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Abstract In this paper, we consider high-dimensional quadratic classifiers in non-
sparse settings. The quadratic classifiers proposed in this paper draw information
about heterogeneity effectively through both the differences of growing mean vec-
tors and covariance matrices. We show that they hold a consistency property in
which misclassification rates tend to zero as the dimension goes to infinity under
non-sparse settings. We also propose a quadratic classifier after feature selection
by using both the differences of mean vectors and covariance matrices. We dis-
cuss the performance of the classifiers in numerical simulations and actual data
analyses. Finally, we give concluding remarks about the choice of the classifiers for
high-dimensional, non-sparse data.
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1 Introduction

Globally, there is an ever increasing need for fast, accurate and cost effective
analysis of high-dimensional data in many fields, including academia, medicine and
business. However, existing classifiers for high-dimensional data are often complex,
time consuming and have no guarantee of accuracy. In this paper we hope to
provide better options. A common feature of high-dimensional data is that the
data dimension is high, however, the sample size is relatively low. This is the so-
called “HDLSS” or “large p, small n” data situation, here p is the data dimension
and n is the sample size. In this paper, we mainly focus on the case when “n/p→
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0”. Suppose we have independent and p-variate two populations, πi, i = 1, 2,
having an unknown mean vector µi = (µi1, ..., µip)T and unknown positive-definite
covariance matrix Σi for each i. Let

µ12 = µ1 − µ2 = (µ121, ..., µ12p)T and Σ12 = Σ1 − Σ2.

We assume lim supp→∞ |µ12j | <∞ for all j. Note that lim supp→∞ ||µ12||2/p <∞,
where || · || denotes the Euclidean norm. Let σi(j) be the j-th diagonal element of
Σi for j = 1, ..., p (i = 1, 2). We assume that σi(j) ∈ (0,∞) as p → ∞ for all i, j.
For a function, f(·), “f(p) ∈ (0,∞) as p → ∞” implies that lim infp→∞ f(p) > 0
and lim supp→∞ f(p) < ∞. Here, “lim infp→∞ f(p)” and “lim supp→∞ f(p)” are
the limit inferior and the limit superior of f(p), respectively. Then, it holds that
tr(Σi)/p ∈ (0,∞) as p→ ∞ for i = 1, 2. We do not assume Σ1 = Σ2. The eigen-
decomposition of Σi is given by Σi = HiΛiH

T
i , where Λi = diag(λi1, ..., λip)

is a diagonal matrix of eigenvalues, λi1 ≥ · · · ≥ λip > 0, and Hi = [hi1, ...,hip]
is an orthogonal matrix of the corresponding eigenvectors. We have independent
and identically distributed (i.i.d.) observations, xi1, ...,xini , from each πi, where
xik = (xi1k, ..., xipk)T , k = 1, ..., ni. We assume ni ≥ 2, i = 1, 2. Let nmin =
min{n1, n2}. We estimate µi and Σi by xini = (xi1ni , ..., xipni)

T =
∑ni

k=1 xik/ni

and Sini =
∑ni

k=1(xik−xini)(xik−xini)
T /(ni−1). Let sini(j) be the j-th diagonal

element of Sini for j = 1, ..., p (i = 1, 2).
In this paper, we consider high-dimensional quadratic classifiers in non-sparse

settings. Let x0 = (x01, ..., x0p)T be an observation vector of an individual belong-
ing to one of the two populations. We assume that x0 and xijs are independent.
Let |M | be the determinant of a square matrix M . When πis are Gaussian, the
Bayes optimal rule (the minimum-error rate discriminant function) is given as
follows: One classifies the individual into π1 if

(x0 − µ1)
T Σ−1

1 (x0 − µ1) − log |Σ2Σ
−1
1 | < (x0 − µ2)

T Σ−1
2 (x0 − µ2) (1)

and into π2 otherwise. Since µis and Σis are unknown, one usually considers the
following typical classifier:

(x0 − x1n1)
T S−1

1n1
(x0 − x1n1) − log |S2n2S

−1
1n1

| < (x0 − x2n2)
T S−1

2n2
(x0 − x2n2).

The classifier usually converges to the Bayes optimal classifier when nmin → ∞
while p is fixed or nmin/p → ∞. However, in the HDLSS context, the inverse
matrix of Sini does not exist. When Σ1 = Σ2, Bickel and Levina (2004) con-
sidered an inverse matrix defined by only diagonal elements of the pooled sample
covariance matrix. Fan and Fan (2008) considered a classification after feature
selection. Fan et al. (2012) proposed the regularized optimal affine discriminant
(ROAD). When Σ1 ̸= Σ2, Dudoit et al. (2002) considered an inverse matrix
defined by only diagonal elements of Sini . Aoshima and Yata (2011, 2015b) con-
sidered using {tr(Sini)/p}−1Ip instead of S−1

ini
from a geometrical background

of HDLSS data and proposed geometric classifiers. Here, Ip denotes the identity
matrix of dimension p. Hall et al. (2005) and Marron et al. (2007) considered dis-
tance weighted classifiers. Chan and Hall (2009) and Aoshima and Yata (2014)
considered distance-based classifiers and Aoshima and Yata (2014) gave the mis-
classification rate adjusted classifier for multiclass, high-dimensional data whose
misclassification rates are no more than specified thresholds.
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Recently, Cai and Liu (2011), Shao et al. (2011) and Li and Shao (2015)
gave sparse linear or quadratic classification rules for high-dimensional data. They
showed that their classification rules have Bayes error rates when πis are Gaus-
sian. They assumed that λijs are bounded under some sparsity conditions that
µ12, Σis and Σ12 (or Σ−1

i s and Σ−1
1 −Σ−1

2 ) are sparse. See also Donoho and Jin
(2015) for the concepts of sparsity. For example, when Σ1 = Σ2 (= Σ, say), the

error rate of their classification rules is given by Φ(−∆1/2
MD/2) + o(1) as p → ∞,

where ∆MD = µT
12Σ

−1µ12 that is the (squared) Mahalanobis distance and Φ(·)
denotes the cumulative distribution function of the standard normal distribution.
Here, Φ(−∆1/2

MD/2) is the Bayes error rate. In this paper, we investigate quadratic
classifiers from a perspective that is different from the sparse discriminant analy-
sis. We do not assume that µ12, Σis and Σ12 are sparse. In such a context, the

target of classification rules is not Bayes error rates as in Φ(−∆1/2
MD/2) + o(1) as

p → ∞. We consider the following consistency property: misclassification rates
tend to 0 as p increases, i.e.,

e(i) → 0 as p→ ∞ for i = 1, 2,

where e(i) denotes the error rate of misclassifying an individual from πi into the
other class. For example, if one can assume that πis are Gaussian and Σ1 = Σ2,
the Bayes rule (1) has such consistency when ∆MD → ∞ as p → ∞. It is likely
that ∆MD → ∞ as p→ ∞ when µ12 is non-sparse in the sense that ||µ12|| → ∞
as p → ∞. We emphasize that such non-sparse situations often occur in high-
dimensional settings. For example, see Hall et al. (2005) or (A.1) to (A.4) and
Table 2 in Appendix A of the online supplementary. In this paper, we do not
consider the following sparse situations:

lim sup
p→∞

||µ12|| <∞ and lim sup
p→∞

||Σ12||F <∞,

where || · ||F is the Frobenius norm. For example, most elements of µ12 are 0 or
very small if lim supp→∞ ||µ12|| <∞. See Section 5.2 for sparsity of Σis. We will
show that quadratic classifiers hold the consistency property when µ12 or Σ12 is
non-sparse in the sense that

||µ12|| → ∞ or ||Σ12||F → ∞ as p→ ∞.

Based on (1), we consider the following function of Ai to discriminate πis in
general:

Wi(Ai) =(x0 − xini)
T Ai(x0 − xini) − tr(SiniAi)/ni − log |Ai|, (2)

where Ai is a positive definite matrix satisfying the equation that tr{Σi(Ai′ −
Ai)} = tr(A−1

i Ai′) − p for i = 1, 2; i′ ̸= i. Note that E{(x0 − xini)
T Ai(x0 −

xini)} = (µi′−µi)
T Ai(µi′−µi)+tr(ΣiAi)/ni when x0 ∈ πi′ . Thus, tr(SiniAi)/ni

operates as a bias correction term in (2). See Section 2 for typical Ais. We consider
a quadratic classification rule in which one classifies the individual into π1 if

W1(A1) −W2(A2) < 0 (3)

and into π2 otherwise. Note that (3) becomes a linear classifier when A1 = A2.
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Remark 1 As for l (≥ 3)-class classification, one may consider a classification rule
that one classifies the individual into πi if argmini′=1,...,lWi′(Ai′) = i.

In this paper, we pay special attention to the difference of covariance matrices
in classification for high-dimensional data. In Section 2, we give a motivation
of quadratic classifiers given by (2) via numerical examples in high-dimensional
settings. In Section 3, we discuss asymptotic properties of quadratic classifiers
given by (2). We show that the classification rule (3) holds the consistency property
under non-sparse settings. We verify that a quadratic classifier given by (2) is
asymptotically distributed as the normal distribution under certain conditions.
In Section 4, we consider estimation of Ais and give asymptotic properties of
estimated classifiers. In Section 5, we propose a quadratic classifier after feature
selection by using both the differences of mean vectors and covariance matrices.
We discuss the performance of the classifiers in numerical simulations and actual
data analyses. Finally, in Section 6, we give several suggestions about how to select
Ai as concluding remarks.

2 Motivation of quadratic classifiers

We have that E{Wi′(Ai′)} − E{Wi(Ai)} = ∆i when x0 ∈ πi, where

∆i = µT
12Ai′µ12 + tr{Σi(Ai′ − Ai)} + log |A−1

i′ Ai| for i = 1, 2; i′ ̸= i. (4)

Proposition 1 (i) ∆i ≥ 0. (ii) ∆i > 0 when µ1 ̸= µ2 or A1 ̸= A2.

We note that ∆i ≥ tr(A−1
i Ai′) − p + log |A−1

i′ Ai| ≥ 0 when tr{Σi(Ai′ −
Ai)} = tr(A−1

i Ai′) − p for i = 1, 2; i′ ̸= i. See (B.7) in Appendix B of the online
supplementary. However, it does not always satisfy ∆i ≥ 0 if tr{Σi(Ai′ − Ai)} ̸=
tr(A−1

i Ai′)−p for i = 1, 2; i′ ̸= i. Also note that if one ignores the bias correction
term in (2), Wi(Ai) becomes Wi(Ai) = (x0 − xini)

T Ai(x0 − xini) − log |Ai|.
Then, it does not always satisfy ∆i ≥ 0.

In this paper, we specially consider the following four typical Ais in (2):

(I) Ai = Ip, (II) Ai =
p

tr(Σi)
Ip, (III) Ai = Σ−1

i(d), and (IV) Ai = Σ−1
i ,

where Σi(d) = diag(σi(1), ..., σi(p)). These four Ais satisfy the condition that

tr{Σi(Ai′ − Ai)} = tr(A−1
i Ai′) − p for i = 1, 2; i′ ̸= i, and they provide his-

torical background of discriminant analysis. Note that ||Σ12||F ≥ ||A−1
1 −A−1

2 ||F
for these four Ais. Also, under (I) to (IV), we note that ∆i → ∞ as p→ ∞ when
µ12 or Σ12 is non-sparse. Practically, Ais should be estimated except for (I). We
will consider quadratic classifiers by estimating Ais in Section 4.

Now, let us see an easy example to check the performance of (I) to (IV) in
(3). We plugged the true Σis in Ais for (II) to (IV). We set p = 2s, s = 3, ..., 11.
Independent pseudo random observations were generated from πi : Np(µi,Σi),

i = 1, 2. We set µ1 = 0 and Σ1 = B1(0.3
|i−j|1/3

)B1, where B1 = diag[{0.5 +
1/(p + 1)}1/2, ..., {0.5 + p/(p + 1)}1/2]. Note that tr(Σ1) = p and Σ1(d) = B2

1.

Let p⋆ = ⌈p1/2⌉, where ⌈x⌉ denotes the smallest integer ≥ x. When Σ1 = Σ2 and
(n1, n2) = (log2 p, 2 log2 p), we considered three cases:
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(a) µ2 = (1, ..., 1,−1, ...,−1, 0, ..., 0)T whose first 2p⋆ elements are not 0. The
first p⋆ elements are 1 and the next p⋆ elements are −1;
(b) µ2 = (0, ..., 0, 1, ..., 1,−1....,−1)T whose last 2p⋆ elements are not 0. The last
p⋆ elements are −1 and the previous p⋆ elements are 1; and
(c) µ2 = (0, ..., 0, 1,−1, ..., 1,−1)T whose last 2p⋆ elements are not 0, where the
j-element is (−1)j+1 for j = p− 2p⋆ + 1, ..., p.

Note that ||µ12||2 = 2p⋆ for (a) to (c). Next, when µ2 = 0 (i.e., µ12 = 0) and
(n1, n2) = (5, 10), we considered two cases:

(d) Σ2 = 1.5Σ1 and (e) Σ2 = 1.3(0.3|i−j|1/3
) (̸= Σ1).

Note that µ12 or Σ12 is non-sparse for (a) to (e) because ||µ12|| → ∞ or ||Σ12||F →
∞ as p → ∞. For x0 ∈ πi (i = 1, 2) we repeated 2000 times to confirm if the
classification rule (3) with either of (I) to (IV) does (or does not) classify x0 cor-
rectly and defined Pir = 0 (or 1) accordingly for each πi. We calculated the error
rates, e(i) =

∑2000
r=1 Pir/2000, i = 1, 2. Also, we calculated the average error rate,

e = {e(1) + e(2)}/2. Their standard deviations are less than 0.0112 from the fact
that Var{e(i)} = e(i){1 − e(i)}/2000 ≤ 1/8000. In Fig. 1, we plotted e for (a) to
(e). Note that (I) is equivalent to (II) for (a) to (c).

We observed that (IV) gives the best performance for (c) in Fig. 1. However,
(IV) gave the worst performance for (b) contrary to expectations. In general, one
would think that the classifier based on the Mahalanobis distance such as (2) with
(IV) is the best when πis are Gaussian and nmin → ∞. We emphasize that it is not
true for high-dimensional data. We will explain its theoretical reason in Section
3.3. We observed that (I) (or (II)) gives a better performance than (III) for (b) and
(c) in Fig. 1. We will discuss the reasons in Section 3.4. As for (d) and (e) in Fig. 1,
the error rates of (I) were close to 0.5 because of µ12 = 0. On the other hand, the
quadratic classifiers, with (II), (III) and (IV), gave good performances as ||Σ12||F
increases. From these observations, we pay special attention to the difference of
covariance matrices in classification for high-dimensional data. We will give their
theoretical backgrounds in Sections 3.1 and 3.4.

3 Asymptotic properties of quadratic classifiers

In this section, we discuss asymptotic properties of quadratic classifiers given by (2)
without estimating Ais. We will consider estimated quadratic classifiers in Section
4 by using the results in this section. Similar to Aoshima and Yata (2015a) and
Bai and Saranadasa (1996), we assume the following assumption about population
distributions as necessary:

(A-i) Let yik, k = 1, ..., ni, be i.i.d. random qi-vectors having E(yik) = 0 and
Var(yik) = Iqi for each i (= 1, 2), where qi ≥ p. Let yik = (yi1k, ..., yiqik)T

whose components satisfy that lim supp→∞E(y4
ijk) <∞ for all j and

E(y2
ijky

2
irk) = E(y2

ijk)E(y2
irk) = 1 and E(yijkyirkyiskyitk) = 0 (5)

for all j ̸= r, s, t. Then, the observations, xiks, from each πi (i = 1, 2) are given
by xik = Γ iyik + µi, k = 1, ..., ni, where Γ i = [γi1, ...,γiqi

] is a p× qi matrix

such that Γ iΓ
T
i = Σi.
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(a) (b) (c)

(d) (e)

Fig. 1 The average error rates of the classification rule (3) for (I) to (IV). The top panels (a),
(b) and (c) display e when µ1 ̸= µ2 (but Σ1 = Σ2). The bottom panels (d) and (e) display e
when Σ1 ̸= Σ2 (but µ1 = µ2).

Note that Γ i includes the case that Γ i = HiΛ
1/2
i = [λ

1/2
i1 hi1, ..., λ

1/2
ip hip]. We

assume the following assumption instead of (A-i) as necessary:

(A-ii) Replace (5) with the independence of yijk, j = 1, ..., qi (i = 1, 2; k =
1, ..., ni) in (A-i).

Note that (A-ii) is a special case of (A-i). When πi has Np(µi,Σi), (A-ii) naturally
holds.

3.1 Consistency property of quadratic classifiers

In this section, we discuss consistency properties of quadratic classifiers given by
(2). We consider the following divergence condition for p and nis:

(⋆) p→ ∞ either when ni is fixed or ni → ∞ for i = 1, 2.

Let ∆iA = µT
12Ai′ΣiAi′µ12 for i = 1, 2; i′ ̸= i. Recall that ∆i = µT

12Ai′µ12 +
tr{Σi(Ai′ − Ai)} + log |A−1

i′ Ai|. We consider the following conditions under (⋆)
for i = 1, 2 (i′ ̸= i):

(C-i)
tr{(ΣiAi)

2}
ni∆2

i

= o(1) and
tr(ΣiAi′Σi′Ai′) + tr{(Σi′Ai′)

2}/ni′

ni′∆2
i

= o(1),

(C-ii)
∆iA

∆2
i

= o(1), and (C-iii)
tr[{Σi(A1 − A2)}2]

∆2
i

= o(1).

We note that (C-i) and (C-iii) are regularity conditions. On the other hand, (C-ii)
is a non-sparsity condition for high-dimensional data. If p is fixed, ∆i is bounded
typically, so that (C-ii) is not met. (C-i) to (C-iii) are somewhat complicated. See
Proposition 2 for simpler conditions than (C-i) to (C-iii).

We claim consistency for (3) with (2) as follows:
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Theorem 1 Assume (A-i). Assume also (C-i) to (C-iii). Then, we have that

Wi′(Ai′) −Wi(Ai)

∆i
= 1 + oP (1) under (⋆) when x0 ∈ πi for i = 1, 2; i′ ̸= i.

Furthermore, for the classification rule (3) with (2), we have that

e(i) → 0, i = 1, 2, under (⋆). (6)

Remark 2 When A1 = A2, we can claim Theorem 1 without (A-i) and (C-iii).

Let λmin(M) and λmax(M) be the smallest and the largest eigenvalues of any
positive definite matrix, M . We use the phrase “λ(M) ∈ (0,∞) as p → ∞”
in the sense that lim infp→∞ λmin(M) > 0 and lim supp→∞ λmax(M) < ∞. We
note that Ais in (I) to (III) satisfy the condition “λ(Ai) ∈ (0,∞) as p → ∞”.
Let ∆min = min{∆1,∆2}, λmax = max{λmax(Σ1), λmax(Σ2)} and tr(Σ2

max) =
max{tr(Σ2

1), tr(Σ
2
2)}. Now, instead of (C-i) and (C-ii), we consider the following

simpler conditions under (⋆):

(C-i’) tr(Σ2
max)/(nmin∆

2
min) = o(1) and (C-ii’) λmax/∆min = o(1).

If tr(Σ2
max) = O(p), (C-i’) is equivalent to p/(nmin∆

2
min) = o(1). We note that

“tr(Σ2
max) = O(p)” is a natural condition when λmax = O(p1/2). See Remark 1.1

in Aoshima and Yata (2011).

Proposition 2 Assume that lim supp→∞ λmax(Ai) < ∞ for i = 1, 2. Then, (C-
i’) and (C-ii’) imply (C-i) and (C-ii), respectively. Furthermore, if λ(Ai) ∈ (0,∞)
as p → ∞ for i = 1, 2, and Ai, i = 1, 2, are diagonal matrices such as in (I) to
(III) in Section 2, (C-ii’) implies (C-iii).

From the fact that λmax(Σi) ≤ tr(Σ2
i )

1/2 for i = 1, 2, we note that (C-i’) and
(C-ii’) hold even when nmin is fixed under

tr(Σ2
max)/∆2

min → 0 as p→ ∞. (7)

As mentioned in Section 2, four typical Ais were specifically selected. We first
consider (I). By using Ai = Ip, i = 1, 2, (2) and (4) are given as

Wi(Ip) = ||x0 − xini ||
2 − tr(Sini)/ni (8)

and ∆1 = ∆2 = ||µ12||
2 (hereafter called ∆(I)).

We note that

W1(Ip) −W2(Ip)

2
=
(
x0 − x1n1 + x2n2

2

)T
(x2n2 − x1n1) −

tr(S1n1)

2n1
+

tr(S2n2)

2n2

and E{W1(Ip) −W2(Ip)} = (−1)i||µ12||2 = ∆(I) when x0 ∈ πi. Thus, the linear
classifier by (8) is equivalent to the distance-based classifier by Aoshima and Yata
(2014). Hereafter, we call the classifier by (8) the “distance-based discriminant
analysis (DBDA)”. From Theorem 1 and Proposition 2, we have the following
result.

Corollary 1 Assume (C-i’) and (C-ii’). Then, for the classification rule (3) with
(8), we have consistency (6).
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From Corollary 1, under (7), the classification rule (3) with (8) has consistency
(6) even when nis are fixed. Note that DBDA has the consistency property without
(A-i), so that DBDA is quite robust for non-Gaussian data. See Aoshima and Yata
(2014) for the details. When µ1 = µ2, DBDA does not satisfy (C-i’) and (C-ii’),
whereas the quadratic classifiers with (II) to (IV) still satisfy them.

Next, we consider (II) to (IV). For (II), by using Ai = {p/tr(Σi)}Ip, i = 1, 2,
(4) is given as

∆i =
p∆(I)

tr(Σi′)
+
ptr(Σi)

tr(Σi′)
− p+ p log

{ tr(Σi′)

tr(Σi)

}
(hereafter called ∆i(II)).

For (III), by using Ai = Σ−1
i(d), i = 1, 2, it is given as

∆i =
p∑

j=1

{ µ2
12j

σi′(j)
+
σi(j)

σi′(j)
− 1 + log

(σi′(j)

σi(j)

)}
(hereafter called ∆i(III)).

For (IV), by using Ai = Σ−1
i , i = 1, 2, it is given as ∆i = µT

12Σ
−1
i′ µ12 +

tr(ΣiΣ
−1
i′ ) − p+

∑p
j=1 log(λi′j/λij) (hereafter called ∆i(IV )).

Now, we consider the following condition for Σi, i = 1, 2:

tr(Σ2
i )/tr(Σi)

2 → 0 as p→ ∞. (9)

We note that tr(Σ2
i )/tr(Σi)

2 is a measure of sphericity. Under (A-i) and (9), from
the fact that Var(||x0 − µi||2) = O{tr(Σ2

i )} when x0 ∈ πi, we have that

||x0 − µi|| = tr(Σi)
1/2{1 + oP (1)} when x0 ∈ πi as p→ ∞.

Thus the centroid data lies near the surface of an expanding sphere. See Hall et al.
(2005) for the details of the geometric representation. We emphasize that (II) draws
information about heteroscedasticity thorough the geometric representation hav-
ing different radii, tr(Σi)

1/2s, of expanding two spheres. Note that tr(Σ2
i ) = o(p2)

under (9). Hence, for (II), (7) holds under lim infp→∞∆min(II)/p > 0 and (9),
where ∆min(II) = min{∆1(II),∆2(II)}. We note that ∆min(II) > 0 when tr(Σ1) ̸=
tr(Σ2) in view of Proposition 1. If one can assume that lim infp→∞ |tr(Σ1)/tr(Σ2)−
1| > 0, it follows lim infp→∞∆min(II)/p > 0, so that (7) holds under (9). Hence,
for the classification rule (3) with (II), we have consistency (6) even when µ1 = µ2

and nis are fixed. See (II) in (d) and (e) of Fig. 1. The accuracy becomes higher
as the difference between tr(Σi)s grows.

Similarly, for (III), it follows that (7) holds under lim infp→∞∆min(III)/p >
0 and (9), where ∆min(III) = min{∆1(III),∆2(III)}. If one can assume that
lim infp→∞

∑p
j=1 |σ1(j)/σ2(j)−1|/p > 0, it follows lim infp→∞∆min(III)/p > 0, so

that the classification rule (3) with (III) has consistency (6) even when µ1 = µ2

and nis are fixed. (III) draws information about heteroscedasticity via the dif-
ference of diagonal elements between the two covariance matrices. The accuracy
becomes higher as the difference of those diagonal elements grows. See (III) in (d)
and (e) of Fig. 1.

For (IV), we have the following result.

Proposition 3 When lim infp→∞ |tr(ΣiΣ
−1
i′ )/p − 1| > 0 or lim infp→∞

∑p
j=1

|λij/λi′j − 1|/p > 0 (i ̸= i′), it follows that lim infp→∞∆i(IV )/p > 0.
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From Theorem 1 and Proposition 2, for the classification rule (3) with (IV),
we have consistency (6) under lim infp→∞∆min(IV )/p > 0 and some conditions,
where ∆min(IV ) = min{∆1(IV ),∆2(IV )}. Thus from Proposition 3, the accuracy
becomes higher as the difference of eigenvalues or eigenvectors between the two
covariance matrices grows. See (IV) in (d) and (e) of Fig. 1.

3.2 Asymptotic normality of quadratic classifiers

In this section, we discuss the asymptotic normality of quadratic classifiers given
by (2). We further discuss Bayes error rates for high-dimensional data. Let m =
min{p, nmin} and

δi = 2
{ tr{(ΣiAi)

2}
ni

+
tr(ΣiAi′Σi′Ai′)

ni′
+∆iA

}1/2
for i = 1, 2; i′ ̸= i. (10)

Note that δ2i = Var[2(x0−µi)
T {Ai(xini−µi)−Ai′(xi′ni′ −µi′ +(−1)iµ12)}] when

x0 ∈ πi. We assume the following conditions when m→ ∞ for i = 1, 2; i′ ̸= i:

(C-iv)
µT

12Ai′Σi′Ai′µ12 + tr{(Σi′Ai′)
2}/ni′

ni′δ2i
= o(1),

tr{(ΣiAi)
4}

n2
i δ

4
i

= o(1)

and
tr{(ΣiAi′Σi′Ai′)

2}
n2

i′δ
4
i

= o(1);

(C-v)
tr[{Σi(A1 − A2)}2]

δ2i
= o(1); and (C-vi)

∆iA

δ2i
= o(1).

We note that (C-iv) and (C-v) are regularity conditions. From (B.15) in Appendix
B, under (A-i), (C-iv) and (C-v), it holds that

Wi′(Ai′) −Wi(Ai) −∆i

= 2(x0 − µi)
T{Ai(xini − µi) − Ai′(xi′ni′ − µi′ + (−1)iµ12)

}
+ oP (δi)

as m → ∞ when x0 ∈ πi for i = 1, 2; i′ ̸= i. Under (C-vi), it holds that (x0 −
µi)

T Ai′µ12 = oP (δi) as m → ∞ when x0 ∈ πi for i = 1, 2. Then, we claim the
asymptotic normality of (2) under (A-i) as follows:

Theorem 2 Assume (A-i). Assume also (C-iv) to (C-vi). Then, we have that

Wi′(Ai′) −Wi(Ai) −∆i

δi
⇒ N(0, 1) as m→ ∞ (11)

when x0 ∈ πi for i = 1, 2 (i′ ̸= i),

where “⇒” denotes the convergence in distribution and N(0, 1) denotes a ran-
dom variable distributed as the standard normal distribution. Furthermore, for the
classification rule (3) with (2), it holds that

e(i) = Φ
(−∆i

δi

)
+ o(1) as m→ ∞ for i = 1, 2. (12)

Next, we consider the asymptotic normality of (2) under (A-ii). We assume the
following condition instead of (C-vi) when m→ ∞ for i = 1, 2; i′ ̸= i:
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(C-vii)

∑qi

j=1(γ
T
ijAi′µ12)

4

δ4i
= o(1).

Remark 3 (C-vii) can be written as a condition concerning eigenvalues and eigen-

vectors. If Γ i = HiΛ
1/2
i , Ai = Σ−1

i , i = 1, 2, and Σ1 = Σ2, it holds that∑qi

j=1{γ
T
ijAi′µ12}4 =

∑p
j=1 ψ

2
j and ∆iA = µT

12Σ
−1
i µ12 =

∑p
j=1 ψj , where ψj =

(µT
12hij)

2/λij . Hence, the condition “
∑p

j=1 ψ
2
j /(
∑p

j=1 ψj)
2 → 0 as p → ∞” im-

plies (C-vii).

Note that
∑qi

j=1(γ
T
ijAi′µ12)

4 ≤
∑qi

j,j′=1(γ
T
ijAi′µ12)

2(γT
ij′Ai′µ12)

2 = ∆2
iA. Thus,

(C-vii) is milder than (C-vi).
Now, we claim the asymptotic normality of (2) under (A-ii) as follows:

Theorem 3 Assume (A-ii). Assume also (C-iv), (C-v) and (C-vii). Then, we
have (11). Furthermore, for the classification rule (3) with (2), we have (12).

When considering the classifier (8), from Theorems 2 and 3, we have the fol-
lowing result.

Corollary 2 Assume (C-iv). Assume either (A-i) and (C-vi) or (A-ii) and (C-
vii). Then, for the classification rule (3) with (8), we have (12).

3.3 Bayes error rates

When considering Theorem 3 under the situation that

tr{(ΣiAi)
2}/ni + tr(ΣiAi′Σi′Ai′)/ni′ = o(∆iA) as m→ ∞ (13)

for i = 1, 2; i′ ̸= i, one has (12) as

e(i) = Φ{−∆i/(2∆
1/2
iA )} + o(1) as m→ ∞ for i = 1, 2.

Note that δi/(2∆
1/2
iA ) = 1+ o(1) under (13). If Σ1 = Σ2(= Σ), the ratio ∆i/∆

1/2
iA

has a maximum when A1 = A2 = Σ−1. Then, the ratio becomes the Mahalanobis

distance such as ∆i/∆
1/2
iA = ∆

1/2
MD. The classification rule (3) with (2) has an error

rate converging to the Bayes error rate in the sense that e(i) = Φ(−∆1/2
MD/2)+o(1)

for i = 1, 2. On the other hand, if Σ1 ̸= Σ2 and πis are Gaussian, under (C-iii)
for (IV), the Bayes optimal classifier by (1) becomes as follows:

2(x0 − µi)
T Σ−1

i′ µ12 + oP (∆i(IV )) > (−1)i∆i(IV )

when x0 ∈ πi; i
′ ̸= i. Note that Var{(x0 − µi)

T Σ−1
i′ µ12} = µT

12Σ
−1
i′ ΣiΣ

−1
i′ µ12

(hereafter called ∆iA(IV )) when x0 ∈ πi and ∆iA(IV ) is the same as ∆iA for

(IV). Hence, (x0 −µi)
T Σ−1

i′ µ12/∆
1/2
iA(IV ) is distributed as N(0, 1) when x0 ∈ πi :

Np(µi,Σi). Then, the Bayes error rate becomes e(i) = Φ{−∆i(IV )/(2∆
1/2
iA(IV ))}+

o(1) for i = 1, 2, under some conditions.
When considering Theorem 3 under the situation that

p/ni + tr(ΣiΣ
−1
i′ )/ni′ = o(∆iA(IV )) as m→ ∞ for i = 1, 2; i′ ̸= i, (14)
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one can claim that the classification rule (3) for (IV) has the Bayes error rate
asymptotically even when πis are non-Gaussian. Note that (14) is equivalent to
(13) for (IV) and (14) usually holds when nmin → ∞ while p is fixed or p→ ∞ but
nmin/p→ ∞. If (14) is not met, the classifier for (IV) is not optimal. We emphasize
that (14) does not always hold for high-dimensional settings that nmin/p → 0 or
nmin/p→ c (> 0). For example, let us consider the setup of (a) to (c) in Fig. 1. The
condition “p/ni = o(∆iA(IV ))” is not met from the facts that ∆iA(IV ) = O(p1/2)

and n1 = n2 = o(p1/2), so that (14) does not hold. On the other hand, (C-iv) to
(C-vi) hold, so that one can claim the asymptotic normality in Theorem 2. Note
that (14) does not hold under (C-vi) for (IV). Thus, the error rate of the classifier
based on the Mahalanobis distance does not converge to the Bayes error rate when
Theorem 2 is claimed. Such situations frequently occur in HDLSS settings such
as nmin/p → 0. This is the reason why the classifier based on the Mahalanobis
distance does not always give a preferable performance for high-dimensional data
even when nmin → ∞ and πis are Gaussian.

3.4 Comparisons of the classifiers

In this section, we investigate the performance of the classifiers given by (2) for
(I) to (IV) in terms of consistency and asymptotic normality. For (I), by using
Ai = Ip, i = 1, 2, (10) is given as

δi = 2
{
tr(Σ2

i )/ni + tr(ΣiΣi′)/ni′ + µT
12Σiµ12

}1/2
(hereafter called δi(I)).

Similarly, for (II), (III) and (IV), we write δi as δi(II), δi(III) and δi(IV ). When
Σ1 = Σ2, we consider (I), (III) and (IV) in the setup of (a) to (c) in Fig. 1. Note
that (I), (III) and (IV) satisfy (C-iv) to (C-vi) from the facts that nmin = o(p1/2),
∆iA = O(||µ12||2) = O(p1/2), tr(Σ2

i )/p ∈ (0,∞) and tr(Σ4
i ) = o(p2) as p→ ∞ for

i = 1, 2. Thus, Theorem 2 holds for (I), (III) and (IV). We plotted the asymptotic
error rates, Φ(−∆(I)/δ1(I)), Φ(−∆1(III)/δ1(III)) and Φ(−∆1(IV )/δ1(IV )) in Fig. 2.
From (12) we note that e(1) − e(2) = o(1) when Σ1 = Σ2. Thus, the average
error rate, e = {e(1) + e(2)}/2, is regarded as an estimate of e(1). We laid e
for (I), (III) and (IV) by borrowing from Fig. 1. We observed that e behaves
very close to the asymptotic error rate as expected theoretically. We also plotted

the Bayes error rate, Φ(−∆1/2
MD/2). We observed that (IV) does not converge to

the Bayes error rate when Theorem 2 is claimed. See Section 3.3 for the details.
When p is sufficiently large, we note that ∆(IV ) = µT

12Σ
−1
i µ12 (= ∆MD) is small

for (b) compared to (c) because |µT
12hi1| becomes large for (b) compared to (c),

where hi1 is the first eigenvector of Σi. Thus (IV) gave a worse performance for
(b) than (c). As for (I) and (III), the difference of the performances depends on
the configuration of µijs and σi(j)s. When p is sufficiently large, we note that

∆(I) =
∑p

j=1 µ
2
12j < ∆1(III) =

∑p
j=1 µ

2
12j/σ2(j) for (a) and ∆(I) > ∆1(III) for

(b) and (c) because σ2(j) = 0.5 + j/(p + 1), j = 1, ..., p for (a) to (c). It follows
that ∆(I)/δi(I) < ∆i(III)/δi(III) for (a) and ∆(I)/δi(I) > ∆i(III)/δi(III) for (b)
and (c). Thus (III) is better than (I) for (a), on the other hand, they trade places
for (b) and (c).

When Σ1 ̸= Σ2, (II), (III) and (IV) draw information about heteroscedasticity
through the difference of tr(Σi)s, Σi(d)s or Σis, respectively. See Section 3.1 for
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(a) (b) (c)

Fig. 2 The asymptotic error rates (solid lines) by Φ(−∆(I)/δ1(I)), Φ(−∆1(III)/δ1(III)) and
Φ(−∆1(IV )/δ1(IV )), together with the corresponding e (dashed lines) by (I), (III) and (IV) in

the setup of (a) to (c) in Fig. 1. Also, Bayes optimal error rate was given by Φ(−∆
1/2
MD/2).

the details. We consider them in the setup of (d) and (e) in Fig. 1. For (d), note
that ∆(I) = 0 but ∆i(II) = ∆i(III) = ∆i(IV ) > cp for some constant c > 0. (II),
(III) and (IV) hold the consistency property even when nis are fixed because (C-i)
to (C-iii) are satisfied. Actually, for (d) and (e) in Fig. 1, we observed that the three
classifiers gave preferable performances by using the difference of tr(Σi)s, Σi(d)s
or Σis as p increases. For (e), note that the difference of tr(Σi)s is smaller than
that for (d). Actually, in Fig. 1, we observed that (II) gives a worse performance
for (e) than (d). On the other hand, (III) gave a better performance than (II)
because ∆i(III) is sufficiently larger than ∆i(II) for (e) when p is large. (IV)
draws information about heteroscedasticity from the difference of the covariance
matrices themselves, so that it gave the best performance in this case. However,
we note that it is difficult to estimate Σ−1

i s feasibly for high-dimensional data.
See Section 5.2 for the details.

4 Estimated quadratic classifiers

We denote an estimator of Ai by Âi. We consider estimating the quadratic clas-
sifier by Wi(Âi).

4.1 Preliminary

Let ||M || = λ
1/2
max(MT M) for any square matrix M . Let κ be a constant such

as κ = ∆min or κ = δmin, where δmin = min{δ1, δ2}. We consider the following
condition for Âis under (⋆):

(C-viii) p||Âi − Ai|| = oP (κ) for i = 1, 2.

Proposition 4 Assume (C-viii). Assume also that λ(Ai) ∈ (0,∞) as p→ ∞ for
i = 1, 2. Then, we have that

W1(Â1) −W2(Â2) = W1(A1) −W2(A2) + oP (κ) (15)

under (⋆) when x0 ∈ πi for i = 1, 2.

When one chooses Ais as A1 = A2 (= A), W (Â) gives a linear classifier. We
consider the following condition for Â under (⋆):

(C-ix) (p/n
1/2
min + p1/2||µ12||)||Â − A|| = oP (κ).
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We have the following result.

Proposition 5 Assume (C-ix). Then, we have (15).

We note that (C-ix) is milder than (C-viii) from the fact that ||µ12|| = O(p1/2).
Hence, we recommend to use a linear classifier such as (8) or (19). The quadratic
classifiers should be used when the difference of covariance matrices is considerably
large. See Section 4.3 for the details.

4.2 Quadratic classifier by Âi = {p/tr(Si)}Ip

We consider the classifier by

Wi({p/tr(Sini)}Ip) =
p||x0 − xini ||2

tr(Sini)
− p

ni
+ p log{tr(Sini)/p}. (16)

Note that ∆i = ∆i(II) and Ai = {p/tr(Σi)}Ip. From Theorem 1, Propositions 2
and 4, we have the following result.

Corollary 3 Assume (A-i). Assume also (C-i’) and (C-ii’). Then, for the classi-
fication rule (3) with (16), we have consistency (6).

The classifier (16) is equivalent to the geometric classifier by Aoshima and
Yata (2011, 2015b). Aoshima and Yata (2011, 2015b) discussed sample size de-
termination to ensure prespecified high accuracy for the classifier. Hereafter, we
call the classifier (16) the “geometrical quadratic discriminant analysis (GQDA)”.
Similar to Section 3.1, we have consistency (6) for GQDA under (A-i) and (7) even
when nmin is fixed. If one can assume that lim infp→∞ |tr(Σ1)/tr(Σ2) − 1| > 0,
we have consistency (6) for GQDA under (A-i) and (9) even when nmin is fixed
and µ1 = µ2.

As for asymptotic normality, from Corollary B.1 in Appendix B, for the clas-
sification rule (3) with (16), we have (12) under the regularity conditions given in
Corollary B.1.

Now, we compare DBDA with GQDA. We have that

∆̂(I) =||x1n1 − x2n2 ||
2 − tr(S1n1)/n1 − tr(S2n2)/n2 and

∆̂i(II) =
p

tr(Si′ni′ )

[
∆̂(I) + tr(Sini) − tr(Si′ni′ ) + tr(Si′ni′ ) log

{ tr(Si′ni′ )

tr(Sini)

}]

for i = 1, 2; i′ ̸= i. We note that E(∆̂(I)) = ∆(I). When tr(Σ1)/tr(Σ2) → 1 as p→
∞, it holds {δi(I)p/tr(Σi′)}/δi(II) = 1 + o(1). Then, it follows that ∆(I)/δi(I) ≤
{1 + o(1)}∆i(II)/δi(II) in (12) from the fact that ∆i(II)tr(Σi′)/p ≥ ∆(I). Thus

from Corollaries 2 and B.1, if ∆̂i(II)tr(Si′ni′ )/p is sufficiently larger than ∆̂(I) for
some i, we recommend to use GQDA. Otherwise one may use DBDA free from
(A-i). See Corollary 1 for the details.
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4.3 Quadratic classifier by Âi = S−1
ini(d)

Let Sini(d) = diag(sini(1), ..., sini(p)) for i = 1, 2. We consider the classifier by

Wi(S
−1
ini(d)) =

p∑
j=1

( (x0j − xijni)
2

sini(j)
− 1

ni
+ log sini(j)

)
. (17)

Note that ∆i = ∆i(III) and Ai = Σ−1
i(d). Dudoit et al. (2002) considered the

quadratic classifier without the bias correction term. That was called the diago-
nal quadratic discriminant analysis (DQDA). Hereafter, we call the classifier (17)
“DQDA-bc”. Let ηi(j) = Var{(xijk − µij)

2} for i = 1, 2, and j = 1, ..., p (k =

1, ..., ni). Since Âi = S−1
ini(d) does not satisfy (C-viii) in that shape, we consider

the following assumption:

(A-iii) ηi(j) ∈ (0,∞) as p → ∞ and lim sup
p→∞

E{exp(tij |xijk − µij |2/η1/2
i(j))} < ∞

for some tij > 0, i = 1, 2, and j = 1, ..., p (k = 1, ..., ni).

Note that (A-iii) holds when πi has Np(µi,Σi) for i = 1, 2. From Theorem 1,
Propositions 2 and 4, we have the following result.

Corollary 4 Assume (A-i) and (A-iii). Assume also (C-ii’). Then, for the clas-
sification rule (3) with (17), we have consistency (6) under the condition that

(nmin∆
2
min(III))

−1p2 log p = o(1). (18)

Note that (C-i’) holds under (18). From the fact that ∆i(III) = O(p), it follows

that n−1
min log p = o(1) under (18). Similar to Section 3.1, if one can assume that

lim infp→∞ ||µ12||2/p > 0 or lim infp→∞
∑p

j=1 |σ1(j)/σ2(j) − 1|/p > 0, DQDA-

bc holds consistency (6) under (A-i), (A-iii), (9) and n−1
min log p = o(1). When

∆min(III) is not sufficiently large, say ∆min(III) = O(p1/2), we can claim Corollary
4 in high-dimension, large-sample-size settings such as nmin/p→ ∞. In Section 5,
we shall provide a DQDA type classifier by feature selection and show that it has
the consistency property even when nmin/p → 0 and ∆min(III) is not sufficiently
large.

Next, we consider the pooled sample diagonal matrix,

Sn(d) =

∑2
i=1(ni − 1)Sini(d)∑2

i=1 ni − 2
.

Note that E(Sn(d)) =
∑2

i=1(ni − 1)Σi(d)/(
∑2

i=1 ni − 2) (hereafter called Σ(d)).
When Σ1(d) = Σ2(d), it follows that Σ(d) = Σi(d), i = 1, 2. Let us write Sn(d) =
diag(sn(1), ..., sn(p)) and Σ(d) = diag(σ(1), ..., σ(p)). We consider the classifier by

Wi(S
−1
n(d)) =

p∑
j=1

( (x0j − xijni)
2

sn(j)
−
sini(j)

nisn(j)

)
. (19)

We note that the classification rule (3) with (19) becomes a linear classifier.
Bickel and Levina (2004) and Dudoit et al. (2002) considered the linear classi-
fier without the bias correction term. That was called the diagonal linear dis-
criminant analysis (DLDA). Hereafter, we call the classifier (19) “DLDA-bc”. Al-
though Huang et al. (2010) gave bias corrected versions of DLDA and DQDA,
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they considered a bias correction only when πis are Gaussian. We note that
∆1 = ∆2 =

∑p
j=1 µ

2
12j/σ(j) (hereafter called ∆(III′)) and A1 = A2 = Σ−1

(d).
Then, by combining Theorem 1 with Propositions 2 and 5, we have the following
result.

Corollary 5 Assume (A-iii). Assume also (C-i’) and (C-ii’). Then, for the clas-
sification rule (3) with (19), we have consistency (6) under the condition that

(nmin∆(III′))
−1p log p = o(1). (20)

Under n−1
min log p = o(1), one may claim that (20) is milder than (18) if

∆min(III) and ∆(III′) are of the same order. Hence, DQDA-bc might be consid-
ered when ∆min(III) is considerably larger than ∆(III′), otherwise DLDA-bc even
when Σi(d)s are not common. See Appendix A. However, we do not recommend
to use both DQDA-bc and DLDA-bc in practice. We shall improve DQDA-bc (or
DLDA-bc) by feature selection in Section 5.

4.4 Quadratic classifier by Âi = S−1
ini

We consider the classifier by

Wi(S
−1
ini

) = (x0 − xini)
T S−1

ini
(x0 − xini) − p/ni + log |Sini |. (21)

In the HDLSS situation where ni/p → 0, S−1
ini

(or log |Sini |) does not exist. If
we suppose high-dimension, large-sample-size situations such as nmin/p→ ∞, one
can claim from Corollary B.2 in Appendix B that the classification rule (3) with
(21) has consistency (6) under the conditions that λ(Σi) ∈ (0,∞) as p → ∞ for
i = 1, 2, and

(nmin∆
2
min(IV ))

−1p4 log p = o(1) (22)

and the regularity conditions given in Corollary B.2. From the fact that ∆i(IV ) =

O(p) when λ(Σi) ∈ (0,∞) as p → ∞ for i = 1, 2, it follows that n−1
minp

2 log p =
o(1) under (22). Note that the condition “n−1

minp
2 log p = o(1)” is quite strict for

high-dimensional data. In Section 5, we shall discuss a classifier by thresholding
covariance matrix estimation when nmin/p→ 0.

5 Quadratic classifiers by feature selection and thresholding
covariance matrix estimation

In this section, we propose a new quadratic classifier by feature selection for (17)
and discuss a quadratic classifier by thresholding covariance matrix estimation for
(21).
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5.1 Quadratic classifier after feature selection

From Corollary 4, DQDA-bc does not always hold consistency (6) even in non-
sparse situations (i.e., ∆min(III) → ∞). Hence, we consider applying a variable
selection procedure to classification. Fan and Fan (2008) proposed the feature
annealed independent rule based on the difference of mean vectors. However, we
give a different type of feature selection by using both the differences of mean
vectors and covariance matrices. We have that

∆1(III) +∆2(III) =
p∑

j=1

(µ2
12j + σ1(j)

σ2(j)
+
µ2

12j + σ2(j)

σ1(j)
− 2
)
.

Let θj = (µ2
12j + σ1(j))/(2σ2(j)) + (µ2

12j + σ2(j))/(2σ1(j)) − 1 for j = 1, ..., p. Note
that ∆1(III) + ∆2(III) = 2

∑p
j=1 θj . Also, note that θj > 0 when µ1j ̸= µ2j or

σ1(j) ̸= σ2(j). Now, we give an estimator of θj (j = 1, ..., p) by

θ̂j =
(x1jn1 − x2jn2)

2 + s1n1(j)

2s2n2(j)
+

(x1jn1 − x2jn2)
2 + s2n2(j)

2s1n1(j)
− 1.

Then, we have the following result.

Theorem 4 Assume (A-iii). Assume also n−1
min log p = o(1). Then, we have that

as p→ ∞
max

j=1,...,p
|θ̂j − θj | = OP {(n−1

min log p)1/2}.

Let D = {j | θj > 0 for j = 1, ..., p} and p∗ = #D, where #S denotes the
number of elements in a set S. Let ξ = (n−1

min log p)1/2. We select a set of significant
variables by

D̂ = {j | θ̂j > ξγ for j = 1, ..., p}, (23)

where γ ∈ (0, 1) is a chosen constant. Then, from Theorem 4, we have the following
result.

Corollary 6 Assume (A-iii), n−1
min log p = o(1) and lim infp→∞ θj > 0 for all

j ∈ D. Then, we have that P (D = D̂) → 1 as p→ ∞.

Remark 4 As for l (≥ 3)-class classification, one may consider θ̂j given by θ̂j =∑k
i̸=i′{(xijni − xi′jni′ )

2 + sini(j)}/{k(k − 1)si′ni′ (j)
} − 1 for j = 1, ..., p.

Now, we consider a classifier using only the variables in D̂. We define the
classifier by

Wi(S
−1
ini(d))FS =

∑
j∈D̂

( (x0j − xijni)
2

sini(j)
− 1

ni
+ log sini(j)

)
(24)

for i = 1, 2. We consider the classification rule (3) with (24). We call this feature
selected DQDA “FS-DQDA”. Let us write that xi∗k = (xij1k, ...., xijp∗k)T for all
i, k, where D = {j1, ..., jp∗}. Let Σi∗ = Var(xi∗k) for i = 1, 2 (k = 1, ..., ni).
Then, from Theorem 1 and Corollary 6, we have the following result in non-sparse
situations (i.e., ∆min(III) → ∞ or p∗ → ∞).
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Corollary 7 Assume (A-i) and (A-iii). Assume also λmax(Σi∗)/p∗ = o(1) for
i = 1, 2, and lim infp→∞ θj > 0 for all j ∈ D. Then, for the classification rule (3)
with (24), we have consistency (6) under n−1

min log p = o(1).

By comparing Corollaries 7 with 4, note that the condition “n−1
min log p = o(1)”

is much milder than (18). Thus we recommend FS-DQDA more than DQDA-bc (or
the original DQDA). For the choice of γ ∈ (0, 1) in (23), we recommend applying
cross-validation procedures or simply choosing γ = 0.5 because Corollary 7 is
claimed for any γ ∈ (0, 1). See Section 5.3 and Appendix A for the performance of
FS-DQDA with γ = 0.5. In addition, we emphasize that the computational cost
of FS-DQDA is quite low even when p ≥ 10, 000.

5.2 Quadratic classifier by thresholding covariance matrix estimation

We consider applying a thresholding estimation of covariance matrices to classifica-
tion. Bickel and Levina (2008) gave an estimator of Σ−1

i for high-dimensional data.
Let σi(st) be the (s, t) element of Σi for s, t = 1, ..., p (i = 1, 2). A sparsity measure

of Σi (i = 1, 2) is given by cp,hi
= max1≤t≤p

∑p
s=1 |σi(st)|hi , where hi ∈ [0, 1) is a

constant not depending on p and 00 is defined as 0. Note that λmax(Σi) ≤Mcp,hi

for some constant M > 0. If cp,hi
is much smaller than p for a constant hi ∈ [0, 1),

Σi is considered as sparse in the sense that many elements of Σi are very small.
See Section 3 in Shao et al. (2011) for the details. Let I(·) be the indicator func-
tion. A thresholding operator is defined by Tτ (M) = [mstI(|mst| ≥ τ)] for any
τ > 0 and any symmetric matrix M = [mst]. Let τni = M ′(n−1

i log p)1/2 for some
constant M ′ > 0. Then, Bickel and Levina (2008) gave the following result.

Theorem 5 Assume (A-iii), n−1
i log p = o(1) and lim infp→∞ λmin(Σi) > 0. For

a sufficiently large M ′(> 0), it holds that as p→ ∞

||{Tτni
(Sini)}

−1 − Σ−1
i || = OP

(
cp,hi

(n−1
i log p)(1−hi)/2).

Remark 5 Theorem 5 is obtained by Theorem 1 and Section 2.3 in Bickel and
Levina (2008).

We use Âi = {Tτni
(Sini)}−1 as an estimator of Σ−1

i and consider the classifier

by Wi({Tτni
(Sini)}−1). By combining Theorem 5 and Proposition 4, if it holds

that λ(Σi) ∈ (0,∞) as p→ ∞ and

pcp,hi
(n−1

i log p)(1−hi)/2/∆min(IV ) = o(1), (25)

the classification rule (3) with Wi({Tτni
(Sini)}−1) has consistency (6) under some

regularity conditions. When Σis are sparse as cp,hi
= O(1) for some hi(i =

1, 2) and lim infp→∞∆min(IV )/p > 0, (25) holds in HDLSS situations such as

n−1
min log p = o(1). Shao et al. (2011) and Li and Shao (2015) considered a lin-

ear and a quadratic classifier by the thresholding estimation of Σ−1
i s under some

sparsity conditions. On the other hand, Cai et al. (2011) gave the constrained ℓ1-
minimization for inverse matrix estimation (CLIME). One may apply the CLIME
to the classification rule (3). However, one should note that the computational
cost for the thresholding (or sparse) estimation of Σ−1

i s is very high even when
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p ≈ 1, 000. It is quite unrealistic to apply the estimation to classification when
p is very high, say p ≥ 10, 000. Also, the sparsity condition “λ(Σi) ∈ (0,∞) as
p → ∞” is quite severe for high-dimensional data. In actual data analyses, we
often encounter the situation that λij → ∞ as p→ ∞ for the first several js. See
Yata and Aoshima (2013) for the details.

5.3 Simulation

We used computer simulations to compare the performance of the classifiers:
DBDA by (8), GQDA by (16), DLDA-bc by (19), DQDA-bc by (17) and FS-
DQDA by (24). We did not compare those classifiers with Wi({Tτni

(Sini)}−1)

which is given by thresholding estimation of Σ−1
i s in Section 5.2 because the com-

putational cost of the thresholding estimation is very high when p is large. Thus
we considered the classifier (2) with (IV) instead of using the thresholding estima-
tion, provided that Σis were known. We set γ = 0.5 in (23). We considered the
case of p∗ = 2⌈p1/2/2⌉. We generated xik − µi, k = 1, 2, ..., (i = 1, 2) indepen-

dently from (i) Np(0,Σi), (ii) Γ iyik with Γ i = HiΛ
1/2
i and yijk = (vijk − 2)/2

(j = 1, ..., p) in which vijks are i.i.d. as the chi-squared distribution with 2 degrees
of freedom, or (iii) p-variate t-distribution, tp(0,Σi, ν) with mean zero, covariance
matrix Σi and degrees of freedom ν. Note that (A-i) is met in (i) and (ii). We set
p = 2s, s = 3, ..., 11 for (i) and (ii), and p = 500 and ν = 4s, s = 1, ..., 9 for (iii).

We set µ1 = 0 and Σ1 = B1(0.3
|i−j|1/3

)B1, where B1 is defined in Section 2.
We considered two cases: µ2 = (0, ..., 0, 1, ..., 1,−1....,−1)T (= µ2(α), say) whose
last p∗ elements are not 0, where the last p∗/2 elements are −1 and the previous
p∗/2 elements are 1; and µ2 = (0, ..., 0, 1,−1, ..., 1,−1)T (= µ2(β), say) whose last

p∗ elements are not 0, where the j-element is (−1)j+1 for j = p − p∗ + 1, ..., p.
Let B2 = diag(1, ..., 1, 21/2, ..., 21/2) whose last p∗ diagonal elements are 21/2. We
considered six cases:

(a) n1 = 10, n2 = 20, Σ2 = Σ1 and µ2 = µ2(α) for (i);

(b) n1 = ⌈(log p)2⌉, n2 = 2n1, Σ2 = Σ1 and µ2 = µ2(α) for (i);

(c) n1 = ⌈(log p)2⌉, n2 = 2n1, Σ2 = Σ1 and µ2 = µ2(β) for (i);

(d) n1 = ⌈(log p)2⌉, n2 = 2n1, Σ2 = B2Σ1B2 and µ2 = µ2(α) for (i);

(e) n1 = ⌈(log p)2⌉, n2 = 2n1, Σ2 = B2Σ1B2 and µ2 = µ2(β) for (ii); and

(f) n1 = ⌈(log p)2⌉, n2 = 2n1, Σ2 = B2Σ1B2 and µ2 = µ2(α) for (iii).

It holds that n−1
min log p = o(1) for (b) to (f), lim infp→∞∆min/p∗ > 0 for (a) to (f),

and lim infp→∞ |tr(Σ1) − tr(Σ2)|/p∗ > 0 for (d), (e) and (f). Similar to Section
2, we calculated the average error rate, e, by 2000 replications and plotted the
results in Fig. 3 (a) to (f).

We observed from (a) in Fig. 3 that DBDA and GQDA give preferable per-
formances when nis are fixed. DLDA-bc gave a moderate performance because
Σ1 = Σ2. However, the other classifiers did not give preferable performances
when p is large. This is probably due to the consistency property of those clas-
sifiers (except (IV)) which is claimed under at least n−1

min log p = o(1). Actually,
as for (b) and (c), they gave moderate performances because n−1

min log p = o(1).
Thus, we do not recommend to use quadratic classifiers such as DQDA-bc and
FS-DQDA, that consider all the elements (or the diagonal elements) of sample
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(a) Σ1 = Σ2 and µ2 = µ2(α) (b) Σ1 = Σ2 and µ2 = µ2(α) (c) Σ1 = Σ2 and µ2 = µ2(β)

for (i) (nis are fixed) for (i) for (i)

(d) Σ1 ̸= Σ2 and µ2 = µ2(α) (e) Σ1 ̸= Σ2 and µ2 = µ2(β) (f) Σ1 ̸= Σ2 and µ2 = µ2(α)

for (i) for (ii) for (iii)

Fig. 3 The average error rates of the classifiers: A: DBDA, B: GQDA, C: DLDA-bc, D:
DQDA-bc, E: FS-DQDA, and F: the classifier by (2) with (IV). Their standard deviations are
less than 0.0112.

covariance matrices, unless n−1
min log p = o(1). When n−1

min log p ̸= o(1) or nis are
fixed, we recommend to use DBDA and GQDA. On the other hand, FS-DQDA
gave a good performance for (d) and (e) as p increases because the difference of
the covariance matrices becomes large as p increases. We note that from Corollary
7 FS-DQDA holds the consistency property for (d) and (e). However, DQDA-
bc did not give a preferable performance because ∆min(III) = O(p1/2), so that
DQDA-bc does not hold the consistency property from Corollary 4. We note that
Σ1 ̸= Σ2 but ∆(I)/δi(I) ≈ ∆i(II)/δi(II) for (d) and (e). Thus GQDA gave a sim-
ilar performance to DBDA for (d) and (e). As for (f), DBDA gave a preferable
performance even when ν is small because DBDA holds the consistency property
without (A-i). The other classifiers did not give preferable performances when ν
is small. However, they gave moderate performances when ν becomes large be-
cause tp(0,Σi, ν) ⇒ Np(0,Σi) as ν → ∞. Especially, FS-DQDA gave a good
performance when ν is not small. This is probably because FS-DQDA has smaller
variance by feature selection as p∗/p → 0 than the other classifiers. On the other
hand, for several cases, the classifier by (2) with (IV) did not give preferable per-
formances in spite of known Σis. See Section 3.3 for the theoretical reasons. It is
likely that the classifier by Wi({Tτni

(Sini)}−1) gives poor performances for the
high-dimensional settings.

5.4 Example: gene expression data sets

By using gene expression data sets given by Golub et al. (1999) and Armstrong
et al. (2002), we compared the performance of the classifiers: DBDA, GQDA,
DLDA-bc, DQDA-bc, FS-DQDA and a support vector machine. We summarized
the results in Appendix A of the online supplementary.
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6 Concluding remarks

In this paper, we considered high-dimensional quadratic classifiers in non-sparse
settings. The classifier based on the Mahalanobis distance does not always give
a preferable performance even when nmin → ∞ and πis are assumed Gaussian.
See Sections 2 and 3. We emphasize that the quadratic classifiers proposed in this
paper draw information about heterogeneity effectively through both the differ-
ences of mean vectors and covariance matrices. See Section 3.4 for the details.
If the difference of covariance matrices is not sufficiently large, one may use the
linear classifier, DBDA. It is quite flexible about the conditions to claim the con-
sistency property. See Sections 4.2 for the details. We emphasize that DLDA-
bc, DQDA-bc and FS-DQDA can hold the consistency property under at least
“n−1

min log p = o(1)”. Thus we do not recommend to use those classifiers when
“n−1

min log p ̸= o(1)”. See Section 5.3 and Appendix A for the details. In such cases,
one should use DBDA and GQDA because they hold the consistency property even
when nis are fixed. See Section 4.2 about the choice between DBDA and GQDA.
When “n−1

min log p = o(1)”, we recommend DQDA-bc and FS-DQDA. Especially,
FS-DQDA can claim the consistency property even when nmin/p→ 0 and ∆min is
not sufficiently large. See Section 5.1 for the details. For the choice of γ ∈ (0, 1) in
(23), one may apply cross-validation procedures or simply choose as γ = 0.5. Ac-
tually, FS-DQDA with γ = 0.5 gave preferable performances throughout our simu-
lations and real data analyses. On the other hand, even when n−1

min log p = o(1), we
do not recommend to use the classifier by the thresholding (or sparse) estimation
of Σ−1

i unless (i) the eigenvalues are bounded in the sense that λ(Σi) ∈ (0,∞)
as p → ∞, and (ii) Σis are sparse in the sense that many elements of Σis are
very small. We emphasize that “λmax(Σi)s are bounded” is a strict condition since
the eigenvalues should depend on p and it is probable that λij → ∞ as p → ∞
for the first several js. See Yata and Aoshima (2013) for the details. Also, the
computational cost for the thresholding (or sparse) estimation is very high.

In conclusion, we hope we have given simpler classifiers which will be more
effective in the real world analysis of high-dimensional data.

7 Proofs

We give all proofs of the theoretical results together with additional corollaries in
Appendix B of the online supplementary.
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