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Abstract

We investigate the effectiveness of network attack strategies when the attacker has only

imperfect information about the network. While most existing network attack strategies

assume complete knowledge about the network, in reality it is difficult to obtain the complete

structure of a large-scale complex network. This paper considers two scenarios in which the

available network information is imperfect. In one scenario, the network contains link errors

(i.e., missing and false links) due to measurement errors, and in the other scenario the target

network is so large that only part of the network structure is available from network sampling.

Through extensive simulations, we show that particularly in a network with highly skewed

degree distribution, network attack strategies are robust against link errors. Even if the net-

work contains 30% false links and missing links, the strategies are just as effective as when

the complete network is available. We also show that the attack strategies are far less effec-

tive when the network is obtained from random sampling, whereas the detrimental effects of

network sampling on network attack strategies are small when using biased sampling strate-

gies such as breadth-first search, depth-first search, and sample edge counts. Moreover,

the effectiveness of network attack strategies is examined in the context of network immuni-

zation, and the implications of the results are discussed.

Introduction

The network attack problem has received much attention, and several network attack strate-

gies have been proposed [1–4]. The network attack problem involves finding a (small) set of

nodes whose removal fragments the network [1]. Herein, we refer to such node removal strate-

gies as network attack strategies. The effectiveness of these network attack strategies is evalu-

ated based on the network connectivity after node removal, a popular evaluation measure

being the size of the giant component (GC) [5]. Typically, the network attack problem is solved

using measures of node influence, based on which node rankings are obtained and then nodes

are removed in the order of those rankings. As measures of node influence, centrality measures

such as degree and betweenness centrality [6] are widely used [5]. Recently, a scalable measure

known as collective influence (CI) has been proposed and has been shown to be effective for

the network attack problem [1]. Network attack strategies have various applications, such as
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viral marketing [1, 7, 8], evaluation of network resilience [9, 10], and network immunization

[5, 11, 12].

While most existing network attack strategies assume complete knowledge about the net-

work [1, 2, 4], in reality it is difficult to obtain the complete structure of large-scale complex

networks [5, 13–16]. Because real-world networks such as social networks and the Internet are

huge, obtaining the entire network structure is prohibitive, and typically only part of the net-

work structure is available from network sampling [17–19]. Even if the target network is not

so large, it can still be difficult to obtain its complete structure [5]. For instance, in gene net-

works the relationships among nodes are inferred from noisy measurements that produce link

errors [20]. In social networks, it is fundamentally difficult to observe social relationships such

as friendship and trust [21, 22]. If information about the network is imperfect, then the effec-

tiveness of network attack strategies may be degraded.

Melchionna et al. [5] performed pioneering work to evaluate the effectiveness of network

attack strategies when the attacker has imperfect information about the network. Performing

simulated attacks on synthetic networks, Melchionna et al. introduced link errors (i.e., missing

and false links) into the networks and then evaluated the effectiveness of network attack strate-

gies using those networks with link errors. Their results show that particularly for scale-free

networks, network attack strategies are robust against link errors.

While the effects of link errors on network attack strategies have been studied, the effects

of network sampling, which is a typical cause of errors introduced in the networks, on net-

work attack strategies have not been studied before. The networks of interest nowadays are

huge, and network sampling is unavoidable to analyze such large-scale networks [17–19].

However, the answers to the following questions remain unclear: (1) Which attack strategy

should we use when only the small fraction of the network structure is available? (2) Which

network sampling method should we use for exploring the large-scale network? To answer

these questions is important when applying network attack strategies to real large-scale

networks.

In this paper, we aim to reveal the effectiveness of network attack strategies when the

attacker has only imperfect information about the network, extending the work by Mel-

chionna et al. [5]. We consider two scenarios in which the available network information is

imperfect. One scenario is the same as in [5] and assumes that the network contains link errors

due to measurement errors. The other scenario, which was not considered in previous studies,

assumes that the target network is so large that only part of the network structure is available

from network sampling. Consequently, we investigate the effects of both link errors and net-

work sampling on the effectiveness of network attack strategies, and aim to answer the above

questions.

The main contributions and findings in this paper can be summarized as follows.

• We evaluate the effectiveness of CI, a state-of-the-art network attack strategy, under imper-

fect information. Our results show that CI is effective when the complete knowledge on the

network is available whereas CI is sensitive against network uncertainty. When the level of

network uncertainty is large, the effectiveness of CI is comparable with that of the conven-

tional Degree strategy.

• We investigate how the network sampling affects the effectiveness of network attack strate-

gies. We show that the attack strategies are far less effective when the network is obtained

from random sampling, whereas the detrimental effects of network sampling on network

attack strategies are small when using biased sampling strategies such as breadth-first search,

depth-first search, and sample edge counts.

Robustness of network attack strategies against node sampling and link errors
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• We evaluate the effectiveness of network attack strategies in the context of network immuni-

zation [23, 24]. Our results suggest that the effects of link errors and sampling are not so

severe when the attack strategies are applied to immunization.

Methodology

We investigated the connectivity of the undirected network G = (V, E) when a proportion p
of all nodes was removed based on the attack strategy. For this study, we assumed that perfect

information about network G was unavailable and the attackers only know network G0 = (V0,
E0), a network with unknown errors. We used the attack strategies to determine which nodes

of network G0 to attack. We then investigated the connectivity of the true network G with the

same nodes removed.

We used two types of real network for network G. One is a network that expresses connec-

tions between autonomous systems (AS) (available at http://www-personal.umich.edu/~mejn/

netdata/), and the other is a network that expresses connections between peers, namely a peer-

to-peer (P2P) network [25, 26] (available at http://snap.stanford.edu/data/p2p-Gnutella04.

html). We also used two types of synthetic network for network G. For generating synthetic

networks, we used the Barabási–Albert (BA) model [27] and the Geometric Random Graph

(GRG) model. The BA model generates networks with power-law degree distribution. The

GRG model generates random networks where the connection between nodes is determined

based on the geographical coordinates of the nodes. Using the BA and GRG models, we gener-

ated 100 networks where the number of nodes is 10,000. For the parameter of the BA model,

we used m = 2 for generating networks with similar average degree with the AS network. For

the GRG model, the radius for connecting nodes was 0.015 to generate connected networks

while making the average degree be not far from other networks. BA graphs and GRG graphs

were generated with R igraph package (https://igraph.org/). The characteristics of each net-

work are shown in Table 1, and Fig 1 shows the degree distributions of each network. For BA

and GRG networks, the values shown in Table 1 are averaged for the 100 generated networks.

According to Fig 1, the GRG network has normal-like degree distribution while other net-

works have power-law-like degree distributions. We can also find that the AS network has

nodes with extremely large degrees compared with the P2P and BA networks. Namely, the AS

network has highly skewed degree distribution compared with other networks.

We created two incomplete networks G0 from network G: a network with link errors and a

sampled network. We created the network with link errors using the same procedure as in

Melchionna et al. [5]. Specifically, we removed |E|δ (0� δ� 1) randomly selected links from

network G and added |E|α (0� α� 1) links to randomly selected node pairs within the net-

work to create incomplete network G0. Here, α and δ are the parameters that controlled the

magnitude of the incompleteness. To create the sampled network, we followed the procedure

outlined by Tsugawa and Kimura [13]. Specifically, we used four different methods of sam-

pling, namely (i) breadth-first search (BFS), (ii) depth-first search (DFS), (iii) sample edge

Table 1. Statistics of target networks.

AS P2P BA GRG

No. of nodes 22,963 10,876 10,000 10,000

No. of links 48,436 39,994 19,997 34,874.3

Average degree 4.218 7.354 3.999 6.975

Clustering coefficient [28] 0.0111 0.00540 0.00210 0.591

Average shortest path length 3.842 4.635 5.393 51.671

https://doi.org/10.1371/journal.pone.0221885.t001

Robustness of network attack strategies against node sampling and link errors
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count (SEC) [17], and (iv) random sampling (RAND), to sample the proportion ps of nodes

from network G to create incomplete network G0. Sampling node v enabled us to obtain the

associated links. In incomplete network G0 = (V0, E0), V0 is the set of sampled nodes, and E0 is
the set of links between the set of nodes in V0.

Using incomplete network G0, we determined which nodes to remove based on three differ-

ent attack strategies, namely (i) a strategy based on degree centrality (Degree) [1], (ii) a high

degree adaptive (HDA) strategy based on recalculations of degrees [1], and (iii) a strategy

based on CI [1]. We removed the same nodes from network G and then evaluated its connec-

tivity by using the size of its GC as the evaluation index.

Furthermore, in this study we simulated the spread of viruses to evaluate the effectiveness

of attack strategies when applied to the immunization problem. We used incomplete network

G0 to determine which nodes to attack. We immunized the nodes to be attacked in network G
and simulated the virus diffusion based on the susceptible–infected–removed (SIR) model

[29]. The SIR model comprises three states, namely susceptible (S), infected (I), and removed

(R). However, immunized (M) nodes are not involved in virus spread. At time t = 0, we ran-

domly selected one non-immunized node in network G and changed its state to infected. The

remainder of the non-immunized nodes are susceptible (but not infected). At any given time t,
infected nodes v cause adjacent susceptible nodes u to become infected at infection rate β. In

addition, infected nodes transition to the removed state at recovery rate γ. To serve as an index

to quantify the extent of virus spread, we determined the number of non-infected nodes (sus-

ceptible and immunized nodes) at the time when the aforementioned stochastic processes con-

verge and node states stop changing. The stochastic processes were realized using the random

number generator in the Python NumPy module (https://www.numpy.org/).

For the ensuing experiments, we created 100 incomplete networks G0 for each parameter

used to determine the magnitude of incompleteness. For each incomplete network G0, we

Fig 1. Degree distributions of the target networks.

https://doi.org/10.1371/journal.pone.0221885.g001
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determined the nodes to attack, and calculated the size of the GC, and the average of the GCs

were obtained. In addition, we conducted 1,000 independent virus spread simulation runs for

each incomplete network G0 to determine the average number of non-infected nodes. We used

l = 1 and l = 2 as parameters for the CI attack strategy. In addition, we used an infection rate of

β = 0.1 and a recovery rate of γ = 0.01 in the virus spread simulations.

Results and discussion

Effects of link errors

First, we investigated how link errors affected the effectiveness of each attack strategy. Figs 2, 3,

4 and 5 show the relationship between the proportion p of nodes removed from the AS, P2P,

BA, and GRG networks and the proportion of the largest connected components when the

nodes are removed. These figures compare different magnitudes of incompleteness.

In the AS network, the magnitude of incompleteness has hardly any effect on the size of the

largest connected components under each of the attack strategies (Fig 2). In contrast, in other

networks, the effectiveness of the attack strategies declines as the incompleteness of link infor-

mation increases. In particular, the effects are substantial under the HDA and CI strategies.

Previous study [5] indicates that link errors have an extremely minor effect on attack strategies

in networks with heavily skewed degree distribution. The degree distribution is more skewed

in the AS network than in the other networks (Fig 1); thus, our results are consistent with

those of previous research.

Next, we compared the attack strategies under the same magnitudes of incompleteness

(Figs 6, 7, 8 and 9). Our results show that when the magnitude of incompleteness is small, the

Fig 2. Fraction of GC vs. fraction p of removed nodes: Comparison of magnitude of incompleteness (network:

AS).

https://doi.org/10.1371/journal.pone.0221885.g002
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Fig 3. Fraction of GC vs. fraction p of removed nodes: Comparison of magnitude of incompleteness (network:

P2P).

https://doi.org/10.1371/journal.pone.0221885.g003

Fig 4. Fraction of GC vs. fraction p of removed nodes: Comparison of magnitude of incompleteness (network:

BA).

https://doi.org/10.1371/journal.pone.0221885.g004
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CI strategy can decrease the size of the GC with the removal of fewer nodes than the Degree

strategy. In particular, in the GRG network, CI (l = 2) is more effective than other strategies

when the complete network is available. By contrast, when the magnitude of incompleteness is

large, the attack strategies deliver similar effects. Even in the GRG network, the difference

between CI and other strategies is small. These results suggest that CI, which is a state-of-the-

art attack strategy, experiences a decline in effectiveness similar to that with other strategies

when the magnitude of incompleteness is large.

To investigate how the node rankings based on the attack strategies are changed by link

errors, we investigated the Spearman’s rank correlation between the node ranking obtained

from the ground-truth network G and node ranking obtained from incomplete network G0.
Fig 10 shows the relation between the magnitude of incompleteness and the rank correlation

coefficient. This result confirms that the Degree strategy is robust against link errors while the

CI strategy is sensitive against link errors. Although CI is effective when the complete knowl-

edge on the network is available, the node ranking based on CI is significantly affected by link

errors. This is the cause of the decline in the effectiveness of CI under link errors.

Effects of node sampling

Next, we investigated how node sampling affects the effectiveness of the attack strategies. Figs

11, 12, 13 and 14 show the relationship between the proportion of removed nodes and the pro-

portion of the GC in the AS, P2P, BA, and GRG networks under the Degree attack strategy.

Here, we compared the results of different sample sizes. Note that for the experiments in this

section, we did not remove a larger proportion of nodes than the sample sizes. Therefore, the

graphs may contain some discontinuities.

Fig 5. Fraction of GC vs. fraction p of removed nodes: Comparison of magnitude of incompleteness (network:

GRG).

https://doi.org/10.1371/journal.pone.0221885.g005
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Fig 6. Fraction of GC vs. fraction p of removed nodes: Comparison of attack strategies (network: AS).

https://doi.org/10.1371/journal.pone.0221885.g006

Fig 7. Fraction of GC vs. fraction p of removed nodes: Comparison of attack strategies (network: P2P).

https://doi.org/10.1371/journal.pone.0221885.g007
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Fig 8. Fraction of GC vs. fraction p of removed nodes: Comparison of attack strategies (network: BA).

https://doi.org/10.1371/journal.pone.0221885.g008

Fig 9. Fraction of GC vs. fraction p of removed nodes: Comparison of attack strategies (network: GRG).

https://doi.org/10.1371/journal.pone.0221885.g009
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Our results show that random sampling has an extremely strong effect on the Degree strat-

egy in each network. However, the effects of other sampling methods are much smaller than

those of random sampling. Fig 11 shows that sample sizes of 0.3 and greater under sampling

methods other than random sampling have hardly any effect on the effectiveness of the Degree

strategy in the AS network. In addition, Fig 12 shows that sample sizes of 0.3 and greater

under the SEC method have hardly any effect on the effectiveness of the Degree strategy in

the P2P network. In BA and GRG networks, although BFS, DFS, and SEC have considerable

effects on the degree strategy, the effects are smaller than the effects of random sampling.

These results suggest that the effectiveness of the attack strategies under sampling methods

other than random sampling do not decline substantially, even under a certain degree of

incompleteness of node information. It is commonly known that high-degree nodes are easy

to sample when using BFS, DFS, and SEC [17]. Therefore, the effectiveness of the attack strate-

gies should not decline much in sampled networks, which include many nodes susceptible to

high-degree attacks. A closer look at the differences among BFS, DFS, and SEC reveals that

SEC sampling in particular has little effect on the attack strategies. However, for sample sizes

of 50% or greater, there is not much difference among the three sampling methods.

Next, we compared different attack strategies under the same sampling methods and sam-

ple sizes (Figs 15, 16, 17 and 18). Here, we present the results with BFS as the sampling method.

The results for the other sampling methods are in Supporting Information (S1, S2, S3, S4, S5,

S6, S7, S8, S9, S10, S11 and S12 Figs). These results show that CI strategy is more effective than

the Degree strategy when the sample size is 90%, but its effectiveness declines greatly when the

sample size is 50% or less except for the GRG network.

We again investigated the Spearman’s rank correlation between the node ranking obtained

from the ground-truth network G and node ranking obtained from sampled network G0 to

Fig 10. Rank correlation coefficient vs. the magnitude of incompleteness α and δ.

https://doi.org/10.1371/journal.pone.0221885.g010
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Fig 11. Fraction of GC vs. fraction p of removed nodes: Comparison of different sample sizes (network: AS; attack

strategy: Degree).

https://doi.org/10.1371/journal.pone.0221885.g011

Fig 12. Fraction of GC vs. fraction p of removed nodes: Comparison of different sample sizes (network: P2P;

attack strategy: Degree).

https://doi.org/10.1371/journal.pone.0221885.g012
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Fig 13. Fraction of GC vs. fraction p of removed nodes: Comparison of different sample sizes (network: BA;

attack strategy: Degree).

https://doi.org/10.1371/journal.pone.0221885.g013

Fig 14. Fraction of GC vs. fraction p of removed nodes: Comparison of different sample sizes (network: GRG;

attack strategy: Degree).

https://doi.org/10.1371/journal.pone.0221885.g014
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investigate how the node rankings based on the attack strategies are changed by node sam-

pling. For calculating the rank correlation, we considered that non-sampled nodes have the

lowest rank. Fig 19 shows the relation between the sample size and the rank correlation coeffi-

cient. These results show that the rank correlation smoothly decreases as the sample size

decreases. We can find that the degree has higher rank correlation than CI in AS, P2P, and BA

networks. This confirms that the Degree strategy is robust and the CI strategy is sensitive

against network sampling.

Applications to network immunization

Finally, we investigated the effectiveness of the attack strategies when applied to the network

immunization problem. The size of the GC in the experiments thus far expresses the extent of

the damage from virus spread in the worst case. For this section, we conducted virus spread

simulations based on the SIR model with immunized nodes, and we evaluated the average

extent of the damage from virus spread. Figs 20, 21, 22 and 23 show the results for the network

with link errors. These figures show the relationship between the proportion of immunized

nodes and the proportion of nodes ultimately not infected by the virus.

These results show that in most networks, the effectiveness of each attack strategy at con-

trolling virus spread is essentially the same, for networks with link errors as well as complete

networks. Except for the results of CI (l = 2) in the GRG network, we confirmed that the effects

of link errors are not so large.

Next, we present the results when we used the sampled network to determine which nodes

to immunize. Figs 24, 25, 26 and 27 show the results for the AS, P2P, BA and GRG networks.

Here, we used the Degree attack strategy. Fig 24 shows that the virus spread was controlled to

Fig 15. Fraction of GC vs. fraction p of removed nodes: Comparison of attack strategies (sampling method: BFS;

network: AS).

https://doi.org/10.1371/journal.pone.0221885.g015
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Fig 16. Fraction of GC vs. fraction p of removed nodes: Comparison of attack strategies (sampling method: BFS;

network: P2P).

https://doi.org/10.1371/journal.pone.0221885.g016

Fig 17. Fraction of GC vs. fraction p of removed nodes: Comparison of attack strategies (sampling method: BFS;

network: BA).

https://doi.org/10.1371/journal.pone.0221885.g017
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Fig 18. Fraction of GC vs. fraction p of removed nodes: Comparison of attack strategies (sampling method: BFS;

network: GRG).

https://doi.org/10.1371/journal.pone.0221885.g018

Fig 19. Rank correlation coefficient vs. sample size (sampling method: BFS).

https://doi.org/10.1371/journal.pone.0221885.g019
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a certain extent even with the extremely small sample size of 10% under sampling methods

other than random sampling in the AS network, which features a heavily skewed degree distri-

bution. For other networks, the effects of sampling methods other than random sampling are

not so severe when the sample size is 50% or higher. In the GRG network, using the complete

network does not always achieve the highest fraction of unifected nodes. This is due to the fact

that the Degree strategy is not the best strategy in the GRG network. Using the sampled net-

works sometimes achieves better selection of immunized nodes than using the complete

networks.

These results suggest that the effects of link errors and sampling are not so severe when the

attack strategies are applied to immunization. As shown in the previous sections, node rank-

ings used in the network attack strategies are significantly affected by the network incomplete-

ness, and the size of the GC when the attack strategies are applied is also affected. Compared to

these effects, the effects of network incompleteness in the immunization problem is considered

to be not severe. However, proper attention must be paid when networks are obtained under

random sampling or when sample sizes are extremely small.

Conclusion

In this paper, we have investigated the effects of link errors and network sampling on the effec-

tiveness of network attack strategies. We have performed extensive simulations using real net-

work data and network generation models. For the effects of link errors, we validated previous

findings [5]. Namely, we showed that in networks with highly skewed degree distributions in

particular, network attack strategies are robust against link errors. We have also shown that

the effectiveness of network attack strategies is much degraded when the network is obtained

Fig 20. Fraction of nodes not infected by the virus at convergence of virus spread vs. fraction p of immunized

nodes: Effects of link errors (network: AS).

https://doi.org/10.1371/journal.pone.0221885.g020
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Fig 21. Fraction of nodes not infected by the virus at convergence of virus spread vs. fraction p of immunized

nodes: Effects of link errors (network: P2P).

https://doi.org/10.1371/journal.pone.0221885.g021

Fig 22. Fraction of nodes not infected by the virus at convergence of virus spread vs. fraction p of immunized

nodes: Effects of link errors (network: BA).

https://doi.org/10.1371/journal.pone.0221885.g022
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Fig 23. Fraction of nodes not infected by the virus at convergence of virus spread vs. fraction p of immunized

nodes: Effects of link errors (network: GRG).

https://doi.org/10.1371/journal.pone.0221885.g023

Fig 24. Fraction of nodes not infected by the virus at convergence of virus spread vs. fraction p of immunized

nodes: Effects of network sampling (immunization strategy: Degree; network: AS).

https://doi.org/10.1371/journal.pone.0221885.g024
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Fig 25. Fraction of nodes not infected by the virus at convergence of virus spread vs. fraction p of immunized

nodes: Effects of network sampling (immunization strategy: Degree; network: P2P).

https://doi.org/10.1371/journal.pone.0221885.g025

Fig 26. Fraction of nodes not infected by the virus at convergence of virus spread vs. fraction p of immunized

nodes: Effects of network sampling (immunization strategy: Degree; network: BA).

https://doi.org/10.1371/journal.pone.0221885.g026
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from random sampling, whereas the detrimental effects of network sampling on network

attack strategies are small when using biased sampling strategies such as BFS, DFS, and SEC.

However, when the sample size is quite small (i.e., less than 30%), the effects of network sam-

pling are not negligible. Comparing the different attack strategies, we have found that the

state-of-the-art CI strategy is not robust against network uncertainty, and when the level of

network uncertainty is large, the effectiveness of CI is comparable with that of the conventional

Degree strategy.

Moreover, we have examined the effectiveness of network attack strategies when applied to

the network immunization problem. Overall, the detrimental effects of link errors and network

sampling are not severe for the network immunization problem. Our results show that the

effects of link errors on the effectiveness of immunization are small. Although the effects of

random sampling are large, those of other sampling methods are small. Particularly for the AS

network, the effectiveness of immunization based on Degree using only a 10% sample of the

network obtained with SEC and DFS is comparable with that using the complete network.

We recognize that there are some limitations of this study, and these suggest future research

directions. First, how combinations of different types of incompleteness affect the network

attack strategies is still unclear. In reality, sampled networks also include link errors. It is there-

fore important to investigate the extent to which these different types of error in a network

affect the network attack strategies. Second, the generalizability of the results in this study

should be validated. In particular, the relation between the topological characteristics of the

ground-truth network and the robustness of the network attack strategies should be investi-

gated in the future research. Moreover, new attack strategies [2, 4] have been proposed since

CI, and analyzing the robustness of these strategies is also important future work. Third, to

Fig 27. Fraction of nodes not infected by the virus at convergence of virus spread vs. fraction p of immunized

nodes: Effects of network sampling (immunization strategy: Degree; network: GRG).

https://doi.org/10.1371/journal.pone.0221885.g027
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understand the effectiveness of network attack strategies for the network immunization prob-

lem, more detailed investigations are still necessary. In this paper, we only consider the sce-

nario where the virus spreading process is initiated from a randomly selected node. Other

scenarios such as where multiple nodes are infected or high-degree nodes are infected should

be also investigated. Moreover, to investigate the effectiveness of the strategies under different

infection and recovery rates and under different spreading models such as the SIS and the

SEIR models is also interesting.
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