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Abstract In this paper, we consider high-dimensional quadratic classifiers in non-
sparse settings. The quadratic classifiers proposed in this paper draw information
about heterogeneity effectively through both the differences of growing mean vec-
tors and covariance matrices. We show that they hold a consistency property in
which misclassification rates tend to zero as the dimension goes to infinity under
non-sparse settings. We also propose a quadratic classifier after feature selection
by using both the differences of mean vectors and covariance matrices. We dis-
cuss the performance of the classifiers in numerical simulations and actual data
analyses. Finally, we give concluding remarks about the choice of the classifiers for
high-dimensional, non-sparse data.
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1 Introduction

Globally, there is an ever increasing need for fast, accurate and cost effective
analysis of high-dimensional data in many fields, including academia, medicine and
business. However, existing classifiers for high-dimensional data are often complex,
time consuming and have no guarantee of accuracy. In this paper we hope to
provide better options. A common feature of high-dimensional data is that the
data dimension is high, however, the sample size is relatively low. This is the so-
called “HDLSS” or “large p, small n” data situation, here p is the data dimension
and n is the sample size. In this paper, we mainly focus on the case when “n/p —
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0”. Suppose we have independent and p-variate two populations, m;, i = 1,2,
having an unknown mean vector p; = (fi1, ..., ,uip)T and unknown positive-definite
covariance matrix X; for each 7. Let

Hio = K1 — Ko = (u121, ...,/J,lzp)T and X9 =X — 3o.

We assume lim sup,, _, o, |#12;] < oo for all j. Note that lim sup,, _, ., |115)%/p < o0,
where || - || denotes the Euclidean norm. Let o;;) be the j-th diagonal element of
Yiforj=1,..,p (i =1,2). We assume that o;;) € (0,00) as p — oo for all 4, j.
For a function, f(), “f(p) € (0,00) as p — oo” implies that liminf, . f(p) > 0
and limsup,,_, ., f(p) < oco. Here, “liminfy.o f(p)” and “limsup,_, ., f(p)” are
the limit inferior and the limit superior of f(p), respectively. Then, it holds that
tr(X;)/p € (0,00) as p — oo for i = 1,2. We do not assume X1 = X5. The eigen-
decomposition of X; is given by X; = HiAinT, where A; = diag(Ai1, ..., Aip)
is a diagonal matrix of eigenvalues, A\;j1 > -+ > Ajp > 0, and H; = [hi1, ..., hip]
is an orthogonal matrix of the corresponding eigenvectors. We have independent
and identically distributed (i.i.d.) observations, ®;1, ..., @in,, from each m;, where
Tip = (Jcilk,...,azipk)T, k=1,...,n;. We assume n; > 2, ¢ = 1,2. Let nmin =
min{ny,n2}. We estimate p; and X; by Fin, = (Titn,, - Tipn;) . = dopiy Tik/Ni
and Sin, = S0 (Tik —Fin, ) (Tik —Tin, )" /(ni—1). Let sip, (j) be the j-th diagonal
element of S;,, for j =1,....,p (i =1,2).

In this paper, we consider high-dimensional quadratic classifiers in non-sparse
settings. Let o = (zo1, ..., mop)T be an observation vector of an individual belong-
ing to one of the two populations. We assume that o and z;;s are independent.
Let |M| be the determinant of a square matrix M. When 7;s are Gaussian, the
Bayes optimal rule (the minimum-error rate discriminant function) is given as
follows: One classifies the individual into 7 if

(o — 1) Z7 (@0 — py) — log | Za X7 < (w0 — py) " X3 (o — py) (1)

and into 72 otherwise. Since p;s and X;s are unknown, one usually considers the
following typical classifier:

(@0 — T1n, )" S, (@0 — Tin,) — log |S2n, 1y, | < (T0 — F2n,)" S, (T0 — Fany)-

The classifier usually converges to the Bayes optimal classifier when npyi, — oo
while p is fixed or nmin/p — 0. However, in the HDLSS context, the inverse
matrix of S;,, does not exist. When X1 = X5, Bickel and Levina (2004) con-
sidered an inverse matrix defined by only diagonal elements of the pooled sample
covariance matrix. Fan and Fan (2008) considered a classification after feature
selection. Fan et al. (2012) proposed the regularized optimal affine discriminant
(ROAD). When ¥ # X5, Dudoit et al. (2002) considered an inverse matrix
defined by only diagonal elements of S;p,. Aoshima and Yata (2011, 2015b) con-
sidered using {tr(S;n,)/p} I, instead of S;nli from a geometrical background
of HDLSS data and proposed geometric classifiers. Here, I, denotes the identity
matrix of dimension p. Hall et al. (2005) and Marron et al. (2007) considered dis-
tance weighted classifiers. Chan and Hall (2009) and Aoshima and Yata (2014)
considered distance-based classifiers and Aoshima and Yata (2014) gave the mis-
classification rate adjusted classifier for multiclass, high-dimensional data whose
misclassification rates are no more than specified thresholds.
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Recently, Cai and Liu (2011), Shao et al. (2011) and Li and Shao (2015)
gave sparse linear or quadratic classification rules for high-dimensional data. They
showed that their classification rules have Bayes error rates when m;s are Gaus-
sian. They assumed that A;;s are bounded under some sparsity conditions that
P, Xis and X1z (or X7 s and X7 — X5 1) are sparse. See also Donoho and Jin
(2015) for the concepts of sparsity. For example, when X1 = X5 (= X, say), the
error rate of their classification rules is given by @(—A}V/I%/Z) +o(1) as p — o0,
where App = ulo X 'y, that is the (squared) Mahalanobis distance and &(-)
denotes the cumulative distribution function of the standard normal distribution.
Here, @(fA}V/I%/Q) is the Bayes error rate. In this paper, we investigate quadratic
classifiers from a perspective that is different from the sparse discriminant analy-
sis. We do not assume that p,5, X;s and Y12 are sparse. In such a context, the
target of classification rules is not Bayes error rates as in @(—A}V/ﬁD /2) + o(1) as
p — o00. We consider the following consistency property: misclassification rates
tend to 0 as p increases, i.e.,

e(i) >0 asp—oofori=1,2

where e(7) denotes the error rate of misclassifying an individual from 7; into the
other class. For example, if one can assume that ;s are Gaussian and X' = X,
the Bayes rule (1) has such consistency when Ay p — oo as p — oo. It is likely
that Ayp — 00 as p — oo when pq5 is non-sparse in the sense that ||p5]| — oo
as p — o0o. We emphasize that such non-sparse situations often occur in high-
dimensional settings. For example, see Hall et al. (2005) or (A.1) to (A.4) and
Table 2 in Appendix A of the online supplementary. In this paper, we do not
consider the following sparse situations:

limsup ||p5]] < 0o and limsup || X12]|F < oo,
p— 00 p— 00
where || - ||F is the Frobenius norm. For example, most elements of p,, are 0 or
very small if limsup,, . [|#12|] < 00. See Section 5.2 for sparsity of X;s. We will
show that quadratic classifiers hold the consistency property when g5 or X2 is
non-sparse in the sense that

[|t15]] — 00 or ||Xi2]|lp — 00 as p — oo.

Based on (1), we consider the following function of A; to discriminate m;s in
general:

WZ(A@) Z(IBQ — Eim)TAi(aZo — flnl) — tI‘(SZmAZ)/nz — log |A1|, (2)

where A; is a positive definite matrix satisfying the equation that tr{X;(A; —
A} = tr(A;lAif) —p for i = 1,2; i’ # i. Note that E{(xo — Emi)TAi(mo —
Tin, )} = (g —m;) " Ai(py—p;)Ftr(X2;A;) /ni when xo € 7. Thus, tr(Sin, A;) /1
operates as a bias correction term in (2). See Section 2 for typical A;s. We consider
a quadratic classification rule in which one classifies the individual into 7y if

Wi(A1) — W2(A2) <0 (3)

and into 72 otherwise. Note that (3) becomes a linear classifier when A1 = As.
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Remark 1 As for I (> 3)-class classification, one may consider a classification rule
that one classifies the individual into m; if argming—q .. ;Wi (Ay) = 1.

In this paper, we pay special attention to the difference of covariance matrices
in classification for high-dimensional data. In Section 2, we give a motivation
of quadratic classifiers given by (2) via numerical examples in high-dimensional
settings. In Section 3, we discuss asymptotic properties of quadratic classifiers
given by (2). We show that the classification rule (3) holds the consistency property
under non-sparse settings. We verify that a quadratic classifier given by (2) is
asymptotically distributed as the normal distribution under certain conditions.
In Section 4, we consider estimation of A;s and give asymptotic properties of
estimated classifiers. In Section 5, we propose a quadratic classifier after feature
selection by using both the differences of mean vectors and covariance matrices.
We discuss the performance of the classifiers in numerical simulations and actual
data analyses. Finally, in Section 6, we give several suggestions about how to select
A; as concluding remarks.

2 Motivation of quadratic classifiers
We have that E{W,;/(A;)} — E{W;(A;)} = A; when x¢ € 7;, where

A = plhAipg, +tr{Zi(Ay — A))} +log|A; P A;] fori=1,2; ' #i.  (4)
Proposition 1 (i) A; > 0. (i) A; > 0 when py # py or A1 # Aa.

We note that A; > tr(A;'Ay) — p + log|A;'A;| > 0 when tr{X;(Ay —
A;)} =tr(A; Ay) —pfor i = 1,2; i’ #i. See (B.7) in Appendix B of the online
supplementary. However, it does not always satisfy A; > 0 if tr{X; (A, — A;)} #
tr(A;lAi/) —pfori=1,2; i’ #i. Also note that if one ignores the bias correction
term in (2), W;(A;) becomes W;(A;) = (€0 — Tin,)T Ai(xo — Tin,) — log | A4
Then, it does not always satisfy A; > 0.

In this paper, we specially consider the following four typical A;s in (2):

(1) A; =1, (II)A;= () A; = 27}, and (IV) A; = 71,

p
tI‘(Ei) Ip’
where X4 = diag(oy(1), ..., 0i(p)). These four A;s satisfy the condition that
tr{Zi(Ai — A;)} = tr(A;'Ay) —p for i = 1,2; i/ # i, and they provide his-
torical background of discriminant analysis. Note that || X12||r > ||A7' — A Y|
for these four A;s. Also, under (I) to (IV), we note that A; — oo as p — oo when
W12 or X2 is non-sparse. Practically, A;s should be estimated except for (I). We
will consider quadratic classifiers by estimating A;s in Section 4.

Now, let us see an easy example to check the performance of (I) to (IV) in
(3). We plugged the true X;s in A;s for (II) to (IV). We set p = 2%, s =3,...,11.
Independent pseudo random observations were generated from m; : Np(p;, X;),
1 =1,2. We set g = 0 and X1 = B1(0.3|i*j|1/3)Bl, where By, = diag[{0.5 +
1/(p+ 1)}2,..,{0.5 + p/(p + 1)}*/?]. Note that tr(X1) = p and X4 = B7.
Let p, = [p'/?], where [2] denotes the smallest integer > z. When X1 = X5 and
(n1,n2) = (logy p, 21og, p), we considered three cases:
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(a) po = (1,...,1,—1,...,—1,0,...,0)7 whose first 2p, elements are not 0. The
first p, elements are 1 and the next p, elements are —1;

() pty = (0,...,0,1,...,1, —1...., —1)T whose last 2p, elements are not 0. The last
px elements are —1 and the previous p. elements are 1; and

(¢) py = (0,...,0,1,—1,...,1,—1)" whose last 2p, elements are not 0, where the
j-element is (—1)7** for j =p — 2ps + 1,...,p.

Note that ||p5]|* = 2p« for (a) to (c). Next, when p, = 0 (i.e., ;5 = 0) and
(n1,n2) = (5, 10), we considered two cases:

1/3

(d) 2 =15% and (e) X2 =1.3(0.3"791"7) (£ 34).

Note that p,5 or X2 is non-sparse for (a) to (e) because ||p5|| — oo or || X12||F —
oo as p — oo. For &g € m; (i = 1,2) we repeated 2000 times to confirm if the
classification rule (3) with either of (I) to (IV) does (or does not) classify xo cor-
rectly and defined P; = 0 (or 1) accordingly for each ;. We calculated the error
rates, (i) = 3220 P;,,/2000, i = 1,2. Also, we calculated the average error rate,
e = {e(1) +€(2)}/2. Their standard deviations are less than 0.0112 from the fact
that Var{e(i)} = e(:){1 — e(¢)}/2000 < 1/8000. In Fig. 1, we plotted € for (a) to
(e). Note that (I) is equivalent to (II) for (a) to (c).

We observed that (IV) gives the best performance for (c) in Fig. 1. However,
(IV) gave the worst performance for (b) contrary to expectations. In general, one
would think that the classifier based on the Mahalanobis distance such as (2) with
(IV) is the best when ;s are Gaussian and nmin — 00. We emphasize that it is not
true for high-dimensional data. We will explain its theoretical reason in Section
3.3. We observed that (I) (or (II)) gives a better performance than (III) for (b) and
(c) in Fig. 1. We will discuss the reasons in Section 3.4. As for (d) and (e) in Fig. 1,
the error rates of (I) were close to 0.5 because of p;5, = 0. On the other hand, the
quadratic classifiers, with (II), (III) and (IV), gave good performances as || X12||F
increases. From these observations, we pay special attention to the difference of
covariance matrices in classification for high-dimensional data. We will give their
theoretical backgrounds in Sections 3.1 and 3.4.

3 Asymptotic properties of quadratic classifiers

In this section, we discuss asymptotic properties of quadratic classifiers given by (2)
without estimating A;s. We will consider estimated quadratic classifiers in Section
4 by using the results in this section. Similar to Aoshima and Yata (2015a) and
Bai and Saranadasa (1996), we assume the following assumption about population
distributions as necessary:

(A-i) Let y;, k = 1,...,n4, be i.i.d. random g¢;-vectors having E(y,,) = 0 and
Var(y,,) = I, for each i (= 1,2), where ¢; > p. Let y,,, = (Yitk, -y Yig,k) "
whose components satisfy that limsup,,_, ., E(yfjk) < oo for all j and

E(y?jky?rk) = E(yzzjk)E(y?rk) =1 and E(YijrYirk¥iskYite) =0 ()

for all j # 7, s,t. Then, the observations, x;s, from each 7; (i = 1,2) are given
by @ik, = I'iyyp, + py, k=1,...,n4, where I's = [v,1,...,¥;4,] 18 @ p X ¢; matrix
such that I';I'F = X;.
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Fig. 1 The average error rates of the classification rule (3) for (I) to (IV). The top panels (a),
(b) and (c) display € when p; # po (but X'y = X9). The bottom panels (d) and (e) display e
when X1 # X9 (but py = py).

Note that I'; includes the case that I'; = HZ'AZV2 = [A;{Zhil,...)\%thP]. We
assume the following assumption instead of (A-i) as necessary:

(A-ii) Replace (5) with the independence of y;x, 7 = 1,...,¢; (i = 1,2; k =
1,...,m;) in (A-i).

Note that (A-ii) is a special case of (A-i). When 7; has Ny (u;, X;), (A-ii) naturally
holds.

3.1 Consistency property of quadratic classifiers

In this section, we discuss consistency properties of quadratic classifiers given by
(2). We consider the following divergence condition for p and n;s:

(*¥) p— oo either when n; is fixed or n; — oo for i =1, 2.

Let Aja = ply Ay XAy, for i = 1,2; i’ # 4. Recall that A; = plo Aypy, +
tr{Xi(Ai — A;)} +1log|A;; ' A;|. We consider the following conditions under (%)
for i = 1,2 (i #14):

(C—l) tr{("iztl) } :0(1) and tl‘(Z‘ZA»L/Ez/Al/BZ:—At;{(EZ/Az/) }/nlf _ (1)’
(C-ii) AAi;“ =o0(1), and (C-iii) tr[{zi(AAlz_ A} o(1).

We note that (C-i) and (C-iii) are regularity conditions. On the other hand, (C-ii)
is a non-sparsity condition for high-dimensional data. If p is fixed, A; is bounded
typically, so that (C-ii) is not met. (C-i) to (C-iii) are somewhat complicated. See
Proposition 2 for simpler conditions than (C-i) to (C-iii).

We claim consistency for (3) with (2) as follows:



High-dimensional quadratic classifiers in non-sparse settings 7

Theorem 1 Assume (A-i). Assume also (C-i) to (C-iii). Then, we have that

Wir(Air) — Wi(Ai)
Ay

Furthermore, for the classification rule (8) with (2), we have that

=1+o0p(1) under (x) when o € m; fori=1,2;14 #i.

e(i) — 0, i =1,2, under (*). (6)
Remark 2 When A1 = Az, we can claim Theorem 1 without (A-i) and (C-iii).

Let Amin(M) and Amax(M) be the smallest and the largest eigenvalues of any
positive definite matrix, M. We use the phrase “A(M) € (0,00) as p — o0”
in the sense that liminfp—.cc Amin(M) > 0 and limsup,,_, ., Amax(M) < co. We
note that A;s in (I) to (III) satisfy the condition “A(A;) € (0,00) as p — o0”.
Let Amin = min{A1, A2}, Amax = Max{Amax(Z1), Amax(Z2)} and tr(XZ,,) =
max{tr(X%),tr(X3)}. Now, instead of (C-i) and (C-ii), we consider the following
simpler conditions under (%):

(C-1) tr(Z2ax)/(MminAZi) = 0o(1) and (C-ii’) Amax/Amin = o(1).

If tr(X2.5) = O(p), (C-) is equivalent to p/(nminA2;,) = o(1). We note that
“tr(X2,¢) = O(p)” is a natural condition when Amax = O(p'/?). See Remark 1.1
in Aoshima and Yata (2011).

Proposition 2 Assume that limsup,, .., Amax(A;i) < oo fori = 1,2. Then, (C-
i’) and (C-ii’) imply (C-i) and (C-i3), respectively. Furthermore, if A(A;) € (0, 00)
asp — oo fori = 1,2, and A;, i = 1,2, are diagonal matrices such as in (I) to
(111) in Section 2, (C-ii’) implies (C-iii).

From the fact that Amax(X:) < tr(X?)Y2 for i = 1,2, we note that (C-i’) and
(C-ii’) hold even when nmin is fixed under

tr(E?nax)/A?mn — 0 asp— co. (7)

As mentioned in Section 2, four typical A;s were specifically selected. We first
consider (I). By using A; = Ip,i = 1,2, (2) and (4) are given as

Wi(Ip) = ||@o — Zin, ||* — tr(Sin,) /1 (8)
and Ay = Az = ||py,]|* (hereafter called Ap)).

We note that

Wl(IP) — WQ(IP) — (wO _ Tin, + T2n,
2 2

tr(Slnl ) i tr(San)

T — —_
) (T2ns = F1ny) — 2n1 219

and E{Wi(Ip) — Wa(Ip)} = (—1)"||ps|]* = Ay when xo € m;. Thus, the linear
classifier by (8) is equivalent to the distance-based classifier by Aoshima and Yata
(2014). Hereafter, we call the classifier by (8) the “distance-based discriminant
analysis (DBDA)”. From Theorem 1 and Proposition 2, we have the following
result.

Corollary 1 Assume (C-i’) and (C-ii’). Then, for the classification rule (3) with
(8), we have consistency (6).
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From Corollary 1, under (7), the classification rule (3) with (8) has consistency
(6) even when n;s are fixed. Note that DBDA has the consistency property without
(A-i), so that DBDA is quite robust for non-Gaussian data. See Aoshima and Yata
(2014) for the details. When p; = po, DBDA does not satisfy (C-i’) and (C-ii’),
whereas the quadratic classifiers with (II) to (IV) still satisfy them.

Next, we consider (II) to (IV). For (II), by using A; = {p/tr(X;)}p,i = 1,2,
(4) is given as

 pAu) | ptr(Xs)
T tr(Zi/) tr(Z’i/)

tr(Z‘i/)
tr(Z‘i)

—p+plog { } (hereafter called A;(py).

For (III), by using A; = Ei;),i =1,2, it is given as

N p e i) i (4)
A = Z —= 4+ —= —1+log (7)} (hereafter called A;(srpy).

S loeg)  ow) Ti(5)

For (IV), by using A; = X;'i = 1,2, it is given as A; = pl, X, 'y, +
tr(2 20 —p+ > 8 _11og(Nirj/Aij) (hereafter called A;rvy).
Now, we consider the following condition for ¥;,¢ = 1,2:

tr(X7)/tr(X;)? — 0 as p — oo. (9)

We note that tr(X7)/tr(X;)? is a measure of sphericity. Under (A-i) and (9), from
the fact that Var(||zo — p;[|*) = O{tr(X)} when o € 7;, we have that

llzo — p;| = tr(2)"/?

{1+ op(1)} when xo € 7; as p — oc.
Thus the centroid data lies near the surface of an expanding sphere. See Hall et al.
(2005) for the details of the geometric representation. We emphasize that (II) draws
information about heteroscedasticity thorough the geometric representation hav-
ing different radii, tr(Z’i)l/Qs, of expanding two spheres. Note that tr(X?7) = o(p?)
under (9). Hence, for (II), (7) holds under liminfy— oo Amincrry/p > 0 and (9),
where Amin([]) = min{Al(U), AQ(II)}' ‘We note that Amin([[) > 0 when tr(El) #
tr(X'2) in view of Proposition 1. If one can assume that lim inf,, o |[tr(X'1)/tr(X2)—
1| > 0, it follows liminfy— oo Amincrry/p > 0, so that (7) holds under (9). Hence,
for the classification rule (3) with (II), we have consistency (6) even when p; = p
and n;s are fixed. See (II) in (d) and (e) of Fig. 1. The accuracy becomes higher
as the difference between tr(X';)s grows.

Similarly, for (III), it follows that (7) holds under liminf,—cc Amincrrny/p >
0 and (9), where Aninrrry = min{Ayr7y, Az} If one can assume that
liminf, oo >35_; |01(5)/02¢5) —11/p > 0, it follows lim inf, .o Amin(rrry/p > 0, s0
that the classification rule (3) with (III) has consistency (6) even when p; = p,
and n;s are fixed. (III) draws information about heteroscedasticity via the dif-
ference of diagonal elements between the two covariance matrices. The accuracy
becomes higher as the difference of those diagonal elements grows. See (III) in (d)
and (e) of Fig. 1.

For (IV), we have the following result.

Proposition 3 When liminfy—o [tr(X; X5 ")/p — 1| > 0 or liminfp—oc P
|Nij/Airj — 1] /p >0 (i #4'), it follows that liminf, . A;vy/p > 0.
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From Theorem 1 and Proposition 2, for the classification rule (3) with (IV),
we have consistency (6) under lim inf,_ o Amin( IV)/ p > 0 and some conditions,
where Apinrvy = min{Ay vy, Az(svy}. Thus from Proposition 3, the accuracy
becomes higher as the difference of eigenvalues or eigenvectors between the two
covariance matrices grows. See (IV) in (d) and (e) of Fig. 1.

3.2 Asymptotic normality of quadratic classifiers
In this section, we discuss the asymptotic normality of quadratic classifiers given

by (2). We further discuss Bayes error rates for high-dimensional data. Let m =
min{p, nmin } and

L 3 2 i i’ i’ i
5 = 2{tr{(EzAz) b o(ZiAr X Av)
T4 .

i Lz

1/2
+Am} fori=1,2 i #i. (10)

Note that 67 = Var[2(zo—p;)" { Ai(@in, — ;) = Air (Firn,, — i +(—1)"p12)}] when
o € m;. We assume the following conditions when m — oo for i = 1,2; i’ # i:

. £ A XAy +tr{ (X Ay 2 M4 tr{(X;A; 4
(C—IV) Hi2 ulfl,,(sg {( ) }/ — 0(1)7 {(n254 ) } — 0(1)
tr{(ZiAi«Ei/Ai/)Q}
an nZ o1 = o(1);
) _ 2 .
(Covy PHZALZ AV 1) and (Covi) S = o(1).

52 5

7

We note that (C-iv) and (C-v) are regularity conditions. From (B.15) in Appendix
B, under (A-i), (C-iv) and (C-v), it holds that

WZ'/(Ai/) — Wz(Az) - Az
=2(x0 — ;)" {Ai(@in, — 1;) — Ai(Tirn,, — py + (—1)'py5) } + 0p(5:)

as m — oo when xg € m; for i = 1,2; i’ # i. Under (C-vi), it holds that (xzo —
p,i)TAi/ulQ = op(d;) as m — oo when xo € m; for i = 1,2. Then, we claim the
asymptotic normality of (2) under (A-i) as follows:

Theorem 2 Assume (A-i). Assume also (C-iv) to (C-vi). Then, we have that

Wi(Ai) — Wi(A;) — A
0;
when o € m; fori=1,2 (i’ # 1),

L= N(0,1) asm — oo (11)

where “=” denotes the convergence in distribution and N(0,1) denotes a ran-
dom variable distributed as the standard normal distribution. Furthermore, for the
classification rule (8) with (2), it holds that

e(i) = 45(*5?1') +o(1) asm— oo fori=1,2. (12)

Next, we consider the asymptotic normality of (2) under (A-ii). We assume the
following condition instead of (C-vi) when m — oo for i = 1,2; 7' # i:
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9 (yT A 4
(C-vii) 3:1(%54 m2) _ o,

Remark 8 (C-vii) can be written as a condition concerning eigenvalues and eigen-
vectors. If I'; = HiAi/z, A; = 2;1, i = 1,2, and X1 = X5, it holds that

3;1{75141"#12}4 = §:1 ’%2' and A4 = N{22;1N12 = Z§:1 ¥;, where ¢; =
(uiyhij)?/Nij. Hence, the condition ¢ P 1&?/(2?21 ;)% — 0as p — o0” im-
plies (C-vii).

Note that Z?L1(7£Ai’lv"12)4 < Z?,ij/:1('YiTin’N12)2(’73;'/Ai’N12)2 = A?4. Thus,
(C-vii) is milder than (C-vi).
Now, we claim the asymptotic normality of (2) under (A-ii) as follows:

Theorem 3 Assume (A-ii). Assume also (C-iv), (C-v) and (C-vii). Then, we
have (11). Furthermore, for the classification rule (3) with (2), we have (12).

When considering the classifier (8), from Theorems 2 and 3, we have the fol-
lowing result.

Corollary 2 Assume (C-iv). Assume either (A-i) and (C-vi) or (A-i1) and (C-
vii). Then, for the classification rule (8) with (8), we have (12).

3.3 Bayes error rates

When considering Theorem 3 under the situation that
tr{(Zi A} /ni + tr(ZAi Dy Air) /ny = o(Aia) as m — oo (13)
for i = 1,2; i’ # i, one has (12) as
e(i) = D{—Ai/(2A2)} + o(1) as m — oo for i = 1,2.

Note that 51'/(2Ai£2) = 14o0(1) under (13). If 31 = X>(= ¥), the ratio Ai/A;f
has a maximum when A; = Ay = ¥ ~!. Then, the ratio becomes the Mahalanobis
distance such as Ai/A:f = A}V/[zD. The classification rule (3) with (2) has an error

rate converging to the Bayes error rate in the sense that e(i) = @(—A}V/[QD/2) +o(1)
for ¢ = 1,2. On the other hand, if ¥y # X¥> and m;s are Gaussian, under (C-iii)
for (IV), the Bayes optimal classifier by (1) becomes as follows:

2o — p;) " X7 gy +op(Ainvy) > (1) Ay

when o € m;; i’ # i. Note that Var{(xo — ;)" X, ' p1o} = 012X, 25 gy
(hereafter called A;a(rvy) when xo € m; and A;4(;v) is the same as A;4 for
(IV). Hence, (xzo — ui)TZ';lulQ/A:f(lv) is distributed as N(0,1) when xg € m; :
Np(p;, X;). Then, the Bayes error rate becomes e(i) = (P{_Ai(IV)/@A;,{xQ(IV))} +
o(1) for i = 1,2, under some conditions.

When considering Theorem 3 under the situation that

p/ni + (2251 fng = o(A;arvy) asm — oo fori=1,2; 4 #4, (14)
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one can claim that the classification rule (3) for (IV) has the Bayes error rate
asymptotically even when 7;s are non-Gaussian. Note that (14) is equivalent to
(13) for (IV) and (14) usually holds when nmyin — oo while p is fixed or p — oo but
Nmin/p — o00. If (14) is not met, the classifier for (IV) is not optimal. We emphasize
that (14) does not always hold for high-dimensional settings that nmin/p — 0 or
Nmin/p — ¢ (> 0). For example, let us consider the setup of (a) to (c) in Fig. 1. The
condition “p/n; = o(A;a(rv))” is not met from the facts that A; 4(rv) = O(pl/Q)
and n1 = na = o(p'/?), so that (14) does not hold. On the other hand, (C-iv) to
(C-vi) hold, so that one can claim the asymptotic normality in Theorem 2. Note
that (14) does not hold under (C-vi) for (IV). Thus, the error rate of the classifier
based on the Mahalanobis distance does not converge to the Bayes error rate when
Theorem 2 is claimed. Such situations frequently occur in HDLSS settings such
as Nmin/p — 0. This is the reason why the classifier based on the Mahalanobis
distance does not always give a preferable performance for high-dimensional data
even when npmin — oo and m;s are Gaussian.

3.4 Comparisons of the classifiers

In this section, we investigate the performance of the classifiers given by (2) for
(I) to (IV) in terms of consistency and asymptotic normality. For (I), by using
A; =1,,i=1,2,(10) is given as

i = 2{tr(Z7) /ni + tr(Z X ) [mar + ugZ’ium}lm (hereafter called &;(r)).

Similarly, for (II), (III) and (IV), we write d; as d;(rr), d;zrr) and d;(;vy. When
X1 = X3, we consider (I), (IIT) and (IV) in the setup of (a) to (¢) in Fig. 1. Note
that (I), (IIT) and (IV) satisfy (C-iv) to (C-vi) from the facts that nmin = o(p*/?),
Aia = O(||pyal*) = O(p'?), t2(5F) /p € (0, 00) and tr(Z) = o(p?) as p — oo for
i = 1,2. Thus, Theorem 2 holds for (I), (III) and (IV). We plotted the asymptotic
error rates, @(—A([)/él([)), gs(_Al(III)/él(III)) and @(—Al(jv)/(sl([v)) in Flg 2.
From (12) we note that e(1) — e(2) = o(1) when X = X¥3. Thus, the average
error rate, ¢ = {e(1) + e(2)}/2, is regarded as an estimate of e(1). We laid e
for (I), (III) and (IV) by borrowing from Fig. 1. We observed that € behaves
very close to the asymptotic error rate as expected theoretically. We also plotted
the Bayes error rate, (P(—A}V/IQD/2). We observed that (IV) does not converge to
the Bayes error rate when Theorem 2 is claimed. See Section 3.3 for the details.
When p is sufficiently large, we note that Ay = ulTZZi_lplQ (= Apmp) is small
for (b) compared to (c) because |u7,hi1| becomes large for (b) compared to (c),
where h;1 is the first eigenvector of X;. Thus (IV) gave a worse performance for
(b) than (c). As for (I) and (IIT), the difference of the performances depends on
the configuration of ;s and o;(;)s. When p is sufficiently large, we note that
Ay = X8y piay < Avarny = Yj—y pizj /o) for (a) and Ay > Ay for
(b) and (c) because o) = 0.5 +3/(p+1),j=1,..,p for (a) to (c). It follows
that A(I)/éi(I) < Ai(III)/(Si(III) for (a) and A(I)/(Si([) > Ai(III)/(Si(III) for (b)
and (c). Thus (III) is better than (I) for (a), on the other hand, they trade places
for (b) and (c).

When X # X, (IT), (II) and (IV) draw information about heteroscedasticity
through the difference of tr(X;)s, X;4)s or X;s, respectively. See Section 3.1 for
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Fig. 2 The asymptotic error rates (solid lines) by &(—=A 1) /d1(1)), (=A1(r11y/01(111)) and
D(—A1(1v)/01(1v)), together with the corresponding € (dashed lines) by (I), (III) and (IV) in

the setup of (a) to (c) in Fig. 1. Also, Bayes optimal error rate was given by 45(7A}V/12D/2).

the details. We consider them in the setup of (d) and (e) in Fig. 1. For (d), note
that Ay = 0 but Ay = Airrry = Aivy > cp for some constant ¢ > 0. (II),
(II1) and (IV) hold the consistency property even when n;s are fixed because (C-i)
to (C-iii) are satisfied. Actually, for (d) and (e) in Fig. 1, we observed that the three
classifiers gave preferable performances by using the difference of tr(X;)s, ;s
or Xs as p increases. For (e), note that the difference of tr(X;)s is smaller than
that for (d). Actually, in Fig. 1, we observed that (II) gives a worse performance
for (e) than (d). On the other hand, (III) gave a better performance than (II)
because A;(;rr) is sufficiently larger than A,y for (e) when p is large. (IV)
draws information about heteroscedasticity from the difference of the covariance
matrices themselves, so that it gave the best performance in this case. However,
we note that it is difficult to estimate X 1s feasibly for high-dimensional data.
See Section 5.2 for the details.

4 Estimated quadratic classifiers

We denote an estimator of A; by A;. We consider estimating the quadratic clas-

sifier by W;(A;).

4.1 Preliminary

Let |[|[M]|| = )\ﬁl/fx(MTM) for any square matrix M. Let x be a constant such
as kK = Amin or K = Omin, where dmin = min{d1,d2}. We consider the following
condition for A;s under (x):

(C-viii) p||A; — Ail| = op(k) for i =1,2.

Proposition 4 Assume (C-viii). Assume also that A(A;) € (0,00) as p — oo for
i =1,2. Then, we have that

Wi(A1) — Wa(Az) = Wi(A1) — Wa(Az2) + op(k) (15)

under (x) when xg € m; fori=1,2.

When one chooses A;s as A1 = Az (= A), W (A) gives a linear classifier. We
consider the following condition for A under (*):

(C-ix) (p/rtin + 2?1124 — Al = 0p ().
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We have the following result.

Proposition 5 Assume (C-ix). Then, we have (15).

We note that (C-ix) is milder than (C-viii) from the fact that ||u,,]| = O(p*/?).
Hence, we recommend to use a linear classifier such as (8) or (19). The quadratic
classifiers should be used when the difference of covariance matrices is considerably
large. See Section 4.3 for the details.

4.2 Quadratic classifier by A; = {p/tr(S8:)} 1,

We consider the classifier by

Willp/un(Su )}y = P2l 2 plogtusi/mh (0)

Note that A; = A;;ry and A; = {p/tr(X;)}Ip. From Theorem 1, Propositions 2
and 4, we have the following result.

Corollary 3 Assume (A-i). Assume also (C-i’) and (C-ii’). Then, for the classi-
fication rule (3) with (16), we have consistency (6).

The classifier (16) is equivalent to the geometric classifier by Aoshima and
Yata (2011, 2015b). Aoshima and Yata (2011, 2015b) discussed sample size de-
termination to ensure prespecified high accuracy for the classifier. Hereafter, we
call the classifier (16) the “geometrical quadratic discriminant analysis (GQDA)”.
Similar to Section 3.1, we have consistency (6) for GQDA under (A-i) and (7) even
when nmin is fixed. If one can assume that liminf,_. o [tr(X1)/tr(X2) — 1] > 0,
we have consistency (6) for GQDA under (A-i) and (9) even when nmin is fixed
and p; = py.

As for asymptotic normality, from Corollary B.1 in Appendix B, for the clas-
sification rule (3) with (16), we have (12) under the regularity conditions given in
Corollary B.1.

Now, we compare DBDA with GQDA. We have that

Ary =l1®1n, — Ban,||” — tr(S1n,)/n1 — tr(S2n,)/n2  and

P4 | , , tr(Simy )
Airn *m [A(I) +tr(Sin,) — tr(Sin, ) + tr(Sin, ) log { H

tI‘(SznT)

fori = 1,2; i’ # i. We note that E(A(I)) = A(ry- When tr(X1)/tr(X2) — lasp —
00, it holds {0;(yp/tr(Xir)}/dirry = 1 + o(1). Then, it follows that Ay /d;) <
{1+ 0(1)}A;(11y/dsrry in (12) from the fact that A;;pytr(Xi)/p > A(py. Thus
from Corollaries 2 and B.1, if AAZ-(H)tr(Si/ni, )/p is sufficiently larger than A(I) for
some 4, we recommend to use GQDA. Otherwise one may use DBDA free from
(A-i). See Corollary 1 for the details.
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4.3 Quadratic classifier by A; = S;i(d)

Let Sin,(a) = diag(Sin, (1), -+ Sin,(p)) for i = 1,2. We consider the classifier by

P = 2
— Tijn, 1

W Si} — M — = +10g Sin. (i) )- 17

i) Jz::l ( Sin.(5) n; ) "
Note that A; = Ay and A; = Z’;(lli). Dudoit et al. (2002) considered the
quadratic classifier without the bias correction term. That was called the diago-
nal quadratic discriminant analysis (DQDA). Hereafter, we call the classifier (17)
“DQDA-bc”. Let 1;;y = Var{(zijr — wij)?} fori = 1,2, and j = 1,....,p (k =
1,...,n;). Since A; = Si_nlv(d) does not satisfy (C-viii) in that shape, we consider
the following assumption:
(A-iil) ;) € (0,00) as p — oo and limsup E{exp(tij|xijn — uij|2/77i1(/j2))} < 00

p— 00
for some t;; >0,i=1,2,and j=1,....,p (k=1,...,n;).

Note that (A-iii) holds when m; has Np(u,;, ;) for ¢ = 1,2. From Theorem 1,
Propositions 2 and 4, we have the following result.

Corollary 4 Assume (A-i) and (A-ii). Assume also (C-ii’). Then, for the clas-
sification rule (8) with (17), we have consistency (6) under the condition that

(Rmin Ain(zrn)) P logp = o(1). (18)

Note that (C-i’) holds under (18). From the fact that A;rrry = O(p), it follows
that n_! logp = o(1) under (18). Similar to Section 3.1, if one can assume that
liminf, oo ||t415]|%/p > 0 or liminf,_ s S r_1lo1gy/oai) — 1l/p > 0, DQDA-
be holds consistency (6) under (A-i), (A-iii), (9) and n_! logp = o(1). When
Amin(rrry is not sufficiently large, say Apinrrr) = O(p1/2)7 we can claim Corollary
4 in high-dimension, large-sample-size settings such as nmin/p — 00. In Section 5,
we shall provide a DQDA type classifier by feature selection and show that it has
the consistency property even when nmyin/p — 0 and Apin(rrr) is not sufficiently
large.

Next, we consider the pooled sample diagonal matrix,

o T DS
n(d) = 2 9 :
i=1 "

Note that E(S,q)) = N2 (ni — DX /( 2 n; —2) (hereafter called X a))-
When ¥y gy = Yy(q), it follows that X4y = 3;(4), 1 = 1,2. Let us write S,,q) =
diag(s,(1)s - Sn(p)) and X4 = diag(o(), ..., 0(p)). We consider the classifier by

i — Tijn, 2 Sin; (5
WS, ) = 3 (P = Tomd” S ), (19)

=1 Sn(4) NiSn(j)

We note that the classification rule (3) with (19) becomes a linear classifier.
Bickel and Levina (2004) and Dudoit et al. (2002) considered the linear classi-
fier without the bias correction term. That was called the diagonal linear dis-
criminant analysis (DLDA). Hereafter, we call the classifier (19) “DLDA-bc”. Al-
though Huang et al. (2010) gave bias corrected versions of DLDA and DQDA,
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they considered a bias correction only when ;s are Gaussian. We note that
Al = Ay = E§=1 ,u%zj/cr(j) (hereafter called A(;rpy) and A1 = Az = E(Cll).
Then, by combining Theorem 1 with Propositions 2 and 5, we have the following
result.

Corollary 5 Assume (A-iii). Assume also (C-i’) and (C-ii’). Then, for the clas-
sification rule (3) with (19), we have consistency (6) under the condition that

(nminA(III’))71p10gp =o(1). (20)

Under n_! logp = o(1), one may claim that (20) is milder than (18) if
Amin(rrry and Arrpry are of the same order. Hence, DQDA-bc might be consid-
ered when A, 771y is considerably larger than A(r7r/y, otherwise DLDA-bc even
when 3;(gys are not common. See Appendix A. However, we do not recommend
to use both DQDA-bc and DLDA-bc in practice. We shall improve DQDA-bc (or
DLDA-bc) by feature selection in Section 5.

4.4 Quadratic classifier by A; = Si_nli

We consider the classifier by
Wi(S7,.,) = (0 — Tin,)" S5, (®0 — Tin,) — p/ni +10g |Sin,|. (21)

In the HDLSS situation where n;/p — 0, S;nl (or log |Sin,|) does not exist. If
we suppose high-dimension, large-sample-size situations such as nmin/p — 00, one
can claim from Corollary B.2 in Appendix B that the classification rule (3) with
(21) has consistency (6) under the conditions that A(X;) € (0,00) as p — oo for
i =1,2, and

(nminﬂfnin(lv))71174 logp = o(1) (22)

and the regularity conditions given in Corollary B.2. From the fact that A;;v) =
O(p) when A(X;) € (0,00) as p — oo for i = 1,2, it follows that nr_mlan logp =
o(1) under (22). Note that the condition “n_} p*logp = o(1)” is quite strict for
high-dimensional data. In Section 5, we shall discuss a classifier by thresholding
covariance matrix estimation when nmin/p — 0.

5 Quadratic classifiers by feature selection and thresholding
covariance matrix estimation

In this section, we propose a new quadratic classifier by feature selection for (17)
and discuss a quadratic classifier by thresholding covariance matrix estimation for
(21).
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5.1 Quadratic classifier after feature selection

From Corollary 4, DQDA-bc does not always hold consistency (6) even in non-
sparse situations (i.e., Amin(riny — o0). Hence, we consider applying a variable
selection procedure to classification. Fan and Fan (2008) proposed the feature
annealed independent rule based on the difference of mean vectors. However, we
give a different type of feature selection by using both the differences of mean
vectors and covariance matrices. We have that

» 2 2

Hig2j +01() | Pi2j + 02(j)
Airrny + Aorny = + —2).
jz::l ( T3(5) T1(5) )

Let 0; = (uia; + 01())/(202(5)) + (i2; + 02())/(201(;)) — 1 for j =1, ..., p. Note
that Ayrry + Aoy = 22?21 0;. Also, note that 6; > 0 when p1; # po; or
T1(j) # 02(;)- Now, we give an estimator of 0; (j =1,...,p) by

_ @yny —T2jny)* + 510, 5) L (T1m = T2jns)” + S2my(j)

0, 1.
’ 259m,(7) 251n, (5)

Then, we have the following result.

Theorem 4 Assume (A-iii). Assume also n_1 logp = o(1). Then, we have that
as p — 0o
5 -1 1/2
jmax 105 — 0;] = Op{(nmin logp) 2},
Let D ={j| 6; >0 forj=1,...,p} and p. = #D, where #S denotes the
number of elements in a set S. Let £ = (n;nln log p)1/2. We select a set of significant
variables by

D={j|6;>¢ forj=1,..,p}, (23)

where v € (0, 1) is a chosen constant. Then, from Theorem 4, we have the following
result.

Corollary 6 Assume (A-iii), n_! logp = o(1) and liminf,_oo 6; > 0 for all
j € D. Then, we have that P(D = D) — 1 as p — oo.

Remark 4 As for I (> 3)-class classification, one may consider éj given by éj =
S A @ijn: — Tirgn, ) + Sin, () MR = Dsim, (y} — 1 for j =1,...,p.

Now, we consider a classifier using only the variables in D. We define the
classifier by

- 2
— Toj — Tijn, 1
Wi(sml,.,(d))FS = E (( ]8. (jJ) ) - + log sim(j)) (24)
jGB ing %

for ¢ = 1,2. We consider the classification rule (3) with (24). We call this feature
selected DQDA “FS-DQDA”. Let us write that @;.«x = (ij, &, ....,:vz-jp*k)T for all
i,k, where D = {j1,...,5p, }- Let Xix = Var(x;u) for i = 1,2 (k = 1,...,n).
Then, from Theorem 1 and Corollary 6, we have the following result in non-sparse
situations (i.e., Amin(rrr) — 00 OF psx — 00).
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Corollary 7 Assume (A-i) and (A-iii). Assume also Amax(Xix)/px = o(1) for
i=1,2, and liminf, .o 0; > 0 for all j € D. Then, for the classification rule (3)
with (24), we have consistency (6) under n_! logp = o(1).

By comparing Corollaries 7 with 4, note that the condition “n;iln logp = o(1)”

is much milder than (18). Thus we recommend FS-DQDA more than DQDA-bc (or
the original DQDA). For the choice of v € (0,1) in (23), we recommend applying
cross-validation procedures or simply choosing v = 0.5 because Corollary 7 is
claimed for any v € (0, 1). See Section 5.3 and Appendix A for the performance of
FS-DQDA with v = 0.5. In addition, we emphasize that the computational cost
of FS-DQDA is quite low even when p > 10, 000.

5.2 Quadratic classifier by thresholding covariance matrix estimation

We consider applying a thresholding estimation of covariance matrices to classifica-
tion. Bickel and Levina (2008) gave an estimator of X; ! for high-dimensional data.
Let 0;(¢) be the (s,t) element of X; for s,t = 1,...,p (i = 1,2). A sparsity measure
of 3; (1 =1,2) is given by ¢p p, = maxi<i<p p oy |0i(5t)|hi, where h; € [0,1) is a
constant not depending on p and 0° is defined as 0. Note that Amax (i) < Mep p,
for some constant M > 0. If ¢, 5, is much smaller than p for a constant h; € [0, 1),
XY, is considered as sparse in the sense that many elements of X; are very small.
See Section 3 in Shao et al. (2011) for the details. Let I(-) be the indicator func-
tion. A thresholding operator is defined by T-(M) = [mstI(|mst| > 7)] for any
7> 0 and any symmetric matrix M = [ms]. Let 7,, = M’(n; *log p)*/? for some
constant M’ > 0. Then, Bickel and Levina (2008) gave the following result.

Theorem 5 Assume (A-iii), n; ' logp = o(1) and liminfy_ oo Amin(X;) > 0. For
a sufficiently large M'(> 0), it holds that as p — oo

I{Tr,. (Sin)} " = X7 = Op (cpn, (nj M logp) ' ")7%).

Remark 5 Theorem 5 is obtained by Theorem 1 and Section 2.3 in Bickel and
Levina (2008).

We use A; = {T~,, (Sin;)} ! as an estimator of X; ! and consider the classifier
by W;({T~,, (Sin;)}™1). By combining Theorem 5 and Proposition 4, if it holds
that A(X;) € (0,00) as p — oo and

pep (i logp) M2 [ A vy = o(1), (25)
the classification rule (3) with W;({T~,, (Sin,)} ") has consistency (6) under some
regularity conditions. When X;s are sparse as cpp, = O(1) for some h;(i =

1,2) and liminf,— oo Amin(rvy/p > 0, (25) holds in HDLSS situations such as
n i, logp = o(1). Shao et al. (2011) and Li and Shao (2015) considered a lin-
ear and a quadratic classifier by the thresholding estimation of 2;18 under some
sparsity conditions. On the other hand, Cai et al. (2011) gave the constrained ¢1-
minimization for inverse matrix estimation (CLIME). One may apply the CLIME
to the classification rule (3). However, one should note that the computational

cost for the thresholding (or sparse) estimation of X !s is very high even when
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p ~ 1,000. It is quite unrealistic to apply the estimation to classification when
p is very high, say p > 10,000. Also, the sparsity condition “A(X;) € (0,00) as
p — o0” is quite severe for high-dimensional data. In actual data analyses, we
often encounter the situation that \;; — oo as p — oo for the first several js. See
Yata and Aoshima (2013) for the details.

5.3 Simulation

We used computer simulations to compare the performance of the classifiers:
DBDA by (8), GQDA by (16), DLDA-bc by (19), DQDA-bc by (17) and FS-
DQDA by (24). We did not compare those classifiers with Wi({TTni(Smi)}_l)
which is given by thresholding estimation of X~ 15 in Section 5.2 because the com-
putational cost of the thresholding estimation is very high when p is large. Thus
we considered the classifier (2) with (IV) instead of using the thresholding estima-
tion, provided that X';s were known. We set v = 0.5 in (23). We considered the
case of p. = 2[p1/2/21. We generated x5 — p;, k = 1,2, ..., (¢ = 1,2) indepen-
dently from (i) Np(0, %), (ii) I'sy,;, with I'; = HZ-A;/2 and yijr = (vijr — 2)/2
(j =1,...,p) in which v;;zs are i.i.d. as the chi-squared distribution with 2 degrees
of freedom, or (iii) p-variate ¢-distribution, t,(0, X';, v) with mean zero, covariance
matrix X; and degrees of freedom v. Note that (A-i) is met in (i) and (ii). We set
p=2°% s=3,..,11 for (i) and (ii), and p = 500 and v =4s, s =1,...,9 for (iii).
We set g = 0 and ¥y = Bl(O.S‘i_ﬂl/s)Bh where B is defined in Section 2.
We considered two cases: p, = (0,...,0,1,...,1,—=1...., —=1)T (= Ha(a), Say) whose
last p« elements are not 0, where the last p./2 elements are —1 and the previous
p«/2 elements are 1; and py = (0,...,0,1,—1,...,1, - 1)7T (= Ho(g), say) whose last
p« elements are not 0, where the j-element is (—l)j"'1 forj=p—p«+1,...p.
Let By = diag(1, ..., 1,2Y2 .., 21/2) whose last p. diagonal elements are 2'/2. We
considered six cases:

(a) n1 =10, nz =20, X2 = X1 and py = py(, for (i);

(b) n1 = [(logp)?], n2 = 2n1, X2 = X1 and py = fiy,y for (i);

(c) n1 = [(logp)?], n2 = 2n1, X2 = X1 and p, = Mg for (i);

(d) n1 = [(logp)?], n2 = 2n1, X2 = BoX1B2 and p, = Ho(qy for (i);

(e) n1 = [(logp)?], n2 = 2n1, X2 = BoX 1Bz and p, = Ho(g) for (ii); and

(f) n1 = [(logp)?], n2 = 2n1, X2 = B2 X1B> and p, = Kooy for (iii).

It holds that n__! logp = o(1) for (b) to (f), liminfp—cc Amin/ps« > 0 for (a) to (),
and liminf,_.o [tr(X1) — tr(X2)|/p« > 0 for (d), (e) and (f). Similar to Section
2, we calculated the average error rate, €, by 2000 replications and plotted the
results in Fig. 3 (a) to (f).

We observed from (a) in Fig. 3 that DBDA and GQDA give preferable per-
formances when n;s are fixed. DLDA-bc gave a moderate performance because
Y1 = X5. However, the other classifiers did not give preferable performances
when p is large. This is probably due to the consistency property of those clas-
sifiers (except (IV)) which is claimed under at least n_! logp = o(1). Actually,
as for (b) and (c), they gave moderate performances because n_i logp = o(1).
Thus, we do not recommend to use quadratic classifiers such as DQDA-bc and
FS-DQDA, that consider all the elements (or the diagonal elements) of sample
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Fig. 3 The average error rates of the classifiers: A: DBDA, B: GQDA, C: DLDA-bc, D:
DQDA-bc, E: FS-DQDA, and F: the classifier by (2) with (IV). Their standard deviations are
less than 0.0112.

covariance matrices, unless nr;iln logp = o(1). When n;iln logp # o(1) or n;s are
fixed, we recommend to use DBDA and GQDA. On the other hand, FS-DQDA
gave a good performance for (d) and (e) as p increases because the difference of
the covariance matrices becomes large as p increases. We note that from Corollary
7 FS-DQDA holds the consistency property for (d) and (e). However, DQDA-
be did not give a preferable performance because Apincrrry = O(pl/Q)7 so that
DQDA-bc does not hold the consistency property from Corollary 4. We note that
X # Yo but Ay /iy = Airry/dir for (d) and (e). Thus GQDA gave a sim-
ilar performance to DBDA for (d) and (e). As for (f), DBDA gave a preferable
performance even when v is small because DBDA holds the consistency property
without (A-i). The other classifiers did not give preferable performances when v
is small. However, they gave moderate performances when v becomes large be-
cause tp(0,X;,v) = Np(0,X;) as v — oo. Especially, FS-DQDA gave a good
performance when v is not small. This is probably because FS-DQDA has smaller
variance by feature selection as p./p — 0 than the other classifiers. On the other
hand, for several cases, the classifier by (2) with (IV) did not give preferable per-
formances in spite of known X;s. See Section 3.3 for the theoretical reasons. It is
likely that the classifier by W;({7~,, (Sin,)} 1) gives poor performances for the
high-dimensional settings.

5.4 Example: gene expression data sets

By using gene expression data sets given by Golub et al. (1999) and Armstrong
et al. (2002), we compared the performance of the classifiers: DBDA, GQDA,
DLDA-bc, DQDA-be, FS-DQDA and a support vector machine. We summarized
the results in Appendix A of the online supplementary.
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6 Concluding remarks

In this paper, we considered high-dimensional quadratic classifiers in non-sparse
settings. The classifier based on the Mahalanobis distance does not always give
a preferable performance even when nn,i, — oo and m;s are assumed Gaussian.
See Sections 2 and 3. We emphasize that the quadratic classifiers proposed in this
paper draw information about heterogeneity effectively through both the differ-
ences of mean vectors and covariance matrices. See Section 3.4 for the details.
If the difference of covariance matrices is not sufficiently large, one may use the
linear classifier, DBDA. It is quite flexible about the conditions to claim the con-
sistency property. See Sections 4.2 for the details. We emphasize that DLDA-
be, DQDA-bc and FS-DQDA can hold the consistency property under at least

“n;iln logp = o(1)”. Thus we do not recommend to use those classifiers when
‘n;liln logp # o(1)”. See Section 5.3 and Appendix A for the details. In such cases,

one should use DBDA and GQDA because they hold the consistency property even
when n;s are fixed. See Section 4.2 about the choice between DBDA and GQDA.
When “n;iln logp = o(1)”, we recommend DQDA-bc and FS-DQDA. Especially,
FS-DQDA can claim the consistency property even when nmin/p — 0 and Apiy is
not sufficiently large. See Section 5.1 for the details. For the choice of 4 € (0, 1) in
(23), one may apply cross-validation procedures or simply choose as v = 0.5. Ac-
tually, FS-DQDA with v = 0.5 gave preferable performances throughout our simu-
lations and real data analyses. On the other hand, even when n;uln logp = o(1), we
do not recommend to use the classifier by the thresholding (or sparse) estimation
of X! unless (i) the eigenvalues are bounded in the sense that A\(X;) € (0, c0)
as p — 0o, and (ii) X;s are sparse in the sense that many elements of X;s are
very small. We emphasize that “Amax(37;)s are bounded” is a strict condition since
the eigenvalues should depend on p and it is probable that \;; — oo as p — oo
for the first several js. See Yata and Aoshima (2013) for the details. Also, the
computational cost for the thresholding (or sparse) estimation is very high.

In conclusion, we hope we have given simpler classifiers which will be more
effective in the real world analysis of high-dimensional data.

7 Proofs

We give all proofs of the theoretical results together with additional corollaries in
Appendix B of the online supplementary.
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