1	Rapid establishment and stable performance of a new algal-bacterial
2	granule system from conventional bacterial aerobic granular sludge
3	and preliminary analysis of mechanisms involved
4	
5	Yihao Zhang ^{a,1} , Xiaochuan Dong ^{a,1} , Sen Liu ^a , Zhongfang Lei ^{a,*} , Kazuya Shimizu ^a ,
6	Zhenya Zhang ^a , Yasuhisa Adachi ^a , Duu-Jong Lee ^{b, c}
7	
8	^a Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1
9	Tennodai, Tsukuba, Ibaraki 305-8572, Japan
10	^b Department of Chemical Engineering, National Taiwan University, Taipei 10617,
11	Taiwan
12	° Department of Chemical Engineering, National Taiwan University of Science and
13	Technology, Taipei 10607, Taiwan
14	
15	¹ These authors contributed equally to this work.
16	*Corresponding author.
17	E-mail address: lei.zhongfang.gu@u.tsukuba.ac.jp (Z. Lei).

1 Abstract

2	This work proposed a promising method to rapidly establish stable algal-
3	bacterial aerobic granular sludge (AGS) system from conventional bacterial AGS. It
4	was realized in this study within 18 days by inoculating 4.3% (w/w, dry mass basis) of
5	mature algal-bacterial AGS into a sequencing batch reactor with conventional
6	bacterial AGS treating synthetic domestic wastewater. The newly established algal-
7	bacterial AGS reactor (RA-B) exhibited better performance in nutrients removal,
8	averagely 66.21±5.18% of total nitrogen (TN) and 63.96±6.00% of total phosphorus
9	(TP) in comparison to $53.36\pm2.37\%$ and $48.87\pm7.79\%$ by the conventional bacterial
10	AGS reactor (R _B), respectively. Better AGS settleability indicated by sludge volume
11	index (SVI_{30}) was also noticed in $R_{A\text{-}B}$ (45.48 ±0.92 ml/g versus 71.30 ±3.03 ml/g in
12	R_B) on day 25. Most importantly, under the same operation strategy, the algal-
13	bacterial AGS in R_{A-B} well maintained its granular stability and became dense and
14	compact, while the bacterial AGS (R_B) collapsed to a large extent during the final
15	stage of 25 days' operation. Algae content was found to be a good indicator of the
16	maturation of newly formed algal-bacterial AGS. In this study, preliminary analysis
17	was also conducted on the mechanisms involved in the rapid formation of algal-
18	bacterial AGS and the changes of its biological communities.
19	
20	Keywords: Algal-bacterial aerobic granular sludge; Bacterial aerobic granular sludge;

21 Inoculation; Nutrients removal; Stability

1. Introduction

2	Aerobic granular sludge (AGS) is more promising and sustainable for biological
3	wastewater treatment in comparison to the widely applied conventional activated
4	sludge (CAS) process [1]. AGS can realize simultaneous removals of carbon(C),
5	nitrogen(N), phosphorus(P), and other pollutants in a single sludge system [2]. AGS is
6	originally formed from CAS, while the former possesses incomparable advantages
7	over the latter, including dense and compact structure, better organics and ammonia
8	removals, excellent sludge settleability, high potential for nutrients recovery, high
9	resilience to toxicants, etc. [3-6].
10	During the past two decades, much attention has been paid to the granulation
11	mechanisms of AGS which is usually obtained from sequencing batch reactors
12	(SBRs). Up to the present, only a few reports addressed one of the most important and
13	difficult issues for AGS biotechnology, i.e. the startup time for granulation of CAS.
14	Generally, a relatively long period around one month is necessary to achieve
15	granulation from CAS [7-9]. By using SBR, Beun et al. [10] accelerated the
16	granulation process in 3 weeks at a chemical oxygen demand (COD) loading of 5
17	kgCOD/m ³ ·d and a minimal settling velocity of 12 m/h. A shorter granulation period
18	about 14-15 days was reported by Su and Yu [11] and Benzhai et al. [12]. In fact, how
19	to speed up the granulation process and keep granules' stability are crucial when
20	taking the transformation of the widely applied CAS-based WWTPs into the novel
21	AGS-based WWTPs. Most recently, Zhang et al. [13] summarized the efficient
22	operation strategies to accelerate the granulation process of CAS, in which seeding

1	pellets/crushed or intact granules, and inoculation of self-aggregation strain(s) seem to
2	be more efficient. For instance, Long et al. [14] inoculated mature AGS(25%, w/w)
3	into CAS and obtained stably rapid granulation in 18 days. Pijuan et al. [15] also
4	achieved a granulation time of 18 days by seeding 50% (dry basis, w/w) of crushed
5	granules into flocculent sludge(CAS). Restated, granulation startup and granular
6	stability are still the major bottlenecks for this biotechnology.
7	On the other hand, algal-bacterial AGS system reflects more stable structure and
8	better nutrients removal than the conventional bacterial AGS. As it is known, algae
9	can uptake nutrients (N and P), sequester C, and produce oxygen that can be used for
10	wastewater treatment [16, 17]. Previous studies found that algae could grow
11	spontaneously and co-exist with CAS during the granulation process in open SBR
12	systems [18, 19]. By using a photobioreactor, Zhang et al. [20] obtained mature algal-
13	bacterial granules within 40 days from CAS. Almost at the same time, Liu et al. [21]
14	successfully formulated algal-bacterial granules by using the target algae (Chlorella
15	and Scenedesmus) in a photo-SBR. In addition, a relatively quick formation (7 days)
16	of algal-bacterial granules from bacterial AGS was reported when exposed to natural
17	sunlight [22]. However, some issues like poor settleability and small mean size of the
18	formed algal-bacterial granules are pending. Up to now, still, limited information is
19	available on the rapid formation of stable algal-bacterial AGS, and the mechanisms
20	involved is unclear.
21	Therefore, this study attempted to achieve the rapid establishment of algal-

22 bacterial AGS by inoculating mature algal-bacterial AGS into conventional bacterial

1	AGS. The granular characteristics and nutrients removal were compared between the
2	newly established algal-bacterial AGS and the conventional bacterial AGS systems.
3	Results from this study are expected to find out a feasible and simple means for the
4	transformation of a conventional bacterial AGS system into an algal-bacterial one.
5	

6 2. Materials and methods

7 2.1. Reactor set-up and operation

Two identical SBRs (R_B and R_{A-B}), each with a diameter of 70 mm and a height 8 9 of 200 mm were used in this study. R_B was the control reactor with the mature conventional bacterial AGS, while RA-B was inoculated with the mature algal-bacterial 10 AGS. The two reactors had a working volume of 500 ml with an exchange ratio of 11 12 50% during the operation. A 6 h-cycle was applied to them, including 3 min of feeding, 90 min of no aeration, 262 min of aeration, 2 min of settling and 3 min of 13 effluent discharge according to the preliminary experiment. A LED light (Japan 14 15 Equipment Co., Ltd) was set right above R_{A-B} with light intensity around 5500 lux (Fig. S1). Air was introduced into each reactor by the same air pump (KOSHIN Co., 16 Ltd), and the uplift air flow velocity was controlled at 0.86-0.87 cm/s each by an air 17 flowmeter, respectively. 18 19 Both mature conventional bacterial AGS and algal-bacterial AGS were cultivated in the laboratory, which have been stably operated for more than 6 months. The size 20 21 of the seed algal-bacterial AGS and bacterial AGS mainly ranged between 1.0-3.0 mm, and their performance in total N and P removals were averagely about 65% and 22

1	63% by the seed algal-bacterial AGS, and 55% and 50% by the bacterial AGS,
2	respectively in their cultivation reactors. The dominant microalgae genus (20.5%) in
3	the seed algal-bacterial AGS was Leptolyngbya in this study. Initially, both reactors
4	$(R_B \text{ and } R_{A-B})$ were stably operated at a mixed liquor suspended solids (MLSS,
5	conventional bacterial AGS) of about 3.0 g/L, with an initial sludge volume index in
6	$30 \text{ min (SVI}_{30})$ around 48 ml/g . R_B was covered by an opaque cloth to avoid exposure
7	to the room light and kept at operation using the same strategy as R_{A-B} except the light
8	illumination. After being inoculated with 20 ml of mature algal-bacterial AGS (MLSS
9	of 3.2 g/L, at an inoculation ratio of 4.3% (w/w, dry mass basis)), $R_{\rm A\text{-}B}$ was then
10	illuminated by the LED light for 24 h. Both reactors were operated at room
11	temperature (25±2°C) and their solid retention time (SRT) was controlled at around
12	40 days.
13	
14	2.2. Synthetic domestic wastewater
15	In this study, the concentrations of dissolved organic carbon (DOC), ammonia
16	nitrogen (NH4-N) and phosphorus (PO4-P) in the synthetic domestic wastewater
17	(Table S1) were 150, 50 and 10 mg/L, respectively. Other components like Ca^{2+} ,
18	Mg^{2+} , Fe^{2+} ions and trace metals solution were also added to the influent according to
19	Huang et al. [18]. Influent wastewater pH was kept around 7.5 by adding sodium
20	hydrogen carbonate (NaHCO ₃).
21	

22 2.3. Analytical methods

1	NH ₄ -N, nitrite nitrogen (NO ₂ -N), nitrate nitrogen (NO ₃ -N), and PO ₄ -P, mixed
2	liquor(volatile)suspended solids (ML(V)SS), and sludge volume index (SVI) were
3	measured in accordance with the standard methods [23]. In this study, the
4	concentration of total N(TN) was the sum of NH ₄ -N, NO ₂ -N and NO ₃ -N, and that of
5	total P(TP) was PO ₄ -P, as no organic N or P was added into the influent. DOC was
6	determined by a total organic carbon (TOC) analyzer (TOC-VCSN, Shimadzu, Japan)
7	after the sample being filtrated through 0.22 μm membrane filter. All the other
8	methods, including characterization of granular sludge, extraction and determination
9	of extracellular polymeric substances (EPS), and quantification of chlorophyll a (Chl-
10	a) in biomass, etc. were the same as described elsewhere [17].
11	As for the microbial community analysis, the granules were sampled from the two
12	reactors (R_B and R_{A-B}) on day 18, respectively. Total DNA was extracted from each
13	granule sample using the PowerMax ®Soil Kit (QIAGEN GmbH, Germany)
14	following the manufacturer's protocol. The extracted DNA was kept at -20°C until
15	further process. Genomic DNA was detected by 1% agarose gel electrophoresis. The
16	specific primers set with barcode 338F 5'-ACTCCTACGGGAGGCAGCA-3' and
17	806R 5'-GGACTACHVGGGTWTCTAAT-3' for bacteria, and P23SrV-1F 5'-
18	GGACAGAAAGACCCTATGAA-3' and P23SrV-1R 5'-
19	TCAGCCTGTTATCCCTAGAG-3' for algae were used for amplification of the
20	hypervariable region of 16S rRNA and 18S rRNA, respectively. PCR was performed
21	in ABI GeneAmp® 9700 (Applied Biosystems, USA) under the following conditions:
22	95°C for 3 min, followed by 35 cycles at 95°C for 30 s, 55°C for 30 s, 72°C for 45 s

1	and a final extension step at 72°C for 10 min. After purification using the QIAquick
2	PCR Purification Kit (Qiagen, Germany) and quantification using QuantiFluor TM -ST
3	(Promega, USA), the PCR products of all samples were taken for high-throughput
4	sequencing on an Illumina platform (Illumina PE250, USA). MOTHUR (version:
5	1.31.2) was used for analyzing the biodiversity of bacteria and eukaryote in the
6	granules. The data were analyzed on the free online platform of Majorbio Cloud
7	Platform (www.majorbio.com).
8	
9	2.4. Statistical analysis
10	This comparative experiment was performed in duplicate with similar
11	phenomenon observed. All the determinations were conducted in triplicate, and their
12	average values were reported in this work. One-way analysis of variance (ANOVA)
13	was applied to compare the difference between the two AGS reactors by using IBM
14	SPSS Statistics 22.0. Statistical difference was assumed if $p < 0.05$.
15	
16	3. Results and discussion
17	3.1. Performance of the two reactors
18	3.1.1. Organics removal
19	Both reactors exhibited excellent and stable DOC removal performance, about
20	90% with no significant difference ($p = 0.084 > 0.05$). R _B was detected to have a little
21	bit higher DOC removal potential than R_{A-B} , indicating that algal-bacterial AGS may
22	have less organic carbon source requirement than the conventional bacterial AGS.

This observation agrees with the statement by Zhao et al. [17] who found that algal bacterial AGS has great potential for the treatment of low carbon source wastewaters.
 3

3.1.2. Nitrogen and phosphorus removals

5	Both reactors reflected similar and outstanding performance on NH ₄ -N
6	removal, > 99% ($p = 0.715 >> 0.05$) during the 25 days' operation (Fig. 1a). For NO ₂ -
7	N, although significant difference in effluent NO ₂ -N concentration ($p < 0.05$) was
8	discerned in the two reactors, their concentrations were very low, averagely about
9	0.18 ± 0.06 mg/L in $R_{A\text{-}B}$ and 0.06 ±0.03 mg/L in R_B , respectively. NO_3-N was detected
10	to be the major N species in the effluents from the two reactors. Clearly seen from
11	Fig. 1a, the effluent NO ₃ -N from R_{A-B} was significantly lower than that from R_B
12	during the whole operation ($p < 0.05$) and both reactors showed a relatively stable TN
13	removal performance. As shown in Table S2 and Fig. 3a, compared to $R_{\rm B}$ with a
14	fluctuated biomass concentration indicated by MLSS (2.5 \sim 4.3 g/L) or MLVSS (1.8 \sim
15	3.4 g/L), R_{A-B} reflected a steady increase trend in MLSS (from 2.5 to 5.8 g/L) and
16	MLVSS (from 2.0 to 4.6 g/L) during the granulation period. The steady increase in
17	biomass concentration in R_{A-B} might contribute a lot to its higher TN (mainly total
18	inorganic nitrogen, TIN) removal.
19	Figure 1(b) shows the changes of effluent TP concentration from the two reactors
20	and their TP removal rate during the operation. An obvious difference in TP removal
21	was noticed: R_{A-B} kept at a much higher and relatively stable TP removal
22	$(63.96\pm6.00\%)$ in comparison to R _B $(48.87\pm7.79\%)$ $(p < 0.05)$. More specifically, both

1	reactors first experienced some decrease in P removal during the initial 5 days,
2	probably due to the adaptation of granules to the new environment, and then
3	recovered their P removal efficiency. Inoculation of mature algal-bacterial AGS may
4	ameliorate this adaptation effect, and the newly established algal-bacterial AGS
5	system (R _{A-B}) could soon recover and always exhibited higher P removal capability
6	than R_B , signaling the co-existing algae in R_{A-B} may also contribute to P removal from
7	wastewater to a great extent.

9 *3.2. Characteristics of granules in the two reactors*

10 *3.2.1. Morphological change*

At the beginning, the yellowish seed bacterial AGS exhibited a compact and 11 12 regular structure (Fig. S2A). After 5 days' operation, the granules in RA-B started to turn green in color due to algae growth (Fig. S2B). On day 10, more algal-bacterial 13 AGS were obviously observed besides the appearance of filamentous bacteria (Fig. 14 15 S2C). Then it was noticed that algae started to grow from the outer layer to the inner part of AGS (Fig. S2D and 2b). From day 18 on, the granules became dark green in 16 17 color with a dense and compact structure, and regular shape, around which some filamentous bacteria and algae were growing (Fig. S2E). Namely, the mature algal-18 bacterial granules were achieved. In this study, microalgae were found to easily grow 19 in R_{A-B}, most probably attributable to the inoculated algal-bacterial AGS that may 20 have higher potential for nutrients uptake and compete against the bacterial AGS, and 21 then grew faster under light illumination. As a result, the rapid establishment of a new 22

algal-bacterial AGS system was realized. This finding to some extent agrees with He
 et al. [22] who claimed that algae and filamentous bacteria are the two key factors for
 the rapid granulation of algal-bacterial granules.

4

5 *3.2.2. Granule size and distribution*

Figure 2 demonstrates the changes of granular size and its distribution in the two 6 reactors on day 0 and day 18. The mean diameter of the initial bacterial AGS was 7 determined as 2.00 mm in both reactors. On day 18, significant difference in granular 8 9 size and distribution was observed in the two reactors. According to the models (Table S2) obtained in this study, the granules in R_{A-B} reached a mean diameter of 2.24 mm, 10 while the mean size of granules in R_B decreased to 1.36 mm. This difference in 11 12 granular diameter partially agrees with the growth of algae in the granules of R_{A-B}, which may function as the core of granules or bind with filamentous bacteria [22]. 13 Compared to the algal-bacterial AGS in RA-B, the granules in RB seemed to be 14 15 relatively unstable regarding granular size and distribution.

16

17 *3.2.3. Biomass growth and settleability*

18 Biomass concentration in the two reactors was also monitored (Fig. 3a and Table

19 S2). The initial MLSS in R_B and R_{A-B} were 2.46±0.03 g/L and 2.50±0.04 g/L with a

20 same average MLVSS/MLSS ratio of 82%, respectively. During the whole operation,

21 the MLSS in R_{A-B} kept increasing and reached the maximum of 5.77±0.08 g/L

22 (MLVSS/MLSS =0.80), mainly contributed by the stable growth of algae and

1	formation of algal-bacterial AGS under the operation strategy. While in R_B , MLSS
2	increased first to 4.30 ± 0.16 g/L during the initial 5 days, and then an obvious decrease
3	was detected on days 10 (3.01 ± 0.12 g/L) and 18 (2.49 ± 0.12 g/L), most probably due to
4	its relatively weak structure. This can be evidenced by the appearance of some small
5	flocs from the broken granules, which may be lost through the effluent discharge. The
6	granules in R_{A-B} , in contrast, kept at a definitely better and stable structure. In
7	addition, a slightly higher MLVSS/MLSS ratio was detected in the granules of R_{A-B}
8	(0.80±0.05) than that of R_B (0.78±0.07) during the 25 days' operation.
9	On the other hand, the SVI_{30} increased to some extent for the granules in R_{A-B}
10	(63.96±3.65 ml/g) during the first 5 days (Fig. 3b), probably brought about by the
11	competition for nutrients between algae and bacteria with more EPS excretion to
12	some extent. The excreted substances from the inoculated algal-bacterial granules (to
13	protect their structure) and the fast growth of algae may have negative effect on
14	sludge settleability during this period. However, under the operation conditions, the
15	settleability of the granules in R _{A-B} recovered soon and kept stable after day 10, about
16	45.48 \pm 0.92 ml/g on day 25 (Fig. 3b). While in R _B , the SVI ₃₀ was found to decrease to
17	some extent (better settleability) during the initial 5 days, which increased sharply
18	from day 5 to day 18 (78.64 \pm 3.92 ml/g with AGS disintegration being always
19	observed), finally to about 71.30±3.03 ml/g on day 25 (Fig. 3b). The newly
20	established algae-bacterial AGS system exhibited an excellent and stable sludge
21	settleability from day 18 onwards.

3.2.4. Changes in EPS and chlorophyll contents

2	EPS including proteins (PN) and polysaccharides (PS) are the major extracellular
3	substances secreted from the cells, which are considered to contribute to the
4	granulation process [24]. The major difference in EPS content in the granules from
5	the two reactors was noticed during the first 5-10 days' operation (Fig. 4a).
6	Specifically, obviously higher PN and PS contents were detected in the granules from
7	$R_{A\text{-}B}\ (61.7\pm18.4\ and\ 19.23\pm5.05\ mg/g\text{-}MLVSS\ versus\ 38.71\pm8.57\ and\ 11.12\pm2.41$
8	mg/g-MLVSS in R_B) on day 5, to some extent in agreement with the changes in
9	biomass growth and its settleability. Restated, algae growth may stimulate granules to
10	secrete more EPS during the first 5 days' operation, which could help to re-aggregate
11	bacteria and algae to form new algal-bacterial granules. It was noticed that the PN
12	was the dominant component in the EPS, which might be crucial for a stable granule
13	structure. The PS/PN ratio of the granules reflected a similar trend in the two reactors
14	during the 25 days' operation (Fig. 4a), most probably attributable to that mature
15	bacterial AGS and algal-bacterial AGS were used as seed in this study.
16	All green plants contain chlorophyll a (Chl-a), and Chl-a can be used as an algal
17	biomass indicator [23]. In this study, the change of Chl-a content in the algal-bacterial
18	granules is shown in Fig. 4b. As seen, the Chl-a content was detected to remarkably
19	increase from 0 to 5.31 ± 0.89 mg/g-MLVSS on day 5. After some slight decrease on
20	day 10 (4.92±0.17 mg/g-MLVSS), the Chl-a content continued to increase and
21	stabilized at 6.3-6.5 mg/g (days 18 and 25). This observation indicated that algae
22	content in the granules might be a good indicator for the maturation of algae-bacterial

1	granu	les.
---	-------	------

2	Seen from the obtained results, compared to the seed algal-bacterial AGS, the
3	newly established algal-bacterial AGS system almost exhibited the similar efficiencies
4	in nutrients removal, and other characteristics including morphology, granular size
5	and distribution, etc.
6	
7	3.3. Biological community analysis
8	3.3.1. Microbial richness and diversity
9	The richness and diversity of microbial community in algal-bacterial AGS $(R_{\mbox{\scriptsize A-B}})$
10	and bacterial AGS (R_B) are illustrated by the estimators (Table 1). The sequences
11	increased during the rapid establishment of algal-bacterial AGS from conventional
12	bacterial AGS. Besides, both ACE and Chao estimators indicated that this rapid
13	formation process for algal-bacterial AGS also had obvious enhancement effect on the
14	community richness. However, very little discrepancy in Shannon and Simpson
15	estimators was observed during this rapid establishment period, in which algal-
16	bacterial AGS seemed to have some slight increase in community diversity on day 18.
17	Therefore, the newly formed algal-bacterial AGS could maintain similar microbial
18	community richness and diversity with the bacterial AGS during the 18 days'
19	establishment period. This observation is different from He et al. [22] who claimed
20	that both richness and diversity of microbial were decreased during the granulation
21	period, which might be mainly attributable to the differences in light source and other
22	operation conditions. As stated, a strong summer sunlight might inhibit the growth of

- 1 microorganism such as nitrite oxidizing bacteria (NOB) [27].
- 2

3 Table 1

- 4 Similarity-based Operational Taxonomic Units (OTUs), richness and diversity
- 5 estimators of microbial communities in the granules from R_{A-B} and R_B on day 18,
- 6 respectively.

Samples	Samples Sequences	OTUs	Community richness		Community diversity		Coverage ^d
		0100	ACE ^a	Chao ^a	Shannon ^b	Simpson ^c	B
R _B	39,313	504	554.13	557.63	4.38	0.03	0.997
R _{A-B}	47,470	513	584.88	598.87	4.40	0.03	0.997
a A largar num	ahar \ graatar	miahnaga b	A largar m	mbor mor	a diversity CA le	maar numbar	lass

7	^a A larger number \rightarrow greater richness. ^b A larger number \rightarrow more diversity. ^c A larger number \rightarrow less
8	diversity. ^d Sampling depth.
9	
10	3.3.2. Biological community
11	The taxonomic affiliations of the dominant bacteria at both phylum and class
12	levels are shown in Fig. 5. Clearly, during the rapid establishment of algal-bacterial
13	AGS from conventional bacterial AGS, much change was observed in two dominant
14	phyla in the two reactors. (1) Proteobacteria (including classes Alpha-, Beta-,
15	Gamma-, and Delta-proteobacteria) were dominant in R _B , while they declined

16 obviously during the formation of new algal-bacterial AGS in R_{A-B}. Among these

- 17 classes, the abundant Gamma- and Delta-proteobacteria may contribute to the low
- 18 effluent NO₂-N concentration in the two reactors (Fig. 1a), as NOB capable of
- 19 converting nitrite to nitrate belong to these two classes [25]. (2) Cyanobacteria
- 20 increased dramatically in R_{A-B}, which are closely associated with the rapid growth of

1	algae (Fig. 4b). Results show that the relative abundance of Cyanobacteria in the
2	granules from R_{A-B} and R_B were 20.90% and 0.20%, respectively. In addition, the
3	relative abundance of phylum <i>Planctomycetes</i> decreased in the granules of R _{A-B} . This
4	phylum may compose anaerobic ammonium oxidation (anammox) Planctomycetes
5	and non-anammox Planctomycetes. The former can oxidize ammonia to dinitrogen
6	without oxygen, and play a major role in the global nitrogen cycle and the newly
7	developed biological processes for high strength ammonia wastewater treatment [26].
8	Currently, it is unknown which Planctomycetes were decreased during the re-
9	aggregation process. However, seen from the relatively higher and stable TN removal
10	by R_{A-B} (Fig. 1a), the enhanced nutrients removal by R_{A-B} may be attributable to its
11	increasing growth of algae (Fig. 4b). In conclusion, the rapidly established algal-
12	bacterial AGS system from conventional bacterial AGS can maintain diverse
13	microbial communities, indicating its outstanding potentials for nutrients removal.
14	Figure 6 shows the relative abundance of algae species at genus level in the seed
15	algal-bacterial AGS and R _{A-B} on day 18. Obviously, <i>Leptolyngbya</i> is the dominant
16	algae species in the seed algal-bacterial AGS. However, after 18 days' inoculation and
17	operation in RA-B, Jaaginema dominated the algal-bacterial AGS. The observation
18	may be brought about by the differences in reactor dimension/configuration and
19	photoperiod between the reactors used for the cultivation of seed algal-bacterial
20	granules and for this study. The above-mentioned differences may have effect on light
21	intensity, transmittance and distribution, thus the changes in algae species [20].
22	Jaaginema is likely to grow faster than other algae species in the small and high

illumination intensity reactor. Whether the increase of *Jaaginema*, probably a
polyphyletic genus [28], contributed to the rapid establishment of the new algalbacterial AGS system or not remains unknown. As shown in Fig. 6, in this study more
than half of the algal species were still unclassified (60-70%) in both systems. In
order to add insights into the mechanisms involved, further works are necessary on
the identification of algae species and their functions during the rapid establishment of
algal-bacterial AGS system.

8

9 3.4. Preliminary analysis on the mechanisms involved in the rapid establishment of
10 new algal-bacterial AGS system

Based on the above observations, the establishment of a new algal-bacterial AGS 11 12 system from the conventional bacterial AGS by inoculating algal-bacterial AGS can be explained as the following three stages (Fig. 7). (1) Adaptation stage (\leq 5 days): 13 during the initial 5 days algae can grow quickly due to light illumination and compete 14 15 against the bacteria in AGS because of its higher nutrients uptake potential and faster growth rate. In response to the co-existence of algae, although more EPS are excreted 16 to keep its structure, the bacterial AGS is easily broken with small pellets or flocs 17 generated. During this period, C and N removals are not affected, while P removal 18 19 and sludge settleability are affected to some extent due to the AGS disintegration. (2) Re-aggregation and re-organization stage (days 5-10): under the designed operation 20 21 conditions, algae can stably grow from the out layer of bacterial AGS to the inner part, and some algae can function as the core of the new algal-bacterial AGS through 22

1	re-aggregation. The newly formed algal-granules gradually recover their P removal
2	and settleabililty. (3) Maturation stage (up to 18 days): with the stable growth of algae
3	and further increase of EPS secretion, the algal-bacterial AGS becomes mature with a
4	dense and compact structure, demonstrating stably efficient nutrients removal and
5	excellent settleability. This maturation process may be promoted by the co-existence
6	of filamentous bacteria and algae. More detailed information of dynamic changes in
7	bacterial and algal species during this rapid establishment of algal-bacterial AGS will
8	be included in another work, which is expected to shed more light on the mechanisms
9	involved.
10	
11	4. Conclusions
12	Newly mature algal-bacterial granules were achieved within 18 days by
12 13	Newly mature algal-bacterial granules were achieved within 18 days by inoculating 4.3% (w/w, dry mass basis) of mature algal-bacterial granules into the
12 13 14	Newly mature algal-bacterial granules were achieved within 18 days by inoculating 4.3% (w/w, dry mass basis) of mature algal-bacterial granules into the conventional bacterial AGS reactor. The new algal-bacterial granules exhibited better
12 13 14 15	Newly mature algal-bacterial granules were achieved within 18 days by inoculating 4.3% (w/w, dry mass basis) of mature algal-bacterial granules into the conventional bacterial AGS reactor. The new algal-bacterial granules exhibited better and stable performance in TN (66.21±5.18%) and TP (63.96±6.00%) removals and
12 13 14 15 16	Newly mature algal-bacterial granules were achieved within 18 days by inoculating 4.3% (w/w, dry mass basis) of mature algal-bacterial granules into the conventional bacterial AGS reactor. The new algal-bacterial granules exhibited better and stable performance in TN (66.21±5.18%) and TP (63.96±6.00%) removals and settleability (45.48±0.92ml/g) than the bacterial AGS. Algae content in granules can
12 13 14 15 16 17	Newly mature algal-bacterial granules were achieved within 18 days by inoculating 4.3% (w/w, dry mass basis) of mature algal-bacterial granules into the conventional bacterial AGS reactor. The new algal-bacterial granules exhibited better and stable performance in TN (66.21±5.18%) and TP (63.96±6.00%) removals and settleability (45.48±0.92ml/g) than the bacterial AGS. Algae content in granules can be used as a good indicator for maturation of algal-bacterial AGS during this process.
12 13 14 15 16 17 18	Newly mature algal-bacterial granules were achieved within 18 days by inoculating 4.3% (w/w, dry mass basis) of mature algal-bacterial granules into the conventional bacterial AGS reactor. The new algal-bacterial granules exhibited better and stable performance in TN (66.21±5.18%) and TP (63.96±6.00%) removals and settleability (45.48±0.92ml/g) than the bacterial AGS. Algae content in granules can be used as a good indicator for maturation of algal-bacterial AGS during this process. The established algal-bacterial AGS system possessed the similar nutrients removal
12 13 14 15 16 17 18 19	Newly mature algal-bacterial granules were achieved within 18 days by inoculating 4.3% (w/w, dry mass basis) of mature algal-bacterial granules into the conventional bacterial AGS reactor. The new algal-bacterial granules exhibited better and stable performance in TN (66.21±5.18%) and TP (63.96±6.00%) removals and settleability (45.48±0.92ml/g) than the bacterial AGS. Algae content in granules can be used as a good indicator for maturation of algal-bacterial AGS during this process. The established algal-bacterial AGS system possessed the similar nutrients removal and other characteristics as the seed algal-bacterial AGS. This work provides a
12 13 14 15 16 17 18 19 20	Newly mature algal-bacterial granules were achieved within 18 days by inoculating 4.3% (w/w, dry mass basis) of mature algal-bacterial granules into the conventional bacterial AGS reactor. The new algal-bacterial granules exhibited better and stable performance in TN (66.21±5.18%) and TP (63.96±6.00%) removals and settleability (45.48±0.92ml/g) than the bacterial AGS. Algae content in granules can be used as a good indicator for maturation of algal-bacterial AGS during this process. The established algal-bacterial AGS system possessed the similar nutrients removal and other characteristics as the seed algal-bacterial AGS. This work provides a feasible and simple means to realize the rapid transformation of conventional bacterial
12 13 14 15 16 17 18 19 20 21	Newly mature algal-bacterial granules were achieved within 18 days by inoculating 4.3% (w/w, dry mass basis) of mature algal-bacterial granules into the conventional bacterial AGS reactor. The new algal-bacterial granules exhibited better and stable performance in TN (66.21±5.18%) and TP (63.96±6.00%) removals and settleability (45.48±0.92ml/g) than the bacterial AGS. Algae content in granules can be used as a good indicator for maturation of algal-bacterial AGS during this process. The established algal-bacterial AGS system possessed the similar nutrients removal and other characteristics as the seed algal-bacterial AGS. This work provides a feasible and simple means to realize the rapid transformation of conventional bacterial AGS to algal-bacterial granular system.

1	Acknowledgements
2	This work was supported by JSPS KAKENHI Grant Numbers JP18H03403 and
3	JP16H06382.
4	
5	Appendix A. Supplementary data
6	Supplementary data associated with this article can be found in the online version.
7	
8	References
9	[1] M. Pronk, M. K. de Kreuk, B. de Bruin, P. Kamminga, R. V. Kleerebezem, M. C.
10	M. van Loosdrecht. Full scale performance of the aerobic granular sludge process
11	for sewage treatment. Water Res. 84 (2015) 207-217.
12	https://doi.org/10.1016/j.watres.2015.07.011.
13	[2] Y.V. Nancharaiah, G. Kiran Kumar Reddy. Aerobic granular sludge technology:
14	Mechanisms of granulation and biotechnological applications. Bioresour.
15	Technol. 247(2018)1128-1143. https://doi.org/10.1016/j.biortech.2017.09.131.
16	[3] Q. He, W. Zhang, S. Zhang, H. Wang. Enhanced nitrogen removal in an aerobic
17	granular sequencing batch reactor performing simultaneous nitrification,
18	endogenous denitrification and phosphorus removal with low superficial gas
19	velocity. Chem. Eng. J. 326 (2017) 1223-1231.
20	https://doi.org/10.1016/j.cej.2017.06.071.
21	[4] W. Cai, Z. Zhao, Z. Lei, Z. Zhang, Y. Adachi, DJ. Lee. Influence of ferrous iron
22	dosing strategy on aerobic granulation of activated sludge and bioavailability of

1	phosphorus accumulated in granules. Bioresour. Technol. Rep. 2 (2018) 7-14.
2	https://doi.org/10.1016/j.biteb.2018.03.004.
3	[5] S.S. Tiwari, O.T. Iorhemen, J.H. Tay. Semi-continuous treatment of naphthenic
4	acids using aerobic granular sludge. Bioresour. Technol. Rep. 3 (2018) 191-199.
5	https://doi.org/10.1016/j.biteb.2018.08.007.
6	[6] H. Vashi, O.T. Iorhemen, J.H. Tay. Extensive studies on the treatment of pulp mill
7	wastewater using aerobic granular sludge (AGS) technology. Chem. Eng. J. 359
8	(2019) 1175-1194. https://doi.org/10.1016/j.cej.2018.11.060.
9	[7] F. Basheer, I.H. Farooqi. Biodegradation of p-cresol by aerobic granules in
10	sequencing batch reactor. J. Environ. Sci. 24 (2012) 2012-2018.
11	https://doi.org/10.1016/S1001-0742(11)60988-1.
12	[8] S. Deng, L. Wang, H. Su. Role and influence of extracellular polymeric substances
13	on the preparation of aerobic granular sludge. J. Environ. Manag. 173 (2016) 49-
14	54. https://doi.org/10.1016/J.JENVMAN.2016.03.008.
15	[9] Y. Jiang, Y. Shang, H. Wang, K. Yang. Rapid formation and pollutant removal
16	ability of aerobic granules in a sequencing batch airlift reactor at low
17	temperature. Environ. Technol. 37 (2016) 3078-3085.
18	https://doi.org/10.1080/09593330.2016.1176075.
19	[10] J.J. Beun, A. Hendriks, M.C.M. van Loosdrecht, E. Morgenroth, P.A. Wilderer,
20	J.J. Heijnen. Aerobic granulation in a sequencing batch reactor. Water Res. 33
21	(1999) 2283-2290. https://doi.org/10.1016/S0043-1354(98)00463-1.
22	[11] KZ. Su, HQ.Yu. Formation and characterization of aerobic granules in a

1	sequencing batch reactor treating soybean-processing wastewater. Environ. Sci.
2	Technol. 39 (2005) 2818-2827. https://doi.org/10.1021/es048950y.
3	[12] H. Benzhai, L. Lei, Q. Ge, P. Yuwan, L. Ping, Y. Qingxiang, W. Hailei.
4	Stimulation of wastewater treatment by aerobic granules in a sequencing batch
5	reactor based on cellular automata. Bioproc. Biosyst. Eng. 37 (2014) 2049-2059.
6	https://doi.org/10.1007/s00449-014-1181-x.
7	[13] Y. Zhang, X. Dong, M. Nuramkhaan, Z. Lei, K. Shimizu, Z. Zhang, Y. Adachi, D
8	J. Lee, J.H. Tay. Rapid granulation of aerobic granular sludge: A mini review on
9	operation strategies and comparative analysis. Bioresour. Technol. Rep. 7 (2019)
10	100206. https://doi.org/10.1016/j.biteb.2019.100206.
11	[14] B. Long, Cz. Yang, Wh. Pu, Jk. Yang, Gs. Jiang, Jf. Dan, Cy. Li, Fb.
12	Liu. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch
13	reactor. Bioresour. Technol. 166 (2014) 57-63.
14	https://doi.org/10.1016/j.biortech.2014.05.039.
15	[15] M. Pijuan, U. Werner, Z. Yuan. Reducing the startup time of aerobic granular
16	sludge reactors through seeding floccular sludge with crushed aerobic granules.
17	Water Res. 45 (2011) 5075-5083. https://doi.org/10.1016/j.watres.2011.07.009.
18	[16] N. Abdel-Raouf, A.A. Al-Homaidan, I.B.M. Ibraheem . Microalgae and
19	wastewater treatment. Saudi J. Biol. Sci. 19(2012) 257-275.
20	http://dx.doi.org/10.1016/j.sjbs.2012.04.005.
21	[17] Z. Zhao, X. Yang, W. Cai, Z. Lei, K. Shimizu, Z. Zhang, M. Utsumi, DJ. Lee.
22	Response of algal-bacterial granular system to low carbon wastewater: Focus on

1	granular stability, nutrients removal and accumulation. Bioresour. Technol. 268
2	(2018) 221-229. https://doi.org/10.1016/j.biortech.2018.07.114.
3	[18] W. Huang, B. Li, C. Zhang, Z. Zhang, Z. Lei, B. Lu, B. Zhou. Effect of algae
4	growth on aerobic granulation and nutrients removal from synthetic wastewater
5	by using sequencing batch reactors. Bioresour. Technol. 179 (2015) 187-192.
6	https://doi.org/10.1016/j.biortech.2014.12.024.
7	[19] B. Li, W. Huang, C. Zhang, S. Feng, Z. Zhang, Z. Lei, N. Sugiura. Effect of TiO ₂
8	nanoparticles on aerobic granulation of algal-bacterial symbiosis system and
9	nutrients removal from synthetic wastewater. Bioresour. Technol. 187 (2015)
10	214–220. http://dx.doi.org/10.1016/j.biortech.2015.03.118.
11	[20] B. Zhang, P.N.L. Lens, W. Shi, R. Zhang, Z. Zhang, Y. Guo, X. Bao, F. Cui.
12	Enhancement of aerobic granulation and nutrient removal by an algal-bacterial
13	consortium in a lab-scale photobioreactor. Chem. Eng. J. 334 (2018) 2373-2382.
14	https://doi.org/10.1016/j.cej.2017.11.151.
15	[21] L. Liu, Z. Zeng, M. Bee, V. Gibson, L. Wei, X. Huang, C. Liu. Characteristics
16	and performance of aerobic algae-bacteria granular consortia in a photo-
17	sequencing batch reactor. J. Hazard. Mater. 349 (2018)135-142.
18	https://doi.org/10.1016/j.jhazmat.2018.01.059.
19	[22] Q. He, L. Chen, S. Zhang, R. Chen, H. Wang, W. Zhang, J. Song. Natural sunlight
20	induced rapid formation of water-born algal-bacterial granules in an aerobic
21	bacterial granular photo-sequencing batch reactor. J. Hazard. Mater. 359 (2018)
22	222-230. https://doi.org/10.1016/j.jhazmat.2018.07.051.

1	[23] APHA, 2012. Standard Methods for the Examination of Water and Wastewater.
2	American Public Health Association/American Water Work Association/Water
3	environment Federation, Washington, D.C., USA.
4	[24] J. Fang, B. Su, P. Sun, J. Lou, J. Han. Long-term effect of low concentration
5	Cr(VI) on P removal in granule-based enhanced biological phosphorus removal
6	(EBPR system. Chemosphere 121 (2015) 76-83.
7	https://doi.org/10.1016/j.chemosphere.2014.11.024.
8	[25] E.V. Lebedeva, M. Alawi, F. Maixner, PG. Jozsa, H. Daims, E. Spieck.
9	Physiological and phylogenetic characterization of a novel lithoautotrophic
10	nitrite-oxidizing bacterium, 'Candidatus Nitrospira bockiana'. Int. J. Syst. Evol.
11	Microbiol. 58 (2008) 242-250. https://doi.org/10.1099/ijs.0.65379-0.
12	[26] J. A. Fuerst, E. Sagulenko. Beyond the bacterium: planctomycetes challenge our
13	concepts of microbial structure and function. Nat. Rev. Microbiol. 9(2011) 403-
14	413. https://doi:10.1038/nrmicro2578.
15	[27] F. Meng, L. Xi, D. Liu, W. Hang, Z. Lei, Z. Zhang, W. Huang. Effects of light
16	intensity on oxygen distribution, lipid production and biological community of
17	algal-bacterial granules in photo-sequencing batch reactors. Bioresour. Technol.
18	272 (2019)473-481. https://doi.org/10.1016/j.biortech.2018.10.059.
19	[28] Â. Brito, V. Ramos, R. Mota, S. Lima, A. Santos, J. Vieira, C.P. Voeira, J.
20	Kaštovský, V.M. Vasconcelos, P. Tamagnini. Description of new genera and
21	species of marine cyanobacteria from the Portuguese Atlantic coast. Mol.
22	Phylogenet. Evol. 111(2017) 18-34. https://doi.org/10.1016/j.ympev.2017.03.006

Figures

Fig. 1. Nitrogen (a) and phosphorous (b) profiles in R_{A-B} and R_B during 25 days' operation, respectively.

Fig. 2 Changes in granular size and distribution in R_B (a) and R_{A-B} (b) on day 0 and
day 18, respectively.

5 settleability (SVI₃₀, b) in the two reactors during the 25 days' operation.

4 Fig. 4 (a)Changes in extracellular polymeric substances (EPS) components, proteins

5 (PN) and polysaccharides (PS) in the granules from R_{A-B} and R_B ; (b) Changes in

chlorophyll a (Chl-a) content in the algal-bacterial granules (R_{A-B}) during the

- 7 operation.

6 Fig. 5 Microbial communities in the granules from R_{A-B} and R_B at phylum level (a)

3 Fig. 6 Algae species at genus level in the seed algal-bacterial AGS and granules from

(1) Adaptation (< 5 days):</th>(2) Re-aggregation/re-organizationSlightly decreased P removal(5-10 days): Recovery of P removaland settleabilityand settleability

(3) Maturation (~ 18 days): Stably efficient nutrients removal and excellent settleability

3

- 4 Fig. 7 Schematic diagram of possible mechanisms proposed for the rapid formation of
- 5 algal-bacterial AGS in this study.