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Abstract 

In sports science research, there are many topics that utilize the body motion of athletes 

extracted by motion capture system, since motion information is valuable data for 10 

improving an athlete’s skills. However, one of the unsolved challenges in motion 

capture is extraction of athletes’ motion information during the actual game or match, 

as placing markers on athletes is a challenge during game play. In this research, the 

authors propose a method for acquisition of motion information without attaching a 

marker, utilizing computer vision technology. In the proposed method, the 3D world 15 

joint position of the athlete’s body can be acquired using just two cameras without any 

visual markers. Furthermore, the athlete’s 3D joint position during game play can also 

be obtained without complicated preparations. Camera calibration that estimates the 

projective relationship between 3D world and 2D image spaces is one of the principal 

processes for the respective 3D image processing, such as 3D reconstruction and 3D 20 

tracking. A strong calibration method, which needs to set up landmarks with known 3D 

positions, is a common technique. However, as the target space expands, landmark 

placement becomes increasingly complicated. Although a weak calibration method 

does not need known landmarks, the estimation precision depends on the accuracy of 

the correspondence between image captures. When multiple cameras are arranged 25 

sparsely, sufficient detection of corresponding points is difficult. In this research, the 

authors propose a calibration method that bridges multiple sparsely-distributed cameras 

using mobile camera images. Appropriate spacing was confirmed between the images 

through comparative experiments evaluating camera calibration accuracy by changing 

the number of bridging images. Further, the proposed method was applied to multiple 30 

capturing experiments in a large-scale space to verify its robustness. As a relevant 



example, the proposed method was applied to the 3D skeleton estimation of badminton 

players. Subsequently, a quantitative evaluation was conducted on camera calibration 

for the 3D skeleton. The reprojection error of each part of the skeletons and standard 

deviations were approximately 2.72 mm and 0.81 mm, respectively, confirming that the 35 

proposed method was highly accurate when applied to camera calibration. 

Consequently, a quantitative evaluation was conducted on the proposed calibration 

method and a calibration method using the coordinates of eight manual points. In 

conclusion, the proposed method stabilizes calibration accuracy in the vertical direction 

of the world coordinate system. 40 

Keywords: Markerless pose estimation, camera calibration, multiple cameras, bridging 

image, badminton image 

 

1. Introduction 

In sports science research, there are many topics that utilize the body motion of 45 

athletes extracted by motion capture system, since motion information is valuable data 

for improving an athlete’s skills. [17]. However, in order to acquire motion information, 

markers must be attached to the body of the athlete. These markers are prone to issues 

(size, mass, etc.) that hinder the athlete’s mobility. In particular, sports research often 

investigates high-level skills, which are not possible to measure accurately when 50 

wearing markers. Sports locations are large spaces, such as fields, links, and arenas. 

Motion capture surrounds and digitizes the space using multiple cameras. Creating a 

capturable space is necessary preliminary work, and one of the more complicated tasks. 

Additionally, one of the unsolved challenges for motion capture is extracting the 

athlete’s motion information during the actual game or match due to the difficulty of 55 

putting markers on athletes during game play. 

 In this research, the authors propose a method for acquisition of motion capture 

information without attaching a marker, utilizing computer vision technology. In the 

proposed method, it is possible to acquire the 3D world joint position of the athlete’s 

body using just two cameras without markers. Furthermore, the athlete’s 3D joint 60 



position during game play is also possible to obtain without complicated preparations. 

In this way, the athlete’s 3D joint position acquired by the proposed method can be 

expected as suitable for use with athletes. Although, the proposed method is not suitable 

for all types of sports analysis, it is possible to apply the method to various sports held 

in an environment which is similar to the experiment of the proposed method. If the 65 

measurement accuracy of the proposed method is high, analysis of body motion in 

general sports can be used to obtain joint angles. However, instantaneous motion 

analysis cannot be applied because the error is too large for measurements such as 

reaction velocity. If the measurement accuracy of the proposed method is low, it is not 

valid data for analyzing body movement. However, the data can be used as a positioning 70 

sensor by calculating the center of gravity of the estimated joint position, which can be 

applied to strategy and performance analysis. 

3D image processing approaches, such as 3D tracking and 3D reconstruction, are 

active research topics in computer vision. 3D positional estimation in large-scale spaces 

is being scrutinized for various scenes [1]. For such processes, the projective 75 

relationship must be obtained between the 3D world and the 2D image space, 

established by the camera parameters of the capturing camera. In camera calibration 

processes, landmarks need to be set up with known 3D positions in the space and the 

projective transformation matrix from the correspondence relationship between the 3D 

points and their observed positions in a 2D image plane needs to be estimated. This is 80 

called strong calibration [2]. However, calibration of a large-scale space can be 

problematic due to the increased time and effort required for landmark installation. 

Alternatively, the weak calibration method (or self-calibration) [3] does not require 

landmark placement. Relative position and orientation information can be estimated 

among multiple cameras, as well as the intrinsic parameters of the capturing cameras 85 

from the correspondence information among multiple viewpoint images. However, 

when the cameras are arranged sparsely, sufficient correspondence points cannot be 

obtained, and the estimation precision of the projection relationship is reduced. In large-

scale spaces, such as a gymnasium or stadium where 3D image processing is often 

implemented, dense camera arrangement becomes increasingly difficult.  90 

In sports analysis, the 3D position of athletes, implements, and projectiles is basic 

data that is crucial for improving performance, and will eventually be applied to the 



automation of game officiating and management in the near future. The 3D position 

estimation of a subject using game images is currently being researched. As a target 

application for 3D image processing, the authors focused on badminton games in a 95 

relatively large-scale space, where the installation of 3D tracking equipment for 

capturing players and the shuttlecock is difficult. Since the target space is too large to 

install enough cameras to guarantee the accuracy of weak calibration, strong calibration 

is typically employed. However, setting up many landmarks for an accurate strong 

calibration is time-consuming in such a space. Moreover, in official international 100 

competitions, setting up landmarks in the target space is even more difficult because 

permission must be obtained from the association to perform measurements with 

landmarks before the official match. Setting up the landmarks in such a large space 

could take half to several days, which can be expensive. 

The authors have proposed a method to combine the advantages of strong and weak 105 

calibration by bridging multiple sparsely-distributed cameras with a mobile camera [4]. 

As illustrated in Fig. 1, the target space was captured while moving among sparse multi-

view cameras using a mobile camera, so that densely captured multi-viewpoint images 

(interpolation images) could be acquired virtually. By utilizing the captured images, a 

simple and accurate calibration method is realized.  110 

In the previous paper by Shishido and Kitahara [4], however, the experiment 

demonstrated is insufficient in portraying the effectiveness of the proposed method due 

to its limited application range. In the current paper, the authors also conduct an 

evaluation experiment on the calibration accuracy using manually and automatically 

acquired interpolation images to show the effectiveness of the proposed method. 115 

Furthermore, the proposed method was applied to the 3D skeleton estimation of a 

badminton player to confirm the possibility of application. Subsequently, a quantitative 

evaluation was conducted on camera calibration for the 3D skeleton. Moreover, a 

quantitative evaluation was conducted on the proposed calibration method and a 

calibration method using the coordinates of eight manual points. 120 

 



 

Figure 1: Dense images captured in the proposed method. Mobile camera captures 

the target scene while moving among sparsely-fixed multi-view cameras. 

2. Related Works 125 

Strong calibration using known landmarks (e.g., checkerboards) is one common 

approach for camera calibration. Scaramuzza et al. [5] proposed a flexible technique 

for single viewpoint omnidirectional camera calibration using checkerboards that 

calibrated a panoramic camera with a vertical field of view over 200 degrees. Chen et 

al. [6] proposed a refractive calibration method for an underwater stereo camera system 130 

where both cameras are looking through multiple parallel flat refractive interfaces. In 

research on improving calibration accuracy, the estimation error was minimized by 

calculating the epipolar geometry from dynamic silhouettes and color codes. The 

motion barcode of Ben-Artzi et al. [7] is a binary temporal sequence for lines that 

indicate the existence of at least one foreground pixel on that line. The search for 135 

corresponding epipolar lines was limited to lines with similar barcodes. Schillebeeckx 

et al. [8] introduced a calibration object based on a flat lenticular array that creates a 

color-coded light field in which observed colour changes depending on the angle from 

which it is viewed. Other studies have also addressed environments where it is difficult 

to calibrate cameras, such as medical endoscopes. Nishimura et al. [9] proposed a 140 

camera calibration algorithm for camera systems involving distortions by unknown 

refraction and reflection processes. Melo et al. [10] proposed a complete software-based 



system that calibrates and corrects radial distortion in clinical endoscopy in real-time. 

All of the above approaches and methods target relatively small spaces. On the other 

hand, due to the large-scale space targeted in this research, significant labour is required 145 

because landmarks needed to be set up to cover the entire space. To solve such problems, 

Workman et al. [11] proposed a camera calibration method that used the geometry of a 

rainbow to describe the minimum set of constraints that is sufficient for estimating 

camera calibration, and presented both semi and fully automatic methods for camera 

calibration. However, rainbows are relatively rare, and applying them in a large indoor 150 

space is difficult. Calibration methods that utilize the corresponding information 

between multi-viewpoint images without the installation of landmarks have been 

studied extensively [12,13,14]. By analysing the motion field of radially distorted 

images, Wu et al. [13] found critical surface pairs that can render the same motion field 

under different radial distortions and possibly different camera motions.  155 

Cohen et al. [15] described an example of robust calibration by adding corresponding 

points and proposed a combinatorial approach for solving this variant by automatically 

stitching multiple sides of a building together. However, when obtaining sufficient 

corresponding points is difficult and the cameras are installed sparsely, the estimation 

accuracy readily decreases. In weak calibration, the relative position, orientation 160 

information, and intrinsic camera parameters are estimated from the correspondence 

information of the multi-viewpoint images. Therefore, the scale parameter between the 

captured 3D space (the world coordinate system) and the reconstructed 3D space 

obtained by weak calibration (the camera coordinate system) is difficult to estimate. As 

a countermeasure, the camera coordinate system was converted to the world coordinate 165 

system using 3D information defined by each individual sport (e.g., court size).  

Chen et al. [18] proposed a camera calibration method for soccer video. First, two 

manually corresponding 3D - 2D points are acquired, and the focal length between them 

is estimated. Next, the initial pan/tilt angle is estimated using one point. Finally, both 

points are used to minimize reprojection error. The PTZ (Pan Tilt Zoom) parameters 170 

were then optimized, and subsequently integrated and applied to the calibration of 

sports cameras. Obtaining corresponding points of the soccer field lines requires 

complicated manual work. To solve this problem, automatic calibration corresponding 

to 3D - 2D points was realized by detecting the soccer field lines from images [19]. In 



addition, rendering football fields and athletes from YouTube video frames with a 3D 175 

viewer/AR device was accomplished by combining the automatic calibration method 

using soccer field lines and the depth estimation method of a player using a trained deep 

network [20]. These calibration methods can be conducted by corresponding the soccer 

field 3D - 2D points. The calibration accuracy decreases with increasing distance from 

the soccer field ground, but the influence on the calibration accuracy in soccer is 180 

negligible because of the many uses of information near the ground, such as player foot 

positions. On the other hand, the calibration accuracy in badminton is subject to greater 

influence because of the many uses of information far from the ground, such as player 

arm movement.  

In this research, the authors propose a solution for accurate calibration in the vertical 185 

direction on the court, which has not been achieved in previous research.  

In general, utilization of the court lines is a valuable mechanism in camera 

calibration of the sports scene. However, calibration accuracy proves unstable when 

utilizing the court lines far from the ground (high height). Therefore, a calibration is 

proposed that stabilizes accuracy for positions high off the ground utilizing weak 190 

calibration. 

3. Multiple Camera Calibration Method 

3.1 Acquisition of projective transformation matrix using weak 

calibration 

As depicted in Fig. 1, multi-view images are captured by sparsely-installed fixed 195 

cameras. At the same time, a video sequence was captured using a mobile camera 

moving among and facing in the same direction as the fixed cameras. This means that 

a mobile camera visually bridges sparsely-arranged multi-viewpoint cameras. As a 

result, dense multi-view images were acquired, including images captured by the fixed 

cameras. By applying weak calibration to the images, the projective transformation 200 

matrix can be estimated for all multi-view images, including sparse fixed cameras, 

without setting landmarks, which is salient because sufficient detection of 



corresponding points is necessary for improving the estimation accuracy. The authors 

assume that the observed image features are sufficient for obtaining corresponding 

points in the captured images of the target space, where the size of at least one object is 205 

known in order to estimate the scale parameters. 

 

 

Figure 2: Geometric relationship among camera coordinate system, weak-

calibration coordinate system, and world coordinate system. 210 

3.2 Calculation of 3D coordinates 

In this research, a weak calibration method was adopted that uses correspondence 

between multiple viewpoint images without setting landmarks [12,13]. This method is 

called Structure-from-Motion and is hereinafter referred to as sfm. A 3D coordinate of 

an arbitrary point in the weak-calibration sfm coordinate system is defined as 𝑀𝑠𝑓𝑚 =215 

[𝑋𝑠, 𝑌𝑠 , 𝑍𝑠, 1]𝑇. When 𝑚 = [𝑢, 𝑣, 1]𝑇 is observed in the camera coordinate system, the 

projective relationship between the weak-calibration and camera coordinate system is 

expressed by Eq. (1). The projective transformation matrix (P) of the camera in the 

weak-calibration coordinate system, acquired by the method in Section 3.1, is 

employed: 220 



 

𝜆𝑚 ≃ 𝑷𝑀𝑠𝑓𝑚.                           (1) 

 

The projective relationship is similarly estimated in multiple viewpoint images. The 

3D coordinates are calculated from the observed image coordinates by the stereo vision 225 

method using the estimated projective transformation matrix. The stereo vision method 

is an approach for acquiring depth coordinates which are 3D coordinates from multiple 

images having parallax. This technique applies the principle of triangulation. 

3.3 Transformation from weak-calibration coordinate system to world 

coordinate system 230 

A weak-calibration coordinate system is defined by the distribution of the observed 

corresponding points. Therefore, the origin and direction of each axis are different for 

each calibration process. As shown in Fig. 2, the capturing space was originally 

assigned the weak-coordinate system, but it was transformed into a world coordinate 

system to unify measurements across different capturing data.  235 

An arbitrary point of the world coordinate system is defined as 𝑀𝑤𝑜𝑟𝑙𝑑 =

[𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤]𝑇 . The transformation from a weak-calibration coordinate system to a 

world coordinate system is expressed by a transformation matrix using rotation matrix 

R and translation vector t, represented by Eq. (2):  

 240 

𝑀𝑤𝑜𝑟𝑙𝑑 = 𝑅𝑀𝑠𝑓𝑚 + 𝑡.                         (2) 

 

Here, 3D transformation matrix D is shown in Eq. (3): 

 

𝐷 = [
𝑅 𝑡
0 1

].                             (3)  245 

 

Equation 4 is expressed using transformation matrix D: 

 

𝑀̃𝑤𝑜𝑟𝑙𝑑 = 𝐷𝑀̃𝑠𝑓𝑚.                         (4)  



 250 

As shown in Fig. 3(a) and (b), the origin of the world coordinate system was defined 

to satisfy the following two conditions: the vertical intersection of two straight lines 

(edges: 𝑋0
⃗⃗⃗⃗ ⊥ 𝑌0

⃗⃗  ⃗) from the capturing scene of the multi-view video, and the existence 

of an object whose size is known. 

𝑆𝑜 corresponds to the origin of the world coordinate system in the weak-calibration 255 

coordinate system. Vector t is the parallel translation magnitude from point 𝑆𝑜  to 

origin 𝑜𝑠𝑓𝑚. In addition, the scale is obtained from the size ratio of the weak-calibration 

coordinate system to an object whose size is known in the world coordinate system. An 

orthonormal vector of the weak-calibration coordinate system, represented by Eq. 5, is 

calculated by points 𝑆𝑥 , 𝑆𝑦 , and 𝑆𝑧  in the weak-calibration coordinate system that 260 

correspond to the points on the X-, Y-, and Z-axes of the world coordinate system. 

Rotation matrix R is obtained from the components of each vector 𝑒𝑖: 

    𝑒𝑖 = 
𝑆𝑖− 𝑆0

|𝑆𝑖− 𝑆0|
 (𝑖 = 𝑥, 𝑦, 𝑧).                       (5)  

 

Through transformation from a weak-calibration coordinate system into a world 265 

coordinate system, the authors calculated the 3D position of the subject in the 3D world 

coordinate system. 

 

4. Accuracy Evaluation Experiment of Multiple Camera 

Calibration Method 270 

As illustrated in Fig. 1, two fixed cameras were installed in a gymnasium to capture 

badminton scenes. Fig. 3(a) and (b) are images taken by each camera. The origin is set 

at the corner of the court, and the X-and Y-axes are set along the court line, defined by 

the standard badminton regulations. The distance between ① and ② is 6.1 m, and 

the distance between ① and ③ is 13.4 m, as shown in Fig. 3(a) and (b). The scale 275 

parameters are estimated based on these distances.  

The two videos are captured using digital video cameras (Sony FDR AX-1) with 

3,840 x 2,160 pixel resolution at 30 frames/second. Video of the same space was also 



captured by moving (bridging) between two fixed cameras using a camera with 

identical specifications. The bridging images are obtained through extraction of the 280 

individual frames. In this experiment, the mobile camera was moved along the 

gymnasium’s layout, as shown in Fig. 1. 

To evaluate the relationship between the accuracy of the camera calibration and each 

frame’s intervals (i.e., bridging gap), the bridging gap was adjusted to 1.0°, 1.5°, 2.5°, 

6°, 12°, 21° and 26° for 300, 150, 75, 40, 20, 10, and 5 capturing images, respectively. 285 

The interpolation image of (a) - (g) in Fig. 4 is automatically acquired using frame 

extraction of the moving image. Additionally, based on the position and orientation 

information of the interpolation image estimated by (c), the interpolation image of (h) 

– (k) in Fig. 4 is manually acquired with equal spacing. 

 As displayed in Fig. 4(a)-(k), weak-calibration processing is applied to the captured 290 

bridging image. Using the estimated camera parameters, ① origin: 𝑜𝑤𝑜𝑟𝑙𝑑, ② 𝑋𝑜, 

and ③ 𝑌𝑜 of the world coordinate system are calculated and applied in Fig. 3(a) and 

(b). The authors further verified the estimation accuracy of the 3D position.  

As detailed in Fig. 5, strong-calibration processing was conducted with the known 

badminton court coordinates to evaluate the accuracy of the camera calibration. The 295 

court’s lines were defined based on badminton regulations (Fig. 5). The court 

coordinates of the world coordinate system and the pole tip position (Nos. 1-18 in Fig. 

5) were calculated based on the origin’s position defined in Fig. 3. Similarly, the 

specified position coordinates of each image were acquired, and strong calibration was 

performed using this information. Thus, the camera parameters, ① the origin of the 300 

world coordinate system: 𝑜𝑤𝑜𝑟𝑙𝑑 , ② 𝑋𝑜, and ③ 𝑌𝑜, presented in Fig. 3(a) and (b), 

were calculated and the estimation accuracy of the 3D position was verified. 

 

 

 305 

 

 



 

Figure 3: World coordinate system’s image-capturing environment (a and b). 

 310 

 

Figure 4: Results of estimating camera parameters using the mobile camera images 

outlined in Fig.1 (a-k). Number of bridging images for automatic acquisition (a-g) and 

manual acquisition (h-k): (a) 300, (b) 150, (c) 75, (d) 40, (e) 20, (f) 10, (g) 5, (h) 40, (i) 

20, (j) 10, and (k) 5. 315 

 

 

 



 

Figure 5: Badminton court coordinates of the world coordinate system and pole tip 320 

position (Nos. 1-18). 

 

Figure 6: Calculated error of Euclidean distance by each bridging gap (Left: 𝑋𝑜 and 

ground truth, Right: 𝑌𝑜 and ground truth) 



4.1 Estimation error vs. number of bridging images 325 

The authors compared the values defined in the world coordinate system (① 𝑜𝑤𝑜𝑟𝑙𝑑 , 

②𝑋𝑜, and ③ 𝑌𝑜) with those defined in badminton regulations (6.1 m between ① and 

②, and 13.4 m between ① and ③). The calculated error of the Euclidean distance 

(𝑋𝑜 and ground truth/𝑌𝑜 and ground truth) is delineated in Fig. 6. Estimated error of 

the strong calibration is indicated by the orange bar. Estimated error associated with 330 

manual and automatic acquisition is represented by blue and yellow bars, respectively. 

The average estimated error of strong calibration using the badminton court coordinates 

was 2.2 cm. The average error of the convergence angles 1.0° , 1.5° , and 2.5° is 

approximately 4.3, 3.1, and 5.8 cm, respectively. These results indicate that the 

proposed method has approximately the same accuracy as the strong calibration.  335 

The estimation error from the automatic acquisition exhibits a drastic change from 

the convergence angle of 6° (approximate average error of 15 cm). Alternatively, the 

estimation error from manual acquisition exhibits a similarly abrupt change from the 

convergence angle of 21° (approximate average error of 20 cm).  

For both manual and automatic acquisition, the estimation error monotonically 340 

increases as the convergence angle increases. For interpolation images acquired 

manually, error images that do not capture subjects can be excluded. Additionally, 

manual acquisition enables selection of only focused images. Consequently, selected 

images may exhibit many positive correspondences between adjacent images. 

Therefore, the convergence angle at which the estimation error drastically increased 345 

was wider than that of the automatic acquisition. However, manual acquisition of 

interpolation images requires significant labour. 

As a result, to estimate the altitude and position of the fixed cameras with sufficient 

precision, the proposed method must sample bridging images at convergence angles 

less than 6 degrees. In the experiment, the total path length of the mobile camera motion 350 

was approximately 40 meters (20 m translation along the Y-axis followed by a 20 m 

translation along the X-axis). Accordingly, bridging images were deemed sufficient for 

this experiment sampled at one frame per second and captured by a moving camera at 

1 meter per second. 



4.2 3D skeleton estimation using the proposed method 355 

3D pose estimation of badminton players is one of the promising applications of the 

proposed method. To explore this potential, an experiment was conducted to capture 

badminton scenes in a gymnasium. As shown in Fig. 8(a), two fixed cameras were 

installed parallel to the X-axis of the world coordinate system. As shown in Fig. 8(b), 

camera position and orientation were estimated by applying weak calibration (fixed 360 

camera 1, 2 and interpolation image). The distance between the two cameras was 

approximately 10 m. The positions of the origin, X-axis, and Y-axis were established 

as outlined in Section 3. Multi-videos were captured using digital video cameras 

(Blackmagic Studio Camera 4K) with 3,840 x 2,160 pixel resolution at 30 

frames/second. These two cameras captured images using synchronizing signals. The 365 

authors also captured a video sequence of the same space by moving (bridging) between 

two fixed cameras using a camera with the same specifications as the fixed cameras. 

An interpolation image was acquired by sequencing the captured video into individual 

frames. As a result, 234 interpolation images were generated in this experiment. The 

badminton scene used for estimation of the 3D skeleton position totalled 16 frames 370 

(Nos. 111-127) from the start of hitting the shuttlecock to the end. 

To estimate a subject’s pose in the captured image, the pose estimation method of 

the convolutional neural network (CNN) was applied [16]. Pictured left in Fig. 7 is the 

result of applying convolutional pose machines [16] to the captured multi-view images. 

The resulting 3D pose position, estimated by the pose information detected at two 375 

viewpoints, is centred in Fig. 7. Accordingly, the projective transformation matrix for 

stereo processing was estimated by the proposed method. 

As shown in Fig. 7 right, the trajectories of the wrist, elbow, head, and neck were 

estimated. The orange, green, purple, and yellow plots illustrate the trajectory of the 

right wrist, right elbow, head, and neck, respectively. As shown in the neck and head Z 380 

values in Fig. 7, the head estimate is never lower than the neck. Similarly, the right 

elbow and right wrist Z values represent parabola. This shows the swinging motion of 

the racket. In this way, the estimated skeleton does not reverse human structure. It was 

confirmed that the estimated value during the movement of the racket swing did not 



lose continuity. Therefore, based on these results, the position of the skeleton from the 385 

first hit of the shuttlecock to the end was well-estimated.  

Accordingly, the Euclidean distances of the right wrist and the right elbow were 

calculated as shown in Fig. 9 (Nos. 111-127). The average distance and standard 

deviation were approximately 21.5 cm and 1.9 cm, respectively. With this method, the 

3D skeleton position can be calculated with less labour using the two fixed cameras to 390 

capture and produce interpolation images. The estimation data of the 3D skeleton 

position can contribute to improvement of an athlete's technical skills, through 

applications such as calculation of the skeleton’s movement and corresponding data 

analysis. 

 395 

 

 

Figure 7: Left: the result of applying convolutional pose machines [16] to the captured 

multi-view images. Middle: The estimation result of the 3D pose position from the pose 

information detected at two viewpoints. Right: The estimated trajectories of the wrist, 400 

elbow, head, and neck. 

 

 



 

(a) 405 

 

(b) 

Figure 8: (a) Two fixed cameras installed parallel to the X-axis of the world coordinate 

system. (b) Camera position and orientation estimated by applying weak calibration 

(fixed camera 1, 2 and interpolation image). Weak calibration estimates the position 410 

and orientation of the camera and at the same time estimates the 3D point cloud. Dots 

represent an estimated 3D point cloud. 



 

 

 415 

Figure 9: Euclidean distances of the right wrist and the right elbow (nos. 111 - 127). 

 

 

 

Subsequently, a quantitative evaluation was conducted on camera calibration for the 420 

3D skeleton. In this experiment, 3D key points were difficult to annotate, so the authors 

evaluated reprojection errors. The badminton scene used in this experiment yielded 17 

frames (No. 111 to 127) from the first hit of the shuttlecock to the end. First, skeleton 

positions (2D) were acquired from the two viewpoints by convolutional pose machines 

[16]. Secondly, the proposed method was applied to the two skeleton positions (2D) in 425 

order to calculate the 3D skeleton position. Thirdly, the calculated 3D skeleton position 

was projected onto each camera image. Fourthly, the proposed method was applied 

again to the 2D skeleton position of the two projected viewpoints in order to calculate 

the reprojected 3D skeleton position. Finally, the Euclidean distance between the first 

and second 3D skeleton positions (calculated and reprojected, respectively) was 430 



calculated to determine the reprojection error. The results of the calculation are reported 

in Table 1. The reprojection error specifies the average error of 17 frames for each part 

of the skeleton. As shown in Table 1, the average of the reprojection errors and standard 

deviations were approximately 2.72 mm and 0.81 mm, respectively. In effect, it was 

confirmed that the proposed method was highly accurate when applied to camera 435 

calibration. 

Further, Fig. 10 presents the result of executing steps 1-3 in the reprojection error 

procedure described above, exemplified by frames 123 and 126. The yellow line 

indicates the 2D skeleton positions estimated by the convolutional pose machines [16], 

and the blue line represents the 2D coordinates projected onto each camera from the 3D 440 

position once estimated by the proposed method. Evidently, the lines in each frame (123 

and 126) are nearly identical. However, the segment of the line from the left wrist to 

the left elbow does not overlap. This is due to the player’s self-occlusion. Essentially, 

the whole body can be observed in the camera 1 image, but in the camera 2 image the 

left hand is hidden in front of the player’s body and cannot be observed. Convolutional 445 

pose machines [16] estimate the skeleton position even if there is self-occlusion, but 

estimation accuracy is low for skeleton parts that cannot be observed. Therefore, the 

estimation precision of the 3D position by the proposed method is low in the 2D 

skeleton region where the estimation accuracy of convolutional pose machines [16] is 

low. A possible solution to this problem is positioning the camera so that self-occlusion 450 

does not occur, as opposed to the camera placement exhibited in Fig. 8.  

Moreover, a quantitative evaluation was conducted on the proposed calibration 

method and a calibration method using the coordinates of eight manual points 

(hereinafter referred to as the 8 points calibration method). The positions of points 1, 2, 

3, 10, 11, 16, 17, and 18, as shown in Fig. 5, were manually acquired in the 8 points 455 

calibration method. Camera parameters were calculated by corresponding the 8 points 

with the 3D field. As shown in the lower part of Fig. 11 (yellow plot), the data used for 

the quantitative evaluation were the racket positions manually acquired from the 

player’s image (21 frames). The authors calculated the 3D racket length by applying 

both the proposed method and 8 points calibration method above and below the racket, 460 

acquired by the two viewpoints. The actual size of the racket was 674 mm. The 

estimated racket length is outlined in the upper part of Fig. 11. The 8 points calibration 



and proposed methods are indicated by the blue and orange plots, respectively. Results 

indicate that the average racket length estimation error was nearly equivalent between 

the two methods: 12.69 mm and 11.86 mm for the 8 points calibration and proposed 465 

methods, respectively. Similarly commensurate, the standard deviations of the 

estimated racket length from 1 to 10 frames were 6.21 mm and 6.27 mm for the 8 points 

calibration and proposed methods, respectively. However, when comparing the 

standard deviations of the estimated racket length from 11 to 21 frames, the 8 points 

calibration and proposed methods were 12.30 mm and 8.47 mm, respectively. This 470 

result indicates that the estimation errors from 1 to 10 frames did not change between 

methods, but the estimation errors from 11 to 21 frames were less dispersed in the 

proposed method. This difference is explicated by the fact that frames 1 to 10 exhibit 

the racket at a height lower than the badminton court net, while in frames 11 to 21, the 

racket is above the net. Therefore, the accuracy of the 8 points calibration method 475 

decreases at a position higher than the height of the badminton court net. Alternatively, 

the proposed method provides stable calibration accuracy regardless of position relative 

to the net. The stabilization of the proposed method is due to uniformly distributed 

image features in 3D space. In conclusion, the proposed method stabilizes calibration 

accuracy in the vertical direction of the world coordinate system. 480 

 

 

 



 

Figure 10: 2D Skeleton positions estimated from two viewpoints by convolutional pose 485 

machines [16] and by projection onto each camera from the 3D skeleton position 

estimated by the proposed method (frame nos. 123 and 126). 

 

Table 1: The Euclidean distance between the calculated and reprojected 3D skeleton 

positions.  490 

 

Note: The reprojection error is averaged over 17 frames for each part of the skeleton. 

 

 

 495 



 

Figure 11: Quantitative evaluation of the proposed method and the 8 points 

calibration method. Upper: Estimation result of racket length using the proposed 

method and the 8 points calibration method. Lower: Racket positions manually 

acquired from the player's image (21 frames). 500 

 

5. Conclusion 

A method was introduced that achieves a calibration for multiple sparsely-

distributed cameras by bridging them with mobile camera images. Experiments were 

also conducted to evaluate camera calibration accuracy by changing the convergence 505 

angles between each bridging image, effectively verifying the proposed method’s 

effectiveness. When the distance between the sparsely-installed cameras increased, the 

proposed method performed with high accuracy and less labour. 

In addition, the accuracy evaluation was executed using the interpolation images 

acquired manually and automatically in order to verify the effectiveness of the proposed 510 

method. Furthermore, the proposed method was applied to the 3D skeleton estimation 

of badminton players to confirm the possibility of the application. As a result of the 

study, the range of the proposed method’s application expanded, demonstrating its 

effectiveness.  
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