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Abstract: Shorea platyclados (Dark Red Meranti) is a commercially important timber tree species in
Southeast Asia. However, its stocks have dramatically declined due, inter alia, to excessive logging,
insufficient natural regeneration and a slow recovery rate. Thus, there is a need to promote enrichment
planting and develop effective technique to support its rehabilitation and improve timber production
through implementation of Genome-Wide Association Studies (GWAS) and Genomic Selection (GS).
To assist such efforts, plant materials were collected from a half-sib progeny population in Sari Bumi
Kusuma forest concession, Kalimantan, Indonesia. Using 5900 markers in sequences obtained from
356 individuals, we detected high linkage disequilibrium (LD) extending up to >145 kb, suggesting
that associations between phenotypic traits and markers in LD can be more easily and feasibly
detected with GWAS than with analysis of quantitative trait loci (QTLs). However, the detection
power of GWAS seems low, since few single nucleotide polymorphisms linked to any focal traits were
detected with a stringent false discovery rate, indicating that the species’ phenotypic traits are mostly
under polygenic quantitative control. Furthermore, Machine Learning provided higher prediction
accuracies than Bayesian methods. We also found that stem diameter, branch diameter ratio and
wood density were more predictable than height, clear bole, branch angle and wood stiffness traits.
Our study suggests that GS has potential for improving the productivity and quality of S. platyclados,
and our genomic heritability estimates may improve the selection of traits to target in future breeding
of this species.
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1. Introduction

Tropical rainforests in Southeast Asia are dominated by Dipterocarpaceae family [1,2], including
Shorea platyclados, which has excellent timber quality [3]. In international trade, it is one of the
commercially important timber tree species known as Dark Red Meranti. However, increasing global
demand for its timber products triggered proliferation of excessive logging activities in the natural
forests [4]. This, together with insufficient natural regeneration and a slow recovery rate has led to a
dramatic decline in its stocks [5,6]. Thus, there are needs to promote enrichment planting and develop
effective techniques to support forest rehabilitation and improve good quality timber production.
For these reasons, S. platyclados breeding programs started in Indonesia in 2006 with collection of
numerous seeds from 81 mother trees in natural populations and were then planted in a progeny trial.
Phenotypic traits were then evaluated to select the trees that showed the best growth performance.
However, due to the long lifespan and juvenility period of forest tree species, evaluation of such
conventional breeding is time-consuming, laborious and expensive. Thus, genome-wide approaches,
including Genome-Wide Association Study (GWAS) and Genomic Selection (GS), have been recently
developed to overcome these problems [7–9]. These techniques seem to offer promising strategies for
genetic improvement of complex traits and accelerating breeding cycles of forest tree species [7,10,11].
GWAS provides potential capacity to identify the genes that are causally associated with phenotypes
of focal traits, especially traits that are strongly affected by one or a few genes. However, it has been
less successful in identifying such genes in species with phenotypes that are mostly influenced by
numerous minor quantitative trait loci (QTLs) [12,13].

GS is fundamentally different from GWAS, as it involves use a full-genome information, regardless
of its significance, in relation to a specific trait, rather than a few markers as in GWAS. This
genotypic information, collected from training and validation population, is used in conjunction
with corresponding phenotypic data, collected from training population, to develop a predictive
model [12,14]. In forest tree breeding programs, GWAS and GS could substantially reduce the length of
breeding cycles and increase genetic gain per unit time through early selection of superior genotypes
during the juvenile phase. Therefore, the entire cycles of progeny field testing can potentially be
skipped in the selection process [8,15].

Numerous statistical models and algorithms have been developed for improving genomic
prediction accuracy, including parametric and non-parametric statistical methods [16,17]. Parametric
methods, including Bayesian techniques, such as Bayesian Ridge Regression, Bayesian LASSO, Bayes
A, Bayes B and Bayes C [18–20], are the most commonly used in GS studies of forest tree species [21–23].
Since these statistical methods cannot explicitly account for interactions among single nucleotide
polymorphisms (SNPs), application of Machine Learning in GS studies has been proposed. Machine
Learning is being increasingly applied in GS studies because it does not require any assumptions about
the underlying traits, it is easy to use, and it can both capture complex non-linear relationships and
efficiently increase prediction accuracy [14]. Popular Machine Learning methods include Random
Forest (RF), Extreme Gradient Boosting (XgBoost) and Bayesian Additive Regression Tree (BART)
modelling. In RF modelling, many decision trees (often hundreds to thousands) are constructed and
de-correlated so the average over the resulting ‘forest ensemble’ will result in lower variance. XgBoost
involves similar principles, but applies a more regularized model to control over-fitting. BART is a
sum-of-trees method, in which each decision tree is constrained by three Bayesian regularization prior
distribution. A study of beef cattle has confirmed that Machine Learning methods can successfully
improve the prediction accuracy of focal traits [24–26]. Beside statistical model performance, other
factors are known to influence the accuracy of genomic prediction, such as the extent and distribution
of linkage disequilibrium between markers and QTLs, trait heritability, marker density and relationship
between training and validation population [15,27].

GWAS and GS have been successfully applied in numerous evaluations of genetic controls
of growth, wood properties, disease resistance and male fecundity in forest tree species including
Eucalyptus grandis × E. camaldulensis [15,23], E. pellita, E. benthamii [22], E. grandis [28], E. grandis × E.
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urophylla [29], loblolly pine (Pinus taeda) [23], white spruce (Picea glauca) [30], maritime pine (Pinus
pinaster) [31] and recently Japanese cedar (Cryptomeria japonica) [32,33]. Therefore, the study presented
here had four objectives. First, to assess the extent of linkage disequilibrium (LD) in a half-sib progeny
trial population of S. platyclados. Second, to apply GWAS to assess its utility for enhancing the timber
yield (tree growth) and timber quality (wood density and stiffness). Third, to evaluate the efficiency of
genomic prediction using Bayesian methods and three Machine Learning methods. Fourth, to estimate
the genomic heritability of the considered traits that may improve the genomic prediction accuracy.

2. Materials and Methods

2.1. Study Site

The study focused on material in a progeny trial of a S. platyclados population at Sari Bumi
Kusuma forest concession (PT-SBK), Central Kalimantan, Indonesia (Figure 1). The material consists of
representatives of 81 open-pollinated half-sib families collected (as seeds) from mother trees in a natural
population in the PT-SBK region. The trial was established in May 2006 using a factorial Randomized
Complete Block Design (RCBD) with nine replications, each containing four individuals from a single
mother tree. Seedlings were planted with 6 × 3 m initial spacing between them. PT-SBK management
has included two thinnings to increase spacing, remove unhealthy and damaged individuals, and
reduce competitional effects of neighboring trees. During the progeny trial establishment, individuals
from four mother trees did not survive, thus 77 mother trees remained. In September 2017, a total of 420
S. platyclados trees were selected from four replicates of the progeny trials that had a mean, minimum
and maximum number of offspring per family of 5, 1 and 10 respectively. They were then phenotyped
and genotyped for the analysis presented here. After sequencing and filtering, data pertaining to 356
individuals were subjected to GWAS and GS analysis.
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2.2. Phenotypic Data

In 2017, 11 years after planting (after the second thinning), we measured seven important traits,
including growth, branching quality and wood quality traits of the 420 S. platyclados trees. The growth
traits were stem diameter at breast height (DBH), total height and clear bole height; the branching
quality traits were branch angle and branch diameter ratio, and the wood quality properties were wood
density and wood stiffness. We also measured DBH and total height in 2014, eight years after planting
(before thinning). Stem diameter at breast height was measured at 1.3 m above ground level using a
diameter tape. Total height was measured from the ground to the top of the tree using Haga altimeter,
while clear bole was defined as the height of the tree from stem base to the crown base. Branch angle
was defined as the vertical intersection angle between the pith of the first branch of the tree’s crown and
the stem, recorded in four categorial scores: 1 (≤22.5◦), 2 (>22.5–45◦), 3 (>45–67.5◦) and 4 (>67.5–90◦).
The branch diameter ratio (the ratio of the diameter of this branch to the stem diameter at the branching
point) was recorded in six categorical scores: 1 (1:1), 2 (2:1), 3 (3:1), 4 (4:1), (5:1) and 6 (6:1). Wood
density and wood stiffness were measured using Pilodyn 6J Forest (FTS., Ltd., Tokyo, Japan) and
TreeSonic Microsend Timer (Fakopp Enterprise Bt., Fenyo, Hungary) instruments, respectively.

2.3. Genotypic Data and SNP Discovery

Leaf samples were taken from each selected individual, then stored at −20 ◦C prior to DNA
extraction. Total genomic DNA was extracted from 20 mg of each sample using a modified cetyltrimethyl
ammonium bromide (CTAB) method [34]. After purifying the extracted DNA using a Chromatin
Immunoprecipitation (ChIP) DNA Clean & ConcentratorTM-10 Kit (Zymo Research, Irvine, CA, USA),
its concentration was quantified using a QubitTM dsDNA Broad Range Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA). Double digest restriction site-associated DNA sequencing (ddRADseq)
libraries were prepared following [35]. Briefly, genomic DNAs were double digested using PstI and
Sau3AI restriction enzymes (Invitrogen, Waltham, MA, USA), ligated with Y-shaped adaptors and
amplified using PCR with KAPA HiFi polymerase (KAPA BIOSYSTEMS, Boston, MA, USA). After
PCR amplification with adapter specific primer pairs (Access Array Barcode Library for Illumina,
Fluidigm, South San Francisco, CA, USA), an equal amount of DNA from each sample was mixed
and size-selected with BluePippin 2% agarose gel (Sage Science, Beverly, MA, USA). Approximately
450 bp library fragments were retrieved. The quality of the library was checked using KAPA Library
Quantification Kits on LightCycler 480 Instrument (Roche, Basel, Switzerland). Finally, nucleotide
sequence libraries were then sequenced using a high-throughput Illumina Hi-Seq X Ten platform
(Macrogen, Inc., Seoul, South Korea) to generate paired-end reads with a 150 bp long.

Out of 420 individuals genotyped in this research, the Illumina Hi-Seq X Ten platform successfully
sequenced 384 individuals. Obtained raw reads were mapped to a reference genome sequences data
(unpublished data) of S. leprosula, which is closely related species of S. platyclados [36]. The draft genome
sequence was obtained by Ng et al. entitled “Dipterocarp genomes highlight the ecological relevance
of drought in a seasonal tropical rainforest” (unpublished observation). In addition, [37] estimated that
C-value of S. platyclados was 0.412 pg. We obtained a rough estimation of genome size for S. platyclados
is 379 Mbp. The dDocent pipeline [38] was used for quality trimming (Trimmomatic v.0.33) [39], read
mapping (BWA mem v.0.7.12) [40] and SNP calling (FreeBayes v.0.9.20) [41]. We selected loci (sites)
that were biallelic (without indels in both reference and samples) and polymorphic in the samples,
with higher sequencing quality and fewer missing genotypes using the VCFtools [42]. Initially, a total
of 643 million reads (643,464,580 reads) covering 97.16 Gb of sequence data, with an average of 1.2
million reads (1,675,689 reads) per sample were generated. Furthermore, we excluded 17 individuals
due to low quality reads sequencing (less than 100,000 reads), and thus, 367 individuals remained
with a total of 643,446,244 sequencing reads (97.16 Gb). In the first filtering step we only retained
variants (257,545 SNPs) that had been successfully genotyped in more than 50% of the individuals
(max missing parameter: 0.5), with minimum allele count of 3 (mac 3), minimum quality score of 30
(minQ 30) and minimum sequencing depth per SNP and individual of 3 (minDP3). The next step was
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to eliminate data pertaining to individuals that had not been sequenced well by assessing individual
levels of missing data with VCFtools [42], thus, sequences of 356 individuals remained. An iterative
filtering process was then applied to maximize the number of individuals and loci in the final dataset
by applying the following criteria: calling rate > 95%, minor allele frequency (MAF) < 0.05 and minDP
< 10. This reduced the total number of SNPs to 27,829. We then filtered loci based on numerous criteria,
including allele balance at heterozygous loci, overlapping forward and reverse reads, proper read
pairing and ratio of quality depth. It remained 8831 SNPs. We then removed SNPs that deviated
significantly from Hardy-Weinberg Equilibrium (HWE) at p > 0.001. After these entire filtering process,
a total of 5900 high quality SNPs of 356 individuals were retained for the GWAS and GS analyses.

2.4. Population Structure and Genetic Diversity

LD-based SNP pruning was implemented in PLINK v1.9 [43] to select only SNPs that are
approximately uncorrelated with each other based on these criteria: window size in SNPs was 1000,
the number of SNPs to shift the window at each step was five and the variance inflation factor (VIF)
threshold was 1.5. This step resulted 2660 SNPs. Population structure and genetic diversity was
then calculated among 356 individuals and 2660 SNP markers of S. platyclados. Population structure
analyses was estimated based on Probabilistic Principal Component Analysis (PPCA) performed using
“ppca” function in the pcaMethods package in R [44]. Furthermore, we estimated the genetic diversity
using the program GenAlEx v.6.5 [45], including the mean number of alleles (Na), number of effective
alleles (Ne), Shannon’s index (I), diversity index (h), unbiased diversity index (uh) and percentage of
polymorphic loci (PPL).

2.5. Linkage Disequilibrium

Linkage Disequilibrium (LD) was estimated by calculating the squared allele frequency correlation
coefficient (r2) between pairs of 5900 SNP markers distributed throughout the genome using the TASSEL
5.0 software package [46]. The r2 values were plotted against corresponding genetic distances in base
pairs (bp). A smooth line was drawn using second-degree locally weighted polynomial regression
(LOESS) by applying the “loess” function in the R statistical program (http://www.r-project.org).
The intersection between this line and a threshold value of 0.1 for r2 (plotted as horizontal line in
the resulting LD scatterplots) was assumed to provide indications of LD decay in the S. platyclados
genome [47,48].

2.6. Spatial Analysis and Genotype Imputation

As already mentioned, an RCBD experimental design was applied in the progeny trial, in
accordance with its frequent use in trials covering large physical areas with numerous individuals,
including multiple individuals from each family, and large spacing between individuals, with
significant between-microsite variation [49]. This experimental design and environmental variation
lead to significant block (fixed) and spatial (random) effects on phenotypic performance. Therefore,
spatial analysis was necessary before GWAS and GS to account for these effects. For this, a
spatial autocorrelation structure (AR1 × AR1) model, implemented in breedR packages of R [50,51],
was applied.

We also imputed missing marker genotypes to replace missing observations in the dataset and
boost the statistical power of genomic prediction [52,53], using BEAGLE 4.1 [54]. The algorithm run in
this pipeline started with randomly phasing genotypes and imputing missing values of individuals.
An iterative “expectation-maximization” algorithm update was repeated in a subsequent step for
re-estimating phases and re-inferring missing values from current sampling of phasing information [55].
The imputed genotype data were then subsequently used in GWAS and genomic prediction analyses.

http://www.r-project.org
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2.7. GWAS Using All Individuals and Markers

Data on 5900 markers in 356 individuals were used for GWAS analysis, in which a false discovery
rate (FDR) of 0.05 [56] was applied to detect statistically significant results [57] implemented in rrBLUP
package in R [58]. To determine the influence of population stratification and kinship relationship,
we compared four models and examined the distribution of p-values obtained in the association test,
including a mixed model with no structure or kinship effects (naïve model), model with population
structure (Q model), model with covariates to account for kinship effects (K model) and a mixed model
that incorporated both population structure and marker-based kinship estimation (Q+K model). Q
values (FDR-corrected p values) were calculated using the “p.adjust” function in R. Quantile-quantile
(Q-Q) and Manhattan plots were generated with the qqman in R package [59] to assess for the model’s
ability to control for type I errors and identify significant genes explaining phenotypic variation.

2.8. Four-Fold Cross-Validation of GWAS-Based Genomic Prediction

We randomly split 356 individuals into four sets of 89, then used each combination of three sets as
training populations, and the other ones as a validation population for four-fold cross validation. We
then applied GWAS using 5900 SNPs of all individuals in the training population, which were obtained
with the “GWAS” function implemented in the rrBLUP package in R [58]. In the GWAS analysis,
−log10(P) value of each marker for each of the focal traits was calculated. A Mixed Linear Model
was applied to reduce spurious associations or false positive (type I errors) by computing a kinship
matrix (K) and account for population genetic structure (Q). The kinship matrix was computed by the
“A.mat” function of the rrBLUP package in R, while the “n.PC” option was used to specify the number
of principal components (PCs) as fixed-effect covariates to account for population structure [33,60].
PCs were estimated by Probabilistic Principal Component Analysis (PPCA). Following previous
studies [21,33], with modification, we used two datasets to assess genomic prediction accuracy:

(a) all SNP markers in the whole genome (5900 SNPs);
(b) selected SNP markers with high −log10(P) values according to the GWAS analysis (applying five

GWAS-based thresholds: −log10(P) > 0.5, −log10(P) > 0.75, −log10(P) > 1, −log10(P) > 1.25, and
−log10(P) > 1.5.

Genomic prediction accuracy was estimated using both parametric and non-parametric methods.
The parametric methods included use of five Bayesian models: Bayesian LASSO, Bayesian Ridge
Regression, Bayes A, Bayes B and Bayes C implemented in the BGLR Package in R [20,22]. The
non-parametric methods included three Machine Learning methods: RF, XgBoost and BART [24–26].
We tested the accuracy of each model for predicting phenotypic traits for the validation population using
four-fold cross validation (with 267 individuals as the training set and 89 remaining individuals as the
validation set in each fold). Prediction accuracy was estimated as the correlation between the predicted
Genomic Estimated Breeding Values (GEBVs) and observed phenotypes in all the cross-validation tests.
We then estimated the genomic prediction accuracy using Bayesian models for all subsets. Following
this step, we selected the best −log10(P) threshold providing the highest prediction accuracy and lowest
Deviance Information Criterion (DIC). Finally, we used the selected subset of SNPs to estimate the
genomic prediction accuracy provided by the Machine Learning methods (RF, XgBoost and BART).

2.9. Genomic Heritability

Narrow-sense genomic heritability, defined as the proportion of additive variance that can be
explained by linear regression on a set of markers, was calculated as the ratio of additive genetic
variance to the total phenotypic variance using the equation: h2 = σ2

a/σ2
y [61]. Genomic heritability

was obtained from variance components estimated using the Bayesian Ridge Regression model (which
resulted in the lowest DIC value for all traits in the genomic prediction analysis) implemented in the
BGLR R-package [20]. We calculated genomic heritability using all markers and selected markers. The
term “selected markers” was defined as the markers that have −log10(P) > 0.75 for stem diameter
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and −log10(P) > 0.5 for height traits at age 8 years, −log10(P) > 1, −log10(P) > 0.5 for stem diameter
and height traits at age 11 years, −log10(P) > 0.5, −log10(P) > 1.25, −log10(P) > 1.25 for clear bole,
branch angle and branch diameter ratio, respectively. In addition, markers that have −log10(P) > 0.5
and −log10(P) > 1 were selected to calculate genomic heritability of wood density and wood stiffness.
These −log10(P) values were chosen based on their ability in resulting the highest prediction ability
represented in Bayesian models.

3. Results

3.1. Population Structure and Linkage Disequilibrium

Population structure across S. platyclados individuals was assessed by PPCA with six axes. The
first two PCs explained 3.58% and 2.70% of the total genetic variance (Figure 2). The population formed
a single group; mean number of alleles (Na) and number of effective alleles (Ne) were 1.843 and 1.269,
respectively; average Shannon’s (I), diversity (h) and unbiased diversity index (uh) had values of 0.324,
0.192 and 0.195, respectively; the percentage of polymorphic loci (PPL) in the population was 92.14%
(Table S1). Examination of the pattern of physical LD over 5900 SNPs of the 356 genotypes showed
that the genome-wide average r2 dropped below 0.1 within 145 kb (Figure 3).
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polymorphisms (SNPs). The trend line of the nonlinear regressions against physical distance is given
by the red line. The horizontal blue and vertical green lines represent the critical value of r2 (0.1) and
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3.2. Genome-Wide Association Study

A mixed linear model (MLM), accounting for both population structure (Q) and kinship relatedness
(K) was used for detecting marker-trait associations in the GWAS. The MLM (Q+K) model yielded
the least departures of observed P-value from the expected P-value distribution in the validation
population, as shown in the Q-Q plots for all traits (Figures 4–6). In addition, the observed p-value in
the naïve model, Q model and K model also showed the least deviation from the expected p-value,
which indicated that these models may also be able to control false positives (Figures S1–S4). Of the
5900 SNPs tested with two traits before thinning and seven traits after thinning, we identified one
significant SNPs of the height traits in age 8 years (sscaffold00183_353635) that have a P FDR value of
0.0045. However, we could not identify whether SNPs showed a significant association (FDR-adjusted
p-value < 0.05) with other traits. The minimum −log10(P) values for the traits were 6.59 × 10−5 and
9.30 × 10−5 for DBH and height before thinning, respectively, 4.14 × 10−6 and 2.22 × 10−5 for DBH
and height after thinning, respectively, 7.99 × 10−5 for clear bole, 8.74 × 10−5 for branch angle, 8.00 ×
10−5 for branch diameter ratio, 4.35 × 10−5 for wood density and 1.49 x 10−4 for wood stiffness. The
FDR-adjusted P-values were 0.71189 to 0.99985 and 0.00454 to 0.99979 for DBH and height before
thinning, respectively. After thinning, these values were higher for DBH (0.12991 to 0.99999), 0.34997
to 0.99995 for height, 0.27502 to 0.99982 for clear bole, 0.99979 to 0.99980 for branch angle, 0.27902 to
0.99982 for branch diameter ratio, 0.55730 to 0.99990 for wood density and 0.47262 to 0.99966 for wood
stiffness (Table S2).
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Figure 6. Manhattan and Q-Q plots for genome-wide association of S. platyclados wood quality traits
with SNP markers of Q+K model. The quantile-quantile plot indicates the fitness between expected
(red lines) and observed p-values (black dots).

In addition, the GWAS identified a number of significant markers based on the of −log10(P)
criteria: −log10(P) > 0.5, −log10(P) > 0.75, −log10(P) > 1, −log10(P) > 1.25 and −log10(P) > 1.5) (Table 1).
Moreover, different −log10(P) criteria resulted in different significant marker densities. When the
−log10(P) > 0.5 threshold was applied, the number of SNPs markers dropped from the initial total
by approximately 67.69% to 72.39% and further increases in the threshold successively increased the
impact on marker density. With the highest threshold, −log10(P) > 1.5, only 196 to 118 SNP markers
were retained for each phenotypic trait. Using these total numbers of SNPs, we then tested the effect of
each significant marker on the genomic prediction accuracy.
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Table 1. Numbers of significant SNPs detected and applied in four-fold cross-validation for indicated growth, branch and wood quality traits of Shorea platyclados
population with indicated Genome-Wide Association Studies (GWAS)-based thresholds.

Traits All
SNPs

Number of SNPs on GWAS-Based Threshold

−log10(P) > 0.5 −log10(P) > 0.75 −log10(P) > 1 −log10(P) > 1.25 −log10(P) > 1.5

Fold1 Fold2 Fold3 Fold4 Fold1 Fold2 Fold3 Fold4 Fold1 Fold2 Fold3 Fold4 Fold1 Fold2 Fold3 Fold4 Fold1 Fold2 Fold3 Fold4

Stem diameter_2014 5900 1869 1838 1906 1741 1034 1011 1112 975 576 556 566 520 314 331 314 282 163 182 158 135

Total height_2014 5900 1681 1783 1711 1714 926 961 953 906 516 527 515 480 287 301 284 258 155 170 172 140

Stem diameter_2017 5900 1770 1848 1807 1805 995 1011 980 1037 534 550 555 539 300 327 295 294 171 177 167 181

Total height_2017 5900 1813 1810 1838 1803 1023 1040 1011 1010 541 584 583 570 312 312 319 306 181 170 177 169

Clear bole height 5900 1837 1760 1629 1787 1043 968 863 995 600 540 487 533 322 290 276 270 172 167 145 157

Branch angle 5900 1709 1839 1789 1665 899 1008 959 852 488 570 527 444 250 319 265 231 128 192 130 118

Branch diameter ratio 5900 1847 1871 1893 1841 1024 1071 1022 1032 594 599 574 590 331 314 327 321 188 187 187 191

Wood density 5900 1800 1807 1809 1781 975 987 1029 992 547 565 606 555 285 320 337 314 171 196 195 171

Wood stiffness 5900 1845 1806 1785 1814 1027 1007 994 1003 552 567 554 529 300 331 323 310 151 194 162 186
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3.3. Prediction Accuracies Based on the Bayesian Models

Table 2, Table 3 and Table S3 present results obtained with five commonly used Bayesian models
(Bayesian LASSO, Bayesian Ridge Regression, Bayes A, Bayes B and Bayes C) for genomic prediction,
including Deviance Information Criterion (DIC) values, which indicate the goodness of fit and model
complexity for each trait. All SNP subsets (5900 SNPs) showed low prediction accuracy for height
before thinning, clear bole and branch angle traits. Prediction accuracy for stem diameter and height
traits before thinning ranged from 0.145 to 0.158 and 0.043 to 0.075, respectively (Table 2), and after
thinning prediction accuracies were also low for clear bole height (−0.023 to 0.005) and branch angle
(−0.088 to −0.078). However, prediction accuracies for other traits were better: 0.255 to 0.260 for stem
diameter, 0.148 to 0.165 for height, 0.220 to 0.230 for branch diameter ratio, 0.220 to 0.233 for wood
density and 0.165 to 0.173 for wood stiffness (Table 3).

Table 2. Mean predictive ability and Deviance Information Criterion of growth traits of the S. platyclados
population, before thinning, derived using all SNPs and sets meeting GWAS-based criteria obtained
with indicated Bayesian models (Bayesian LASSO, Bayesian Ridge Regression, Bayes A, Bayes B and
Bayes C).

Threshold Model
Stem Diameter_2014 Total Height_2014

PredAbi DIC PredAbi DIC

All SNPs

BL 0.158 1182.032 0.075 459.510
BRR 0.145 1181.166 0.043 458.551

Bayes A 0.150 1181.264 0.068 458.586
Bayes B 0.155 1182.357 0.058 458.835
Bayes C 0.153 1180.895 0.050 459.336

−log10(P) > 0.5

BL 0.080 1083.879 −0.005 357.158
BRR 0.075 1078.096 −0.003 352.719

Bayes A 0.078 1080.453 −0.005 355.732
Bayes B 0.075 1083.867 −0.005 358.664
Bayes C 0.078 1079.938 −0.005 355.619

−log10(P) >
0.75

BL 0.088 1068.282 −0.005 342.287
BRR 0.085 1061.611 −0.010 337.228

Bayes A 0.083 1064.498 −0.008 340.134
Bayes B 0.088 1068.903 −0.010 342.533
Bayes C 0.088 1065.340 −0.010 340.017

−log10(P) > 1

BL 0.080 1061.138 −0.025 332.349
BRR 0.080 1055.108 −0.025 328.483

Bayes A 0.083 1057.265 −0.025 329.535
Bayes B 0.088 1062.515 −0.030 333.926
Bayes C 0.085 1060.258 −0.028 332.131

−log10(P) >
1.25

BL 0.065 1065.320 −0.003 326.738
BRR 0.068 1061.097 −0.008 322.226

Bayes A 0.068 1062.260 −0.008 324.692
Bayes B 0.075 1067.433 −0.010 329.869
Bayes C 0.075 1065.551 −0.013 327.581

−log10(P) > 1.5

BL 0.083 1069.619 −0.065 335.293
BRR 0.075 1066.736 −0.065 331.438

Bayes A 0.080 1067.921 −0.068 332.917
Bayes B 0.088 1072.385 −0.068 338.721
Bayes C 0.088 1070.623. −0.068 337.967

The highest value in each trait is in bold. PredAbi, prediction ability; DIC, deviance information criterion; BL,
Bayesian LASSO; BRR, Bayesian Ridge Regression; Bayes A, Bayesian A; Bayes B, Bayesian B; Bayes C, Bayesian C.
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Table 3. Mean predictive ability and Deviance Information Criterion of growth, branch and wood quality traits of the S. platyclados population, after thinning, derived
using all SNPs and sets meeting GWAS-based criteria obtained with indicated Bayesian models (Bayesian LASSO, Bayesian Ridge Regression, Bayes A, Bayes B and
Bayes C).

Threshold Model

Stem
Diameter_2017 Total Height_2017 Clear Bole Height Branch Angle Branch Diameter

Ratio Wood Density Wood Stiffness

PredAbi DIC PredAbi DIC PredAbi DIC PredAbi DIC PredAbi DIC PredAbi DIC PredAbi DIC

All SNPs

BL 0.260 1526.615 0.165 574.750 0.005 1184.544 −0.080 381.601 0.230 848.161 0.233 995.024 0.170 2083.834
BRR 0.255 1520.588 0.153 563.733 −0.023 1185.003 −0.078 385.408 0.220 839.370 0.223 992.683 0.165 2080.137

Bayes A 0.258 1523.512 0.148 556.107 −0.013 1184.597 −0.088 382.937 0.225 842.294 0.230 995.637 0.165 2081.160
Bayes B 0.255 1522.414 0.148 564.285 −0.013 1184.720 −0.080 383.137 0.220 843.542 0.228 993.401 0.173 2081.106
Bayes C 0.255 1522.825 0.153 565.823 −0.005 1185.273 −0.078 383.844 0.230 840.545 0.220 993.448 0.165 2081.010

−log10(P) > 0.5

BL 0.233 1386.984 0.105 411.442 −0.070 1086.862 −0.063 308.514 0.188 678.869 0.180 872.559 0.105 1978.435
BRR 0.235 1380.652 0.103 404.501 −0.070 1082.063 −0.063 303.339 0.185 671.133 0.180 864.492 0.105 1971.373

Bayes A 0.238 1382.296 0.103 406.776 −0.073 1084.354 −0.063 305.621 0.185 673.787 0.178 866.017 0.108 1973.105
Bayes B 0.235 1387.565 0.105 411.455 −0.073 1088.692 −0.063 309.565 0.188 679.985 0.178 870.848 0.105 1975.335
Bayes C 0.240 1383.941 0.100 407.718 −0.075 1085.632 −0.065 306.744 0.185 673.841 0.178 867.477 0.108 1973.510

−log10(P) > 0.75

BL 0.248 1360.589 0.068 385.929 −0.068 1068.755 −0.060 291.276 0.188 656.869 0.178 851.592 0.115 1955.416
BRR 0.246 1358.405 0.069 382.413 −0.068 1066.210 −0.058 289.408 0.186 652.858 0.178 848.949 0.114 1954.200

Bayes A 0.245 1357.710 0.068 380.692 −0.073 1065.465 −0.060 290.056 0.185 651.084 0.175 848.884 0.115 1953.466
Bayes B 0.243 1361.771 0.070 387.482 −0.068 1070.474 −0.060 293.956 0.183 656.417 0.175 852.915 0.120 1955.575
Bayes C 0.248 1358.770 0.068 382.314 −0.073 1067.379 −0.060 290.647 0.183 653.112 0.175 848.861 0.110 1954.110

−log10(P) > 1

BL 0.238 1358.965 0.055 386.086 −0.080 1056.541 −0.078 276.519 0.205 654.709 0.163 839.495 0.120 1940.670
BRR 0.248 1353.824 0.058 378.666 −0.083 1050.718 −0.073 272.066 0.203 647.174 0.163 833.481 0.118 1937.816

Bayes A 0.248 1355.459 0.055 382.559 −0.083 1053.686 −0.080 274.796 0.205 650.642 0.165 835.555 0.118 1937.764
Bayes B 0.240 1359.282 0.053 388.164 −0.080 1058.229 −0.090 279.362 0.200 655.712 0.158 841.589 0.123 1940.677
Bayes C 0.250 1356.864 0.055 384.505 −0.080 1055.776 −0.083 277.321 0.205 652.291 0.165 837.947 0.120 1938.827

−log10(P) > 1.25

BL 0.205 1362.100 0.073 387.631 −0.083 1051.808 −0.058 273.413 0.210 656.321 0.145 847.827 0.110 1940.075
BRR 0.208 1357.921 0.080 381.487 −0.078 1047.357 −0.053 268.808 0.210 650.858 0.150 842.105 0.108 1936.906

Bayes A 0.208 1359.631 0.075 384.428 −0.080 1049.106 −0.058 271.239 0.208 652.110 0.143 844.628 0.110 1937.296
Bayes B 0.203 1363.105 0.075 390.441 −0.090 1055.538 −0.070 276.558 0.210 656.525 0.140 851.635 0.115 1942.074
Bayes C 0.200 1362.139 0.075 386.306 −0.083 1053.154 −0.065 274.552 0.210 654.503 0.140 847.205 0.118 1940.165

−log10(P) > 1.5

BL 0.208 1385.003 0.048 398.017 −0.088 1064.260 −0.090 304.395 0.185 670.608 0.150 859.403 0.095 1944.753
BRR 0.213 1378.850 0.045 392.367 −0.088 1060.175 −0.095 278.907 0.185 663.340 0.153 856.001 0.095 1941.782

Bayes A 0.208 1381.038 0.045 394.956 −0.090 1061.657 −0.098 281.267 0.185 666.509 0.140 856.859 0.095 1941.671
Bayes B 0.210 1388.738 0.045 401.640 −0.095 1068.351 −0.105 287.094 0.183 672.285 0.140 860.766 0.100 1946.401
Bayes C 0.210 1385.915 0.048 399.274 −0.100 1067.008 −0.103 285.716 0.185 668.911 0.143 860.191 0.100 1946.039

The highest value in each trait is in bold. PredAbi, prediction ability; DIC, deviance information criterion; BL, Bayesian LASSO; BRR, Bayesian Ridge Regression; Bayes A, Bayesian A;
Bayes B, Bayesian B; Bayes C, Bayesian C.
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Our results clearly show that the prediction accuracies varied depending on the traits and
GWAS-based threshold p value for including markers in the analysis. When the −log10(P) > 0.5
threshold was used for significant markers, the prediction accuracies before thinning were 0.075 to
0.080 for stem diameter and −0.005 to −0.003 for height (Table 2). The prediction accuracies after
thinning with this threshold were 0.233 to 0.240 for stem diameter, 0.100 to 0.105 for height, −0.075 to
−0.070 for clear bole, −0.065 to −0.063 for branch angle, 0.185 to 0.188 for branch diameter ratio, 0.178
to 0.180 for wood density and 0.105 to 0.108 for wood stiffness. Using the −log10(P) > 0.75 threshold
resulted in prediction accuracies of 0.083 to 0.088 and -0.010 to -0.005 for stem diameter and height
before thinning, respectively. After thinning, the prediction accuracies were 0.243 to 0.248 for stem
diameter, 0.068 to 0.070 for height, −0.073 to −0.068 for clear bole, −0.060 to −0.058 for branch angle,
0.183 to 0.188 for branch diameter ratio, 0.175 to 0.178 for wood density and 0.110 to 0.120 for wood
stiffness. Similar variations were also obtained with other threshold p values (Table 3).

In addition, changes in the GWAS-based threshold substantially changed the prediction accuracies,
as measured by DIC values (Table 3). Prediction accuracy for stem diameter was highest (and DIC
lowest: 1353.824) with the −log10(P) > 1 (0.248) and Bayesian Ridge Regression (BRR) model. For this
trait, the prediction accuracy decreased when other −log10(P) thresholds were used. Wood stiffness
also showed the highest prediction accuracy with the −log10(P) > 1 (0.118) using the Bayes A model. In
contrast, prediction accuracy for height was highest (and DIC lowest: 404.501) with the −log10(P) > 0.5
(0.103) and BRR model. Prediction accuracies for clear bole were close to zero with all thresholds, but
the highest accuracy was found in −log10(P) > 0.5 (−0.070) using the BRR model (DIC: 1082.063). The
prediction accuracy for wood density was also highest with the −log10(P) > 0.5 (0.180) and BRR model
(DIC: 864.492). Furthermore, the highest prediction accuracies for branch angle and branch diameter
ratio (−0.053 and 0.210, respectively) were obtained with the −log10(P) > 1.25 using BRR model, which
thus mostly provided better prediction accuracies than the other Bayesian models.

3.4. Prediction Accuracies Based on the Machine Learning Methods

Using all SNPs, the BART method provided higher genomic prediction accuracies for stem
diameter both before and after thinning (0.169 and 0.270, respectively) than XgBoost (0.132 and 0.198,
respectively) and RF (0.161 and 0.238, respectively). BART also provided higher prediction accuracy
for clear bole height, branch diameter ratio, wood density and wood stiffness (0.030, 0.212, 0.226 and
0.155, respectively) than the other two models. RF provided higher accuracy (−0.113) than XgBoost
(−0.116 and BART (−0.126) for branch angle. XgBoost provided the highest prediction accuracy for
height after thinning (0.169) (Table 4 and Table S4).
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Table 4. Mean predictive ability of growth, branch and wood quality traits of the S. platyclados population derived using all SNPs and the best sets meeting GWAS-based
criteria obtained with indicated Machine Learning models (RF, XgBoost and BART).

Threshold Model Stem
Diameter_2014

Total
Height_2014

Stem
Diameter_2017

Total
Height_2017

Clear Bole
Height

Branch
Angle

Branch
Diameter Ratio

Wood
Density

Wood
Stiffness

All SNPs
RF 0.161 0.031 0.238 0.164 −0.021 −0.113 0.195 0.212 0.138

XgBoost 0.132 −0.016 0.198 0.169 −0.069 −0.116 0.182 0.147 0.155
BART 0.169 0.084 0.270 0.138 0.030 −0.126 0.212 0.226 0.155

GWAS−based
threshold

RF 0.166 0.017 0.244 0.173 −0.022 −0.090 0.204 0.205 0.130
XgBoost 0.105 0.001 0.172 0.125 0.035 −0.131 0.156 0.112 0.075

BART 0.151 0.079 0.203 0.108 −0.016 −0.065 0.187 0.158 0.122

The highest value in each trait is in bold. RF, Random Forest; XgBoost, Extreme Gradient Boosting; BART, Bayesian Additive Regression Tree.
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Using subsets of SNPs meeting GWAS-based significance criteria resulted in lower prediction
ability for diameter than using all markers (0.244, 0.172 and 0.203 estimated by RF, XgBoost and
BART models, respectively). This trend was also found in height traits. The prediction accuracies
for clear bole were close to zero (−0.022 to 0.035). For the branch angle, BART (−0.065) provided the
highest prediction accuracy, and XgBoost the lowest (−0.131). For the diameter ratio, RF and BART
provided higher accuracies (0.204, 0.187) than XgBoost (0.156). Moreover, using markers meeting
GWAS-based criteria, RF provided the highest accuracy for wood density (0.205) and wood stiffness
(0.130), respectively (Table 4).

3.5. Genomic Heritability

As shown in Table 5, the estimated genomic heritability varied, depending on the traits. In
addition, genomic heritability estimated using all markers were much lower than those estimated
using sets of markers meeting GWAS-based significance criteria. Generally, using selected markers,
genomic heritability was higher for growth and wood quality traits (0.573, 0.615, and 0.516 for stem
diameter, height and wood density, respectively) than for branch quality traits (0.342 for branch angle).
However, the genomic heritability of the branch diameter ratio (0.526) was similar to the estimates for
wood density and stem diameter.

Table 5. Genomic heritability of growth, branch and wood quality traits of S. platyclados half-sib
progeny population obtained using all SNPs and selected markers based on the highest −log10(P).

Traits
Genomic Heritability

All SNPs Selected Marker

Stem diameter_2014 0.247 0.475
Total height_2014 0.224 0.457

Stem diameter_2017 0.313 0.573
Total height_2017 0.292 0.615
Clear bole height 0.211 0.466

Branch angle 0.190 0.342
Branch diameter ratio 0.337 0.526

Wood density 0.263 0.516
Wood stiffness 0.252 0.473

4. Discussion

4.1. Population Structure

Population structure is one of various factors that may strongly influence LD, leading to
confounding effects and false positives or spurious associations between traits and marker alleles.
Thus, population structure should be properly accounted for in marker-trait association analysis [62,63].
We found no distinct spatial clusters in PCA analysis, indicating that the S. platyclados alleles were
distributed without strong structure, which is highly beneficial for GWAS resolution and genomic
prediction accuracy [60,64].

The weakness of population structure is probably due to the progenies originating from sources
with similar genetic backgrounds, since the seeds were collected solely from mother trees in the PT-SBK
(which covers 147,600 ha in Central Kalimantan). Relatively low levels of genetic differentiation have
also been previously detected within populations of two other Shorea species in Borneo, S. parvifolia
(FST < 0.169) [65] and S. curtisii (FST < 0.035) [66]. In addition, other studies have clearly differentiated
two groups of S. platyclados populations, called the “western Malaysian” (Sumatran and Peninsular
Malaysian) and “eastern Malaysian” (Bornean) groups due to a long period of isolation and geographic
separation by the South China Sea [67,68]. Similar divergence has also been detected in S. leprosula
populations by expressed sequence tag-based simple sequence repeat (EST-SSR) and chloroplast DNA
polymorphism (cpDNA) sequencing analyses [69].
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4.2. Detection of Significant Markers by GWAS

A major concern in GWAS is the detection of falsely positive significant SNPs that arising from
population structure and family relatedness, which can result in assignation of strong association
between variants and traits that are not causally linked [63]. Although our present study showed a low
deviation between observed and expected P values in the quantile-quantile plot, however, it seems
that the Q+K model did not provide better control for false positives than that the Q, K or even the
naïve model. This may the effect of a very weak structure in our population and the individuals that
come from the half sib-family are also closely related. Therefore, including population structure and
kinship in the MLM model did not result a significantly differences from the GLM model. In general,
the MLM model in the analysis may increase power to detect true associations than ignoring these
two factors which may result spurious associations. In our study, S. platyclados population has kinship
structure that comes from half-sib, thus, we applied the Q+K model in the GWAS analysis.

GWAS includes application of a stringent threshold for inclusion of SNPs based on multiple testing
false discovery rate (FDR) [70–72]. We found that GWAS had low power for detecting significant SNPs,
since very few linked to the focal traits were detected when high-stringency FDR criteria were applied.
This is consistent with findings of previous GWAS of tree species [22,73,74]. For example, [22,74]
identified just one SNP associated with volume growth in E. pellita and no significant associations in
E. benthamii. Thus, GWAS involving application of such multiple testing FDR criteria might not be
appropriate for detecting small effects of multiple SNPs [75].

Although false discovery tests are important for controlling type I errors (false positives), if there
are numerous SNPs in strong LD, they could cause substantial loss of statistical power and increase risks
of missing true associations, or almost certainly inflate type II errors (false negatives) [76]. Surprisingly,
our study revealed high and slowly decaying LD, extending more than 145 kb, in comparison to the
reported decay within just 500 bp in European aspen (Populus tremula) [77] and 2 kb in loblolly pine
(Pinus taeda) [78]. However, too few markers may have been used in the cited studies (384 and 288
SNPs, respectively) to obtain accurate LD estimates. Recent studies have detected more extensive
LD, e.g., up to 10–12 kb in E. globulus [79], 16–34 kb in poplar (P. trichocarpa) [80] and 65–110 kb in
C. japonica [81]. A high proportion of SNPs in non-coding regions of the genome may also mask the
true extent of LD, as they provide lower estimates of recombination rates between loci than SNPs in
coding regions [81]. In addition, the FDR threshold for significant markers should be less stringent
for species with high LD than for species with low LD [76]. Therefore, it is important to select an
appropriate threshold for significant markers to differentiate true positives from false positives and
false negatives in GWAS. Under the high LD, although 5900 SNPs still has possibility not to be able to
detect any of QTLs due to the sparse distribution, we, thus, applied five −log10(P) thresholds from
stringent to weak to selected markers that were significantly associated with the focal traits for GS. This
empirical approach has also been applied in previous studies of C. japonica and Eucalyptus [33,82], and
it identified some SNPs that appeared to be significantly related to phenotypic traits. Under the high
LD of the population, we expected that this approach may identify optimal balance to select makers. If
we use a very stringent threshold, we may lose the chance to detect significant association with QTLs.
However, high LD may help to detect association (not significant in FDR and Bonferroni correction)
with QTLs by increasing false positive.

Another factor that may have contributed to the low detection power of GWAS is that numerous
loci may weakly influence quantitative traits of S. platyclados (such as those examined here), as in
other forest tree species where the most commercially important traits are usually under polygenic
quantitative control [55,78,83]. High frequencies of such minor QTLs will inevitably impair the power
of GWAS to detect significant SNPs [12,22,75].

4.3. Genomic Predictions Based on All SNPs and GWAS-Based Thresholds

GS is not affected by the limitation of GWAS linked to the problem of detecting markers that are
significantly associated with polygenic traits, because it exploits the predictive power of large numbers
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of markers simultaneously across the whole genome [19]. Our study revealed that it provided similar
genomic prediction abilities using all SNPs and sets meeting various GWAS-based criteria. However,
the variance of Genomic Estimated Breeding Values (GEBVs) resulting from GS based on all SNPs
was lower than the actual phenotype variance. Thus, use of all markers may result in sub-optimal
models for predicting phenotypes. Similarly, using SNPs selected according to GWAS-based criteria
provided much better genomic heritability estimates than using all SNPs. Together with findings
by [25] that showed that using a panel of 38,082 SNPs and subsets of 3000 selected SNP markers
provided similar genomic prediction accuracy for traits of cattle, these results suggest that increasing
numbers of SNPs in a genomic prediction model does not always increase accuracy. This may be at
least partly because the additional background noise from non-related markers impairs the prediction
quality, by introducing more prediction errors than a smaller number of markers that capture the main
effects of truly relevant SNPs, SNP-SNP interactions and non-linear relationships [25].

4.4. Genomic Prediction Accuracies of Bayesian and Machine Learning Methods

Our estimated prediction accuracies for growth traits of S. platyclados were similar to those
obtained for E. benthamii (DBH 0.153–0.162, height 0.019–0.025) and C. japonica (DBH 0.033–0.209,
height 0.026–0.114) populations in the North and South Kanto region of Japan. However, it was slightly
lower than those reported on E. pellita (DBH 0.427–0.438, height 0.339–0.341), C. japonica (DBH 0.505,
height 0.432) populations in the Kyushu region of Japan, Pinus taeda (DBH 0.46, for height 0.38) and E.
globulus (DBH 0.17–0.45, height 0.21–0.44) [22,23,33,79]. We obtained similar prediction accuracies for
wood density to reported values for loblolly pine (0.112–0.226 and 0.20–0.23, respectively), but much
lower accuracy for wood stiffness (0.075–0.155 and 0.39–0.42, respectively) [23].

Moreover, our study showed that the five models provided very similar estimates and prediction
accuracies, in accordance with the previous studies using material from E. pellita, E. benthamii, Pinus
taeda and Picea mariana [22,84]. The BRR was the best model, in terms of DIC, which are correlated with
residual variance, and thus, indicate models’ fitting to the data used to construct them [85,86]. The
statistical models are based on different assumptions about markers’ numbers and effects, which may
affect GEBV values and the accuracy of predictions obtained from different data sets. The assumptions
underlying BRR (that there are many QTLs with small effects) seem appropriate for our material. In
contrast, Bayesian LASSO and Bayes A models are based on assumptions that many QTLs have small
effects and a few QTLs have large effects, and Bayes B models on assumptions that many QTLs have
no effects and few have some, possibly large, effects [19,87].

Furthermore, prediction accuracies obtained from all Bayesian and Machine Learning methods
were trait-dependent, as found by [60,88]. However, all the Machine Learning methods provided
better prediction accuracies for all focal traits of S. platyclados than the Bayesian methods. This suggest
that Machine Learning is an appropriate approach for S. platyclados. A previous study found that RF
was an efficient method for identifying a subset of SNPs linked to candidate genes affecting growth
traits of beef cattle [25]. Similarly, we found that of the tested Machine Learning methods, RF provided
the highest prediction accuracies for diameter, height, branch diameter ratio, wood density and wood
stiffness (and thus both growth, branch and wood quality traits). This may be due to its ability to
capture effects of all markers, including those with weak effects, enabling complex correlations and
interactions among markers to contribute to the model fit, and thus, provide accurate, simple and
complex regressions [89]. Moreover, BART models tended to provide the best predictions in wood
quality traits obtained using all SNPs, possibly because of their ability to handle all types of genetic
effects of SNPs. Similarly, [25] found that BART models provided better genomic predictions for pig
traits than other methods, i.e. Random Forest (RF), Bayesian Least Absolute Shrinkage and Selection
Operator (BLASSO), Genomic Best Linear Unbiased Prediction (GBLUP) and Reproducing Kernel
Hilbert Space (RKHS). XgBoost provided the best performance for predicting the clear bole height in
our study, but all the models’ prediction accuracies for this trait were poor.
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4.5. Genomic Heritability

Since estimating the heritability of growth and wood traits in forest tree species using pedigree
information is time-consuming, expensive and not very accurate, genomic heritability estimation is a
better option. To our knowledge, this is the first report on the estimation of heritability in Dipterocarps
using genome-wide markers. Surprisingly, the estimated heritability for growth and wood quality
traits of S. platyclados were much higher than those reported for height and wood density of Norway
spruce (0.15 and 0.34, respectively) [21] and height of E. benthamii and E. pellita (0.190 and 0.455,
respectively) [22]. The differences in heritability values obtained for the same trait among these
studies might be due to differences in the estimation methods, numbers of families and environmental
interactions. Like the two cited studies, we also found that heritability of wood density was as
higher as found in diameter and height growth, in accordance with general tendencies for wood
properties of tropical hardwoods to have higher heritability than their growth traits [90]. Moreover,
gene-environment (G × E) interaction effects are generally strong for traits with low heritability and
weak for traits with high heritability. Similarly, there are indications that G × E effects are extremely
weak for wood quality traits in pine [91,92] and spruce [93].

4.6. Factors Affecting the Accuracy of GS of S. platyclados

The success of genomic selection primarily depends on predictive ability, which is influenced
by several factors, such as the heritability of focal traits, training population size, marker density, the
relatedness of training and validation populations, extent of LD and the statistical methods used [15,94].
Our study indicates that heritability has a minor impact on the accuracy of GS. Similarly, a previous
study found that GS accuracy increased, by 10–20%, with the increase in heritability from 0.2 to 0.6 [15].
Therefore, a larger training population is needed to achieve the same level of predictive ability for
traits with high heritability than for traits with low to moderate heritability, such as those considered
in this study [95]. We had less than 300 individuals in the training sets, which probably impaired
the prediction accuracy, as selection accuracy can reportedly rapidly rise with increases up to 1000
individuals [15]. For example, a study on Picea mariana found that training populations of 330 to 740
trees resulted in good prediction accuracies, but reducing the training set from 740 to 184 reduced
GS models’ prediction accuracy by 50% [85]. Increasing training sets sizes is expected to increase
prediction accuracy by reducing bias and reducing the variance of marker effect estimates [96,97].

Increasing the marker density also has an impact because it increases chances of QTLs being
in LD with a marker, which increases the prediction accuracy [98]. Thus, the relatively low marker
densities used in this study may have been insufficient to capture QTLs and markers in LD, although
LD decayed slowly. Moreover, the half-sib families used in our study may have contributed to the
relatively low prediction ability. Generally, the prediction ability is highest for full-sib families and
lowest for populations with no family structure, indicating (unsurprisingly) that GS modeling is most
efficient for closely related individuals. This trend has been confirmed, inter alia, by studies of patterns
in black spruce (Picea mariana) [85], white spruce [29] and beef cattle [25].

4.7. Potential Utility of GWAS and GS for Breeding Tropical Tree Species

Relative to the long history of breeding improvement in conifer species, such as Pinus taeda (fourth
generation) [99], P. radiata (third generation) [100] and C. japonica (second generation) [33], breeding
Dipterocarpaceae as one of the tropical rainforest tree species is a relatively new endeavor. In this
case, tree breeders face the difficulty to select mother trees from natural forest (characterized by the
difference of sizes and ages) due to less proper guideline for the selection of mother trees. Initially, we
applied visual evaluation to selected trees that showed phenotypically superior in the natural forest.
Furthermore, tree breeders tended to select mother trees in terms of a few phenotypic traits, such as
stem diameter and tree height, as easily measurable characteristics [101]. At that time, we considered
these two traits to be important to improve the growth traits that are associated with the yield of timber
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product. After screening the selected mother trees, the breeders now needed to establish a progeny
trial to identify the superior parental based on the performance of their offspring.

A progeny trial in a tree breeding program usually covers a large area. An important factor
in the selection and assessment of phenotypic traits from large field areas was microenvironmental
heterogeneity, such as soil fertility, solar radiation, water availability, etc. Thus, while many traits
were assessed in the different environment, in practice, tree breeders sometimes have difficulty in
evaluating the phenotype. Although more replications of the plot are established, selection was often
biased. Beside the practical difficulties in phenotypic assessment, phenotypic evaluation in the tropical
tree species is by far the most expensive activity in tree breeding programs, not only in terms of data
collection, but also in terms of trial establishment and maintenance, analyzing data and maintaining
records [102].

The results suggest that GWAS will probably be inefficient for detecting significant SNPs related
to the focal traits, but the genome-wide DNA markers developed for GWAS can be used directly
for GS modeling [32,103,104]. Based on the initial prediction accuracy, information obtained from
the F1 generation of the S. platyclados population could be applied in GS for the next generation
using seedling material. This implies that we only need sequencing data showing young seedlings’
genotypes, without data on phenotypic characteristics [105]. Such early selection would enable
breeders to accelerate tree improvement by reducing the need to phenotype large numbers of adult
trees in field trials [8]. In addition, the high genome-wide throughput, low ascertainment bias and low
genotyping cost of next-generation sequencing [12] will support the routine use of GS in tropical forest
tree breeding programs.

5. Conclusions

This is the first empirical study of both GWAS and GS in important tropical timber species in
rainforests of Southeast Asia. Using a full set of genome-wide markers, our study revealed fast and
slow decaying LD, extending more than 145 kb. GWAS will probably be inefficient for detecting
significant SNPs related to the focal traits, but GWAS assisted GS seems to be a promising approach for
S. platyclados breeding programs, especially in conjunction with Machine Learning methods. Moreover,
the generally high genomic heritability estimates for growth and wood quality was a precious finding
for the very early breeding history of tropical rainforest tree species, since unavailability materials for
estimate the pedigree heritability directly. It is also indicated that selective breeding for these traits
individually could be very effective, especially for increasing the diameter growth, branch diameter
ratio and wood density simultaneously.
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