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ABSTRACT: This study aimed to reconstruct temperatures experienced during the larval period
by adult Pacific bluefin tuna Thunnus orientalis using high-resolution otolith stable oxygen iso-
tope (δ18O) analysis. A novel otolith sample preparation protocol for secondary ion mass spectro -
metry (SIMS) analysis developed in this study reduced the background noise of SIMS measure-
ments, enabling analyses of >10 times higher resolution around the otolith core compared to
previous studies using conventional isotope ratio mass spectrometry (IRMS). The values obtained
from SIMS were compared to those obtained by microvolume δ18Ootolith analysis using
micromilling and conventional continuous-flow IRMS (CF-IRMS). There was a systematic offset
(average 0.41‰ with SIMS resulting in lower values) most likely caused by matrix effects on SIMS
δ18Ootolith values that can be calibrated using a strong linear relationship between SIMS and CF-
IRMS measurements (r2 = 0.78, p < 0.001). The core-to-edge δ18Ootolith of 5 Pacific bluefin tuna
revealed fine-scale seasonal variations in water temperature agreeing with known migration pat-
terns. In addition, the ambient water temperature experienced during larval stages (about 10−
20 d post hatch) estimated from otolith core δ18O ranged from 26.7 to 30.7°C, overlapping with
temperatures associated with the occurrence of larval Pacific bluefin tuna. Combining SIMS and
microvolume CF-IRMS δ18O otolith analyses offers a microscale examination of fish ecology that is
not possible with conventional IRMS techniques. This novel method is particularly useful for
understanding the early life history of fish that may be affected by climate change and recon-
structing a well-resolved migration history for fish species that have small otoliths and/or narrow
growth increments.

KEY WORDS:  Temperature reconstruction · Otolith · Oxygen isotope analysis · Secondary ion
mass spectrometry · SIMS · continuous-flow isotope ratio mass spectrometry · CF-IRMS · Pacific
bluefin tuna · Sample preparation protocol
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1.  INTRODUCTION

Ocean warming has significant impacts on marine
species and ecosystems, including high mortality,
distribution shifts, and loss of spawning and nursery
habitats (Perry et al. 2005, Kimura et al. 2010, Muh-
ling et al. 2011, 2015). Species that spawn seasonally
in relatively limited areas are particularly vulnerable
to increasing water temperature, as their optimum
range in spawning temperatures tends to be re stric -
ted. Pacific bluefin tuna Thunnus orientalis (PBT) is a
highly migratory species that spawns in waters near
the Nansei Islands in the western North Pacific from
May to June and in the Sea of Japan from July to
August (Yonemori 1989, Ohshimo et al. 2017). Adult
fish in the western North Pacific spawn at tempera-
tures between 26 and 29°C, whereas those in the Sea
of Japan initiate spawning at temperatures greater
than 20°C (Chen et al. 2006, Tanaka 2011, Suzuki et
al. 2014, Okochi et al. 2016). In the laboratory, the
growth rate and survival of PBT larvae significantly
decrease when temperatures exceed 29°C (Kimura
et al. 2007). In fact, projected temperature in the cur-
rent spawning sites is expected to increase by more
than 3°C by 2100 under the most extreme Intergov-
ernmental Panel on Climate Change (IPCC) climate-
warming scenario (IPCC 2007) and become unsuit-
able for PBT to spawn (Kimura et al. 2010). As PBT
larvae are particularly vulnerable to thermal stress,
warming sea temperatures are likely to have signifi-
cant impacts on their early growth and survival.
However, the effects of ongoing climate change on
the early life stages of PBT are poorly understood due
to a lack of empirical evidence and methods to study
such effects.

Oxygen isotope ratios (δ18O) in otoliths, biogenic
calcium carbonate (aragonite) found in the inner ear
of teleost fish (ray-finned bony fish), has been widely
used as a natural tag to reconstruct water tempera-
tures and salinity conditions experienced by fish
(Thorrold et al. 1997, Campana 1999, Jones & Cam-
pana 2009). Such reconstructions of past environ-
ment are possible because otoliths generally develop
at or close to the isotope equilibrium with ambient
water, and many studies have demonstrated the tem-
perature dependency of otolith δ18O for various fish
species under laboratory conditions (Kalish 1991,
Thorrold et al. 1997, Høie et al. 2004, Kitagawa et al.
2013). Existing methods of temperature reconstruc-
tion for fish mostly rely on δ18Ootolith measurements
by conventional isotope ratio mass spectrometry
(IRMS), which often involves a milling process to
obtain a relatively large amount of otolith powder for

analysis (usually more than a few tens of micrograms
with a minimum weight requirement of 15 μg).
Ambient water temperatures have previously been
reconstructed using IRMS for sockeye salmon Onco-
rhynchus nerka (Zazzo et al. 2006), alewife Alosa
pseudoharengus (Dufour et al. 2008), Atlantic cod
Gadus morhua (Jones & Campana 2009, von Leesen
et al. 2020), turbot Scophthalmus maximus (Imsland
et al. 2014), and chub mackerel Scomber japonicus
(Higuchi et al. 2019), most of which have a monthly
to annual resolution depending on the otolith size.
The limited temporal resolution due to the sample
mass requirement of the IRMS is inevitable and
makes it particularly difficult when analyzing the
otolith core and edge.

Recent developments in secondary ion mass
 spectrometry (SIMS) δ18O analysis of otoliths have
enabled a high-resolution reconstruction of migra-
tion and life history characteristics of marine species
(Hanson et al. 2010, Matta et al. 2013, Shiao et al.
2014, Helser et al. 2018a, Shirai et al. 2018, Willmes
et al. 2019). Unlike conventional IRMS, SIMS is capa-
ble of determining isotopic composition within a spa-
tial resolution of 5 to 15 μm, which allows sub-
annual, seasonal, and even weekly or much shorter
timescale analyses with high accuracy and precision
(Kita et al. 2009, Valley & Kita 2009). While a recent
study (Sakamoto et al. 2019) reconstructed migration
histories of an individual Japanese sardine Sardinops
melanostictus with 10 to 30 d resolution (20 to 30 d
around the core regions and 10 to 15 d toward the
edge) using microvolume isotope analysis measured
by continuous-flow IRMS (CF-IRMS), SIMS provides
even finer temporal resolution, particularly for the
otolith core and edge. High-resolution reconstruction
of experienced temperatures using SIMS δ18Ootolith is
an effective method for investigating the early life
history of fish in response to increasing water tem-
perature associated with climate change.

In this study, we developed a method to reconstruct
ambient water temperatures experienced during
the larval period of an individual fish using SIMS
δ18Ootolith analysis. δ18Ootolith values of 5 adult PBT
otolith samples were measured from the otolith core
to edge by SIMS, and the measured SIMS δ18Ootolith

values were compared to those measured by CF-
IRMS. Water temperatures were then estimated
using a temperature-dependent oxygen isotope frac-
tionation equation for PBT larvae that had already
been established in a previous study (Kitagawa et al.
2013). The temperature reconstruction technique
presented here allows high-resolution investigation
of the early life history of fish and provides a more
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thorough understanding of the characteristics of sur-
vivors and the thermal environment that may con-
strain their early growth and survival.

2.  MATERIALS AND METHODS

2.1.  Sample collection and 
sample preparation protocol

Sagittal otoliths, the largest of 3 pairs of otoliths,
were collected from the heads of PBT caught in
waters south of Japan in the Pacific by local longline
fishing vessels and small ships from 2017 to 2018
(Fig. 1, Table 1). Catch location, date of catch, and
biological information of PBT samples are shown in
Table 1. Otoliths were cleaned and rinsed with dou-
ble deionized water (Milli-Q water) to remove any
remaining muscle tissues, air-dried in a clean envi-
ronment, and stored in microtubes for later analysis.
Five adult fish samples were randomly selected and
1 of the paired otoliths from each individual was used
for SIMS δ18O analysis. For CF-IRMS δ18O analysis,
the 3 otolith sections that had been analyzed by
SIMS were used.

Since SIMS is a surface analytical method, any ir-
regularities of the sample surface, such as the exis-
tence of cracks, sample relief, and inclination of the
surface, can cause degraded accuracy and precision
of SIMS measurements (Kita et al. 2009, Valley & Kita
2009). It is also difficult to prepare samples with
otolith cores and standard materials exposed on the
same flat mirror-finished surface because otolith
cores are usually very small (<5 μm). Thus, we first
developed a sample preparation protocol (Fig. 2) that
minimizes the effect of sample surface irregularities
with an appropriate polishing procedure for calcium
carbonates. This protocol is appropriate for preparing

a thin otolith section with a transverse (or sagittal)
cross- sectional plane. First, an otolith was mounted on
a microscope slide with thermoplastic cement per-
pendicular to its longest axis, with the sulcus side fac-
ing down. The otolith core was then observed under
an inverted microscope (IX-71, Olympus) equipped
with a high-resolution color CMOS camera (DP-74,
Olympus). Next, straight lines were drawn on the
glass slide at 270 to 300 μm on each side of the otolith
core using waterproof ink and a comic pen (Zebra
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Sample ID Catch location Date of catch Weight Estimated Number Number of 
(kg) fork length of SIMS CF-IRMS 

(cm) spots measurements

T64R 30.0° N, 134.0° E 26 April 2017 146.0 191.1 78 (35 and 43) 5 (2)*
T75R 30.0−32.0° N, 136.0° E 30 April 2017 52.2 136.2 42 −
T104L 27.0−28.0° N, 132.0−134.0° E 18 May 2017 99.2 168.3 53 8 (3)*
T118R Nearshore off Kii Peninsula 22 May 2017 138.0 187.6 44 9 (4)*
T131R Nearshore off Kii Peninsula 28 May 2017 118.0 178.2 42 −

Table 1. Biological information, sampling data, and δ18O analyses of Pacific bluefin tuna Thunnus orientalis otoliths used in the
present study. Fork length was calculated with a weight−length relationship established by Kai (2007). Two life-history tran-
sect lines were analyzed for T64R by SIMS. *Numbers in parentheses indicate the number of supplementary samples
(removed otolith powders that were milled before milling the target milling areas to avoid cross-contamination) analyzed by 

CF-IRMS

Fig. 1. Catch locations of Pacific bluefin tuna Thunnus orien-
talis (red circles). Two samples (T118R and T131R) were
caught in nearshore waters off Kii Peninsula by a small local

boat and thus the locations are not shown on the map
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comic pen nib holder with Tachikawa T-99 round pen
nib), and a thin otolith section was cut out together
with the slide glass along the drawn lines with an au-
tomatic low-speed precision cutter (IsoMet 5000,
Buehler) equipped with a 0.3 mm thick diamond
blade (IsoMet 15LC, Buehler). The sectioned otolith
was then removed from the strip of glass by carefully
rinsing it with acetone, and was allowed to air-dry
in a laminar flow hood. The appropriate thickness of
a sectioned otolith is subject to change depending
on the species, and it is recommended that the
thickness which provides the clearest view of the
otolith growth increments should be determined for
each species.

The sectioned otolith was fixed in the center of a
2.54 cm silicon mold and embedded in mounting
resin (EpoxyCure 2 Resin, Buehler) along with a cal-
cite standard, UWC-3 (δ18O =12.49‰, Vienna Stan-
dard Mean Ocean Water [VSMOW], Kozdon et al.
2009), that was placed just above the otolith. It was

then kept at room temperature for 24 h to cure the
resin. The resulting epoxy disk containing the otolith
thin section and standard material was ground with a
grinding machine equipped with 70 and 13 μm dia-
mond cup wheels (Discoplan-TS, Struers) until the
distance from the otolith surface to the core was 15 to
20 μm. It was then successively polished using 6, 3,
and 1 μm diamond pastes on a fine grinding disc
(MD-Largo, Struers) to expose the core on a flat mir-
ror-finished surface. Before analysis, the samples
were cleaned in an ultrasonic cleaner and dried in a
vacuum oven at 40°C for 2 h. They were then sputter-
coated with approximately 60 nm gold. This protocol
reduces sample preparation time by eliminating the
need to embed otoliths in epoxy resin twice (once for
sectioning in the transverse or sagittal plane and
once for embedding with standard materials and pol-
ishing). It also provides flexibility in deciding desired
section thickness and minimizes the portion of the
sample that needs to be polished.
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Fig. 2. Sample preparation protocol for SIMS δ18O analysis. (a) An otolith is mounted perpendicular to its longest axis with the
sulcus side facing down on a glass slide with a crystal bond. The otolith primordium (core) is observed under an inverted
microscope and lines are drawn on a glass slide on both sides of the primordium at 270 to 300 μm. (b) An otolith thin section
is cut along the lines with a low-speed precision cutter. The thin-sectioned otolith is embedded along with a calcite UWC-3
standard in the center of a silicon mold with epoxy resin. (c) The epoxy disk is first ground with a grinding machine, and then 

successively polished with 6, 3, and 1 μm diamond pastes to expose the primordium on a mirror-finished surface
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2.2.  SIMS δ18O analysis

Otolith oxygen isotope ratios were measured in situ
using a CAMECA IMS 1280-HR large radius, multi-
collector ion microprobe (SIMS) at the Kochi Institute
for Core Sample Research, JAMSTEC. Five otolith
thin sections were prepared for SIMS δ18Ootolith analy-
ses using the sample preparation protocol developed
in the present study (Fig. 2). The δ18Ootolith values
were measured from otolith core to edge along the
growth axis for each otolith sample (Fig. 3a).

The SIMS analytical conditions that were used for
δ18Ootolith measurements in this study have been
described in detail by Kita et al. (2009). The sample
surface was sputtered by a 20 kV accelerated 133Cs+

primary ion beam at 1.5 to 1.8 nA focused to a dia -
meter of 10 to 15 μm, resulting in a pit of approxi-
mately 1 μm depth (Fig. 3b). The secondary ions
(16O−, 18O−, and 16OH−) were accelerated at 10 kV
and detected simultaneously by 3 Faraday cup detec-
tors. Since hydrogen is present in the SIMS chamber

even under ultra-high vacuum conditions, measured
16OH−/16O− ratios were background-corrected by sub -
tracting the average 16OH−/16O− ratio of the UWC-3
standard bracketing analyses (nominally anhydrous
minerals) from the 16OH−/16O− ratio of δ18Ootolith

measurements. The background-corrected 16OH−/16O−

ratios served as a proxy for the relative hydrogen
content contained in otolith samples. Each analysis
took approximately 3 min, consisting of pre-sputter-
ing (10 s), automatic centering of the secondary ion
beam (90 s), and the isotopic measurements with 20
analytical cycles (40 s). The count rates for 16O− and
18O− were 1.7 to 2.5 × 109 and 3.5 to 5.1 × 106 counts
per second (cps), respectively.

For accurate calibration of SIMS δ18O measure-
ments in biogenic carbonate samples, a homoge-
neous biocarbonate standard with a matched-matrix
is needed. The UWC-3 standard is a chemically and
isotopically homogeneous calcite standard which has
a similar chemical composition to otoliths (aragonite),
and thus all δ18Ootolith measurements were normal-
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Fig. 3. (a) Cross-sectional electron probe micro analyzer (EPMA) image of bluefin tuna otolith with beam spot locations. (b) SIMS
beam spot sputtered with a 133Cs+ primary ion beam focused to a diameter of 10 to 15 μm. (c) Otolith thin section from Pacific
bluefin tuna Thunnus orientalis embedded in epoxy resin with a calcite UWC-3 standard. The sample surface was mirror-finished 

and coated with gold
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ized with this standard in our study (Kozdon et al.
2009). Every 10 to 15 unknown sample measure-
ments were bracketed by 10 analyses of a UWC-3
calcite standard (5 analyses before and after each
group of unknown samples) to calculate the spot-to-
spot precision of sample analyses and to correct for
instrumental mass fractionation. The precision of
sample analyses for all 5 otolith thin sections was
±0.3 to ±0.6‰ (2 standard deviations).

After analysis, each spot was observed on scanning
electron microscope (SEM) images taken with an
electron probe micro analyzer (JXA-8230, JEOL) to
check for any cracks and inclusions that might bias
the resulting δ18O values (e.g. Weidel et al. 2007). No
spots had such surface irregularities. In addition, the
secondary ion yield (16O−, cps nA−1) relative to the
mean of the UWC-3 standard bracketing analyses
were used to assess the quality of each spot measure-
ment and check for any extreme outliers. Raw SIMS
δ18O measurements are presented in Table S1 in
the Supplement at www.int-res.com/articles/suppl/
m649 p175_supp.xlsx.

For comparison purposes, all δ18Ootolith values were
converted from VSMOW to Vienna Pee Dee Belem-
nite (VPDB) by using the latest published conversion
equation (δ18OVSMOW = 1.03092 × δ18OVPDB + 30.92,
Brand et al. 2014, Kim et al. 2015).

2.3.  Microvolume δ18O analysis by CF-IRMS

Microvolume CF-IRMS δ18O analysis was conduc -
ted to compare δ18Ootolith values measured by SIMS
and CF-IRMS. Three otolith thin sections that had
been analyzed by SIMS were used for micro volume

CF-IRMS δ18O analysis. δ18O analyses were per-
formed with an IsoPrime100 isotope ratio mass spec-
trometer (Isoprime) equipped with a customized con-
tinuous-flow gas preparation system (MICAL3c) at
the National Institute of Technology, Ibaraki College,
Japan. This system can measure isotope ratios of cal-
cium carbonate samples with a minimum sample
mass of 0.2 μg (about 1/100 of the sample mass
required for commercially available IRMS systems)
with high precision and accuracy (Ishimura et al.
2004, 2008). By micromilling the otolith material
deposited during the same growth period as that
analyzed by SIMS, it is possible to compare average
SIMS and CF-IRMS δ18Ootolith values.

A high precision micromilling system (Geo mill -
326) was used for milling the specific regions of
otolith samples. This system comprised a carbide
bur fixed over an XYZ sample stage, a high-resolu-
tion camera, and a computerized image analyzer.
An otolith image with marks indicating the target
milling areas was imported into the system and
milling paths were configured on the computer. The
target milling areas were set in the otolith region
where the measured SIMS δ18Ootolith values were
stable, and they covered roughly 3 to 4 SIMS beam
spots (Fig. 4). First, an unwanted area right next to
the target milling path was milled and removed
from the otolith to avoid cross-contamination. The
removed otolith powders were also collected and
used for analysis as supplementary samples to in -
crease the dataset. For each otolith sample, 2 to 3
target paths were milled along the growth rings to
obtain powder samples. The resulting milled paths
were 15 to 80 μm wide, 250 to 350 μm long, and 60
to 90 μm deep.
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a cb

Fig. 4. Otolith thin section from Pacific bluefin tuna Thunnus orientalis (T64R) used for micromilling. (a) Before milling, (b)
after milling unwanted areas to avoid cross-contamination, and (c) after milling the target milling path (the area inside the red
line). (d) Beam spot locations where SIMS δ18Ootolith values are stable (−3.01, −2.93, −3.04‰, respectively, from top to bottom 

[VPDB]). The images were taken under an optical microscope for (a), and a stereo microscope for (b) and (c)

https://www.int-res.com/articles/suppl/m649p175_supp.xlsx
https://www.int-res.com/articles/suppl/m649p175_supp.xlsx
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The life stages of the corresponding milled paths
were estimated based on the distance from the otolith
core and the location of the annual growth increments.
Each path corresponded to either the juvenile (a few
months old), immature (about 5 mo old to age 1+),
or sub-adult stage (age 2 to 3). The non-parametric
Kruskal-Wallis test was used to determine the statisti-
cal difference in resulting offset values between SIMS
and CF-IRMS among different life stages.

The amount of powder produced from each path
was 0.9 to 3.5 μg. The milled powder was carefully
collected and placed on to a small piece of glass using
a needle under a microscope, and then put into the
bottom of a reaction tube. The aragonite powder was
then reacted with 104% phosphoric acid at 25°C, and
the evolved CO2 was purified in a stainless steel vac-
uum line. After further purification using a helium-
purged purification line, the purified CO2 was intro-
duced into the mass spectrometer. Samples that
weighed more than 2.0 μg were analyzed twice. The
results are reported in standard δ notation (‰) rela-
tive to VPDB. We measured a laboratory standard
CO2 gas for the determination of the analytical pre -
cision of pure CO2 gas (δ13CVPDB = −1.56‰ and
δ18OVPDB = −4.42‰, Nishida & Ishimura 2017) 3 or
more times every day. The analytical precision was
better than ±0.1‰ (±1 SD) for the entire analysis.

To compare the difference between SIMS and CF-
IRMS values, the average SIMS δ18Ootolith values were
calculated by averaging the SIMS spot measurements
adjacent to or within each milling path and then com-
pared to the CF-IRMS δ18Ootolith value. A linear regres-
sion analysis was performed to determine the correla-
tion between values measured by the 2 methods. In
addition, the Wilcoxon signed rank test was applied to
test the statistical difference between the average
SIMS and CF-IRMS δ18Ootolith values, and the Tukey’s
test was used to detect outliers. All statistical analyses
were performed using R software (version 3.3.2).

2.4.  Temperature reconstruction for 
larval stages of adult PBT

Ambient water temperatures experienced during
larval stages of adult PBT were estimated using
SIMS δ18Ootolith values of otolith core regions. The
daily growth increments were counted on the SEM
images and the SIMS spot measurements that were
made within 20 days post hatch (DPH) were used for
the temperature estimation. For an accurate esti -
mation of ambient water temperatures, a species-
 specific fractionation equation and δ18Oseawater are

needed. To reconstruct ambient temperatures, we
used the oxygen isotope fractionation equation for
PBT larvae proposed by Kitagawa et al. (2013):

δ18Ootolith (VPDB) − δ18Owater (VPDB) = 5.193 − 0.270 × T (1)

where δ18Owater is the δ18O value of ambient water,
and T is the water temperature in °C. For δ18Owater in
the equation, we applied the δ18O value of +0.22‰
(VSMOW) which is the average δ18Owater of the main
spawning ground around the Nansei Islands (24.04 to
26.09° N, 123.56 to 131.00° E) in May to June from 2008
to 2010 (Uozato 2011). The δ18Owater (VSMOW) value
was corrected on the VPDB scale by subtracting 0.22‰
(Friedman & O'Neil 1977), following the same protocol
as Kitagawa et al. (2013). The mean temperatures
were cal culated for the samples that had multiple
δ18Ootolith measurements made around the core regions.
Al though the focus was on the reconstruction of ambi-
ent water temperatures experienced during the larval
period of the fish, the lifetime temperature history was
estimated to evaluate how well δ18Ootolith records am-
bient water temperatures in the older stages of PBT.

3.  RESULTS

3.1.  Comparison of SIMS and 
CF-IRMS δ18Ootolith measurements

In total, 22 paths were milled by a micromilling sys-
tem and the δ18Ootolith of collected powders from each
milled path was measured by CF-IRMS (Table S2 in
the Supplement). After carefully examining the accu-
racy of how well each milled path captured the same
growth zone as the SIMS spots, 18 samples, includ-
ing 9 main samples and 9 supplementary samples,
were selected to assess the difference between SIMS
and CF-IRMS δ18Ootolith values. The average values of
multiple CF-IRMS measurements were used when
the milling accuracy of a single milling path was low
(see Table S3 in the Supplement for a complete list of
data). The precision of δ18Ootolith values measured by
CF-IRMS was better than that of SIMS.

The δ18Ootolith values measured by CF-IRMS were
significantly higher than those measured by SIMS
(Fig. 5a, Wilcoxon signed-rank test, p < 0.001) except
for 2 measurements in which the CF-IRMS value was
0.12 and 0.47‰ lower than the average SIMS value,
respectively. We considered the CF-IRMS δ18Ootolith

measurement that was 0.47‰ lower than the average
SIMS δ18Ootolith value to be an outlier, based on the
Tukey’s outlier detection method. This measurement
was taken from a relatively large area of the otolith
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deposited during the second to third years of life,
where interannual variation in water temperature is
expected. It is likely that this temperature variation
was not well reflected in the average SIMS value
since only 3 spot measurements were averaged over

more than a half-year period. Therefore, this measure-
ment was excluded for calculating a linear regression
curve and the average SIMS−CF-IRMS difference.

There was a significant positive correlation be -
tween SIMS and CF-IRMS δ18Ootolith values (r2 = 0.79,
p < 0.001) with a slope of 1.1408 and an intercept of
0.0704. The slope is 1 within the 95% confidence
interval (lower limit = 0.82, upper limit = 1.46) with a
high correlation coefficient (r2 = 0.78), and thus a lin-
ear regression with a slope of 1 was fitted to the data
to calculate the y-intercept, which is the average dif-
ference (Fig. 5b). The average offset between SIMS
and CF-IRMS δ18Ootolith values was 0.41‰, with SIMS
yielding lower values. The SIMS−CF-IRMS δ18Ootolith

correction equation for PBT can be expressed as:

SIMS δ18Ootolith (VPDB) = 
CF-IRMS δ18Ootolith (VPDB) − 0.41

(2)

No significant difference was observed between
δ18Ootolith measurements at different life stages (Kruskal-
Wallis test, p = 0.29), and thus the consistent appli-
cation of this offset correction equation to all SIMS
measurements was considered appropriate.

3.2.  Seasonal variations in SIMS δ18Ootolith profiles

In total, 259 δ18Ootolith measurements were made for
5 PBT otoliths by SIMS (Table 1). The total number of
spots measured per otolith was 42 to 78 (2 life-history
transect lines were analyzed for T64R). The length of
each transect ranged between 2.5 and 2.8 mm with a
spot-to-spot distance ranging from 16 to 153 μm
around the core region, and 26 to 337 μm toward the
edge. The spatial resolution around the core region
in one of the samples was more than 10 times higher
compared to the conventional IRMS method previ-
ously used for PBT otoliths (Shiao et al. 2010). The
temporal resolution of SIMS spots was 3 to 5 d near
the core region and roughly several weeks to a
month on the outer edge depending on the age of
fish.

The offset-corrected SIMS δ18Ootolith values for 5
PBT samples are plotted in Fig. 6 (see left y-axis).
High-resolution δ18Ootolith profiles of all otolith sam-
ples showed distinct seasonal variations with an
increasing trend from the otolith core to about
1250 μm. The average δ18Ootolith values from the core
to about 750 μm ranged between −3.1 and −2.5‰
(VPDB), and sharply increased toward the first
annual increment (opaque zone), peaking at −1.3 to
−0.4‰. After the increase, the δ18Ootolith values
decreased, showing a cyclical pattern toward the
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Fig. 5. Comparison of SIMS and CF-IRMS δ18Ootolith values
(‰, VPDB). (a) CF-IRMS δ18Ootolith values were significantly
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linear regression with a slope of 1 was fit to the data (r2 =
0.78); (Dashed line) 1:1 slope. Horizontal and vertical error
bars represent CF-IRMS analytical precision (±1 SD) and
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Tukey’s outlier detection method and thus excluded for the 
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edge fluctuating mostly between −2.5 and −1.5‰
(VPDB). The δ18Ootolith of the core regions correspon-
ding to PBT larval stages (10 to 20 DPH) ranged
between −3.1 and −1.9‰ (VPDB).

The background-corrected 16OH−/16O− ratios meas-
ured for the 5 otoliths ranged between 0.017 and
0.031, and had a general inverse relationship with the
SIMS δ18Ootolith values (there is no impact of individual
differences on this relationship) (Fig. 7a). This indi-
cates that the relative hydrogen content in the otolith
increases with lower SIMS δ18Ootolith values. Overall,
higher 16OH−/16O− ratios resulted in larger SIMS−CF-

IRMS δ18Ootolith differences (Fig. 7b), which is consis-
tent with the inverse trend seen in Fig. 7a.

3.3.  Estimation of temperature experienced 
during larval period

Core-to-edge water temperature profiles of all
samples are shown in Fig. 6 (see right y-axis). The
estimated temperatures experienced during the lar-
val stages ranged between 26.7 and 30.7°C among
the individuals (T64R: 30.7 ± 1.3°C [~20 DPH], T75R:
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27.9 ± 1.0°C [~10 DPH], T104L: 26.7 ± 1.0°C
[~12 DPH], T118R: 28.9 ± 0.9°C [~12 DPH], T131R:
28.4 ± 1.4°C [~12 DPH]). After Year 0, temperature
ranged mostly between 24 and 30°C, and never
reached 35°C.

4.  DISCUSSION

An increasing number of experimental and model-
ing studies have shown significant impacts of pro-
jected climate change on the early growth and sur-
vival of various fish species (Kimura et al. 2007,
Pankhurst & Munday 2011, Moyano et al. 2017).
Generally, fish larvae are more sensitive to tempera-
ture variations than juveniles and adults as they have
narrower thermal tolerance ranges (Pörtner & Peck
2010, Moyano et al. 2017), making them particularly
vulnerable to climate change. However, the effects of
ongoing climate change-driven ocean warming on
the early life history of fish remain largely unex-
plored for many species, mostly due to difficulties in

monitoring long-term responses to climatic stressors.
Thus, the advancement of techniques that can quan-
titatively estimate past environments actually experi-
enced by fish during key phases of the life cycle is
essential to fill this knowledge gap. In this study, a
high-resolution temperature reconstruction tech-
nique using SIMS δ18Ootolith analysis was developed
and applied to PBT, a species of great economic
importance, whose early larval growth and survival
may be constrained by climate change.

The 0.41‰ offset observed between SIMS and CF-
IRMS δ18Ootolith values for PBT otoliths is most likely
due to incomplete correction for ‘matrix effects’ by
SIMS methods. Matrix effects refer to an instrumen-
tal mass fractionation caused by different chemical
compositions and structures between given samples
and standard materials, which shifts measured val-
ues (Eiler et al. 1997, Riciputi et al. 1998, Śliwiński et
al. 2016, 2018, Wycech et al. 2018). Otoliths contain a
small amount of organic proteins, namely otolith
matrix protein-1 and Otolin-1 (Murayama et al. 2000,
2002). The presence of these proteins in the otolith
would be responsible for a subtle change in instru-
mental mass fractionation, which results in lower
SIMS δ18Ootolith values relative to those measured by
CF-IRMS, and higher 16OH− ion yields compared to
that of the calcite standard. The general inverse rela-
tionship between 16OH−/16O− ratios and SIMS
δ18Ootolith values (Fig. 7a) may be the result of the
incorporation of more proteins into the otolith matrix,
which is thought to relate to fast growth in summer
(or less proteins in winter due to slow growth). The
water content (OH−) of the otoliths, if any, is also
responsible for the lower δ18Ootolith values. These
organic proteins and water content bias SIMS
δ18Ootolith values because they are measured together
with calcium carbonates, whereas they do not affect
CF-IRMS δ18Ootolith values since these proteins do not
react at 25°C with the phosphoric acid that is used in
a digestion process to generate CO2 gas. Further-
more, the systematic difference in isotopic fractiona-
tions caused by sputtering different crystalline struc-
tures (the biogenic aragonite samples and calcite
standard) may contribute to the observed offset
(Linzmeier et al. 2016). Although matrix effects are
likely the primary cause of the SIMS−CF-IRMS dif-
ference, other potential factors (e.g. milling and
roasting effects) may influence the measurement
results of SIMS and CF-IRMS. The effects of roasting
and other factors have been discussed in detail by
Wycech et al. (2018), who investigated the δ18O dif-
ference between SIMS and IRMS using foraminiferal
shells.
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The offset of 0.41‰ found in this study is within the
range of offset values previously reported for otoliths
of other fish species and biocarbonate samples.
Orland et al. (2015) reported that there is a consistent
sample-dependent offset in δ18O of typically less than
1.0‰, but this can go up to 1.8‰ with different sam-
ple matrices including biocarbonates and speleo -
thems. Matta et al. (2013) used roasting to remove
organic materials and observed an offset of about 1‰
in SIMS δ18O values between roasted and unroasted
otoliths of yellowfin sole Limanda aspera. Helser et
al. (2018b) also observed a 0.5‰ offset between
SIMS and CF-IRMS δ18Ootolith measurements in
otoliths of Pacific cod Gadus macrocephalus. The
temperature estimation without the correction of the
0.41‰ offset using SIMS δ18Ootolith values of PBT
would cause a bias of 1.5°C in the estimates, result-
ing in some unrealistically high temperature esti-
mates (i.e. >34°C). While the extent to which organic
proteins and water content contribute to an overall
offset is unknown, it is necessary to determine these
offsets between SIMS versus IRMS when estimating
ambient water temperatures from SIMS δ18Ootolith

values for different species.
The SIMS analyses performed on 5 otolith samples

from PBT revealed fine-scale δ18Ootolith profiles from
the core to the edge with clear seasonal variations
(Fig. 6). As water temperature and δ18Ootolith are neg-
atively correlated (Devereux 1967, Thorrold et al.
1997, Høie et al. 2004), the initial increase in the
δ18Ootolith values observed toward the first annual in-
crement (opaque zone) for all otolith samples indi-
cates that the PBT experienced a decreasing water
temperature. Age 0 juveniles predominantly inhabit
the surface mixed layer (Kitagawa et al. 2000), and
they are known to migrate northward in summer
along the coastal regions of Japan and southward for
overwintering in the East China Sea and nearshore
waters on the Pacific side of Japan (Itoh et al. 2003,
Fujioka et al. 2018). The increase in the δ18Ootolith val-
ues thus reflects the actual water temperature
change experienced by the individuals from autumn
to winter. The increasing patterns of the δ18Ootolith in
the first year of life observed in this study are consis-
tent with the results previously reported by Shiao et
al. (2010), with much greater temporal resolutions
(d to wk) with high precision and accuracy achieved
by SIMS techniques. The δ18Ootolith profiles after age 0
also showed similar seasonal fluctuations, but with
much less variation. This narrow δ18Ootolith range ob-
served after age 0 is likely due to the effect of the de-
velopment of thermoregulatory ability by the PBT.
For endothermic fish (warm-bodied) such as PBT and

other tuna species, the δ18Ootolith of immature and
adult stages do not merely reflect ambient (in situ)
water temperatures but, rather, the elevated, internal
body temperatures. Using counter current heat ex-
changers known as retia mirabilia (Dickson &
Graham 2004), PBT have the capacity to elevate the
temperature of their viscera, red (slow-twitch, oxida-
tive) myotomal muscle fibers, eyes, and brain (Linthi -
cum & Carey 1972, Carey & Lawson 1973). When ju-
venile PBT reach about 20.0 cm in fork length at age
0 (about 2 mo after hatching) (Kubo et al. 2008), ther-
moregulatory ability begins to develop and they are
able to maintain their body temperature <1°C above
that of the surrounding water (Furukawa et al. 2017).
The thermoregulatory ability of PBT increases as the
fish grow and develop. For example, water tempera-
tures of the peritoneal cavity of adult fish (a 250 kg
PBT) could be 10°C higher than ambient tempera-
tures constructed from acoustic telemetry data (Kita-
gawa et al. 2006). Since temperatures >35°C are
lethal for PBT, the observed upper temperature range
(30°C) in immature and adult stages is likely a result
of physiological thermoregulation to avoid overheat-
ing. Understanding how thermoregulatory ability
changes with body size and its physiological effects
on δ18Ootolith will facilitate better interpretation of the
temperature data obtained from this technique.

The estimated temperatures experienced during
the larval stages ranged between 26.7 and 30.7°C
among the individuals, with a mean temperature of
28.5 ± 0.1°C (±2 SD). Field surveys have collected
PBT larvae in sea surface temperatures (SSTs)
between 23.5 and 29.5°C in the 2 main spawning
grounds (Yonemori 1989, Abe et al. 2014, Suzuki et
al. 2014), with higher concentrations of larvae found
around 27°C. The estimated temperatures overlap
with the range of temperatures observed for larval
occurrence of PBT. As newly hatched PBT larvae
tend to stay in warm waters within or near the
spawning grounds for their optimal growth and sur-
vival, temperatures estimated from the core δ18Ootolith

corresponding to the early larval period may also
serve as a useful indicator of spawning temperatures
or the location of spawning grounds. One of the spec-
imens (T64R) appeared to have experienced rela-
tively warm temperatures (>30°C) associated with
de creased growth rates and survival of larvae in the
laboratory (Kimura et al. 2007). Although there is evi-
dence that the eggs of PBT hatched as normal larvae
at 31.5°C in rearing experiments (Miyashita et al.
2000), the higher temperature estimated for this
 spe cimen could be a result of the high-resolution
sampling of SIMS which captured several warmer

185



Mar Ecol Prog Ser 649: 175–188, 2020

days. Despite the need to increase sample size to
accurately judge whether the estimated tempera-
tures are realistic, particularly for the specimens with
higher temperatures, our results suggest that SIMS
δ18Ootolith analysis coupled with a microvolume CF-
IRMS δ18Ootolith analysis and a species-specific tem-
perature-dependent fractionation equation is an
effective method for reconstructing ambient water
temperatures experienced by fish and inferring their
early life characteristics, which are difficult to obtain
with the limited resolution of conventional methods.

5.  CONCLUSIONS

We have developed a novel method to estimate
ambient temperatures experienced during the larval
stage of fish species using SIMS and microvolume
CF-IRMS δ18Ootolith analyses. Microvolume δ18Ootolith

analysis revealed that the SIMS δ18Ootolith values
were 0.41‰ lower on average than CF-IRMS δ18O
values. High-resolution SIMS δ18Ootolith analysis of
PBT otoliths achieved greater spatial and temporal
resolution with high precision and accuracy compa -
red to the conventional IRMS methods. The δ18Ootolith

profiles of all samples showed distinct seasonal vari-
ations, reflecting ambient water temperatures expe-
rienced by an individual fish. The developed protocol
is useful especially for smaller otoliths with narrow
growth increments. SIMS δ18Ootolith analysis coupled
with micromilling and microvolume δ18Ootolith analy-
sis allows microscale examinations of otoliths, and
more detailed information on the thermal life history
of fish can be obtained compared to conventional
IRMS methods. This novel method is a powerful tool
for the reconstruction of environmental histories of
various fish species and has important implications
for understanding how ocean warming is potentially
affecting the early life history of fish.
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