
Received December 14, 2019, accepted December 28, 2019, date of publication January 1, 2020, date of current version January 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2963397

Analyzing Software Rejuvenation Techniques
in a Virtualized System: Service Provider
and User Views
JING BAI 1, XIAOLIN CHANG 1, FUMIO MACHIDA 2, KISHOR S. TRIVEDI 3,
AND ZHEN HAN 1
1Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, China
2Department of Computer Science, University of Tsukuba, Tsukuba 305-8577, Japan
3Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

Corresponding author: Xiaolin Chang (xlchang@bjtu.edu.cn)

The work of Jing Bai and Xiaolin Chang was supported in part by the National Natural Science Foundation of China under Grant
U1836105 and in part by the Fundamental Research Funds for the Central Universities of China under Grant 2018JBZ103. The work of
Kishor S. Trivedi was supported by the National Natural Science Foundation of China under Grant 61872169.

ABSTRACT Virtualization technology has promoted the fast development and deployment of cloud
computing, and is now becoming an enabler of Internet of Everything. Virtual machine monitor (VMM),
playing a critical role in a virtualized system, is software and hence it suffers from software aging after a long
continuous running as well as software crashes due to elusive faults. Software rejuvenation techniques can be
adopted to reduce the impact of software aging. Although there existed analytical model-based approaches
for evaluating software rejuvenation techniques, none analyzed both application service (AS) availability and
job completion time in a virtualized system with live virtual machine (VM) migration. This paper aims to
quantitatively analyze software rejuvenation techniques from service provider and user views in a virtualized
system deploying VMM reboot and live VMmigration techniques for rejuvenation, under the condition that
all the aging time, failure time, VMM fixing time and live VM migration time follow general distributions.
We construct an analytical model by using a semi-Markov process (SMP) and derive formulas for calculating
AS availability and job completion time. By analytical experiments, we can obtain the optimal migration
trigger intervals for achieving the approximate maximum AS availability and the approximate minimum
job completion time, and then service providers can make decisions for maximizing the benefits of service
providers and users by adjusting parameter values.

INDEX TERMS Semi-Markov process, software aging, software rejuvenation, server virtualization tech-
nology.

I. INTRODUCTION
Server virtualization (SV) and operating system (OS) vir-
tualization technologies have been widely used in various
fields. SV technology allows that virtual machines (VMs)
with different OS (namely, different OS kernels) can run on
a single physical machine (PM). Different from SV tech-
nology, OS virtualization technology enables a single OS
kernel to support multiple isolated user-space instances [1].
PMs in cloud datacenters (CDCs) usually use SV/OS vir-
tualization technology to be capable of constantly running
online services and tolerating varying user workloads [2]

The associate editor coordinating the review of this manuscript and
approving it for publication was Lei Wu.

with critical demands of high availability [3]. SV/OS virtu-
alization technology is also explored for achieving dynamic
network resource management [4] in Network Function Vir-
tualization, which is essential for deploying 5G networks [4].
In addition, with the fast development of Internet of Things
(IoT) technology, much more delay-sensitive IoT applica-
tions like complex event processing and streaming video need
to be processed in EdgeComputing (EC) [5], [6]. LiveVM [7]
or live container [8] migration can help achieve efficient
allocation of resources like memory and network bandwidth
in EC [9].

Without loss of generality, this paper focuses on the
SV technology for delivering services. That is, each ser-
vice runs in each independent VM [7] and then live VM

6448 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6169-4363
https://orcid.org/0000-0002-2975-8857
https://orcid.org/0000-0001-8359-8535
https://orcid.org/0000-0001-7396-6330
https://orcid.org/0000-0002-3688-873X

J. Bai et al.: Analyzing Software Rejuvenation Techniques in a Virtualized System

migration can be used tomigrate services between PMs, help-
ing users receive high Quality of Service (It is a combination
of attributes of service and is used for evaluating services
from the perspective of server providers [10].) when their
hosted PMs cannot work [11]. Live VMmigration and service
migration are used interchangeably in the rest of this paper.

Virtual machine monitor (VMM), which can allow multi-
ple VMs to share the same physicalmachine safely [12], plays
a critical role in an SV-based system. However, it is software
and then is subject to software aging [13] (a phenomenon
of software performance degradation after a long continuous
running [14]) and crash due to certain elusive faults [15].
That is, software aging can degrade application service (AS)
availability (which is defined as percentage of normal service
provision time for the system, in other words, percentage of
system available time) and then degrade user Quality of Expe-
rience. Here, QoE denotes the user’s expected experience
effect [16]. In this paper, AS is assumed to be a constantly
running service, through which each user can execute his/her
job. AmazonWeb Services (AWS) Greengrass, as an instance
of SV-based system hosting ASs, has suffered from failures
that affected AS availability [17], and promises to provide
at least 99.9% of the normal monthly uptime percentage for
each AWS region [18]. It is obvious that the degradation of
AS availability can lead to the increase in the overall job
completion time (namely, the total required time to complete
a job including the downtime). However, maximizing AS
availability does not always mean the achievement of the
minimum job completion time, since the AS state affects the
job processing rate. For example, job processing rate will be
reduced when the running system is in software aging. It is
necessary to analyze both AS availability from the service
provider view and job completion time from the user view
such that service providers can decide when to trigger live
VM migration technique for maximizing the benefits of ser-
vice providers and users, respectively.

Software rejuvenation (a proactive solution for prevent-
ing the faults due to software aging) techniques can reduce
the impact of software aging [19]. They have already been
offered in production clouds, such as Azure [20] andVMware
ESXi [21]. Analytical modeling is an effective approach for
evaluating the software rejuvenation techniques in terms of
AS availability and job completion time. There were various
analytical model-based analysis of job performance and/or
availability degradation caused by software aging in CDCs.
They often assumed that all the time intervals follow expo-
nential distributions [22]–[27]. Moreover, while many studies
focused on analyzing either AS availability or job completion
time [28]–[30], a few papers analyzed both of AS availability
and job completion time together in a system [31], [32]. In
particular, none of the existing analytical models has analyzed
both AS availability from the service provider view and job
completion time from the user view in an SV-based system
using live VM migration.

In this paper, we consider an SV-based system composed of
hosts for executing a job and supporting live VM migration

among the hosts. VMM, running in every host, is software
that is subject to software aging after a long continuous
running [13]. The system deploys VMM reboot and live
VM migration techniques based on the time-based rejuvena-
tion after software aging detection. Aging time, failure time,
VMMfixing time and live VMmigration time follow general
distributions. For such an SV-based system, we quantitatively
investigate the impact of the software rejuvenation techniques
on AS availability and job completion time. To analyze the
state transitions of the SV-based system deploying VMM
reboot and live VM migration techniques, we construct a
semi-Markov process (SMP) which is used to evaluate the
measures of interest. To the best of our knowledge, it is the
first time to quantitatively analyze AS availability and job
completion time in the aforementioned SV-based system. The
main contributions are summarized as follows:
• We propose a SMP model for capturing the behaviors of
a complicated SV-based system deploying VMM reboot
and live VM migration techniques for rejuvenation. Our
model can capture the detailed aging process and con-
sider job processing rate during VMM aging thereby job
completion time can be calculated more accurately.

• We derive formulas for calculating AS availability and
job completion time in order to analyze software reju-
venation techniques from the view of service providers
and users quantitatively.

• We conduct analytical experiments for analyzing AS
availability and job completion time over a variety of
system parameters. Analytical experiments are also car-
ried out to determine migration trigger intervals for
achieving the approximate optimal AS availability and
job completion time.

The rest of the paper is organized as follows. In the sec-
ond section, we discuss related work. Section III describes
the system considered in this paper and presents a SMP
model for analyzing AS availability and job completion time.
Section IV presents the results of analytical experiments.
Finally, the conclusion is drawn and future work is discussed
in Section V.

II. RELATED WORK
The past years witnessed significant efforts made for ana-
lytical model-based evaluation of AS availability and/or job
completion time. See [13], [22]–[31] and references therein.

Changa et al. [22] proposed the continuous time Markov
chain (CTMC) model for analyzing VM survivability in
the system, where VM failover and live VM migration
techniques were applied to improve service survivabil-
ity. They also quantitatively compared the capability of
rejuvenation techniques in an SV-based system in [13].
Okamura and Dohi [23] proposed a phase-expanded soft-
ware rejuvenation model in order to investigate the interval
reliability and solved it by reducing the model to a CTMC
model. Rahme and Xu [24] presented an extended Dynamic
Fault Tree model to calculate the system reliability and used
CTMC technique to verify the capability of their approach.

VOLUME 8, 2020 6449

J. Bai et al.: Analyzing Software Rejuvenation Techniques in a Virtualized System

Machida and Miyoshi [25] modeled the system with
condition-based rejuvenation as anM/M/1 queue for the reju-
venation decision. Nguyen et al. [26] presented a Stochastic
Reward Net model of a system under live VM migration
technique. They evaluated merely AS availability, down-
time and downtime cost. Torquato et al. [27] analyzed live
VM migration based on warm-standby and cold-standby
redundancy schemes. They constructed availability models
by using Stochastic Petri Nets to evaluate the impact of live
VM migration on system availability and power consump-
tion. Note that these studies [13] and [22]–[27] assumed
that all time intervals in the models followed exponential
distributions. Our work in this paper relaxes this assumption
by allowing aging time, failure time, VMM fixing time and
live VM migration time follow general distributions, in order
to devise a more general model for correctly capturing system
behaviors.

There were modeling-based studies [28]–[31] in which
some time intervals followed general distributions.
Machida et al. [28] captured the aging and rejuvenation
behaviors of a server virtualized system by using SMP mod-
els. Ning et al. [29] evaluated AS availability and overall loss
probability by using a Markov regenerative process. Based
on a SMP, Loganathan et al. [30] studied the availability of a
manufacturing system. These studies [28]–[30] investigated
either AS availability or job completion time. While a few
papers presented the analytical models for evaluating both
AS availability and job completion time in a virtualized
system [31], [32], the models did not used live VMmigration
technique for rejuvenation. Machida et al. [31] presented a
SMP to analyze a software execution environment suffering
from software aging from the aspect of both service availabil-
ity and job completion time. There are two major differences
between [31] and our work:
• The system modeled in [31] is different from our sys-

tem. When aging is detected in the host with a running
job, the authors in [31] proposed to reduce performance
degradation by adding more computing resources to
this host. If such solution cannot prevent aging, certain
rejuvenation technique is employed. But our system
uses live VM migration in order to prevent service per-
formance degradation when aging is detected. In addi-
tion, the authors in [31] assumed system crashes only
caused by software aging. But we consider other crash-
ing factors, such as certain elusive faults [15]. Namely,
we consider the scenario where job crash occurring at
any time.

• The model proposed in [31] ignored the system state
where aging occurs but this event is not detected.
That is, the model proposed in [31] didn’t capture the
job performance variation and thereby didn’t calculate
the overall job completion time effectively. We use
FIGURE 1 to illustrate this point. We assume that there
is no aging in a host running a job in [t1, t2]. VMM
aging occurs from time instant t2 and live VM migra-
tion is triggered at time t3. Note that aging causes

the variation of job performance in unit time (denoted
as job unit performance). The model in [31] ignored
the system state in [t2, t3]. Namely, they assumed job
unit performance in [t2, t3] is same as that in [t1, t2].
Actually, it is not true. Our model developed in this
paper captures the variation in job unit performance.
We also consider the decrease in job processing rate due
toVMMaging in calculating the overall job completion
time to make the results more accurate.

FIGURE 1. Job performance variation over time.

Recently event transition based methodology is developed
to evaluate the performance of time-dependent systems.
Levitin et al. [33] studied both full and partial rejuvenations
in a real-time software system by extending event transition
based methodology. They focused on evaluating job comple-
tion probability. They further [34] considered an operational
software system, which has performing real-time tasks and
multiple performance degradation levels. Then, they explored
an event transition-based numerical method to investigate
the optimal state-based rejuvenation policy by minimizing
the total expected mission cost in this system. Unlike them,
we quantitatively analyze software rejuvenation techniques
from AS availability and job completion time.

Besides analytical modeling and event transition based
approaches, researchers explored measurement-based
approaches. Bovenzi et al. [35] evaluated Kexec and Phase-
based reboot techniques in terms of downtime overhead
reduction, performance penalty and rejuvenation coverage.
Huang et al. [36] used an adaptive sampling technique for
signal reconstruction to detect trends in reconstructed signals
and evaluated whether the reconstructed signals can be used
to track the gradual change of system performance related
to software aging. There are two major differences from our
paper. One is that we study both job completion time and AS
availability. The other is that we apply VMM reboot and live
VMmigration techniques to achieve high AS availability and
small job completion time. Note that their experiment results
can be complementary to our work for better evaluation of
AS availability and job completion time.

III. SYSTEM DESCRIPTION AND MODELS
This section first presents the SV-based system architecture
considered in this paper, showed in FIGURE 2. Then the SMP
model is explained. Finally, the formulas for calculating AS
availability and job completion time are derived.

A. SYSTEM DESCRIPTION
The SV-based system mainly consists of one powerful and
many weak computing capabilities hosts and Management
Host. Jobs can be executed in the hosts. The host with

6450 VOLUME 8, 2020

J. Bai et al.: Analyzing Software Rejuvenation Techniques in a Virtualized System

FIGURE 2. SV-based system architecture.

powerful computing capability can be regarded as Primary
Host, which includes a VMM hosting an active VM for
executing AS. AS is assumed to a constantly running service,
through which each user can execute his/her job. One of
the hosts with weak computing capability can be used as
Backup Host, which includes a VMM and is used to support
live VM migration. The monitoring tool deployed in Man-
agement Host is responsible for monitoring the behaviors of
VMM in each host. These hosts are connected through the
network. We consider the execution process of a job in the
system.

At the beginning, the job runs in Primary Host. If VMM
aging is detected during the job execution, Management Host
will immediately examine the state of VMM of the remain-
ing hosts in system and select a host with weak computing
capability that does not suffer from software aging or crash
as the Backup Host. We assume that there is always an
available Backup Host. Note that we leave the relaxation
of this assumption in our future work. The selection and
examination time of Management Host is negligible. Then
live VM migration is triggered and Backup Host will take
charge of the job. As long as the job leaves the current host,
VMM of this host is rebooted in order to eliminate the pos-
sible aging errors. Request and session with established open
network connections are not lost during live VM migration
(namely, all of the phases of live VM migration) [37]. Live
VMmigration technique ensures that job can continue its exe-
cution from the preempted point. Namely, the job execution
follows a preemptive-resume (PRS) discipline [38]. Differ-
ently, if VMM reboot technique is used, the job is restarted.
Namely, the job execution follows a preemptive-repeat (PRT)
discipline [31].

It is reasonable to assume that the VMM reboot time are
far less than software aging time. Since we assume Pri-
mary Host has powerful computing capacity, job may be
completed quickly if it is migrated back to Primary Host
when this host is ready. Thus, as soon as the Primary Host
is ready, the job is moved back to Primary Host shown
in FIGURE 3.

FIGURE 3. The job migration process.

If VMM of Primary Host with the job crashes, the job
execution stops according to the dependencies among AS,
VM and VMM. After VMM of Primary Host completes its
fixing, VMM, VM, AS and job are rebooted/restarted in
sequence. Similarly, if VMM of active Backup Host crashes,
the job is restarted in Primary Host after VMM of Backup
Host completes fixing.

The above description suggests that a system state can be
described by a 2-tuple index (i, j). Here, i and j denote the
states of Primary Host and Backup Host, respectively. There
are five host states: Free, Running, Failed, Migration and
Aging, denoted by 0, 1, 2, 3 and 4, respectively. The meaning
of each host state is given as follows:
• Host State 0 (Free). The job is not running in this host.
• Host State 1 (Running). The host is robust and the job
is running in it. Both VMM reboot technique and VMM
fixing can bring the host back to this state.

• Host State 2 (Failed). The host at this state is unavail-
able, which is caused by VMM crash due to certain
elusive faults [15].

• Host State 3 (Migration). At this state, the job is
ready to move from one host to another via live VM
migration.

• Host State 4 (Aging). The host at this state can work but
its performance is degraded due to VMM aging.

TABLE 1. Meaningful state definition.

There are total 5∗5= 25 system states, among which there
are 17 meaningless system states. These meaningless states
can be ignored. Take system state (1,1) and (4,2) for example,
a job considered in this paper cannot run in Primary Host and
Backup Host simultaneously. Therefore, system state (1,1) is
meaningless. When a job is running in one host, the state of
the other host is always 0 (Free). The change of system state
depends on the state of the host with a running job. Therefore,
system state (4,2) is meaningless. TABLE 1 defines eight
meaningful system states of the system.

VOLUME 8, 2020 6451

J. Bai et al.: Analyzing Software Rejuvenation Techniques in a Virtualized System

TABLE 2. Definition of variables used in the models.

B. SMP MODEL
TABLE 2 defines variables to be used later. FIGURE 4
illustrates the SMP model for capturing behaviors of the
SV-based system. Note that the holding time of system from
state (4,0) to state (2,0) has the same general distribution
Ff2(t) as that of the system from state (3,0) to state (2,0).
No matter whether it is from state (4,0) to state (2,0) or from
state (3,0) to state (3,0), it indicates the holding time that the
Primary Host VMM suffers from crash after aging.

FIGURE 4. SMP model for the SV-based system deploying VMM reboot
and live VM migration techniques.

In this model, VMMfixing and VMM reboot will bring the
SV-based system to a state without error. In addition, the timer
to be used for next VMM fixing or VMM reboot is restarted
after completing VMM fixing or VMM reboot. From this
point of view, we define {Zs(t) = Z (Yn,Tn)|Yn ∈ Y ,Tn ∈
T } is a stochastic process. The sequence of system states
Y = {Y0,Y1,Y2,Y3,Y4, . . . ,Yn} (n ≥ 0) (including the
occurrence of VMM aging, live VM migration, VMM fail-
ure, VMM fixing and VMM reboot.) corresponds to Markov
renewal moments T = {T0,T1,T2,T3,T4, . . . ,Tn} (n ≥ 0).
Y = {Y0,Y1,Y2,Y3,Y4, . . . ,Yn} (n ≥ 0) is the embedded
discrete time Markov chain (DTMC). Thus, the stochastic
process {Zs(t)|t ≥ 0} is called a SMP [39].

C. FORMULAS FOR CALCULATING AS AVAILABILITY
This section describes the process of calculatingAS availabil-
ity. We use S0-S5 to represent the system states. See TABLE
1. The details are as follows.

First of all, we construct the kernel matrix K(t), which can
be represented as in Equation (1).

K(t)=

0 kS0S1 (t) 0 0 0 kS0S5 (t)
0 0 kS1S2 (t) 0 0 kS1S5 (t)
0 0 0 kS2S3 (t) 0 kS2S5 (t)

kS3S0 (t) 0 0 0 kS3S4 (t) 0
kS4S0 (t) 0 0 0 0 0
kS5S0 (t) 0 0 0 0 0

(1)

The non-null element k01(t) is defined in Equation (2).

kS0S1 (t)

= Pr{Aging of primary host occures within time t}

= Pr{Y1 = S1,T1 ≤ t|Y0 = S0}

=

∫ t

0
(1− Ff1(x))dFq1(x) (2)

The left elements in K(t) have similar definitions, given in
Appendix in the supplemental section of the paper. By solving
its one-step transition probability matrix (TPM) P = [pSiSj],
we can characterize the sequence of system states. The one-
step TPM is P = lim

t→∞
K(t) for the embedded DTMC of the

SMP. Then, we can get matrix P.

P =

0 pS0S1 0 0 0 pS0S5
0 0 pS1S2 0 0 pS1S5
0 0 0 pS2S3 0 pS2S5

pS3S0 0 0 0 pS3S4 0
pS4S0 0 0 0 0 0
pS5S0 0 0 0 0 0

(3)

6452 VOLUME 8, 2020

J. Bai et al.: Analyzing Software Rejuvenation Techniques in a Virtualized System

where the equations for calculating the non-null elements of
the matrix are given in Appendix in the supplemental section
of the paper. In order to obtain steady-state probability vector
V of the embedded DTMC, we can solve the linear system of
equations:

V = VP subject to VeT = 1 (4)

Then, we can get the equation of vS0 as follows:

vS0 = −1/(pS0S1pS1S2pS2S3pS3S0
− pS0S1pS1S2pS2S3 − pS0S1pS1S2 − pS0S1 − 2) (5)

The equations for calculating vS0 , vS1 , vS2 , vS3 , vS4 and vS5
are given in Appendix in the supplemental section of the
paper. Once V is calculated, we need to obtain the mean
sojourn times hSi at system state Si, which is to be used in
Equation (7). The formula can be written as follows:

hSi =
∫
∞

0
(1− HSi (t))dt (6)

where HSi (t) is the sojourn time distribution at system
state Si. The equations for calculating hS0 , hS1 , hS2 , hS3 , hS4
and hS5 are shown in Appendix in the supplemental section
of the paper.

Then the steady-state probability πSi for the system state
Si is calculated by using Equation (7) according to [39]:

πSi =
vSihSi∑
Sj vSjhSj

(7)

where vSi and hSi can be obtained by Equation (4) and (6).
In this model, the steady-state availability of the system

A1 is computed by the sum of the steady-state probability of
system state S0 (πS0), system state S1 (πS1) and system state
S3 (πS3) and presented as follows:

A1 = πS0 + πS1 + πS3 (8)

D. FORMULAS FOR CALCULATING JOB
COMPLETION TIME
This section analyzes job completion time is defined to
denote the amount of time to complete a job. The work
requirement for this job is work units. We assume that a work
unit is processed in an hour in the execution environment.
If the job encounters a failure at time instant (h > 0), it will
be restarted. The details of calculating job completion time
are given in the following.

According to FIGURE 4, we assume that the job starts its
execution from system state S0. If h is not less than x, job
completion time C(x) is equal to x. If h is less than x, job
completion time C(x) becomes the sum of h, VMM fixing
time and C(x). The details are as follows:
1) The migration trigger interval a1 is larger than x.
2) When migration trigger interval a1 is less than x, there

are two cases as follows:
2.1). h is less than migration trigger interval a1. We define

that the Primary Host VMM suffers from software aging
at time a. There are two situations in which the job fails.

One is that Primary Host failure occurs before a and the other
is after a.
2.2). h is larger than migration trigger interval a1.
The mean job completion time is represented as fol-

lows [31]:

E(C(x)) = −
∂8∼C (s, x)

∂s
|s=0 (9)

where Laplace-Stieltjes transforms (LST) of job completion
time 8∼C (s, x) is derived as follows:

8∼C (s, x) = e−sxF∼q1(s)(1− Ff2(a1))
∫
∞

x
dFf3(h− a1)

+G∼r1(s)8
∼
C (s, x)

∫ a

0
e−shdFf1(h)

+G∼r1(s)(1−Ff1(a))
∫ a1

a
e−shdFf2(h−a)8∼C (s, x)

+G∼r2(s)(1− Ff2(a1))F
∼

q1(s)∫ x

a1
e−shdFf3(h− a1)8∼C (s, x) (10)

Solving Equation (9), we can get the mean job completion
time. In addition, if the effect of job processing rate r1
at Aging state of Primary Host and job processing rate r2
at Running state of Backup Host on job completion time
is considered, 8∼C (s, x) in Equation (10) can be written as
Equation (11):

8∼C (s, x) = e−s(a+
a1−a
r1
+
x−a1
r2

)F∼q1(s)

(1− Ff2(a+
a1 − a
r1

))
∫
∞

(a+ a1−a
r1
+
x−a1
r2

)

dFf3(h− (a+
a1 − a
r1

))

+G∼r1(s)8
∼
C (s, x)

∫ a

0
e−shdFf1(h)

+G∼r1(s)(1− Ff1(a))
∫ a+ a1−a

r1

a

e−shdFf2(h− a)8∼C (s, x)

+G∼r2(s)(1− Ff2(a+
a1 − a
r1

))8∼C (s, x)

F∼q1(s)
∫ (a+ a1−a

r1
+
x−a1
r2

)

a+ a1−a
r1

e−shdFf3(h− (a+
a1 − a
r1

)) (11)

The 8∼C (s, x) in Equation (11) is the overall job completion
time considering both Running state and Aging state together
by setting different job processing rate at these two states.

IV. ANALYTICAL EXPERIMENTS
In this section, we apply our proposed equations to inves-
tigate AS availability (using Equation (8)) and the mean
job completion time (using Equation (11)) over various

VOLUME 8, 2020 6453

J. Bai et al.: Analyzing Software Rejuvenation Techniques in a Virtualized System

system parameters. Section IV-A introduces experiment con-
figuration.Section IV-B and Section IV-C describe the mean
job completion time and AS availability under varying
parameters.

A. EXPERIMENT CONFIGURATION
Failure time is assumed to have an Increasing Failure Rate
distribution because the failure rate caused by software aging
tends to increase with time [40]. Hypo-exponential distri-
bution is a typical Increasing Failure Rate distribution [31].
The time of Primary Host (Backup Host) from Running state
to Failed state follows the Hypo-exponential distribution,
corresponding distribution function Ff1(t) = HYPO(λ1, λ2)
(Ff3(t) = HYPO(λ1, λ4)). The time of Primary Host (Backup
Host) fromAging state to Failed state is assumed to follow the
Hypo-exponential distribution, corresponding distribution
function Ff2(t) = HYPO(λ1, λ3) (Ff4(t) = HYPO(λ5, λ6)).
In addition, random variables TR1,TR2,TQ1,TQ2 and TM are
assumed to follow the exponential distribution with parame-
ter α,γ ,κ ,µ and σ , respectively. The use of Hypo-exponential
distribution and exponential distribution is just as an example.
Other distributions can be used for analytical experiments.
Some paraments used for solving AS availability and the
mean job completion time are set according to [31]. The left
parameters are set in order to demonstrate the effectiveness
of our model proposed in this paper. The default settings
of parameters are given in 0, where ‘-’ in the ‘Distribution’
column denotes that variables do not follow any distribution,
while ‘-’ in the ‘Default Values’ column indicates no default
settings of parameters. Analytical experiments are conducted
on MAPLE [41].

B. EFFECT OF MIGRATION TRIGGER INTERVAL ON JOB
COMPLETION TIME
This section describes the relationship between the mean job
completion time and migration trigger interval under varying
job processing rate and the mean VMM fixing time 1/α.
We assume a < a1 < a2 < x in the formula for calculating
job completion time. x, a and a2 are set to be 360 hours [31],
50 hours and 354 hours, respectively. Thus, migration trigger
interval varies from 100 hours to 350 hours.

1) JOB PROCESSING RATE r1 AT AGING
STATE OF PRIMARY HOST
First, we investigate the job completion time by varying
migration trigger interval a1 and job processing rate r1 at
Aging state of Primary Host. Job processing rate r1 at Aging
state of Primary Host is set to be 0.6, 0.7 and 0.8 respectively.
The left parameters are fixed. FIGURE 5 shows experimental
results. We can observe:
• When job processing rate r1 at Aging state of Pri-
mary Host is 0.6, the mean job completion time
is approximately minimized to 1370.4227 hours at
a1 = 160 hours. It is denoted by (160,1370.4227)
in FIGURE 5. Similarly, (204,1305.9980) and (243.7,
1238.9651) denote the approximate minimum job

FIGURE 5. The mean job completion time under different job processing
rate r1 at Aging state of Primary Host.

completion time and the corresponding optimal migra-
tion trigger intervals at r = 0.7 and 0.8, respectively.

• With the increasing job processing rate r1 at Aging
state of Primary Host, the mean job completion time
decreases gradually. It can be explained that work units
completed increase in unit time when job processing rate
r1 at Aging state of Primary Host increases.

• After the mean job completion time reaches its mini-
mum value, it increases gradually with the increasing
migration trigger interval a1. When migration trigger
interval a1 is small, the frequency ofmigration increases,
which results in the increase in the mean job comple-
tion time. When migration trigger interval a1 is large,
the probability of system failure increases, which results
in the increase in the mean job completion time. Con-
sequently, the mean job completion time first decreases
and then increases with the increasing migration trigger
interval a1.

2) JOB PROCESSING RATE r2 AT RUNNING STATE OF
BACKUP HOST
First, we investigate the job completion time by varying
migration trigger interval a1 and job processing rate r2 at
Running state of Backup Host. Job processing rate r2 at
Running state of Backup Host is set to be 0.7, 0.8 and 0.9
respectively. The left parameters are fixed. FIGURE 6 shows
experimental results. We can observe:

FIGURE 6. The mean job completion time under different job processing
rate r2 at Running state of Backup Host.

6454 VOLUME 8, 2020

J. Bai et al.: Analyzing Software Rejuvenation Techniques in a Virtualized System

TABLE 3. The approximate minimum mean job completion time and the
corresponding optimal migration trigger interval.

• When job processing rate r2 at Running state of
Backup Host is 0.9, the mean job completion time
is approximately minimized to 1370.4277 hours at
a1 = 160 hours. It is denoted by (160, 1370.4277)
in FIGURE 6. Similarly, (184, 1449.4312) and (218,
1538.1866) denote the approximate minimum job com-
pletion time and the corresponding optimal migration
trigger intervals at r = 0.8 and 0.7, respectively.

• With the increasing job processing rate r2 at Running
state of Backup Host, the mean job completion time
decreases gradually. It can be explained that work units
completed increase in unit time when job processing rate
r2 at Running state of Backup Host increases.

• After themean job completion time reaches itsminimum
value, it increases gradually with the increasing migra-
tion trigger interval a1. When migration trigger interval
a1 is small, the frequency of migration increases, which
results in the increase in the mean job completion time.
The reason is the same as in Section IV-B (1).

3) MEAN VMM FIXING TIME 1/α
Next, we investigate the job completion time by varying
migration trigger interval a1 and mean VMM fixing time
1/α. Mean VMM fixing time 1/α is set to be 0.5 hours,
0.6 hours and 0.7 hours, respectively, while the left param-
eters are fixed. FIGURE 7 and IV-C.1 show experimental
results. We can observe:

FIGURE 7. The mean job completion time under mean VMM fixing
time 1/α.

• When mean VMM fixing time 1/α is 0.5 hours,
the mean job completion time is approximately min-
imized to 1370.3993 hours at a1 = 160.38 hours.
It is denoted by (160.38, 1370.3993) in IV-C.1. Simi-
larly, (160, 1370.4277) and (160.41, 1370.4532) denote
the approximate minimum job completion time and
the corresponding optimal migration trigger intervals at
1/α = 0.6 hours and 0.7 hours, respectively.

• With the increasing mean VMM fixing time 1/α,
the mean job completion time increases gradually. It can
be explained that the increase in job completion time due
to the increase in mean VMM fixing time 1/α.

• After the mean job completion time reaches its mini-
mum value, it increases gradually with the increasing
migration trigger interval a1. The reason is the same as
in Section IV-B (1).

C. EFFECT OF MIGRATION TRIGGER INTERVAL
ON AS AVAILABILITY
This section describes the relationship between AS availabil-
ity and the migration trigger interval under different failure
rate parameter λ2 and the mean VMM fixing time 1/α.
Moreover, the relationship between the approximate maxi-
mum AS availability and the corresponding optimal migra-
tion trigger interval under different live VM migration rate
σ is investigated. AS availability is closely related to the
sojourn time in each system state. As modeled in Section III,
migration occurs after system state S1. By Equation (A.27)
in the Appendix in the supplemental section of the paper,
the approximate maximum sojourn time in system state S1
is computed to 336 hours. The migration trigger interval is
varied from 350 hours to 950 hours.

1) FAILURE RATE PARAMETER λ2
First, we investigate AS availability by varying migration
trigger interval a1 and failure rate parameter λ2. The fail-
ure rate parameter λ2 is set to be 0.00495, 0.00595 and
0.00695 respectively while the left parameters are fixed.
FIGURE 8 illustrates the experimental results. We can
observe:

FIGURE 8. AS availability under different failure rate parameter λ2.

• When failure rate parameter λ2 is 0.00695, the AS
availability is approximately maximized to 0.9997425 at
a1 = 508 hours. The maximum point is denoted by (508,
0.9997425) in FIGURE 8. Similarly, (523, 0.9997527)
and (544, 0.9997652) denote the approximate maximum
AS availabilities and the corresponding optimal migra-
tion trigger intervals at λ2 = 0.00595 and 0.00495,
respectively.

• With the increasing failure rate parameter λ2, AS avail-
ability decreases gradually. It can be explained that

VOLUME 8, 2020 6455

J. Bai et al.: Analyzing Software Rejuvenation Techniques in a Virtualized System

the holding time of system staying at available states
decreases when failure rate parameter λ2 increases.

• AS availability decreases with the increasing migration
trigger interval a1 after it reaches its maximum value.
When migration trigger interval a1 is small, the hold-
ing time of system staying at available states increases,
which leads to the increase in AS availability. When live
VMmigration trigger interval a1 is large, the probability
of system failure increases, which leads to the decline in
AS availability. Consequently, AS availability increases
up to the maximum value and then decreases with the
increasing migration trigger interval a1.

2) MEAN VMM FIXING TIME 1/α
Next, we investigate AS availability by varying migration
trigger interval a1 and VMM fixing time 1/α. Mean VMM
fixing time 1/α is set to be 0.5 hours, 0.6 hours and 0.7 hours
respectively, while the left parameters are fixed. FIGURE 9
illustrates the experimental results. We can observe:

FIGURE 9. AS availability under different mean VMM fixing time 1/α.

• When mean VMM fixing time 1/α is 0.5 hours, the AS
availability is approximately maximized to 0.9997567 at
a1 = 483 hours. The maximum point is denoted by (483,
0.9997567) in FIGURE 9. Similarly, (523, 0.9997527)
and (554, 0.9997496) denote the approximate maximum
AS availabilities and the corresponding optimal migra-
tion trigger intervals at 1/α = 0.6 hours and 0.7 hours,
respectively.

• With the increasing mean VMM fixing time 1/α,
AS availability decreases gradually. It can be explained
that the holding time of system staying at unavailable
states increases with the increasing mean VMM fixing
time.

• After AS availability reaches its maximum value,
it decreases with the increasing migration trigger inter-
val a1. The reason is that the probability of Primary
Host failure before the service migration to Backup Host
increases when migration trigger interval a1 becomes
large.

3) LIVE VM MIGRATION RATE σ
Finally, we investigate the relationship between themaximum
AS availability and the corresponding optimal migration

trigger interval under different live VM migration rate σ .
Mean live VMmigration rate σ is set to be 48, 72, 96, 120 and
144, while the left parameters are fixed. FIGURE 10 shows
the experimental results.

FIGURE 10. The maximum AS availability and the optimal migration
trigger interval under different live VM migration rate σ .

We observe that the maximum AS availability increases
and the corresponding optimal migration trigger interval
decreases with the increasing σ . The reason is that σ deter-
mines time of system staying at unavailable states. When live
VM migration rate σ is large, the holding time of system
staying at unavailable states decreases, which leads to the
increasing maximum AS availability.

V. CONCLUSION AND FUTURE WORK
In this paper, we apply the SMP to quantitatively study the AS
availability and job completion time in an SV-based system
deploying VMM reboot and live VM migration techniques.
We derive the equations for calculating AS availability and
job completion time under variousmigration trigger intervals.
Finally, we determine the optimal migration trigger intervals
for achieving the approximate maximum AS availability and
the approximate minimum job completion time through ana-
lytical experiments to help service providers make decisions
for maximizing the benefits of service providers and users.

Note that this paper considers VMM reboot and live
VM migration techniques. Future work includes the inves-
tigation of the scenarios where more rejuvenation techniques
are adopted for improving AS availability and job completion
time. In addition, we want to calculate more evaluation met-
rics, such as cost and the mean time to failure, etc., in order to
evaluate the effectiveness of the software rejuvenation tech-
niques. In addition, we will investigate whether the extended
deterministic and stochastic Petri nets can be applied tomodel
the system considered in this paper.

APPENDIX
This section provides formulas for calculating AS availability
(Section III-C of the main paper). The definition of

6456 VOLUME 8, 2020

J. Bai et al.: Analyzing Software Rejuvenation Techniques in a Virtualized System

parameters involved in the equations is shown in TABLE 2 of
the main paper. The detailed solution process is as follows:

First, we obtain the equations for calculating the elements
of the kernel matrix K(t), given in Equation (A.1)-(A.10).

kS0S1 (t) = Pr{Y1 = S1, T1 ≤ t|Y0 = S0}

=

∫ t

0
(1− Ff1(x))dFq1(x) (A.1)

kS0S5 (t) = Pr{Y1 = S5, T1 ≤ t|Y0 = S0}

=

∫ t

0
(1− Fq1(x))dFf1(x) (A.2)

kS1S2 (t) = Pr{Y1 = S2, T1 ≤ t|Y0 = S1}

=

∫ t

0
(1− Ff2(x))dF0(x) (A.3)

kS1S5 (t) = Pr{Y1 = S5, T1 ≤ t|Y0 = S1}

=

∫ t

0
(1− F0(x))dFf2(x) (A.4)

kS2S3 (t) = Pr{Y1 = S3, T1 ≤ t|Y0 = S2}

=

∫ t

0
(1− Ff2(x))dM (x) (A.5)

kS2S5 (t) = Pr{Y1 = S5, T1 ≤ t|Y0 = S2}

=

∫ t

0
(1−M (x))dFf2(x) (A.6)

kS3S0 (t) = Pr{Y1 = S0, T1 ≤ t|Y0 = S3}

=

∫ t

0
(1− Ff3(x))dM (x) (A.7)

kS3S4 (t) = Pr{Y1 = S4, T1 ≤ t|Y0 = S3}

=

∫ t

0
(1−M (x))dFf3(x) (A.8)

kS4S0 (t) = Pr{Y1 = S0, T1 ≤ t|Y0 = S4} = Gr2(t)

(A.9)

kS5S0 (t) = Pr{Y1 = S0, T1 ≤ t|Y0 = S5} = Gr1(t)

(A.10)

Then, we can get the one-step TPM P = [pSiSj] by
P = lim

t→∞
K(t). The equations for calculating the elements of

the one-step TPM P are derived as in Equation (A.11)-(A.20).

pS0S1 = 1− Ff1(t) (A.11)

pS0S5 = Ff1(t) (A.12)

pS1S2 = 1− Ff2(t) (A.13)

pS5S0 = 1 (A.14)

pS1S5 = Ff2(t) (A.15)

pS2S3 = 1− Ff2(t) (A.16)

pS2S5 = Ff2(t) (A.17)

pS3S0 = 1− Ff3(t) (A.18)

pS3S4 = Ff3(t) (A.19)

pS4S0 = 1 (A.20)

Next, we calculate the steady-state probability vector V by
solving V = VP (subject to VeT = 1) in embedded DTMC.
The equations for calculating the steady-state probability vSi

of state Si in embedded DTMC are derived as in Equation
(A.21)-(A.26).

vS0 = −1/(pS0S1pS1S2pS2S3pS3S0
− pS0S1pS1S2pS2S3 − pS0S1pS1S2 − pS0S1 − 2)

(A.21)

vS1 = −(pS0S1)/(pS0S1pS1S2pS2S3pS3S0
− pS0S1pS1S2pS2S3 − pS0S1pS1S2 − pS0S1 − 2)

(A.22)

vS2 = −(pS0S1pS1S2)/(pS0S1pS1S2pS2S3pS3S0
− pS0S1pS1S2pS2S3 − pS0S1pS1S2 − pS0S1 − 2)

(A.23)

vS3 = −(pS2S3pS0S1pS1S2)/(pS0S1pS1S2pS2S3pS3S0
− pS0S1pS1S2pS2S3 − pS0S1pS1S2 − pS0S1 − 2)

(A.24)

vS4 = −(pS3S4pS2S3pS0S1pS1S2)/(pS0S1pS1S2pS2S3pS3S0
− pS0S1pS1S2pS2S3 − pS0S1pS1S2 − pS0S1 − 2)

(A.25)

vS5 = −(pS0S1pS1S2pS2S3pS3S0 + pS0S1pS1S2pS2S3pS3S4
− 1)/(pS0S1pS1S2pS2S3pS3S0 − pS0S1pS1S2pS2S3
− pS0S1pS1S2 − pS0S1 − 2) (A.26)

What’s more, we get themean sojourn time hSi in system state
Si as presented in Equation (A.27)-(A.32).

hS0 = E[HS0] =
∫
∞

0
(1− Ff1(t))(1− Fq1(t))dt (A.27)

hS1 = E[HS1] =
∫
∞

0
(1− Ff2(t))(1− F0(t))dt (A.28)

hS2 = E[HS2] =
∫
∞

0
(1− Ff2(t))(1−M (t))dt (A.29)

hS3 = E[HS3] =
∫
∞

0
(1− Ff3(t))(1−M (t))dt (A.30)

hS4 = E[HS4] =
∫
∞

0
(1− Gr2(t))dt (A.31)

hS5 = E[HS5] =
∫
∞

0
(1− Gr1(t))dt (A.32)

Finally, we solve AS availability by Equation (7) of the main
paper, in which parameters can be obtained by Equation
(A.21)-(A.32).

REFERENCES
[1] T. Kamarainen, Y. Shan, M. Siekkinen, and A. Ylä-Jääski, ‘‘Virtual

machines vs. Containers in cloud gaming systems,’’ in Proc. Int. Workshop
Netw. Syst. Support Games (NetGames), Dec. 2015, pp. 1–6.

[2] S. Mireslami, L. Rakai, M.Wang, and B. H. Far, ‘‘Dynamic cloud resource
allocation considering demand uncertainty,’’ IEEE Trans. Cloud Comput.,
early access, 2019, doi: 10.1109/TCC.2019.2897304.

[3] M. Nabi, M. Toeroe, and F. Khendek, ‘‘Availability in the cloud: State of
the art,’’ J. Netw. Comput. Appl., vol. 60, pp. 54–67, Jan. 2016.

[4] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, ‘‘Deploying chains of
virtual network functions: On the relation between link and server usage,’’
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1562–1576, Aug. 2018.

VOLUME 8, 2020 6457

http://dx.doi.org/10.1109/TCC.2019.2897304

J. Bai et al.: Analyzing Software Rejuvenation Techniques in a Virtualized System

[5] W. Zhang, Z. Zhang, S. Zeadally, and H.-C. Chao, ‘‘Efficient task schedul-
ing with stochastic delay cost in mobile edge computing,’’ IEEE Commun.
Lett., vol. 23, no. 1, pp. 4–7, Jan. 2019.

[6] W. Zhang, Z. Zhang, S. Zeadally, H.-C. Chao, and V. C. M. Leung,
‘‘MASM: Amultiple–algorithm service model for energy–delay optimiza-
tion in edge artificial intelligence,’’ IEEE Trans. Ind. Informat., vol. 15,
no. 7, pp. 4216–4224, Jul. 2019.

[7] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
‘‘Dynamic service migration in mobile edge computing based on Markov
decision process,’’ IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1272–1288,
Jun. 2019.

[8] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, ‘‘Consolidate
IoT edge computing with lightweight virtualization,’’ IEEE Netw., vol. 32,
no. 1, pp. 102–111, Jan. 2018.

[9] T. G. Rodrigues, K. Suto, H. Nishiyama, N. Kato, and K. Temma,
‘‘Cloudlets activation scheme for scalable mobile edge computing with
transmission power control and virtual machine migration,’’ IEEE Trans.
Comput., vol. 67, no. 9, pp. 1287–1300, Sep. 2018.

[10] V. X. Tran, ‘‘WS-QoSOnto: A QoS ontology for Web services,’’ in Proc.
IEEE Int. Symp. Service-Oriented Syst. Eng. Dec. 2008, pp. 233–238.

[11] M.Noshy, A. Ibrahim, andH. A. Ali, ‘‘Optimization of live virtual machine
migration in cloud computing: A survey and future directions,’’ J. Netw.
Comput. Appl., vol. 110, pp. 1–10, May 2018.

[12] P. A. Karger and D. R. Safford, ‘‘I/O for virtual machine monitors: Security
and performance issues,’’ IEEE Secur. Privacy, vol. 6, no. 5, pp. 16–23,
Sep./Oct. 2008.

[13] X. Chang, T.Wang, R. J. Rodríguez, and Z. Zhang, ‘‘Modeling and analysis
of high availability techniques in a virtualized system,’’Comput. J., vol. 61,
no. 2, pp. 180–198, Feb. 2018.

[14] L. Li, K. Vaidyanathan, and K. Trivedi, ‘‘An approach for estimation of
software aging in aWeb server,’’ in Proc. Int. Symp. Empirical Softw. Eng.,
Jun. 2003, pp. 91–102.

[15] Y. Bao, X. Sun, and K. Trivedi, ‘‘A workload-based analysis of software
aging, and rejuvenation,’’ IEEE Trans. Rel., vol. 54, no. 3, pp. 541–548,
Sep. 2005.

[16] J. Kishigami, ‘‘The Role of QoE on IPTV Services style,’’ in Proc. 9th
IEEE Int. Symp. Multimedia (ISM), Dec. 2007, pp. 11–13.

[17] (May 6, 2019). What Is AWS IoT Greengrass? [Online]. Available:
https://docs.aws.amazon.com/zh_cn/greengrass/latest/developerguide/gg-
troubleshooting.html

[18] (May 20, 2019). AWS IoT Greengrass Service Level Agreement. [Online].
Available: https://aws.amazon.com/cn/greengrass/sla/

[19] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, ‘‘Software rejuvena-
tion: Analysis, module and applications,’’ in Proc. 25th Int. Symp. Fault-
Tolerant Comput. Dig. Papers, Jun. 1995, pp. 381–390.

[20] (Jun. 3, 2019). 2018-09-12-Gartner-Forecasts-Worldwide-Public-Cloud-
Revenue-to-Grow-17-Percentin-2019. [Online]. Available: https://www.
gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-
worldwide-public-cloud-revenue-to-grow-17-percent-in-2019

[21] S. A. Herrod, ‘‘Systems research and development at VMware,’’ SIGOPS
Oper. Syst. Rev., vol. 44, no. 4, pp. 1–2, Dec. 2010.

[22] X. Changa, Z. Zhang, X. Li, and K. S. Trivedi, ‘‘Model-based survivability
analysis of a virtualized system,’’ in Proc. IEEE 41st Conf. Local Comput.
Netw. (LCN), Nov. 2016, pp. 611–614.

[23] H. Okamura and T. Dohi, ‘‘A phase expansion approach for transient
analysis of software rejuvenation model,’’ in Proc. IEEE Int. Symp. Softw.
Rel. Eng. Workshops (ISSREW), Oct. 2016, pp. 98–103.

[24] J. Rahme and H. Xu, ‘‘Dependable and reliable cloud-based systems
using multiple software spare components,’’ in Proc. IEEE SmartWorld,
Ubiquitous Intell. Comput., Adv. Trusted Comput., Scalable Comput. Com-
mun., Cloud Big Data Comput., Internet People Smart City Innov. (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Aug. 2017, pp. 1–8.

[25] F. Machida and N. Miyoshi, ‘‘Analysis of an optimal stopping problem for
software rejuvenation in a deteriorating job processing system,’’ Rel. Eng.
Syst. Saf., vol. 168, pp. 128–135, Dec. 2017.

[26] T. A. Nguyen, D. Min, and E. Choi, ‘‘Stochastic reward net-based mod-
eling approach for availability quantification of data center systems,’’ in
Dependability Engineering. London, U.K.: IntechOpen, 2018.

[27] M. Torquato, I. M. Umesh, and P. Maciel, ‘‘Models for availability and
power consumption evaluation of a private cloud with VMM rejuvena-
tion enabled by VM Live Migration,’’ J. Supercomput., vol. 74, no. 9,
pp. 4817–4841, Sep. 2018.

[28] F. Machida, V. F. Nicola, and K. S. Trivedi, ‘‘Job completion time on a vir-
tualized server subject to software aging and rejuvenation,’’ in Proc. IEEE
3rd Int. Workshop Softw. Aging Rejuvenation, Nov./Dec. 2011, pp. 44–49.

[29] G. Ning, J. Zhao, Y. Lou, J. Alonso, R.Matias, K. S. Trivedi, B.-B. Yin, and
K.-Y. Cai, ‘‘Optimization of two–granularity software rejuvenation policy
based on the Markov regenerative process,’’ IEEE Trans. Rel., vol. 65,
no. 4, pp. 1630–1646, Dec. 2016.

[30] M. Loganathan, G. Kumar, and O. Gandhi, ‘‘Availability evaluation of
manufacturing systems using Semi–Markovmodel,’’ Int. J. Comput. Integr.
Manuf., vol. 29, no. 7, pp. 720–735, Jul. 2016.

[31] F. Machida, J. Xiang, K. Tadano, and Y. Maeno, ‘‘Lifetime extension of
software execution subject to aging,’’ IEEE Trans. Rel., vol. 66, no. 1,
pp. 123–134, Mar. 2017.

[32] F. Machida, V. F. Nicola, and K. S. Trivedi, ‘‘Job completion time on a
virtualized server with software rejuvenation,’’ J. Emerg. Technol. Comput.
Syst., vol. 10, no. 1, pp. 1–26, Jan. 2014.

[33] G. Levitin, L. Xing, and H.-Z. Huang, ‘‘Optimization of partial soft-
ware rejuvenation policy,’’ Rel. Eng. Syst. Saf., vol. 188, pp. 289–296,
Aug. 2019.

[34] G. Levitin, L. Xing, and Y. Xiang, ‘‘Cost minimization of real-timemission
for software systems with rejuvenation,’’ Rel. Eng. Syst. Saf., vol. 193,
Jan. 2020, Art. no. 106593.

[35] A. Bovenzi, J. Alonso, H. Yamada, S. Russo, and K. S. Trivedi, ‘‘Towards
fast OS rejuvenation: An experimental evaluation of fast OS reboot tech-
niques,’’ inProc. IEEE 24th Int. Symp. Softw. Rel. Eng. (ISSRE), Nov. 2013,
pp. 61–70.

[36] T. Huang, N. Kandasamy, H. Sethu, and M. C. Stamm, ‘‘An efficient
strategy for online performance monitoring of datacenters via adaptive
sampling,’’ IEEE Trans. Cloud Comput., vol. 7, no. 1, pp. 155–169,
Jan. 2019.

[37] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield, ‘‘Live migration of virtual machines,’’ in Proc. NSDI, 2005,
pp. 273–286.

[38] V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi, ‘‘The completion time
of a job on multimode systems,’’ Adv. Appl. Probab., vol. 19, no. 4,
pp. 932–954, Dec. 1987.

[39] D. Chen and K. Trivedi, ‘‘Analysis of periodic preventive maintenance
with general system failure distribution,’’ in Proc. Pacific Rim Int. Symp.
Dependable Comput., Nov. 2002, pp. 103–110.

[40] D. HoPark, ‘‘Testing whether failure rate changes its trend,’’ IEEE Trans.
Rel., vol. 37, no. 4, pp. 375–378, Oct. 1988.

[41] (Jun. 15, 2019). Maplesoft. [Online]. Available: http://www.maplesoft.
com/products/maple

JING BAI is currently pursuing the Ph.D. degree
with the Beijing Key Laboratory of Security and
Privacy in Intelligent Transportation, Beijing Jiao-
tong University. Her interest includes software
reliability and availability.

XIAOLIN CHANG is currently a Professor with
the School of Computer and Information Tech-
nology, Beijing Jiaotong University. Her current
research interests include edge/cloud computing,
network security, and security and privacy in
machine learning.

FUMIO MACHIDA was a Principal Researcher at
NEC Corporation. He was a Visiting Scholar with
the Department of Electrical and Computer Engi-
neering, Duke University, in 2010. He is currently
an Associate Professor with the Computer Science
Department, University of Tsukuba. His research
interests include modeling and analysis of system
dependability, software aging and rejuvenation,
and reliability of machine learning systems. He is a
member of ACM. He was a recipient of the Young
Scientists’ Prize of Japan, in 2014.

6458 VOLUME 8, 2020

J. Bai et al.: Analyzing Software Rejuvenation Techniques in a Virtualized System

KISHOR S. TRIVEDI currently holds the Hud-
son Chair with the Department of Electrical and
Computer Engineering, Duke University. He has
authored Probability and Statistics with Reliabil-
ity, Queuing and Computer Science Applications,
(JohnWiley). He has publishedmore than 500 arti-
cles and has supervised more than 45 Ph.D. disser-
tations. He received the IEEE Computer Society
Technical Achievement Award for his research on
Software Aging and Rejuvenation.

ZHEN HAN is currently a Professor with the
School of Computer and Information Technology,
Beijing Jiaotong University. His main research
interests are trusted computing, cryptographic pro-
tocols, privacy preserving, and network security.

VOLUME 8, 2020 6459

	INTRODUCTION
	RELATED WORK
	SYSTEM DESCRIPTION AND MODELS
	SYSTEM DESCRIPTION
	SMP MODEL
	FORMULAS FOR CALCULATING AS AVAILABILITY
	FORMULAS FOR CALCULATING JOB COMPLETION TIME

	ANALYTICAL EXPERIMENTS
	EXPERIMENT CONFIGURATION
	EFFECT OF MIGRATION TRIGGER INTERVAL ON JOB COMPLETION TIME
	JOB PROCESSING RATE r1 AT AGING STATE OF PRIMARY HOST
	JOB PROCESSING RATE r2 AT RUNNING STATE OF BACKUP HOST
	MEAN VMM FIXING TIME 1/

	EFFECT OF MIGRATION TRIGGER INTERVAL ON AS AVAILABILITY
	FAILURE RATE PARAMETER 2
	MEAN VMM FIXING TIME 1/
	LIVE VM MIGRATION RATE

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	JING BAI
	XIAOLIN CHANG
	FUMIO MACHIDA
	KISHOR S. TRIVEDI
	ZHEN HAN

