ery time a block is put into/get from the module. As for the
inter-process communication, the Shuffle Handler module
supports three network libraries, BSD socket, OFA verbs,
and OFI libfabric [21]. An all-to-all connection is estab-
lished at the initialization of the module.

For both CSA and DSA, meta-blocks are exchanged
in a pairwise all-to-all communication implemented with a
series of blocking send/recv operations. Each meta-block
contains the size of its corresponding block. As for the
block-shuffle of DSA, the socket implementation utilizes
non-blocking send/recv operations with a poll event loop,
while the verbs and the libfabric implementations mutually
trigger one-sided read operations.

5. Evaluation

The purpose of this study is to design and examine skew-
tolerant collective communications for MapReduce shuf-
fling. To achieve this goal, we evaluated the three shuffling
methods, CSA, DSA, and DSA w/ SMS, implemented in
our prototype MapReduce engine described in Sect. 4.

All experiments were performed on the Oakforest-
PACS (OFP) [14] cluster system operated by the Joint Cen-
ter for Advanced High Performance Computing (JCAHPC).
The configuration of the OFP cluster system is exhibited in
Table 1. MCDRAM, the 16-GiB high bandwidth memory
on the Xeon Phi (KNL) processor package, was configured
to be used as Last Level Cache (LLC). The OFP is equipped
with an Intel(R) Omni-Path interconnect network forming a
full-bisection fat-tree topology. Omni-Path supports mul-
tiple software interfaces, including psm2, OFA verbs, and
BSD socket. In the following experiments, we used psm2,
which is the native interface of the Omni-Path interconnect,
via OFI libfabric library.

5.1 Experiment 1: Comparison of Skew Tolerance

5.1.1 Overview

This experiment compared the skew tolerance of the three
shuffling methods, CSA, DSA, DSA w/ SMS, on 128 nodes
of the OFP system using an artificial shuffling workload.
The workload first assigns 1 GiB of data per process, 128
GiB in total, and then shuffles the data using a specified
skewness parameter. The skewness parameter, which is de-
noted as α in the previous section, was increased from 0.0 to
3.0, in increments of 0.5, and re-examined as skewness in-
creased from 2.5 to 3.0 in increments of 0.1. In the DSA w/
SMS method, each process was constrained to a maximum
of 80 GiB of memory. The memory space available on each
node was limited to 82 GiB by the job scheduler, and any
jobs that reached the memory limit were terminated by the
job scheduler. Each method was executed three times. The

Table 1 Cluster configuration (OFP)

# nodes 2 ∼ 1,024
OS CentOS Linux release 7.2.1511
Kernel Linux 3.10.0-327.36.3.el7
libfabric (ofi) 1.5.3
CPU Intel(R) Xeon Phi(TM) CPU 7250 @

1.40GHz, 68 cores (4 HT)
Memory DRAM: 96 GiB, MCDRAM: 16 GiB

(used as LLC)
Interconnect Intel(R) Omni-Path (100 Gbps), Full-

bisection Fat-tree
Parallel File System DDN Lustre
File Cache System DDN IME14K

presented results average each set of three executions.

5.1.2 Results

Figure 3 (a) shows the execution times of the three shuffling
methods as skewness increased from 0.0 to 3.0 in increments
of 0.5. And Fig. 3 (b) shows the memory consumption of
the most loaded process, the straggler, at each increment
of skewness. When the skewness was 0.0, every process
evenly received 1 GiB of blocks in total. As the skewness
increased, the size of received blocks became progressively
more varied across the processes, resulting in a sharp decline
in the overall performance, as demonstrated in Fig. 3 (a).
At a skewness of 3.0, the straggler received 90.69 GiB of
blocks, in contrast to the initial, zero skew distribution of
1.00 GiB per process across all 128 nodes. Thus, on CSA
and DSA, the entire shuffle processes were terminated by the
job scheduler since the 82-GiB memory limit was breached
on the straggler node. On the other hand, DSA w/ SMS suc-
cessfully remained operational by exploiting remote mem-
ory, at the expense of execution time.

Throughout the experiment, the execution times of
DSA w/ SMS were almost 3 seconds longer compared to
that of the original DSA. This constant performance dif-
ference is reasonable because, as explained in Sect. 3, the
DSA w/ SMS method requires additional operations during
the meta-shuffle phase. Furthermore, the 3-second differ-
ence becomes less significant as increasing skewness dra-
matically extends execution time for all three methods.

Compared to DSA, CSA performed better under lower
skew. At zero skew, CSA was 1.25 times faster than DSA.
The all-to-all communication algorithms employed for shuf-
fling blocks explain this performance difference. CSA, as
described in Sect. 3, is impeded under high skew because
stragglers hamper the synchronization that occurs at the end
of each step of the pairwise algorithm. Conversely, under
low skew, CSA balances the load on the network links, max-
imizing the efficient utilization of network bandwidth. This
performance difference is further investigated in the subsec-
tion that follows.

According to Fig. 3 (a), the memory consumption of
the straggler process exceeded 82 GiB at some point in
skewness between 2.5 to 3.0, causing the job scheduler to
terminate the executions of CSA and DSA. To acquire
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Fig. 3 Comparison of skew tolerance: CSA, DSA & DSA w/ SMS

Fig. 4 Comparison of weak scaling performance: CSA & DSA

a more precise understanding of the behavior of shuffling
methods around this skewness threshold, we examined the
executions of the three shuffling methods under skewness
values from 2.5 to 3.0, incremented in units of 0.1. Fig-
ure 3 (c) shows that, for the skewness equal to or greater
than 2.7, CSA and DSA failed to operate. This occurred
because the straggler consumed as much as 83.53 GiB of
memory, surpassing the 82 GiB job limit.

As shown in Fig. 3 (c), when skewness increased from
2.5 to 2.6, DSA w/ SMS performance declined by a factor
of 1.21, while CSA and the original DSA did not register
significant changes in their execution times. This is rea-
sonable since, at a skewness of 2.6, the memory consump-
tion of the straggler reached 80.44 GiB. This just exceeded
the 80-GiB-per-process threshold for DSA w/ SMS, auto-
matically triggering the block delegation mechanism of the
method. The additional block transfers over the network,
which is unique to the DSA w/ SMS method, explain why
only this method degraded its performance apparently when
skewness reached 2.6. Note that, under this particular ex-
perimental settings, only the second round of shuffling was
triggered by DSA w/ SMS. An even higher degree of skew-
ness could lead to additional rounds of shuffling.

5.2 Experiment 2: Comparison of Weak Scaling Perfor-
mance

5.2.1 Overview

This experiment further investigated the performance differ-
ence between CSA and DSA revealed in Experiment 1, by
comparing their weak scaling performance. The artificial
workload from Experiment 1 was also applied in this exper-
iment, scaling the number of the worker processes from 2 to
1024. Only one worker process was launched per node, and
1 GiB of data was assigned to each process. The skewness
parameter of the DummyRDD was increased from 0.0 to 1.0,
in increments of 0.1. The selected results discussed below
summarize those of the complete skewness range, detailing
execution times for the selected skewness values of 0.0, 0.6,
and 1.0. Note that, under all tested conditions, the memory
consumption of the straggler process remained below the
82-GiB job limit enforced in this experiment.

5.2.2 Results

Figure 4 presents the execution times of CSA and DSA
across increasing numbers of nodes at skewness values of
0.0, 0.6, and 1.0. Figure 4 (a) demonstrates that at zero skew,
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Fig. 5 Correlation between per process execution time and total block size

CSA outperformed DSA, especially as the number of nodes
increased. At 1024 processes, in particular, CSA was 1.65
times faster than DSA. The standard deviation of the to-
tal size of blocks received per process was 0.00 GiB, since
each process received 1.00 GiB of blocks under the zero-
skew condition.

As the skewness increased, CSA performance declined
under the influence of the straggler. Note that when the
skewness reached 0.6, as shown in Fig. 4 (b), the perfor-
mance ratio of the two methods was minimized, hovering
at around 3%, regardless of the number of nodes. At 1024
processes, the standard deviation of the size of blocks re-
ceived per process was 0.37 GiB, and the straggler received
6.25 GiB of blocks in total.

Under the most severe skew condition of this experi-
ment, depicted in Fig. 4 (c), DSA was superior, achieving
1.16 times faster execution than CSA with 1024 processes.
The standard deviation of the total size of blocks received
per process was 2.90 GiB, and the straggler received as
much as 65.86 GiB of blocks in total.

5.2.3 Advantage of CSA under Low Skew

Figure 4 indicates that, under low skew, CSA outperforms
DSA. The result leads to the hypothesis that, with no strag-
glers, the pairwise all-to-all exchange employed in CSA can
balance load on the network links, resulting in better utiliza-
tion of the network bandwidth compared to DSA. To test
this hypothesis, Fig. 5 (a) examines the correlation between
block transfer time and block size received for the 1024-
process result obtained under zero skew, as originally seen
in Fig. 4 (a). Each plot point in Fig. 5 (a) compares the block
transfer time and the total block size of the corresponding
worker. The slope of the line connecting the origin and each
point indicates the transfer bandwidth.

The 1024 plot points for CSA gather around the same
temporal location, indicating that the block transfer times
were almost identical among the processes. The average
block transfer time was 8.19 seconds, and the standard devi-
ation was 0.03 seconds. Since each process evenly received
1.00 GiB of blocks when the skewness was 0.0, the transfer

bandwidth averaged 1.05 Gbps.
Contrarily, the plot points for DSA spread along the x-

axis direction, indicating that the transfer time varied among
the processes. The average block transfer time was 18.57
seconds, and the standard deviation was 1.21 seconds. Thus,
the average transfer bandwidth was 0.46 Gbps, which was
2.28 times lower than that of CSA.

Summarizing the above results, we conclude that CSA,
which uses the Pairwise exchange for the block shuffling,
can effectively utilize the network bandwidth under low
skew condition.

5.2.4 Performance Impact of Straggler under High Skew

Figure 4 indicates that the performance of both CSA and
DSA is affected by the straggler. As skewness increased
from 0.0 to 1.0, CSA performance in the 1024-process sce-
nario degraded by a factor of 3.11. Although considered to
be more efficient than CSA in high skew situations, DSA
performance also declined by a factor of 1.61. As the skew-
ness increased, more and more blocks were transferred to
the straggler process. At the maximum tested skewness of
1.0, 51.45% of the blocks were accumulated by the strag-
gler. Based on this analysis, we can infer that the perfor-
mance of the entire shuffle execution is constrained by the
straggler.

To test the above hypothesis, for each phase of DSA
shuffling, the meta-shuffle and the block-shuffle, we exam-
ined the correlation between process execution time and the
total size of blocks received per process for the 1024-process
scenario when the skewness was 1.0, as originally seen in
Fig. 4 (c). Each plot point in Fig. 5 (b) and Fig. 5 (c) com-
pares the execution time and the total block size of the cor-
responding worker for the meta-shuffle and block-shuffle,
respectively.

Figure 5 (b) indicates that the execution times of the
meta-shuffle phase were fairly consistent, at around 3.70
seconds, regardless of the aggregated size of the blocks
corresponding to the meta-blocks. This result is reason-
able since, as described in Sect. 3, the meta-shuffle phase of
DSA is implemented with the pairwise all-to-all exchange
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Fig. 6 Breakdowns of block-shuffle execution time: DSA (Skewness: 1.0)

in which the processes are synchronized per step, and meta-
blocks are uniform in size, unlike, and independent of, the
size of their corresponding blocks.

The block-shuffle phase depicted in Fig. 5 (c) reveals a
strong positive correlation between the per process execu-
tion time and the total block size received. The execution
time of the block-shuffle on the straggler process, which re-
ceived 65.81 GiB of blocks in total,was 44.30 seconds, con-
suming 85.94% of the entire shuffle execution time of 51.55
seconds. Thus, we confirm that the performance of the en-
tire shuffle execution is constrained by the straggler.

As can be seen in Fig. 5 (c), except for the straggler,
the block-shuffle execution time is almost proportional to
the total size of blocks received. To explore this exceptional
behavior of the straggler, we examined the breakdown of
the block-shuffle execution on each process. The two main
process components of the block-shuffle are 1) allocation of
receive buffers, and 2) transmission of blocks.

Figure 6 (a) breaks down the execution of 1024 pro-
cesses, and Fig. 6 (b) highlights the top ten most loaded pro-
cesses. In the figures, each process is assigned a unique
identifier (#1 - #1024) in descending order of the total size
of blocks it received. Overall, as observed in Fig. 6 (a),
nearly 60% of the block-shuffle phase was spent transfer-
ring blocks, and that ratio increased as the process received
more blocks. Interestingly, Fig. 6 (b) reports that process #1,
the straggler, exhibited a shorter transfer time than that of
the process #2.

To enhance our understanding of these phenomena, we
examined the correlation between, for each of the 1024 pro-
cesses, the time spent for transferring blocks and the total
size of blocks received. The results in Fig. 6 (c) shows that
the transfer bandwidth, which is indicated by the slope of
the line connecting the origin and each point, increased as
the process received more blocks. For most processes, the
transfer bandwidth was approximately 3.41 Gbps, while the
process # 1, the straggler, recorded a transfer bandwidth of
23.10 Gbps. These results make it apparent that the strag-
gler can utilize higher bandwidth than the other process,
spending relatively less time on the block-shuffle execution

as shown in Fig. 6 (b).

6. Related Work

6.1 Remote Memory Utilization

SpongeFiles [22] implements a Java library that offers a
spilling mechanism exploiting remote memory. Sponge-
Files requires a dedicated server process to track comput-
ing node memory usage. A worker process attempting to
perform remote spills must first request a list of nodes with
available memory from the tracking server. In a large-scale
environment, this could cause an excessively heavy load on
the tracking server. To mitigate this issue, our study pro-
poses a server-less method of remote spilling that is embed-
ded in the all-to-all collective communication of shuffling.

The authors of Infiniswap [23] propose an OS-level re-
mote memory paging system, which utilizes RDMA tech-
nologies. Since it is implemented at the OS layer, any appli-
cation running on top of an Infiniswap-enabled system could
transparently utilize remote memory without modification.
While convenient in one respect, this generalized function-
ality comes at the cost of difficulties optimizing the system
for any specific application. For example, the map output of
MapReduce that will be consumed by a local reducer should
not be spilled to remote memory. Furthermore, since Infin-
iswap exploits the swapping mechanism of the host OS, it
must provide fault tolerance for the spilled data. To satisfy
this requirement, Infiniswap must asynchronously replicate
the spilled data to a local disk as well. For a shared-nothing
computing model like MapReduce, however, fault tolerance
is not necessarily a must-have, since the lost portion of a
working set could be recomputed. Our study aims to design
a MapReduce-specific spilling mechanism at the framework
level.

To redistribute data during the shuffle phase, most
MapReduce implementations by default use simple hash
partitioning, which often ignores the distribution character-
istics of keys and thus triggers undesired skewed distribu-
tion. Both Hadoop and Spark allow users to write custom
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partitioners and optimize distribution based on the charac-
teristics of their workloads. However, as emphasized by the
authors of [1] and [22], MapReduce was originally designed
to provide an easy-to-use parallel programming model for
non-expert programmers with little knowledge of distributed
systems. Hence, various sophisticated partitioning strategies
have been proposed to transparently address the skew prob-
lem [24]–[26].

6.2 Communication Optimization

One commonly used technique for optimizing shuffle per-
formance, which also is leveraged by Hadoop, is to overlap
the shuffle phase with computation phases, that is, map or
reduce, and hide the expensive communication latency of
shuffling. However, as stated by the authors of [27], this
approach could lead to inefficient memory utilization due
to buffering of the shuffled data, especially given the re-
cent trend of decreasing memory-to-core ratio. For an in-
memory MapReduce engine where fetched data must reside
in memory, this design is less favorable.

Another approach to optimize existing MapReduce
frameworks for the HPC environment is to utilize high per-
formance interconnects. The RDMA technology has been
proven to be effective for accelerating the shuffle communi-
cation by several studies [28]–[30].

All the studies described above focus on the optimiza-
tion of Apache Hadoop or Spark, the two most popular
MapReduce implementations, which by nature is designed
for commodity cluster systems. Thus, these studies still
employ some types of storage system for placing interme-
diate data during the shuffle phase. Contrarily, our study
designs and implements an in-memory MapReduce engine
that exploits remote memory via high performance intercon-
nect, completely eliminating the expensive file I/Os from the
shuffle execution path.

6.3 Application-Level Solutions for Skewed Data

While the focus of this paper and the work described
above is on addressing the skew problem at the framework
level, offering an application-specific remedy could be an-
other effective way to mitigate the skewness. The work in
CloudRAMSort [31] and SDS-Sort [32] are two examples of
addressing the skewed data in the context of distributed sort-
ing. The idea is to utilize knowledge about the data itself
by partitioning the keyspace based on a result of random-
sampling before the data is passed to a lower-level frame-
work like MPI. Our solution, on the other hand, does not
rely on any characteristics of the raw data, but only on the
size of serialized byte arrays. Thus it is a more generic so-
lution for the problem, and intends to reduce the burden on
the application developers.

7. Conclusions

In this paper, we proposed and examined the three in-

memory shuffling methods, CSA, DSA, and DSA w/ SMS,
designed to address the problem of skew in MapReduce
shuffling. CSA shuffles both blocks and meta-blocks in
a single pairwise all-to-all exchange, which is particularly
well-suited to a low skew situation. The second method,
DSA, separates the shuffling of meta-blocks and blocks, ap-
plying two different types of all-to-all exchanges. The DSA
approach aims to mitigate the impact of stragglers in highly
skewed distributions. The final, and most complex method,
DSA w/ SMS, autonomously determines the proper place-
ment of the shuffling blocks based on the memory con-
sumption of each process. DSA w/ SMS targets extremely
skewed conditions where some processes could exceed their
memory limit. To evaluate these three methods, we imple-
mented a prototype in-memory MapReduce engine that sup-
ports three network libraries, BSD socket, OFA verbs, and
OFI libfabric, to make the most of high performance inter-
connect networks.

Through a series of experiments, we examined the per-
formance and the skew tolerance of the three shuffling meth-
ods. Our results confirmed that only the DSA w/ SMS
method, which exploits remote memory via high perfor-
mance interconnect, successfully executes in situations of
extreme skew. Regarding weak scaling performance, CSA
outperformed DSA by a factor of 1.65 under low skew con-
ditions. This was possible because CSA achieves more ef-
ficient network utilization due to the application of the pair-
wise exchange.
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Appendix: Skew Dealing Method with Shared File Sys-
tem

As described in Sect. 1, this study assumes a target envi-
ronment of typical HPC clusters such as Oakforest-PACS
(OFP) and K computer, which have no local disks on com-
puting nodes. Since accessing files on shared storages, such
as Lustre or GlusterFS, is relatively expensive, such an en-
vironment makes the spill-to-storage solution employed by
Hadoop and Spark less appealing. This section presents the
results of the performance comparison between the DSA w/
SMS method and the so-called On-Disk method.

Figure A· 1 gives an overview of block transfer in the
On-Disk method. In the meta-shuffle phase, the On-Disk
method checks if the blocks can fit in node memory in the
same way as the DSA w/ SMS method. Unlike the DSA w/
SMS method, the On-Disk method spills overflowed blocks
over into the shared file system, making the blocks glob-
ally accessible to the remote processes. In the block-shuffle
phase, block transfers over the network, as well as the shared
file system, are performed. After the shuffling, each reduce
task tries to fetch its own blocks from the local memory or
the shared file system via the Shuffle Handler module.

We implemented the On-Disk method in our prototype
MapReduce engine described in Sect. 4. We again evalu-
ated its performance evaluation on 128 computing nodes of
the OFP. There are two file systems available on the OFP:
the HDD-based Lustre file system, and the SSD-based burst
buffer, also known as IME [33]. The IME can be used for
caching files on the Lustre, as well as for storing tempo-

Fig. A· 1 Block transfer via shared file system
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Fig. A· 2 Comparison of skew tolerance: DSA w/ SMS & On-Disk

rary files during job execution. For this experiment, the
temporary directory for block spilling was set to either the
Lustre or the IME, and we measured the shuffle execution
time for each scenario. We also investigated the effect of
network performance by executing the workload using two
different network libraries, BSD socket and OFI libfabric,
enabled respectively. The former library utilizes the IPoIB
network of Intel Omni-Path, while the latter library is ex-
pected to demonstrate better performance because it lever-
ages Omni-Path’s native psm2 interface. All other param-
eters precisely replicated the conditions of the experiments
detailed in Sect. 5.

Figure A· 2 shows the execution times of the two shuf-
fling methods, DSA w/ SMS and On-Disk, as the skewness
parameter was increased from 2.5 to 3.0, in increments of
0.1. The Shuffle segments of each bar represent the overall
shuffle execution time, while the Block Read segments rep-
resent the amount of time that reduce tasks spent fetching
blocks from the Shuffle Handler module and deallocating
their memory regions. For the On-Disk method, the Shuffle
segment includes the time spent spilling blocks over into the
shared file system, and the Block Read segment includes the
time spent reading the blocks from the shared file system.

The results, displayed in Fig. A· 2 (a), suggest that,
when using OFI libfabric, the advantage of in-memory shuf-
fling in DSA w/ SMS becomes more meaningful as skew-
ness increases. When the skewness was 3.0, the DSA w/
SMS improved the shuffling performance over the On-Disk
(Lustre) and the On-Disk (IME) by factors of 2.49 and 1.39,
respectively. Furthermore, the impact of expensive file I/Os
becomes more apparent in the Block Read phase. In the
Shuffle phase, multiple processes were spilling blocks to the
file system in parallel, whereas, in the Block Read phase,
only the single straggler was reading the blocks, resulting
in the relatively longer execution of the phase. Although the
IME improved the Block Read execution time by a factor
of up to 3.23, the DSA w/ SMS method still achieved the
fastest overall execution times in higher skew situations.

When using BSD socket, displayed in Fig. A· 2 (b), the
DSA w/ SMS method was no longer the best overall solu-
tion. For example, when the skewness was 2.9, the On-Disk

(IME) was 7.20% faster than the DSA w/ SMS. The rela-
tively poor performance of the IPoIB network is the most
likely cause of the observed performance degradation.

Based on our analysis of the above results, we conclude
that DSA w/ SMS is not a promising solution for the skew
problem unless applied to systems equipped with high per-
formance interconnects.
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