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Abstract

In this supplement, we give actual data analyses and proofs of the theoretical results in
the main work in Aoshima and Yata [2] together with additional corollaries and proofs of the
corollaries. The equation numbers and the mathematical symbols used in the supplement are
the same as those which are made reference to in the main document.

Appendix A

In this appendix, we discuss the performance of the classifiers given by [2] in actual data analyses.
We first analyzed gene expression data given by Golub et al. [7] in which the data set consists

of 7129 (= p) genes and 72 samples. We had two classes of leukemia subtypes, that is, π1: acute
lymphoblastic leukemia (ALL) (47 samples) and π2: acute myeloid leukemia (AML) (25 samples).
The data set consisted of two sets as 38 training samples (ALL: 27 samples and AML: 11 samples)
and 34 test samples (ALL: 20 samples and AML: 14 samples). If each sample has unit variance,
S1n1(d) = S2n2(d). Thus, we did not standardize each sample so as to have unit variance.

First, we checked several sparsity conditions. We standardized each sample by xik/{
∑2

l=1 tr(Slnl
)

/(2p)}1/2 for all i, k, so that tr(S1n1)/2+tr(S2n2)/2 = p. By using all the samples (i.e., 72 samples),
we calculated that

∆̂(I) = 2060 (= 0.289p), (A.1)

where ∆̂(I) is given in Section 4.2. Note that E(∆̂(I)) = ||µ12||2. From this observation, we
concluded that µ12 is non-sparse. Next, we considered an estimator of ||Σ12||2F =

∑2
i=1 tr(Σ2

i ) −
2tr(Σ1Σ2) by ∆̂Σ =

∑2
i=1 Wini −2tr(S1n1S2n2) having Winis defined by (16) in Aoshima and Yata

[1]. Here, Wini is an unbiased estimator of tr(Σ2
i ), so that E(∆̂Σ) = ||Σ12||2F . We calculated that

∆̂Σ = 9.77 × 105 (= 137p). (A.2)

Also, we estimated ∆i(III) and ∆(III′) by ∆̂i(III) = {
∑p

j=1(x1jn1−x2jn2)
2/si′ni′ (j)

+sini(j)/si′ni′ (j)
−

1+log(si′ni′ (j)
/sini(j))} and ∆̂(III′) =

∑p
j=1(x1jn1−x2jn2)

2/sn(j), where i′ ̸= i and sn(j)s are defined
in Section 4.3. We calculated that

∆̂min(II) = min{∆̂1(II), ∆̂2(II)} = 2037 (= 0.286p),

∆̂min(III) = min{∆̂1(III), ∆̂2(III)} = 16909 (= 2.371p) and ∆̂(III′) = 1709 (= 0.24p), (A.3)

where ∆̂i(II)s are defined in Section 4.2. From (A.2), we concluded that Σ12 is non-sparse. In
fact, from (A.3), the difference of diagonal elements between two covariance matrices must be very

Address correspondence to Makoto Aoshima, Institute of Mathematics, University of Tsukuba,
Ibaraki 305-8571, Japan; Fax: +81-298-53-6501; E-mail: aoshima@math.tsukuba.ac.jp

1



Table 1: Error rates of the classifiers for samples from Golub et al. [7].

Classifier DBDA GQDA DLDA-bc DQDA-bc FS-DQDA with FS-DQDA with HM-LSVM
γ = 1/6 and 1/3 γ = 1/2, 2/3 and 5/6

Test samples (ALL: 20 and AML: 14)
Error rate 1/34 1/34 5/34 2/34 4/34 3/34 1/34

LOOCV of samples (ALL: 47 and AML: 25)
Error rate 3/72 6/72 11/72 1/72 0/72 0/72 2/72

large. Thus from Section 3.1, the classification rule by (3) with (III) has consistency (6), so that
the Bayes error rates for this data set are probably close to 0. Also, we calculated

(λ́max(Σ1), λ́max(Σ2)) = (1223, 1457) (= (0.172p, 0.204p)), (A.4)

where λ́max(Σi) is an estimate of the largest eigenvalue due to the noise-reduction methodology by
Yata and Aoshima [12]. We concluded that “λ(Σi) ∈ (0,∞) as p → ∞” does not hold and Σis
are not sparse because λmax(Σi)s are very large. Therefore, we do not recommend to apply the
classifier by thresholding (or sparse) estimation of Σ−1

i , such as Wi({Tτni
(Sini)}−1). See Section

5.2 for the details. Actually, we did not use any classifiers by thresholding estimation of Σ−1
i in

this section. Also, note that the computational cost for the thresholding estimation of Σ−1
i is very

high when p is large.
We constructed the classifiers: DBDA, GQDA, DLDA-bc, DQDA-bc and FS-DQDA, by using

the training samples of sizes n1 = 27 and n2 = 11, and checked accuracy by using the test samples
from each πi. Throughout this section, we considered

γ = 1/6, 1/3, 1/2, 2/3, and 5/6 in (23) for FS-DQDA.

We compared the classifiers with the hard-margin linear support vector machine (HM-LSVM). See
Vapnik [11] for the details. Note that the data sets are linearly separable by a hyperplane because
p > n1 + n2. We emphasize that the computational cost of DBDA, GQDA, DLDA-bc, DQDA-bc
or FS-DQDA is as low as HM-LSVM even when p ≥ 10, 000. We summarized misclassification
rates in the first block of Table 1. We observed that the error rates of FS-DQDA with γ = 1/6
and 1/3 are 4/34, and the ones with γ = 1/2, 2/3 and 5/6 are 3/34. We note that nmin = 11
and n−1

min log p = 0.81, so that “n−1
min log p = o(1)” does not hold. That is probably the reason why

DLDA-bc, DQDA-bc and FS-DQDA lose the consistency property. See Sections 4 and 5 for the
details. On the other hand, DBDA and GQDA gave reasonable performances even when nis are
small and seem to hold the consistency property. We calculated tr(S1n1)/tr(S2n2) = 0.989 and
(∆̂i(II)tr(Si′ni′

)/p)/∆̂(I) ≈ 1 for i ̸= i′. The difference of the trace of the covariance matrices is
small and this is probably the reason why DBDA gave a preferable performance. See Section 4.2 for
the details. HM-LSVM also gave a preferable performance. See Hall et al. [8] for the consistency
property of HM-LSVM. For this data set, Cai and Liu [5] summarized misclassification rates for
several other classifiers including a sparse linear classifier called LPD. See Table 6 in [5] for the
performance of the other classifiers. Note that LPD has the Bayes error rates asymptotically under
several sparsity conditions. We observed that DBDA and GQDA gave the same accuracy as LPD.
This is probably because the sparsity conditions do not hold for this data set, so that the Bayes
error rates are almost 0. However, the computational cost for DBDA and GQDA is much lower
than LPD.
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Table 2: Estimates of (||µ12||2, ||Σ12||2F , ∆min(II), ∆min(III), ∆(III′)) by (∆̂(I), ∆̂Σ, ∆̂min(II),
∆̂min(III), ∆̂(III′)) for Armstrong et al. [3].

Case (a) ALL and MLL (b) ALL and AML (c) MLL and AML

||µ12||2 4076 (= 0.324p) 15050 (= 1.2p) 8546 (= 0.679p)

||Σ12||2F 1.12 × 108 (= 8863p) 5.49 × 106 (= 436p) 1.16 × 108 (= 9192p)

∆min(II) 4078 (= 0.324p) 14212 (= 1.13p) 7945 (= 0.631p)

∆min(III) 42848 (= 3.406p) 77701 (= 6.176p) 27316 (= 2.171p)

∆(III′) 3055 (= 0.243p) 12187 (= 0.969p) 7777 (= 0.618p)

Next, by using all the samples (i.e., 72 samples), we checked accuracy of the classifiers by the
leave-one-out cross-validation (LOOCV). We summarized misclassification rates in the second block
of Table 1. We note that nmin = 24 and n−1

min log p = 0.37 or nmin = 25 and n−1
min log p = 0.35 in this

case, so that n−1
min log p is a little small. We observed that DQDA-bc and FS-DQDA give preferable

performances. For γ = 1/6, 1/3, 1/2, 2/3 and 5/6, all the error rates of FS-DQDA were 0/72. On
the other hand, DLDA-bc gave a poor performance because it does not draw information about
heteroscedasticity. See (A.3) and Section 4.2. For other classifiers, Tan et al. [10] summarized
results of the LOOCV for this data set.

Finally, we analyzed gene expression data given by Armstrong et al. [3] in which the data set
consists of 12582 (= p) genes and 72 samples. We had three classes of leukemia subtypes: acute
lymphoblastic leukemia (ALL: 24 samples), mixed-lineage leukemia (MLL: 20 samples), and acute
myeloid leukemia (AML: 28 samples). We considered three cases: (a) ALL and MLL, (b) ALL and
AML, and (c) MLL and AML. We standardized each sample by xik/{

∑3
l=1 tr(Slnl

)/(3p)}1/2 for
all i, k, as before. Then, we calculated (∆̂(I), ∆̂Σ, ∆̂min(II), ∆̂min(III), ∆̂(III′)) for the three cases.
We summarized (∆̂(I), ∆̂Σ, ∆̂min(II), ∆̂min(III), ∆̂(III′))s in Table 2. From Table 2, we concluded
that µ12 and Σ12 are non-sparse for (a) to (c). Also, by using λ́max(Σi), we estimated the largest
eigenvalues as 1896, 3206 and 2101 for ALL, MLL and AML, respectively. From this observa-
tion, we concluded that Σis are non-sparse. We estimated tr(Σ2

max)/(nmin∆2
(I)) and λmax/∆(I) by

C1 = max{W1n1 ,W2n2}/(nmin∆̂2
(I)) and C2 = max{λ́max(Σ1), λ́max(Σ2)}/∆̂(I) in (C-i’) and (C-ii’).

Then, we had (C1, C2) as (0.362, 0.787) for (a), (0.001, 0.14) for (b), and (0.082, 0.375) for (c).
Note that lim infp→∞ ∆min(II)/∆(I) > 0 and lim infp→∞ ∆min(III)/∆(I) > 0. See Table 2. From
these observations, it is likely that the classifiers by (I) to (III) satisfy (C-i’) and (C-ii’) especially
for (b) and hold consistency (6) from Proposition 2.

Based on all the samples, we checked accuracy of the classifiers by using the LOOCV for (a)
to (c). In addition, we checked accuracy for 3-class classification by the multiclass classification
rule given in Remark 1. In the 3-class classification, we used θ̂j given in Remark 4 for FS-DQDA
and used the one-versus-one approach for HM-LSVM. We summarized misclassification rates in
Table 3. We observed that FS-DQDA gives excellent performances for all γs. HM-LSVM also
gave reasonable performances, however, it does not draw information about the difference of the
covariance matrices. See Section 2.2 in [1] for such an example. As for (b), all the classifiers gave
preferable performances. This is probably because the classifiers by (I) to (III) satisfy (C-i’) and
(C-ii’) for (b). Throughout this section, we observed that FS-DQDA does not heavily depend on γ
located around 1/2. Also, FS-DQDA with γ = 1/2 gave preferable performances in the simulation
study of Section 5.3. Thus, for the choice of γ ∈ (0, 1) in (23), one may apply the cross-validation
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Table 3: Error rates of the classifiers for samples from Armstrong et al. [3].

Classifier DBDA GQDA DLDA-bc DQDA-bc FS-DQDA with FS-DQDA with HM-LSVM
γ = 1/6,1/3 and 1/2 γ = 2/3 and 5/6

LOOCV of samples from (a) ALL: 24 and MLL: 20
Error rate 1/44 2/44 6/44 1/44 0/44 0/44 0/44

LOOCV of samples from (b) ALL: 24 and AML: 28
Error rate 1/52 1/52 1/52 0/52 0/52 0/52 0/52

LOOCV of samples from (c) MLL: 20 and AML: 28
Error rate 4/48 4/48 1/48 3/48 3/48 3/48 3/48

LOOCV of samples from ALL: 24, MLL: 20 and AML: 28
Error rate 5/72 6/72 7/72 4/72 2/72 3/72 3/72

method or simply choose as γ = 1/2.

Appendix B

In this appendix, we give proofs of the theoretical results in the main work in [2]. Also, we give
additional corollaries and proofs of the corollaries.

Let ω1 = {tr{(Σ1A1)2}/ni + tr(Σ1A2Σ2A2)/n2}1/2. Let x̃1k = A
1/2
1 (x1k − µ1) and x̃2k =

A
−1/2
1 A2(x2k − µ2) for k = 1, ..., ni. Let Σ̃1 = A

1/2
1 Σ1A

1/2
1 , Σ̃2 = A

−1/2
1 A2Σ2A2A

−1/2
1 , Γ̃1 =

[γ̃11, ..., γ̃1q1
] = A

1/2
1 Γ1 and Γ̃2 = [γ̃21, ..., γ̃2q2

] = A
−1/2
1 A2Γ2. Note that Var(x̃ij) = Γ̃iΓ̃

T
i =∑qi

j=1 γ̃ijγ̃
T
ij = Σ̃i, i = 1, 2. Let B̂i = Âi −Ai for i = 1, 2. We consider the eigen-decomposition of

Ai by Ai = H i(A)Λi(A)H
T
i(A) for i = 1, 2, where Λi(A) =diag(λi1(A), ..., λip(A)) having eigenvalues

such as λi1(A) ≥ · · · ≥ λip(A) > 0 and H i(A) = [hi1(A), ...,hip(A)] is an orthogonal matrix of the
corresponding eigenvectors. Let ai(j) be the j-th diagonal element of Ai for j = 1, ..., p (i = 1, 2).
Let xoijk = xijk − µij for j = 1, ..., p (i = 1, 2; k = 1, ..., ni).

B.1 Lemmas

In this section, in order to prove the theoretical results in [2], we give the following lemmas.

Lemma B.1. Under (A-i), (C-iv) and (C-vi), we have that

(x0 − µi)
T {Ai(xini − µi) − Ai′(xi′ni′

− µi′)}/ωi ⇒ N(0, 1) as m → ∞

when x0 ∈ πi for i = 1, 2; i′ ̸= i.

Proof of Lemma B.1. We consider the case when i = 1 (i′ = 2) and x0 ∈ π1. Let x̃0 = A
1/2
1 (x0 −

µ1). Then, it holds that Var(x̃0|x0 ∈ π1) = Var(x̃1k) = Σ̃1. Let

vk = x̃T
0 x̃1k/(n1ω1), k = 1, ..., n1, and vn1+k = −x̃T

0 x̃2k/(n2ω1), k = 1, ..., n2.

Note that
∑n1+n2

k=1 E(v2
k) = 1 and

∑n1+n2
k=1 vk = (x0 − µ1)T {A1(x1n1 − µ1) − A2(x2n2 − µ2)}/ω1.

Then, it holds that E(vk|vk−1, ..., v1) = 0 for k = 2, ..., n1 + n2. Under (A-i), we can write that
x̃1l = Γ̃1y1l and x̃2l = Γ̃2y2l. Note that 2ω1/δ1 = 1 + o(1) under (C-vi). Then, in a way similar to
the proof of Theorem 3 in Aoshima and Yata [1], by applying the martingale central limit theorem
given by McLeish [9], we can obtain the result.
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Lemma B.2. Under (A-ii), (C-iv) and (C-vii), we have that

2(x0 − µi)
T
{
Ai(xini − µi) − Ai′(xi′ni′

− µi′ + (−1)iµ12)
}
/δi ⇒ N(0, 1)

as m → ∞ when x0 ∈ πi for i = 1, 2; i′ ̸= i.

Proof of Lemma B.2. We consider the case when i = 1 (i′ = 2) and x0 ∈ π1. Let x0 − µ1 = Γ1y0

and y0 = (y01, ..., y0q1)
T . Under (A-ii), y0s, s = 1, ..., q1, are independent. Let x́lnl

=
∑nl

k=1 x̃lk/nl,
l = 1, 2, µ̃ = A

−1/2
1 A2µ12 and

ws = 2y0jγ̃
T
1s(x́1n1 − x́2n2 + µ̃)/δ1, s = 1, ..., q1.

Note that q1 ≥ p, E(ws) = 0, s = 1, ..., q1,
∑q1

s=1 E(w2
s) = 1 and

q1∑
s=1

ws = 2(x0 − µ1)
T {A1(x1n1 − µ1) − A2(x2n2 − µ2 − µ12)}/δ1.

Also, note that E(ws|ws−1, ..., w1) = 0 for s = 2, ..., q1, under (A-ii). We consider applying the
martingale central limit theorem. Let Mls = E(y3

lsk) for all l, s. Note that lim supp→∞ |Mls| < ∞
for all l, s, under (A-ii) because lim supp→∞ E(y4

lsk) < ∞. Then, by using Schwarz’s inequality and
the arithmetic mean-geometric mean inequality, we can evaluate that under (A-ii)

E{(γ̃T
1sx́lnl

)2(γ̃T
1tx́lnl

)2} = {1 + o(1)}γ̃T
1sΣ̃lγ̃1sγ̃

T
1tΣ̃lγ̃1t/n2

l + O{(γ̃T
1sΣ̃lγ̃1t/nl)2}; and

|E{(γ̃T
1sx́lnl

)2γ̃T
1tx́lnl

γ̃T
1tµ̃}| =

∣∣∣ ql∑
u=1

(γ̃T
1sγ̃lu)2γ̃T

1tγ̃luγ̃T
1tµ̃Mlu/n2

l

∣∣∣
≤ {E(γ̃T

1sx́lnl
)4}1/2{E(γ̃T

1tx́lnl
γ̃T

1tµ̃)2}1/2

= O{γ̃T
1sΣ̃lγ̃1s(γ̃

T
1tΣ̃lγ̃1t/nl)1/2|γ̃T

1tµ̃|/nl}
= O[γ̃T

1sΣ̃lγ̃1s{γ̃T
1tΣ̃lγ̃1t/nl + (γ̃T

1tµ̃)2}/nl]

= O[{γ̃T
1sΣ̃lγ̃1s/nl}2 + {γ̃T

1tΣ̃lγ̃1t/nl}2 + (γ̃T
1tµ̃)4], l = 1, 2

for all s, t. Then, we have that for all s, t

δ4
1E(w4

s) = O
[ 2∑

l=1

{γ̃T
1sΣ̃lγ̃1s/nl}2 + (γ̃T

1sµ̃)4
]

and (B.1)

(δ1/2)4
E(w2

sw
2
t )

E(y2
0sy

2
0t)

− γ̃T
1s

( 2∑
l=1

Σ̃l/nl + µ̃µ̃T
)
γ̃1sγ̃

T
1t

( 2∑
l=1

Σ̃l/nl + µ̃µ̃T
)
γ̃1t

= 2
2∑

l=1

(−1)l+1
ql∑

u=1

{(γ̃T
1sγ̃lu)2γ̃T

1tγ̃luγ̃T
1t + (γ̃T

1tγ̃lu)2γ̃T
1sγ̃luγ̃T

1s}µ̃Mlu/n2
l

+ o
[ 2∑

l=1

γ̃T
1sΣ̃lγ̃1sγ̃

T
1tΣ̃lγ̃1t/n2

l

]
+ O

[ 2∑
l=1

(γ̃T
1sΣ̃lγ̃1t/nl)2

]
. (B.2)
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Here, under (C-iv), we can evaluate that

q1∑
s,t=1

ql∑
u=1

(γ̃T
1sγ̃lu)2γ̃T

1tγ̃luγ̃T
1tµ̃Mlu/n2

l =
ql∑

u=1

γ̃T
luΣ̃1γ̃luγ̃T

luΣ̃1µ̃Mlu/n2
l

= O
[
||µ̃T Σ̃

1/2
1 ||

ql∑
u=1

||γ̃T
luΣ̃

1/2
1 ||γ̃T

luΣ̃1γ̃lu/n2
l

]
= O

[
||µ̃T Σ̃

1/2
1 ||tr(Σ̃1Σ̃l)1/2

{ ql∑
u=1

(γ̃T
luΣ̃1γ̃lu)2

}1/2
/n2

l

]
= O

[
{µ̃T Σ̃1µ̃ + tr(Σ̃1Σ̃l)}tr{(Σ̃1Σ̃l)2}1/2/n2

l

]
= o(δ4

1), l = 1, 2 (B.3)

from the fact that
∑ql

u=1(γ̃
T
luΣ̃1γ̃lu)2 ≤

∑ql

u,u′=1(γ̃
T
luΣ̃1γ̃lu′)2 = tr{(Σ̃1Σ̃l)2} = o(n2

l δ
4
1) under (C-

iv). Then, by combining (B.1) and (B.2) with (B.3), under (A-ii), (C-iv) and (C-vii), for any τ > 0,
we have that as m → ∞

q1∑
s=1

E(w4
s)

τ
= O

[∑2
l=1 tr{(Σ̃1Σ̃l)2}/n2

l +
∑q1

s=1(γ̃
T
1sµ̃)4

δ4
1

]
→ 0 and

P
(∣∣∣ q1∑

s=1

w2
s − 1

∣∣∣ ≥ τ
)
≤

∑q1
s,t=1 E(w2

sw
2
t ) − 1

τ2
= O

[ q1∑
s=1

E(w4
s)

]
+ o(1) → 0,

so that
∑q1

s=1 E{w2
sI(w2

s ≥ τ)} ≤
∑q1

s=1 E(w4
s)/τ → 0 and

∑q1
s=1 w2

s = 1 + oP (1). Hence, by using
the martingale central limit theorem, we obtain that

∑q1
s=1 ws ⇒ N(0, 1) as m → ∞ under (A-ii),

(C-iv) and (C-vii). We conclude the result when i = 1. For the case when i = 2, we can have the
same arguments. The proof is completed.

Lemma B.3. Assume that when x0 ∈ πi for i = 1, 2,

tr[{(x0 − µi)(x0 − µi)
T − Σi}(B̂1 − B̂2)] = oP (κ); (B.4)

tr{Σi(B̂1 − B̂2)} − log |Â1A
−1
1 | + log |Â2A

−1
2 | = oP (κ); and (B.5)

{2(x0 − µi) + (−1)i+1µ12}T B̂i′µ12 = oP (κ) (i′ ̸= i) (B.6)

and (p/n
1/2
l )||B̂l|| = oP (κ), l = 1, 2,

where κ = ∆min or κ = δmin. Then, (15) holds.

Proof of Lemma B.3. We consider the case when x0 ∈ π1. We have that

W1(Â1) − W1(A1) − W2(Â2) + W2(A2)

= tr[{(x0 − µ1)(x0 − µ1)
T − Σ1}(B̂1 − B̂2)]

+ tr{Σ1(B̂1 − B̂2)} − log |Â1A
−1
1 | + log |Â2A

−1
2 |

+
2∑

l=1

(−1)l+1tr[{2(x0 − µ1 − (xlnl
− µ1)/2)(µ1 − xlnl

)T − Slnl
/nl}B̂l].

Note that tr(Slnl
) = OP (p), ||xlnl

− µ1||2 ≤ ||xlnl
− µl||2 + ||µl − µ1||2 = ||µl − µ1||2 + OP (p/nl)

and ||x0 − µ1 − (xlnl
− µ1)/2||2 ≤ ||x0 − µ1||2 + ||xlnl

− µl||2 + ||µ1 − µl||2 = OP (p), l = 1, 2,
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from the facts that E(||x0 − µ1||2) = tr(Σ1), E{tr(Slnl
)} = tr(Σl), E(||xlnl

− µl||2) = tr(Σl)/nl,
tr(Σi) = O(p), i = 1, 2, and ||µ12||2 = O(p). Then, we have that for l = 1, 2

|tr[{2(x0 − µ1 − (xlnl
− µ1)/2)(µl − xlnl

)T − Slnl
/nl}B̂l]|

≤ 2||x0 − µ1 − (xlnl
− µ1)/2|| · ||xlnl

− µl|| · ||B̂l|| + tr(Slnl
)||B̂l||/nl = OP {(p/n

1/2
l )||B̂l||}.

Also, we have that |(x2n2 − µ2)T B̂2µ12| = OP {(p/n
1/2
2 )||B̂2||}. Thus it holds that

2∑
l=1

(−1)l+1tr[{2(x0 − µ1 − (xlnl
− µ1)/2)(µ1 − xlnl

)T − Slnl
/nl}B̂l]

= −{2(x0 − µ1) + µ12}T B̂2µ12 + OP {(p/n
1/2
1 )||B̂1|| + (p/n

1/2
2 )||B̂2||}.

Hence, it concludes the result when x0 ∈ π1. For the case when x0 ∈ π2, we can have the same
arguments. The proof is completed.

B.2 Proofs of the theoretical results

In this section, we give proofs of the theoretical results in the main work in [2].

Proof of Proposition 1. We can write that tr(A−1
i Ai′) =

∑p
j=1 hT

ij(A)Ai′hij(A)/λij(A). Note that∑p
j=1 hT

ij(A)Ai′hij(A) = tr(Ai′) and
∑t

j=1(h
T
ij(A)Ai′hij(A)−λi′j(A)) ≤ 0 for any t ∈ {1, ..., p}. Then,

by noting that λi1(A) ≥ · · · ≥ λip(A) > 0, we have that

tr(A−1
i Ai′) =

λi′1(A)

λi1(A)
+

hT
i1(A)Ai′hi1(A) − λi′1(A)

λi1(A)
+

p∑
j=2

hT
ij(A)Ai′hij(A)

λij(A)

≥
2∑

j=1

λi′j(A)

λij(A)
+

2∑
j=1

hT
ij(A)Ai′hij(A) − λi′j(A)

λi2(A)
+

p∑
j=3

hT
ij(A)Ai′hij(A)

λij(A)

...

≥
p∑

j=1

λi′j(A)

λij(A)
+

p∑
j=1

hT
ij(A)Ai′hij(A) − λi′j(A)

λip(A)
=

p∑
j=1

λi′j(A)

λij(A)
. (B.7)

Thus, when tr{Σi(Ai′ − Ai)} = tr(A−1
i Ai′) − p, it holds that

∆i ≥
p∑

j=1

{λi′j(A)/λij(A) − 1 + log(λij(A)/λi′j(A))} ≥ 0

from the fact that c − 1 + log c−1 ≥ 0 for any positive constant c. Note that λ1j(A) ̸= λ2j(A) or
hT

ij(A)Ai′hij(A) < λi′j(A) for some j when A1 ̸= A2. Since c− 1 + log c−1 > 0 when c ̸= 1 , it holds
that ∆i > 0 when λ1j(A) ̸= λ2j(A) for some j. From (B.7), if hT

ij(A)Ai′hij(A) < λi′j(A) for some j,
it follows that tr(A−1

i Ai′) >
∑p

j=1(λi′j(A)/λij(A)), so that ∆i > 0. When µ1 ̸= µ2, it holds that
∆i ≥ µT

12Ai′µ12 > 0. Hence, it concludes the results.
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Proof of Theorem 1. We consider the case when x0 ∈ π1. Under (C-i) and (C-ii), it holds that for
i = 1, 2

Var{(x0 − µ1)
T Ai(xini − µi)} = tr(ΣiAiΣ1Ai)/ni = o(∆2

1)

and Var{(x0 − µ1 − x2n2 + µ2)
T A2µ12} = µT

12A2(Σ1 + Σ2/n2)A2µ12 = o(∆2
1) (B.8)

from the fact that

µT
12A2Σ2A2µ12 ≤ µT

12A2µ12λmax(A
1/2
2 Σ2A

1/2
2 ) ≤ ∆1tr{(Σ2A2)2}1/2 = o(n2∆2

1)

under (C-i). Note that (xini − µi)T Ai(xini − µi) − tr(AiSini)/ni =
∑ni

k ̸=k′(xik − µi)T Ai(xik′ −
µi)/{ni(ni − 1)}. Then, under (C-i) it follows that for i = 1, 2

Var{(xini − µi)
T Ai(xini − µi) − tr(AiSini)/ni} = O[tr{(ΣiAi)2}/n2

i ] = o(∆2
1). (B.9)

Then, by using Chebyshev’s inequality, from (B.8) and (B.9), we find that

W2(A2) − W1(A1) = tr[{(x0 − µ1)(x0 − µ1)
T − Σ1}(A2 − A1)] + ∆1 + oP (∆1). (B.10)

Here, under (A-i) and (C-iii), it follows that

Var
(
tr[{(x0 − µ1)(x0 − µ1)

T − Σ1}(A2 − A1)]
)

= O
(
tr[{Σ1(A2 − A1)}2]

)
= o(∆2

1). (B.11)

Thus by combining (B.10) with (B.11), under (A-i) and (C-i) to (C-iii), we obtain that {W2(A2)−
W1(A1)}/∆1 = 1 + oP (1), so that P{W2(A2) − W1(A1) > 0} → 1. When x0 ∈ π2, we have the
same arguments. The proof is completed.

Proof of Proposition 2. We note that

∆iA ≤ µT
12Ai′µ12λmax(A

1/2
i′ ΣiA

1/2
i′ ) ≤ ∆iλmax(A

1/2
i′ ΣiA

1/2
i′ ) (B.12)

and tr(ΣiAi′Σi′Ai′) ≤ tr{(ΣiAi′)2}1/2tr{(Σi′Ai′)2}1/2.

When lim supp→∞ λi1(A) < ∞, i = 1, 2, it holds that

λmax(A
1/2
i′ ΣiA

1/2
i′ ) ≤ λi1λmax(Ai′) = λi1λi′1(A) = O(λi1) and (B.13)

tr{(ΣlAl′)2} ≤ tr(ΣlAl′Σl)λl′1(A) ≤ tr(Σ2
l )λ

2
l′1(A) = O{tr(Σ2

l )}

for all l, l′. By combining (B.12) with (B.13), (C-i’) and (C-ii’) imply (C-i) and (C-ii).
Next, for (C-iii), it holds that tr[{Σi(A1−A2)}2] ≤ λi1tr{(A1−A2)Σi(A1−A2)}. When Ais are

diagonal matrices such as Ai = diag(ai(1), ...., ai(p)), i = 1, 2, it holds that ∆i ≥
∑p

j=1{ai′(j)/ai(j)−
1− log(ai′(j)/ai(j))} and tr{(A1 −A2)Σi(A1 −A2)} =

∑p
j=1 σi(j)(a1(j) − a2(j))2. Note that ai(j) ∈

(0,∞) as p → ∞ for all i, j, under λ(Ai) ∈ (0,∞) as p → ∞ for i = 1, 2. By Taylor expansion, we
claim that

ai′(j)/ai(j) − 1 − log(ai′(j)/ai(j)) ≥ a−2
i(j)(a1(j) − a2(j))

2/(2max{1, a2
i′(j)/a2

i(j)}).

Then, it follows that
∑p

j=1 σi(j)(a1(j) − a2(j))2 = O(∆i) because σi(j) ∈ (0,∞) as p → ∞ for all i, j.
Thus we have that tr[{Σi(A1 − A2)}2] = O(∆iλi1). It concludes the results.

Proof of Corollary 1. From Theorem 1 and Proposition 2, we can claim Corollary 1 straightfor-
wardly.
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Proof of Proposition 3. We first consider the case when lim infp→∞
∑p

j=1 |λij/λi′j−1|/p > 0. When
c1j < |λij/λi′j − 1| < c2j for some constants c1j (> 0) and c2j (< ∞), by Taylor expansion, it holds
that

λij/λi′j − 1 − log(λij/λi′j) ≥
(λij/λi′j − 1)2

2 max{1, λ2
ij/λ2

i′j}
≥

c1j |λij/λi′j − 1|
2(c2j + 1)2

.

When λij/λi′j → ∞ as p → ∞, it holds that for sufficiently large p

λij/λi′j − 1 − log(λij/λi′j) > |λij/λi′j − 1|/2.

Thus, when lim infp→∞
∑p

j=1 |λij/λi′j − 1|/p > 0, it follows that

lim inf
p→∞

∆i(IV )/p ≥ lim inf
p→∞

p∑
j=1

{λij/λi′j − 1 − log(λij/λi′j)}/p > 0

from (B.7).
Next, we consider the case when lim infp→∞ |tr(ΣiΣ−1

i′ )/p− 1| > 0. We note that tr(ΣiΣ−1
i′ ) ≥∑p

j=1 λij/λi′j from (B.7). When tr(ΣiΣ−1
i′ )/(

∑p
j=1 λij/λi′j) → 1 as p → ∞, it holds that

lim inf
p→∞

∣∣∣ p∑
j=1

(λij/λi′j)/p − 1
∣∣∣ > 0

under lim infp→∞ |tr(ΣiΣ−1
i′ )/p−1| > 0. It follows that lim infp→∞ ∆i(IV )/p > 0 from the fact that∑p

j=1 |λij/λi′j − 1|/p ≥ |
∑p

j=1(λij/λi′j)/p − 1|. On the other hand, we note that

∆i(IV ) ≥ tr(ΣiΣ−1
i′ ) − p −

p∑
j=1

log(λij/λi′j) ≥ tr(ΣiΣ−1
i′ ) −

p∑
j=1

(λij/λi′j)

because
∑p

j=1{λij/λi′j − 1 − log(λij/λi′j)} ≥ 0. Thus, when
∑p

j=1(λij/λi′j)/p − 1 → 0 as p → ∞
and lim infp→∞{tr(ΣiΣ−1

i′ )/(
∑p

j=1 λij/λi′j)} > 1, we have that lim infp→∞ ∆i(IV )/p > 0. Hence, it
concludes the results.

Proof of Theorem 2. Note that tr{(ΣiAi)2}/n2
i = o(δ2

i ), i = 1, 2. Then, similar to (B.8) to (B.11),
under (A-i) and (C-iv) to (C-vi), we have that as m → ∞

Wi′(Ai′) − Wi(Ai) − ∆i = 2(x0 − µi)
T {Ai(xini − µi) − Ai′(xi′ni′

− µi′)} + oP (δi) (B.14)

when x0 ∈ πi (i′ ̸= i). Note that 2ωi/δi → 1 as m → ∞ for i = 1, 2, under (C-vi). Then, by
combining Lemma B.1 with (B.14), we conclude the results.

Proof of Theorem 3. Similar to (B.14), under (A-i), (C-iv) and (C-v), we have that as m → ∞

Wi′(Ai′) − Wi(Ai) − ∆i =2(x0 − µi)
T {Ai(xini − µi)

− Ai′(xi′ni′
− µi′ + (−1)iµ12)} + oP (δi) (B.15)

when x0 ∈ πi (i′ ̸= i). Then, by combining Lemma B.2 with (B.15), we conclude the results.

Proof of Corollary 2. From Theorems 2 and 3, we can claim Corollary 2 straightforwardly.
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Proofs of Propositions 4 and 5. We consider the case when x0 ∈ π1. Similar to Proof of Lemma
B.3, we can claim that |{2(x0 − µ1) + µ12}T B̂2µ12| ≤ ||2(x0 − µ1) + µ12|| · ||µ12|| · ||B̂2|| =
OP (p1/2||µ12|| · ||B̂2||) = OP (p||B̂2||) because ||µ12||2 = O(p) and ||2(x0 − µ1) + µ12||2 = OP (p).
Thus, (B.6) holds under (C-viii) or (C-ix). Note that (B.4) and (B.5) naturally hold when Â1 = Â2

and A1 = A2. Hence, from Lemma B.3, it concludes the result of Proposition 5 when x0 ∈ π1.
Next, we consider (B.4) and the first term of (B.5). We have that for l = 1, 2

|tr(Σ1B̂l)| ≤ tr(Σ1)||B̂l|| = OP (p||B̂l||) and

|tr[{(x0 − µ1)(x0 − µ1)
T − Σ1}B̂l]| ≤ ||x0 − µ1||2||B̂l|| + tr(Σ1)||B̂l|| = OP (p||B̂l||).

Finally, we consider log |ÂlA
−1
l |, l = 1, 2, in (B.5). Let ep be an arbitrary (random) p-vector

such that ||ep|| = 1. Note that ||eT
p A

−1/2
l || ∈ (0,∞) as p → ∞ under λ(Al) ∈ (0,∞) as p → ∞.

Thus we have that

eT
p A

−1/2
l B̂lA

−1/2
l ep = eT

p A
−1/2
l ÂlA

−1/2
l ep − 1 = OP (||B̂l||),

so that λmin(A
−1/2
l ÂlA

−1/2
l )− 1 = OP (||B̂l||) and λmax(A

−1/2
l ÂlA

−1/2
l )− 1 = OP (||B̂l||). Hence,

under ||B̂l|| = oP (1), it holds that for l = 1, 2

log |ÂlA
−1
l | = log |A−1/2

l ÂlA
−1/2
l | = OP (p||B̂l||).

Note that ∆min = O(p) and δmin = O(p) under λ(Ai) ∈ (0,∞) as p → ∞ for i = 1, 2. Then,
under (C-viii), it holds that ||B̂l|| = oP (1) for l = 1, 2. Hence, (C-viii) implies (B.4) and (B.5). It
concludes the result of Proposition 4 when x0 ∈ π1. For the case when x0 ∈ π2, we can have the
same arguments. The proof is completed.

Proof of Corollary 3. Under (A-i) we have that Var{tr(Sini)} = O(tr(Σ2
i )/ni), i = 1, 2, so that

tr(Sini) = tr(Σi) + OP {(tr(Σ2
i )/ni)1/2}. Then, under (C-i’) it holds that tr(Sini) = tr(Σi) +

oP (∆min(II)) = tr(Σi){1 + oP (1)} and tr(Σ2
i )/(nip

2) = o(∆2
min(II)/p2) = o(1) for i = 1, 2, because

∆min(II) = O(p). Thus, we have that under (A-i) and (C-i’)

||B̂i|| = ||{p/tr(Sini) − p/tr(Σi)}Ip|| =
p|tr(Sini) − tr(Σi)|

tr(Sini)tr(Σi)

= OP {(tr(Σ2
i )/ni)1/2/tr(Sini)} = oP {∆min(II)/p} = oP (1), (B.16)

so that p||B̂i|| = oP (∆min(II)). Note that λmax(Ai) = λmin(Ai) = tr(Σi)/p ∈ (0,∞) as p → ∞.
Thus, from Theorem 1, Propositions 2 and 4, it concludes the result.

Proof of Corollary 4. We can write that

sini(j) = nisoini(j)/(ni − 1) − ni(xijni − µij)2/(ni − 1), (B.17)

where soini(j) =
∑ni

k=1(xijk−µij)2/ni. Note that lim supp→∞ E{exp(tij |(xijk−µij)2−σi(j)|/η
1/2
i(j))} ≤

lim supp→∞[E{exp(tij |xijk − µij |2/η
1/2
i(j))} + exp(tijσi(j)/η

1/2
i(j))] < ∞ under (A-iii). Then, under (A-

iii), for any x satisfying x → ∞ and x = o(n1/2
i ) as ni → ∞, we have that as ni → ∞

P (n1/2
i |soini(j) − σi(j)|/η

1/2
i(j) ≥ x) = exp

(
− x2

2
{1 + o(1)}

)
.
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Refer to Chapter 6 in de la Peña et al. [6] for the details of this result. Let τ1j = M(ηi(j)n
−1
i log p)1/2

for j = 1, ..., p, where M > 21/2. Then, under n−1
i log p = o(1), it holds that as p → ∞

p∑
j=1

P (|soini(j) − σi(j)| ≥ τ1j) =
p∑

j=1

P (n1/2
i |soini(j) − σi(j)|/η

1/2
i(j) ≥ M(log p)1/2)

=
p∑

j=1

exp
(
− M2 log p

2
{1 + o(1)}

)
→ 0. (B.18)

Next, we consider the second term of (B.17). Let uij = tij(σi(j)/ηi(j))1/2 for j = 1, ..., p. Then,
we have that for j = 1, ..., p

E{exp(uij |xoijk|/σ
1/2
i(j))}

= E{exp(uij |xoijk|/σ
1/2
i(j))I(|xoijk| ≤ 1)} + E{exp(uij |xoijk|/σ

1/2
i(j))I(|xoijk| > 1)}

≤ exp(uij/σ
1/2
i(j)) + E{exp(uijx

2
oijk/σ

1/2
i(j))} ≤ exp(uij/σ

1/2
i(j)) + E{exp(tisx2

oijk/η
1/2
i(j))},

so that lim supp→∞ E{exp(uij |xoijk|/σ
1/2
i(j))} < ∞ under (A-iii). Thus, in a way similar to (B.18),

we have that
p∑

j=1

P (|xijni − µij | ≥ τ2j) =
p∑

j=1

P (n1/2
i |xijni − µij |/σ

1/2
i(j) ≥ M(log p)1/2) → 0 (B.19)

for τ2j = M(σi(j)n
−1
i log p)1/2, j = 1, ..., p. By combining (B.18) and (B.19) with (B.17), under

n−1
i log p = o(1) and (A-iii), we have that

p∑
j=1

P{|sini(j) − niσi(j)/(ni − 1)| ≥ ni(τ1j + τ2
2j)/(ni − 1)}

≤
p∑

j=1

P (|soini(j) − σi(j)| + |xijni − µij |2 ≥ τ1j + τ2
2j)

≤
p∑

j=1

P (|soini(j) − σi(j)| ≥ τ1j) +
p∑

j=1

P (|xijni − µij |2 ≥ τ2
2j) → 0.

Note that niσi(j)/(ni − 1) = σi(j) + o(n−1/2
i ) and τ2

2j = o(τ1j) under n−1
i log p = o(1). Thus we have

that maxj=1,...,p{|sini(j) − σi(j)|} = OP (maxj=1,...,p τ1j) under n−1
i log p = o(1) and (A-iii), so that

max
j=1,...,p

{|sini(j) − σi(j)|} = OP {(n−1
i log p)1/2}. (B.20)

Then, for i = 1, 2, it holds that under n−1
i log p = o(1)

||B̂i|| = ||S−1
i(d) − Σ−1

i(d)|| = max
j=1,...,p

{|sini(j) − σi(j)|/(sini(j)σi(j))}

= OP {(n−1
i log p)1/2} = oP (1). (B.21)

Then, it follows that (C-i’) holds under (18). From the fact that ∆min(III) = O(p), note that
n−1

min log p = o(1) under (18). Then, by combining (B.21) with Theorem 1, Propositions 2 and 4,
we can claim the result of Corollary 4.

11



Proofs of Corollary 5. First, note that sn(j)−σ(j) =
∑2

i=1(ni−1)(sini(j)−σi(j))/(
∑2

i=1 ni−2). From
(B.20), we can claim that maxj=1,...,p{|sn(j) − σ(j)|} = OP {(n−1

min log p)1/2} under n−1
min log p = o(1)

and (A-iii). Thus it follows that ||S−1
n(d)−Σ−1

(d)|| = OP {(n−1
min log p)1/2}. Note that ∆(III′)/||µ12||2 ∈

(0,∞) as p → ∞. Then, by combining Theorem 1 with Propositions 2 and 5, we can claim the
result of Corollary 5.

Proof of Theorem 4. By using (B.19) and (B.20), we claim the result.

Proof of Corollary 6. By using Theorem 4, we can claim the result straightforwardly.

Proof of Corollary 7. Let us write that for i = 1, 2

Wi(Σ−1
i(d))FS =

∑
j∈D

{(x0j − xijni)
2/σi(j) − sini(j)/(σi(j)ni) + log σi(j)}.

Note that
E{Wi′(Σ−1

i′(d))FS} − E{Wi(Σ−1
i(d))FS} = ∆i(III) (i′ ̸= i) when x0 ∈ πi.

Also note that lim infp→∞ ∆min(III)/p∗ > 0 under lim infp→∞ θj > 0 for all j ∈ D. If λmax(Σi∗) =
o(p∗), (C-i’) and (C-ii’) hold for Σi∗, i = 1, 2. Here, let us write that Σi(d)∗ = diag(σi(j1), ..., σi(jp∗ ))
and Si(d)∗ = diag(sini(j1), ..., sini(jp∗ )) for i = 1, 2, where D = {j1, ...., jp∗}. Then, in a way similar
to (B.21), under n−1

i log p = o(1) and (A-iii), it holds that ||S−1
i(d)∗ − Σ−1

i(d)∗|| = OP {(n−1
i log p)1/2}.

Hence, we have that p∗||S−1
j(d)∗ − Σ−1

j(d)∗|| = oP (∆min(III)) under lim infp→∞ θj > 0 for all j ∈ D.
By combining Corollary 6 with Propositions 2 and 4, we can claim the result.

B.3 Additional corollaries

In this section, we give two corollaries and proofs of the corollaries.

Corollary B.1. Assume either (A-i) and (C-vi) or (A-ii) and (C-vii). Then, for the classification
rule by (3) with (16), we have (12) under

λmax(||µ12||2 + λmax)
nminδ2

min(II)

= o(1) and
tr(Σ2

max){(tr(Σ1)/tr(Σ2) − 1)2 + 1/n2
min}

δ2
min(II)

= o(1), (B.22)

where δmin(II) = min{δ1(II), δ2(II)}.

Proof of Corollary B.1. We consider the case when x0 ∈ πi. Note that tr(Slnl
)/tr(Σl) = 1 +

OP {(tr(Σ2
l )/nl)1/2/p} = 1 + oP (1), l = 1, 2, and tr{(x0 − µi)(x0 − µi)T − Σi} = OP (tr(Σ2

i )
1/2)

under (A-i). Also, note that

tr(Σ2
i )tr(Σ

2
l ) ≤ λi1λl1tr(Σi)tr(Σl) = o(nminδ

2
min(II)p

2), l = 1, 2

under (B.22). Then, from (B.16), it holds that for l = 1, 2

tr[{(x0 − µi)(x0 − µi)
T − Σi}B̂l]

= p
tr(Σl) − tr(Slnl

)
tr(Σl)tr(Slnl

)
tr{(x0 − µi)(x0 − µi)

T − Σi}

= OP {(tr(Σ2
i )tr(Σ

2
l )/nl)1/2/p} = oP (δmin(II)), and (B.23)

p||B̂l||/n
1/2
l = OP {tr(Σ2

l )
1/2/nl} = oP (δmin(II))
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under (A-i) and (B.22). Similarly, from (B.16), under (A-i) and (B.22), we have that for i′ ̸= i

{2(x0 − µi) + (−1)i+1µ12}T B̂i′µ12

= OP {(µT
12Σiµ12/ni′)1/2} + OP {(tr(Σ2

i′)/ni′)1/2||µ12||2/p}
= OP {(λi1||µ12||2/ni′)1/2} + OP {(λi′1||µ12||2/ni′)1/2} = oP (δmin(II))

from the facts that µT
12Σiµ12 ≤ λi1||µ12||2 and tr(Σ2

i′) = O(λi′1p). On the other hand, under (A-i)
and (B.22), from (B.16), we have that for l = 1, 2

log{tr(Σl)/tr(Slnl
)} = (tr(Σl)/tr(Slnl

) − 1) + OP {(tr(Σl)/tr(Slnl
) − 1)2}

= (tr(Σl)/tr(Slnl
) − 1) + OP {tr(Σ2

l )/(nlp
2)}

= (tr(Σl)/tr(Slnl
) − 1) + oP (δmin(II)/p)

from the facts that tr(Σ2
l )/p = O(λl1) and tr(Σl)/tr(Slnl

) = 1 + oP (1). Then, under (A-i) and
(B.22), it holds that

tr(ΣiB̂i) − log |ÂiA
−1
i | = p(tr(Σi)/tr(Sini) − 1) − p log{tr(Σi)/tr(Sini)} = oP (δmin(II)).

Similarly, under (A-i) and (B.22), we have that

tr(ΣiB̂i′) − log |Âi′A
−1
i′ | = p(tr(Σi)/tr(Σi′) − 1)(tr(Σi′)/tr(Si′ni′

) − 1) + oP (δmin(II))

= OP (|tr(Σi)/tr(Σi′) − 1|(tr(Σ2
i′)/ni′)1/2) + oP (δmin(II)) = oP (δmin(II)).

(B.24)

Here, by noting that tr(Σl)/p ∈ (0,∞) as p → ∞ for l = 1, 2, we have that

tr{(ΣiΣl)2} = tr{(Σ1/2
i ΣlΣ

1/2
i )2}

≤ λmax(Σ
1/2
i ΣlΣ

1/2
i )tr(Σ1/2

i ΣlΣ
1/2
i ) ≤ λmax(Σi)λl1δ

2
i(II)nl = O(λi1λl1δ

2
i(II)nl); and

µT
12Σlµ12 ≤ ||µ12||2λmax(Σl) = O(||µ12||2λl1) for l = 1, 2.

Thus, (C-iv) holds under (B.22). Also, (C-v) holds under (B.22). Hence, by combining (B.23) to
(B.24) with Lemma B.3, Theorems 2 and 3, we can claim the result.

Corollary B.2. Let ηi(rs) = Var(xoirkxoisk) for i = 1, 2, and r, s = 1, ..., p (k = 1, ..., ni). Assume
(A-i) and (A-iii). Assume also λ(Σi) ∈ (0,∞) as p → ∞ and lim infp→∞ ηi(rs) > 0 for all r, s;
i = 1, 2. Then, for the classification rule by (3) with (21), we have (6) under the conditions that
p1/2/∆min(IV ) = o(1) and p4 log p/(nmin∆2

min(IV )) = o(1).

Proofs of Corollary B.2. Let Soini =
∑ni

k=1(xik − µi)(xik − µi)T /ni and denote its (r, s) element
by soini(rs) for r, s = 1, ..., p. Let ui(rs) = min{tir/η

1/2
i(r), tis/η

1/2
i(s)}η

1/2
i(rs) for r, s = 1, ..., p. Then, we

have that for r, s = 1, ..., p

E{exp(ui(rs)|xoirkxoisk − σi(rs)|/η
1/2
i(rs))}

≤ E[exp{ui(rs)(x
2
oirk/2 + x2

oisk/2 + σi(rs))/η
1/2
i(rs)}]

≤ exp(ui(rs)σi(rs)/η
1/2
i(rs))E[exp{tirx2

oirk/(2η
1/2
i(r))} exp{tisx2

oisk/(2η
1/2
i(s))}]

≤ exp(ui(rs)σi(rs)/η
1/2
i(rs))[E{exp(tirx2

oirk/η
1/2
i(r))}E{exp(tisx2

oisk/η
1/2
i(s))}]

1/2,
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so that lim supp→∞ E{exp(ui(rs)|xoirkxoisk − σi(rs)|/η
1/2
i(rs))} < ∞ under (A-iii). Note that sini(rs) =

nisoini(rs)/(ni − 1)−ni(xirni −µir)(xisni −µis)/(ni − 1), where sini(rs) is the (r, s) element of Sini .
Also, note that ηi(rs) ∈ (0,∞) as p → ∞ under (A-iii) and lim infp→∞ ηi(rs) > 0 for all r, s, from
the fact that ηi(rs) ≤ {(ηi(r) + σ2

i(r))(ηi(s) + σ2
i(s))}

1/2. In a way similar to (B.18) and (B.19), under
n−1

i log p = o(1), (A-iii) and lim infp→∞ ηi(rs) > 0 for all r, s, we have that

p∑
r,s=1

P{|sini(rs) − niσi(rs)/(ni − 1)| ≥ ni(τ1(rs) + τ2(rs))/(ni − 1)}

≤
p∑

r,s=1

{P (|soini(rs) − σi(rs)| ≥ τ1(rs)) + P (|xirni − µir||xisni − µis| ≥ τ2(rs))}

≤
p∑

r,s=1

P (|xirni − µir|2 + |xisni − µsr|2 ≥ τ2(rs))} + o(1) → 0

for τ1(rs) = M(ηi(rs)n
−1
i log p)1/2 and τ2(rs) = M2{(σi(r) + σi(s))n

−1
i log p}, r, s = 1, ..., p, where

M > 2. Thus it holds that maxr,s=1,...,p{|sini(rs)−σi(rs)|} = OP (maxr,s=1,...,p τ1(rs)) because τ2(rs) =
o(τ1(rs)), so that

max
r,s=1,...,p

{|sini(rs) − σi(rs)} = OP {(n−1
i log p)1/2}. (B.25)

Here, from the equations (A1) and (A2) in Bickel and Levina [4], we have that ||M || ≤ maxs=1,...,p∑p
t=1 |mst| for any symmetric matrix M , where mst is the (s, t) element of M . From (B.25), we

have that

||Sini − Σi|| = OP {p(n−1
i log p)1/2} = oP (1) (B.26)

under n−1
i p2 log p = o(1), (A-iii) and lim infp→∞ ηi(rs) > 0 for all r, s. Then, under λ(Σi) ∈ (0,∞)

as p → ∞, we can claim that λ(Sini) ∈ (0,∞) in probability. Thus it holds that ||eT
p Σ−1

i || ∈
(0,∞) and ||eT

p S−1
ini

|| ∈ (0,∞) in probability, where ep is an arbitrary (random) p-vector such
that ||ep|| = 1. Then, from (B.26), we have that eT

p Σ−1
i (Sini − Σi)S−1

ini
ep = eT

p (Σ−1
i − S−1

ini
)ep =

OP {p(n−1
i log p)1/2} under n−1

i p2 log p = o(1), (A-iii) and lim infp→∞ ηi(rs) > 0 for all r, s, so that
||B̂i|| = OP {p(n−1

i log p)1/2} = oP (1). Note that (C-i’) and (C-ii’) hold under the conditions of
Corollary B.2. Also, note that tr{(Ip −ΣiΣ−1

i′ )2} = O(p) (i′ ̸= i) under λ(Σi) ∈ (0,∞) as p → ∞.
By combining Theorem 1 with Propositions 2 and 4, we can claim the result.
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