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We study the parameter dependence of numerical results obtained by the tensor renormalization
group. We often observe irregular behavior as the parameters are varied with the method. Using
the two-dimensional Ising model we explicitly show that the sharp cutoff used in the truncated
singular value decomposition causes this unwanted behavior when the level crossing happens
between singular values below and above the truncation order as the parameters are varied. We
also test a smooth cutoff, instead of the sharp one, as a truncation scheme and discuss its effects.
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1. Introduction The tensor renormalization group (TRG) is a promising approach that can solve
the sign problem inherent in Monte Carlo simulations. Since it was proposed in the two-dimensional
Ising model [1], many studies have been carried out for various models in lattice field theory
[2–14]. In TRG, the truncated singular value decomposition (SVD) is used to define a coarse-grained
tensor, which is given in the manner of a sharp cutoff such that the Dcut largest singular values and
corresponding singular vectors are kept and the others are discarded. Although the cutoff yields
possible systematic errors, it is expected that the result should converge to the correct value as Dcut

increases.
The results using the TRG, however, do not smoothly depend on the parameters in the theory. They

often show irregular behavior at some parameters off the critical point, which can be misidentified as a
physical phenomenon such as an unknown phase transition. It also becomes an issue in evaluating the
numerical derivative with respect to the parameter at the irregular point, for instance in evaluating the
internal energy by the numerical derivative of the free energy. We can of course obtain a satisfactory
result for a simple model such as the two-dimensional Ising model taking a sufficiently large Dcut

to avoid such misbehavior. However, it is difficult to increase Dcut for general lattice theories with
multi-dimensional fields, so it is important to understand and avoid the irregular behavior of the
results.

In this letter we investigate the origin of the irregular parameter dependence shown in the TRG
results. We present some numerical evidence that it is caused by the level crossing between singular
values within and beyond the sharp truncation as the parameters are varied. In this sense the irregular

© The Author(s) 2019. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Funded by SCOAP3

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2019/6/061B01/5525165 by U

niversity of Library and Inform
ation Science user on 11 Septem

ber 2020



PTEP 2019, 061B01 D. Kadoh et al.

behavior is inevitable for the TRG method with the sharp cutoff. In order to show that the irregular
behavior is not a physical phenomenon and to obtain a clue to improving the behavior, we also test
other cutoff schemes such as a smooth cutoff.

The rest of the letter is organized as follows. In Sect. 2 we review the standard TRG method with
the sharp cutoff in the two-dimensional Ising model with sample numerical results. The mechanism
of the irregular behavior is explained in detail with some numerical evidence in Sect. 3. We also test
other cutoff schemes. Our conclusions are summarized in Sect. 4.

2. TRG in the two-dimensional Ising model We briefly review the TRG method in the two-
dimensional Ising model. We consider a two-dimensional square lattice whose sites are labeled
by n = (n1, n2) for n1, n2 ∈ Z. The spin variable σn assigned to site n takes the discrete values
σn ∈ {1, −1}. The two-dimensional Ising model is then defined by the Hamiltonian

H = −J
∑
〈i,j〉

σiσj, (1)

where 〈i, j〉 denotes possible pairs of nearest-neighbor sites and J is the coupling constant.
The partition function Z = Tr e−βH with the inverse temperature β = 1/T can be expressed as a

tensor network form:

Z =
∑

i,j,k ,l,...

Tijkl . . . , (2)

where

Tijkl = eβJ (ij+jk+kl+li) (3)

for i, j, k , l = −1, 1.
Let us denote the bond dimension of Tijkl as N for the sake of argument. Note that the initial tensor

of Eq. (3) is defined with N = 2. We apply the truncated SVD to Tijkl:

Tijkl ≈
Dcut∑
m=1

U(ij)mλmV †
m(kl), (4)

Tijkl ≈
Dcut∑
m=1

U ′
(li)mλ′

mV ′†
m(jk)

, (5)

where Tijkl is treated as a matrix with the column (ij) and row (kl) in Eq. (4) and a matrix with the
column (li) and row (jk) in Eq. (5). The above expressions assume the case of N 2 > Dcut, while
Dcut in Eqs. (4) and (5) is replaced by N 2 for N 2 ≤ Dcut without any truncation. We apply the
decomposition of Eq. (4) to the tensors at even sites defined by mod(n1 + n2, 2) = 0 and that of
Eq. (5) to those at odd sites with mod(n1 + n2, 2) = 1. Here, U , V , U ′, V ′ are unitary matrices and
λm and λ′

m are singular values that are sorted in descending order.
We immediately find that the expression of Eq. (2) can be approximated as

Z ≈
∑

i,j,k ,l,...

T new
ijkl . . . , (6)
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Fig. 1. T dependence of the free energy density evaluated on a V = 216 × 216 lattice.

where

T new
ijkl =

√
λiλ

′
jλkλ

′
l

Dcut∑
a,b,c,d=1

U(ab)iU
′
(bc)jV

†
(cd)kV †

(da)l . (7)

Note that the number of tensors decreases because an old tensor is decomposed into two unitary
matrices U and V (or U ′ and V ′) and then four unitary matrices are assembled into a new tensor.

After repeating the above procedures, the tensor network is finally reduced to a single tensor.
Taking the appropriate trace for its indices we obtain the approximate value of Z with Dcut. The
numerical cost of this algorithm is O(D6

cut), which comes from the computations of Eqs. (4) and (5).
The TRG as described above is a powerful tool for studying two-dimensional lattice models.

Although the exact value is obtained in the Dcut → ∞ limit, we can reach a sufficient level of accuracy
with a moderate value for Dcut in practical computations. We present a couple of representative results
in the TRG analysis for the two-dimensional Ising model on a V = 216 × 216 lattice as preparation
for the study explained in the following section.

The numerical value of the partition function Z is obtained by repeating the renormalization step
of the TRG with a given value of Dcut. Then the Helmholtz free energy F is also obtained using
F = −T log(Z). The critical temperature Tc is determined from the peak position of the specific
heat CV obtained by the numerical derivative of Z with respect to β as CV = −β2 ∂2

∂β2 log Z .
Figure 1 shows the temperature dependence of the free energy density. The black curve denotes the

exact solution given in Refs. [15,16], and the black dotted line denotes the critical temperature. As is
clearly seen in the figure, the TRG results approach the exact solution as the value of Dcut increases.
The results with Dcut ≥ 4 reproduce the exact solution within an error of the order of 10−5.

Figure 2 shows the Dcut dependence of the critical temperature. The numerical results fluctuate
around the exact solution T exact

c = 2/[log(1 + √
2)] = 2.2691853 . . . It is clear that taking a larger

value of Dcut makes the results approach the exact one.

3. The irregular parameter dependence of TRG and a new scheme with a smooth cut The
numerical results of the TRG often show irregular behavior as the parameters are varied. Here
we consider the reason why the numerical results do not smoothly depend on the parameters. For
simplicity, the numerical computations are performed on V = (16)2 in this section.
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Fig. 2. Critical temperature evaluated on a V = 216 × 216 lattice. The computational results are presented as
black points, and a dotted line denotes the exact value of the critical temperature T exact

c = 2/[log(1 + √
2)] =

2.2691853 . . ..

Fig. 3. T dependence of the relative residual of the Helmholtz free energy, which is evaluated for Dcut = 8,
12, 16, and 20 on a V = (16)2 lattice. The gray band in the enlarged figure at the bottom right denotes the
region where the irregular behavior is caused.

Figure 3 shows the relative residue of the free energy, which is given by the relative difference
between the results of the TRG and the exact solution. The irregular behavior is observed as the
abrupt jump of the results at several temperatures off the critical point denoted by the black dotted
line. For instance, as magnified in the small figure, the result with Dcut = 12 shows an irregular
jump at Tref ≈ 2.6075. Similar behaviors are observed for other models and other RG methods
[6,9,13,17].

The irregular behavior causes a difficulty in evaluating observables such as the internal energy.
Figure 4 shows the relative residue of the internal energy. As shown in the figure, the internal energy
does not behave as a smooth function of T since it is computed by the numerical derivative of
F . Roughly speaking, the step-function-like behavior in the free energy yields delta-function-like
behavior in the internal energy after the numerical derivative. To provide a better estimation of the
observables with the numerical derivatives, it is important to investigate the origin of the irregular
behavior and to study alternatives.
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Fig. 4. T dependence of the relative residual of the internal energy, which is evaluated for Dcut = 12, 16, 20
on a V = (16)2 lattice.

To understand the origin of this behavior, we write the right-hand side of Eq. (4) in the form

T (1)
IJ =

Dcut∑
m=1

λmu(m)
I v(m)

J , (8)

where u(m) (v(m)) is the left (right) singular vector corresponding to the mth singular value λm. T (1)
IJ

is an approximation of the tensor Tijkl for I = (i, j) and J = (k , l). We assume that a set of singular
values and corresponding singular vectors (λ, u(λ), v(λ)) smoothly change under a local variation
of the parameters.

We now consider the case in which the level crossing takes place such that the K th and (K + 1)th
singular values are interchanged at some value of the parameter. The crossover is not important in the
case of K �= Dcut because both the K th and (K + 1)th singular values are included (or not included)
in Eq. (8). In the case of K = Dcut, however, the crossover could make Eq. (8) change drastically:
the Dcutth singular vector before the crossover becomes the (Dcut + 1)th one after the crossover and
vice versa, while the Dcutth singular value changes continuously.

In Fig. 5 we trace the continuous move of the Dcutth and (Dcut + 1)th singular values around
Tref (gray band), where the Dcutth singular value (open circle) and the (Dcut + 1)th singular value
(solid circle) are interchanged. Those singular values are obtained in the course-grained tensor after
six renormalization steps with Dcut = 12. We should note that the (Dcut + 1)th singular value
becomes the Dcutth singular value after the level crossing. The purple line is the Dcutth singular value
included in Eq. (8), and the green dotted line is the (Dcut + 1)th one. This behavior suggests that the
discontinuity of the result of the free energy does not come from the singular values in Eq. (8) but
from the discontinuous change of the singular vectors.

Let us consider the following modification for the approximation of the tensor at the final step of
SVD:

T (2)
IJ =

⎧⎪⎪⎨
⎪⎪⎩

T (1)
IJ for T < Tref ,

Dcut−1∑
m=1

λmu(m)
I v(m)

J + λDcut+1u(Dcut+1)
I v(Dcut+1)

J for T ≥ Tref .
(9)

The meaning of this approximation is obvious from the definition. T (2) coincides with T (1) before the
level crossing. After the level crossing, however, T (2) continues to keep the same sets (λ, u(λ), v(λ)),

5/9

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2019/6/061B01/5525165 by U

niversity of Library and Inform
ation Science user on 11 Septem

ber 2020



PTEP 2019, 061B01 D. Kadoh et al.

Fig. 5. An example of the crossover of the Dcutth and (Dcut + 1)th singular values, where Dcut = 12, as a
function of T . See text for a description.

Fig. 6. T dependence of the relative residue of the free energy evaluated with Dcut = 12 on a V = (16)2

lattice. The blue broken line and the blue and green curves (points) are the relative residues of the free energy
obtained from T (1), T (2), and T (3), respectively. T (1) is defined by Eq. (8), and T (2) is defined by Eq. (9). T (3)

is the case that the (Dcut + 1)th set is used instead of the Dcutth set for T < Tref and T (1) is used for T ≥ Tref .

unlike T (1). If the irregular behavior is caused by the change of the associated singular vectors, it is
expected that the jump at Tref should vanish with the use of T (2).

Figure 6 shows the residues obtained from T (2), which are drawn by the blue curve. They smoothly
depend on the temperature, and the jump at Tref has gone. It is also instructive to check the smooth
behavior of the green curve, which represents the results in the case that the (Dcut + 1)th set is used
instead of the Dcutth set for T < Tref (and T (1) is used for T ≥ Tref ). We thus conclude that the
irregular behavior is caused by the level crossing of the Dcutth and (Dcut +1)th singular values. More
specifically, the replacement of the Dcutth singular vector at the crossover point yields the jump in
the results.

The irregular parameter dependence of the results obtained by the TRG method is caused by
the level crossing of the singular values across the truncation order. The standard TRG employs a
sharp cutoff such that the Dcut largest singular values and the associated vectors are included in the
renormalization steps and the others are discarded. In the following, we test other cutoff scheme
such as a smooth cutoff to tame the misbehavior.
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Fig. 7. Weight factors w(A)
m and w(B)

m .

In order to define another truncation scheme, we introduce a weight function wm to approximate
the tensor Tijkl:

Tijkl �
Dcut∑
m=1

wmU(ij)mλmV †
m(kl), (10)

where U and V are unitary matrices and λm are singular values sorted in descending order. Note that
Eq. (4) is given by choosing wm = 1 for m ≤ Dcut as the weight function. It can be expected that the
crossover effect depends on wm and may become weaker if we employ a smoother cutoff function
for wm. Note that the introduction of wm itself does not demand extra computational cost.

As possible choices of cutoff schemes we consider two types of weight functions: (A) a “slanting
cut” given by

w(A)
m =

{
1 (1 ≤ m ≤ Dcut − �),
Dcut−m

�
(Dcut − � < m ≤ Dcut),

(11)

and (B) an “FDF cut” inspired by by the Fermi distribution function

w(B)
m = 1

e(m−Dcut)/σ + 1
. (12)

Figure 7 shows examples of w(A)
m and w(B)

m in which we take Dcut = 12. � in w(A) and σ in w(B) are
the tunable parameters which basically give the smeared size of the cutoff. Here we employ � = 3
and σ = 1.5.

Figure 8 shows the relative residues of F obtained by these two cutoffs, in which a smoother
temperature dependence is obtained compared with Fig. 3. The FDF cut method (B) provides better
behavior of the relative residual. Figure 9 shows the relative residues of U computed by the numerical
derivative of F . Even though there are small jumps, the relative residual of U has a smoother T
dependence qualitatively compared with those evaluated by the sharp cutoff method as shown in
Fig. 4. It is confirmed that the smooth cutoff scheme is effective in taming the irregular parameter
dependence found in the sharp cutoff scheme in the standard TRG method.

4. Summary and discussion We have discussed the issue of the irregular parameter dependence
observed in TRG results. We have investigated its origin using the two-dimensional Ising model and
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Fig. 8. T dependence of the relative residual of the free energy on a V = (16)2 lattice. The dotted line is for
(A), the slanting cut method with � = 3 in Eq. (11), and the chain line is for (B), the FDF cut method with
σ = 1.5 in Eq. (12).

Fig. 9. T dependence of the relative residual of the internal energy on a V = (16)2 lattice.

concluded that the irregular behavior is caused by the level crossing between the singular values in
the sharp cutoff scheme with Dcut.

When the level crossing occurs between the Dcutth and (Dcut + 1)th singular values, the Dcutth
singular vector is replaced by a completely different one across the crossover point, though the
Dcutth singular value changes continuously as a function of the parameter. Thus the constructed
tensor drastically changes and yields a jump in the numerical result at the crossover point.

We have shown that a smooth cutoff improves the irregular behavior of the free energy in the two-
dimensional Ising model. This implies that the irregular behavior does not have an underlying physical
reason because it is mostly removed by changing the cutoff schemes. Further improvements would
be important in obtaining precise results in more complicated lattice models or higher-dimensional
models with tensor network schemes.

Similar behavior can be observed in any RG method which retains D local bases because it is
triggered by the interchange of bases. So, in testing another cutoff scheme, as demonstrated in this
paper, one can study whether it is a physical phenomenon or not in other RG methods.
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