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Abstract The hippocampus, a region critical for memory and spatial navigation, has been

implicated in delay discounting, the decline in subjective reward value when a delay is imposed.

However, how delay information is encoded in the hippocampus is poorly understood. Here, we

recorded from CA1 of mice performing a delay-discounting decision-making task, where delay

lengths, delay positions, and reward amounts were changed across sessions, and identified

subpopulations of CA1 neurons that increased or decreased their firing rate during long delays.

The activity of both delay-active and -suppressed cells reflected delay length, delay position, and

reward amount; but manipulating reward amount differentially impacted the two populations,

suggesting distinct roles in the valuation process. Further, genetic deletion of the N-methyl-D-

aspartate (NMDA) receptor in hippocampal pyramidal cells impaired delay-discount behavior and

diminished delay-dependent activity in CA1. Our results suggest that distinct subclasses of

hippocampal neurons concertedly support delay-discounting decisions in a manner that is

dependent on NMDA receptor function.

Introduction
Animals faced with multiple options optimize their decisions through a complex cost-benefit valua-

tion. The introduction of a time delay decreases preference for the delayed option (delay discount-

ing) (Ainslie, 1992; Ainslie, 1975), with the discount rate varying on an individual basis. People who

are considered patient exhibit lower discount rates, whereas impatient (or impulsive) people exhibit

higher discount rates. Further, higher discount rates have been shown to be related to various neu-

ropsychological disorders (Bickel and Marsch, 2001; Chesson et al., 2006; Epstein et al., 2008;

Luman et al., 2010; Odum et al., 2000; Weller et al., 2008). Although lesion studies have revealed

a critical role for the hippocampus in delay discounting (Figner et al., 2010; Kalivas and Volkow,

2005; Peters and Büchel, 2011; Cheung and Cardinal, 2005; Mariano et al., 2009; McHugh et al.,

2008), how this is reflected in hippocampal activity remains poorly understood.

Decades of study point to a critical role for the hippocampus in episodic memory (Scoville and

Milner, 1957; Squire, 1992) and spatial navigation (Burgess et al., 2002; Ekstrom et al., 2003).

Although much of the rodent hippocampal physiology literature has focused on the spatial code

present in hippocampal place cell activity (Jung and McNaughton, 1993; O’Keefe and Dostrovsky,

1971; Wilson and McNaughton, 1993), subsequent work has demonstrated that the circuit is capa-

ble of encoding a variety of spatiotemporal features beyond the animal’s current position, including
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past and future trajectories (Ambrose et al., 2016; Foster and Wilson, 2006; Johnson et al., 2007;

Johnson and Redish, 2007; Pfeiffer and Foster, 2013; Skaggs and McNaughton, 1996), the loca-

tion of other animals or objects (Danjo et al., 2018; Omer et al., 2018), internal time (Kraus et al.,

2013; MacDonald et al., 2011; Manns et al., 2007; Pastalkova et al., 2008), and various physical

scales (Aronov et al., 2017; Terada et al., 2017).

When trying to understand the links between behavior and physiological data, several factors

must be considered, including the variable(s) correlated with the activity, the regions or cell assem-

blies engaged and the mechanisms of representation on both the single-cell and population levels.

To this end, studies combining imaging and recording with optogenetic manipulation and identifica-

tion suggest that subsets of CA1 neurons can encode distinct features of a task (Cembrowski et al.,

2016; Danielson et al., 2016). Consistent with these data, Gauthier and Tank (2018) recently iden-

tified a unique population of neurons that are active at reward sites, serving as ‘reward cells’.

Although the modulation of reward-based activity has been well-investigated in relation to spatial

context (Hölscher et al., 2003; Lee et al., 2012; Murty and Adcock, 2014; Ólafsdóttir et al.,

2015; Peters and Büchel, 2010; Singer and Frank, 2009) or probability discounting (Tryon et al.,

2017), the impact of delay (length/location) and reward amount, which both alone and

together constitute the core computation for delay-based decision making, has not been examined.

Further, since delay and reward both modulate value, the most important parameter for decision

making, neurons encoding value information should respond in similar ways to changes in delay

length increment/decrement and reward amount loss/gain, as can be seen in dopaminergic neurons

in the ventral tegmental area (VTA) (Roesch et al., 2007).

There are at least two dissociable schemes of hippocampal coding for delay length. One is on the

population level, with time cells (MacDonald et al., 2011; Pastalkova et al., 2008) — which are a

series of neurons that separately represent distinct temporally receptive fields that tile the delay

period — forming sequences that correspond with different delay lengths. The other is rate coding,

where individual neurons change their firing rate according to the delay length variations.

Here, we designed experiments to identify and characterize hippocampal neurons

that are engaged during the delay of a delay-discounting task and to probe their sensitivity to

changes in delay length, delay position, and reward amount. We recorded single-unit activity in CA1

of mice performing a delay-discounting version of the T-maze task (Zhang et al., 2018), and

assessed changes in neural activity related to delay length, delay position, and reward size. We first

examine the two schemes for encoding delay length: population coding and rate coding, and found

that both schemes were employed by a significant fraction of CA1 neurons, including two popula-

tions that demonstrated increased or decreased delay-period activity. The activity of these distinct

populations reflected delay length, delay positions, and/or reward size, however manipulation of

reward size resulted in these populations’ having opposite responses. Finally, we were able to iden-

tify a specific population of neurons that fit the criteria of value coding. These results suggest that

distinct subpopulation of neurons in the hippocampus can have unique contributions to the valuation

processes that are required for delay-based decisions.

Results

Behavioral profiling
We conducted a delay-based decision-making task in mice using the T-maze, in which mice chose

between right or left goal arms, with each arm containing a small reward or large reward, and with

or without delay, respectively (Figure 1A). In total, we employed five behavioral conditions, with

each session consisting of about 10 trials within 30 min, with a 20 s inter-trial interval at the start

zone.

To examine the impact of delay on decision making, we changed the delay length sequentially.

Once mice showed a preference for the large reward arm (>80%) we increased the length of delay

in a stepwise fashion (e.g., 0, 5, 10, 20, and 40 s; Figure 1B; Figure 1—figure supplement 1). With

the inclusion of a delay, preference for the large reward arm decreased as a function of delay length

(Figure 1C). The whole schedule of experiments is shown in Figure 1—figure supplement 2.
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Delay-dependent neuronal activity in CA1
We recorded extracellular single units and local-field potentials (LFPs) from the CA1 region in a total

of 28 mice (Figure 2—figure supplement 1) during delay-discount behavior, and classified cells as

putative excitatory neurons or inhibitory neurons on the basis of the characteristics of their extracel-

lular waveform (Figure 2—figure supplement 2; see ’Materials and methods’). We first analyzed

LFP signals in the CA1 region during delay periods. Consistent with the active movement of the

mice, sharp-wave/ripples (SWRs) were rarely observed (Z=2.19, p=0.03, for start and stem zones vs

delay zone; Z=2.40, p=0.02, for delay zone vs goal zone; Mann-Whitney U Test; Figure 2A and B)

and the LFP was dominated by theta-range (7–11 Hz) activity (Figure 2C and D), suggesting that the

circuit remained engaged during this phase. We then examined the activity of excitatory neurons

(Table 1) during specific task events, the exit from the start zone (start), the entrance/exit of the

delay zone (delay), and the entrance to the goal zone (goal). In CA1, a subset of neurons exhibited

delay-related activity, with firing rate rising during longer delays (>20 s) (Figure 3A), whereas a dis-

tinct subset fired only under short delay conditions, decreasing their firing rate as the delay length

increased (Figure 3B).

We next asked whether neurons significantly altered their firing rate during long delays compared

with other phases of the task (see ’Materials and methods’). We found that across all task conditions,
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Figure 1. Task design of the delay-based decision making in the T-maze. (A) Schematic diagram for the experimental setup. Mice can choose the right

or left arms assigned to obtain the small reward without delay or the large reward with delay, respectively. (B) Flow of the extension conditions. The

delay lengths were extended sequentially. Red circles indicate the number of sugar pellets. (C) Percentages of large-reward choices as a function of

delay length. Error bars indicate the standard error of the means (SEM).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source Data File for Figure 1C.

Figure supplement 1. Daily timeline of the extension of delay conditions.

Figure supplement 2. Schedule of running experimental conditions.
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large numbers of neurons exhibited significant increases (CA1: 243/639 units: 38.0%) or decreases

(CA1: 313/639: 48.9%) in their firing rates during the delay (Table 1). We termed these delay-active

(delay-act) and delay-suppressed (delay-sup) neurons, respectively (Figure 4A). Comparison

between the firing rates for short delays (5 s) and those for long delays (20–40 s) revealed that some

delay-act and delay-sup cells exhibited significant elevation or reduction of firing rates for specific

delay lengths (Figure 4B). At the population level, peak firing times of both CA1 delay-act and

delay-sup cells were highly distributed across the time spent in the delay zone (Figure 4C). To assess
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Figure 2. LFP signals during the long delay were characterized by strong theta power and lack of SWRs. (A) Sharp-wave/ripple events (SWRs) rarely

occurred during the delay in the task (data from one session of delay 20 s extension conditions). Red asterisks indicate the locations of SWRs. Black and

gray dots indicate the path of animal movements before (black) and after arriving at the goal (gray), respectively. (B) SWRs per session in specific

experimental zones. The total number of SWRs for each zone was counted and color-coded according to individual animals (the average number of

events acquired from 3 sessions of delay 20 s extension conditions). *, p<0.05, Mann-Whitney’s U-test. (C) Spectrogram of the hippocampal CA1 region

during the peri-delay period (averaged from three mice, total six sessions of delay 20 s extension conditions) Green line: delay-onset; red line:

estimated goal-onset. (D) Power spectrum density during 2 s at the beginning of the delay. Shaded area indicates ± SD.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source Data File for Figure 2B.

Figure supplement 1. Histological verification of recording sites in the CA1.

Figure supplement 2. Cell-type classification by plot in peak-trough and spike width.

Table 1. The number of delay-active and delay-suppressed CA1 excitatory and inhibitory neurons

recorded from all sessions.

Cell type Delay-active Delay-suppressed Other Total

Excitatory neurons 243 313 83 639

Inhibitory neurons 43 100 26 169
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Figure 3. Increased or decreased neuronal activity of CA1 cells during delay. (A) An example of CA1 delay-active (delay-act) cells, which showed an
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Figure 3 continued on next page
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the population activity of CA1 cells during the task, we examined the autocorrelation of the popula-

tion vectors under long-delay conditions (Figure 4D). The population activity of both delay-act and

delay-sup cells was clearly segmented into three periods — start, delay and goal — with differential

patterns of sustained activity in each. Similar population codes were found in inhibitory CA1 neurons

(Figure 4—figure supplement 1). We next analyzed the population codes across the individual

experimental conditions. We found a uniform-like distribution only under the both-side condition

(Kolmogorov–Smirnov test; Salz et al., 2016; p=0.46 for the both-side condition; p<0.05 for all

other conditions; Figure 4—figure supplement 2), while the remaining three protocols found activ-

ity biased towards the early part of the delay.

When we examined the activity of neurons sequentially recorded under all possible delays, we

found that lengthening the delay dynamically altered activity, with a substantial fraction of units

demonstrating a significant correlation between firing rate and delay length (mean firing rate, 20/

58 [34.5%], peak firing rate, 46/58 [79.3%] for delay-act; mean firing rate 31/83 [37.3%], peak firing

rate, 60/83 [72.3%] for delay-sup; p=0.01, permutation test, for percentages; Table 2, Figure 5).

This indicates that the hippocampus may encode delay length at the level of individual neurons.

Peak firing rates may be a better indicator, as mean firing rates at different delay lengths will result

in deformative normalization. Further, decoding analysis using support vector machine (SVM) con-

firmed that the population codes of firing pattern can also predict delay length (classification into

five different delay conditions) (Figure 5—figure supplement 1; see ’Decoding of delay length from

population spike activity’ in ’Materials and methods’). Taken together, the hippocampus may encode

delay length using dual coding schemes.

Given the learning-dependent development of hippocampal firing during delay period (Gill et al.,

2011), we also examined the time shift of firing by delay changes. At the beginning of the daily

recording session, about 10% (4/33) of delay-act cells initially fired after the animal reached the goal

in the 0 s delay condition, then shifted their firing to the delay period once a delay was introduced

(Figure 5—figure supplement 2). Interestingly, subsequent elimination of the delay did not result in

return to goal-related activity (Figure 5—figure supplement 2A). When we compared the firing of

CA1 delay-act cells under identical short delay trials occurring before and after long-delay trial

blocks (Figure 5—figure supplement 2B), we found about 10% of neurons shifted positively or neg-

atively (Figure 5—figure supplement 2C), indicating that the onset of firing in the CA1 neurons was

influenced by the experience of waiting and/or learning of the delay.

Place-specific delay information is encoded in the majority of CA1
neurons
Given the robust place code present in the hippocampus, we next asked whether CA1 delay-act

neurons were spatially selective. To this end, we switched the location of the delay and no-delay

arms (switched conditions) or replicated the delay on the other side (both-side conditions)

(Figure 6A, Figure 6—figure supplement 1), with corresponding changes in reward size. Under

both conditions, the mice changed their behavior within several trials, with the preference for the

large reward arm reaching about 70%. We then evaluated side-selectivity of the delay activity, add-

ing location as a variable under three-way ANOVA (side, delay-length, and timing; see ’Materials

and methods’) during switched and both-side trials (Figure 6A). Representative side-selective and -

unselective excitatory neurons in the CA1 are shown in Figure 6B. The percentage of side-selective

neurons was high in both CA1 delay-act (114/155: 73.5%) and delay-sup(124/191: 64.9%) neurons

(Figure 6C and Tables 2 and 3), however more than a quarter of the neurons of both groups

encoded delay independent of location.

Figure 3 continued

(middle) and goal-onset (bottom). Right, color-coded rate maps. The delayed arm was assigned to the right side with a large reward for this recording

session. Red dots indicate the number of sugar pellets. (B) An example of CA1 delay-suppressed cells, which showed a decrement in the firing rate

during delay. The delayed arm was assigned to the right side with a large reward for this recording session.

Masuda et al. eLife 2020;9:e52466. DOI: https://doi.org/10.7554/eLife.52466 6 of 23

Research article Neuroscience

https://doi.org/10.7554/eLife.52466


D Delay-act cells

-20 0 20 40

-20

0

20

40D
e

la
y
-o

n
s
e
t 

(s
)

Delay-start 

(s)

Goal door open

Delay-sup cells

-20 0 20 40

D
e

la
y
-o

n
s
e
t 

(s
)

-20

0

20

40

Delay-start 

(s)

Goal door open

-0.2

1.0

C
o

rr
e

la
ti
o

n
 

50

100

150

200

C Delay-act cells Delay-sup cells

C
e

ll 
n

u
m

b
e
r

P
ro

b
a
b

ili
ty

C
e

ll 
n

u
m

b
e
r

P
ro

b
a
b

ili
ty

Delay-start Delay-start Goal door open

(s) (s)

Goal door open

50

100

150

200

250

300

-20 0 20 40 600

0.1

0.2

-20 0 20 40 600

0.1

0.2

F
ir

in
g

 r
a

te
 (

H
z
)

max

A

0

20

40

60

80

100

< -1 0.30-0.3
Ratio of firing rate

log(firing rate in long delay trials/firing rate in whole trials)

C
e
ll
s Delay-sup

Delay-act

Other

639 cells from 

all experimental conditions

B

Ratio of firing rate 

log(long delay/short delay) 

C
e

ll 
n

u
m

b
e
r

-1.5 -0.5 0.5

83

0-1.0
1

C
e

ll 
n

u
m

b
e
r 

Ratio of firing rate 

log(long delay/short delay) 

0.5-0.5-1.5
1

-1.0 0

58

Delay-act cells Delay-sup cells

Figure 4. Delay-dependent firing patterns of CA1 delay-active and delay-suppressed cells. (A) The distribution of delay-active and delay-suppressed

cells aligned with the ratio of firing rate in the long delay period and in whole trials. (B) The ratio of mean firing rate during long delays (20 or 40 s) to

that during short delay (5 s) for all neurons (base-10 log-transformed). Each dot indicates an individual neuron. Black dots indicate neurons that had a

statistically significant difference in firing rate between short and long delay conditions (p<0.001). (C) Temporal patterns of firing rates in CA1 delay-

Figure 4 continued on next page
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Value-coding in CA1 neurons
We next asked how subjective value influenced the activity of the delay-act and delay-sup neurons in

CA1. As mentioned above, delay and reward are common factors that modulate subjective value. To

examine whether the changes of delay period firing patterns in delay increment were correlated

with changes in reward size, we first lengthened the delay length and subsequently decreased the

reward for the delayed option (reward loss conditions) and followed this by restoration of reward. In

addition, we manipulated the reward size in the opposite direction to avoid order-dependent con-

founds arising from decreased hunger or motivation of the animals in later trials (reward gain condi-

tions; Figure 7A, Figure 7—figure supplement 1). The majority of delay-act cells decreased their

firing rate in response to reward loss, whereas delay-sup neurons had the opposite response,

increasing their activity (Figure 7B and C). As a result, the log ratio of the firing rates (large reward/

small reward) under both reward loss and gain conditions was significantly different between delay-

act and delay-sup cells (Z = �2.6, p=0.007 for reward loss; Z = 2.1, p=0.03 for reward gain, Mann-

Whitney’s U-test). In total, the ratio was negatively skewed in the delay-act cells (T = �2.5, p=0.01,

one-sample t-test) but positively skewed in delay-sup cells (T = 2.7, p=0.01, one-sample t-test,

Figure 7D). These results suggest that firing during the delay independently reflected positive and

negative outcomes in these different subpopulations of CA1 neurons. Finally, we examined the rela-

tion between firing rate changes ‘by delay extension’ and ‘by reward manipulations’ to explore

whether value, a more general concept of information, may be neutrally encoded. In both delay-act

and delay-sup cells, there was no global trend, but a subset of neurons, plotted around the line of

‘delay effect = reward effect’ (Figure 7E), can be interpreted as value-coding neurons.

We next focused on the relationship between the behavioral shift during reward loss sessions and

the firing patterns of delay-act cells. If CA1 activity is dependent on the animals’ choice preference,

the activity should be dynamically changed after the elimination of preference. However, across the

session, animals avoided the delayed option, making it difficult to observe CA1 activity under this

condition. To eliminate the preference for the delayed options, we designed an ‘unequal conditions’

(long delay + no pellet vs long delay + four pellets, with the latter being the better option). Animals

then quickly reduced their preference to the delayed option with no reward. To record the activity

for the less-preferred or adverse choice, we forced mice to choose the less-preferred option with an

obstacle set at the entrance of the opposite arm. When faced with an unrewarded delayed option,

CA1 neurons indicating choice preference were silent (Figure 7—figure supplement 2). These

Figure 4 continued

active and delay-suppressed cells during delay. Top, color-coded temporal firing patterns. Neurons were ordered by the time of their peak firing rates.

Bottom, temporal distribution of the peak firing rates of the neurons. Green lines indicate delay-onset. Pale red lines indicate expected delay-offset. (D)

Correlation matrix of population vectors as a function of time for CA1 delay-active and delay-suppressed cells.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Population coding of long delay in the inhibitory CA1 cells.

Figure supplement 2. Population coding of long delay in CA1 delay-active cells in different experimental conditions.

Table 2. Full distribution of CA1 excitatory neurons for all of the tested conditions.

Test conditions Delay responsiveness Neuron number

Extension Delay-active 58

Delay-suppressed 83

Other 36

Switched or both-side Delay-active 155

Delay-suppressed 191

Other 34

Reward loss or gain Delay-active 30

Delay-suppressed 39

Other 13
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Figure 5. Delay-dependent firing patterns of CA1 delay-active and delay-suppressed cells. (A) Scatter plots show correlations between firing rate

during delay (upper, peak firing rate; lower, mean firing rate) and the delay length of five representative delay-act cells. Cells A and B show positive

correlations in both peak and mean firing rate; on the other hand, cell C shows either. Cells D and E show negative correlations. (B) Distribution of

correlation coefficients between firing rate (left, peak firing rate; right, mean firing rate) and delay length in delay-act cells. Dark color bars indicate

Figure 5 continued on next page
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results suggest that the firing of delay-act neurons in the CA1 region represents the animal’s subjec-

tive value of the chosen options.

NMDAR deficiency in hippocampus disrupted delay-discounting and
populational delay coding in CA1
Finally, we took advantage of a mutant mouse, the CaMK2-Cre; NR1-flox/flox mouse, which lacks

CA1 pyramidal cell N-methyl-D-aspartate (NMDA) receptors (NMDARs) (CA1-NR1cKO mouse;

McHugh et al., 1996; Tsien et al., 1996a), RRID:MGI:3581524), to assess the role of synaptic plas-

ticity in task performance. Consistent with previous reports of hippocampus-dependent learning def-

icits in these mice (Bannerman et al., 2012; Rondi-Reig et al., 2001; Tsien et al., 1996b), they

exhibited impaired delay discounting (Figure 8A), demonstrating a significant bias for the larger

reward even when the delay was extended (F1 = 14.4, p<0.001, genotype (CA1-NR1cKO vs NR1 f/f);

F4 = 23.0, p<0.001, interaction between delay length x genotype, F1,4 = 1.07, p=0.37, two-way

ANOVA, p=0.61 on delay 0 s, p=0.04 on delay 5 s, p=0.04 on delay 10 s, p=0.002 on delay 20 s,

p=0.005 on delay 40 s, multiple comparisons on each delay length).

We next recorded CA1 neuronal activity in cKO (n = 3, 123 units) and control mice (n = 4, 69

units, Table 4 and Table 5) to look for physiological correlates of the behavioral change. Delay-act

cells in the cKO mice showed non-specific activation during the delay period (Figure 8B and Fig-

ure 8—figure supplement 1A). Hence, there was a lower and higher proportion of delay-act and

delay-sup neurons, respectively, in the cKO and the ratio of delay-act/delay-sup was significantly

lower in the cKO than in the control mice (Figure 8C, p=0.02, Fisher’s Exact Test, Figure 8—figure

supplement 1B). Further, in contrast to the controls, the temporal distribution of all delay-act cells

in the cKO was sparse and not specific to delay-onset. As a result, population vector analysis

revealed that the activity was not segmented into three periods in the cKO mice (Figure 8D). In

addition, the ratio of CA1 firing of cKO was significantly different than that observed in control mice

and lacked the expected negatively skewed distribution (Z = 2.0, p=0.04, Mann-Whitney’s U-Test,

Figure 8E). We could not detect significant difference among the genotypes in basic firing property

during the task (mean firing rate, cKO — 3.07 Hz, control — 3.39 Hz, Z = �0.76, p=0.44, Mann-Whit-

ney’s U-test). Subpopulation firing rates were also not significantly different (delay-act, cKO — 2.66

Hz, control — 3.13 Hz, Z = �0.91, p=0.35; delay-sup, cKO — 3.47 Hz, control — 3.47 Hz, Z = �0.68,

p=0.14, Mann-Whitney’s U-test). These findings suggest that delay discount behavior and the under-

lying delay-related activity in CA1 pyramidal cells requires NMDAR-dependent mechanisms in the

hippocampus.

Discussion
We recorded CA1 neuronal activity in mice during delay-based decision making in an automated

T-maze task while independently manipulating delay length and reward size across sessions. We

observed distinct populations of neurons that increased or decreased their firing during the delay.

Moreover, the firing rates of a subset of the delay-activated CA1 neurons decreased with both delay

length increments and reward size declines. Notably, the activated and suppressed neurons showed

distinct activity changes following reward size manipulations. These results suggest that dissociable

subpopulations of hippocampal neurons represent delay and reward information in opposing ways.

These discoveries should help shape models of how the hippocampus supports decision making.

Figure 5 continued

statistically significant neurons (p<0.05), whereas bright color bars indicate neurons do not reach statistical significance. (C) Scatter plots show

correlations between firing rate during delay (upper, peak firing rate; lower, mean firing rate) and delay length for five representative delay-suppressed

cells. (D) Distribution of correlation coefficients between firing rate (left, peak firing rate; right, mean firing rate) and delay length in delay-suppressed

cells. Dark color bars indicate statistically significant neurons (p<0.05), whereas bright color bars indicate that neurons do not reach

statistical significance.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Decoding of delay length from population spike activity.

Figure supplement 2. Temporal patterns of the CA1 neuron shift as sessions progressed.

Figure supplement 3. Population coding of long delay in the delay-length-correlated and non-correlated CA1 cells.
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Figure 6. Spatial-selective delay coding in CA neurons. (A) Experimental conditions to investigate the location selectivity in delay-active neurons. The

location of the delay zone was switched to the other side (switched conditions) or doubled to both sides (both-side conditions). (B) Example CA1 delay-

active and delay-suppressed cells. Side-dependent and side-independent neurons are shown as left and right rows, respectively. Top left, colored

raster plots expressing relative firing rates. Green lines indicate delay-onset. Pale red lines indicate expected delay-offset. Top right, information of

Figure 6 continued on next page
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Although the delay-modulated activity was diverse across CA1 neurons, their responsiveness to

delay was precisely controlled. A significant fraction of CA1 neurons reflected delay length in their

firing rate, suggesting the encoding of delay length in the hippocampus on a single-cell level.

Related to this, positive and negative correlations with delay length were observed in both delay-act

and delay-sup cells. Currently, it is not clear what roles delay-act or delay-sup cells or those neurons

with positive or negative correlation play in the animal’s decision. In a delay-discounting task, delay

may be encoded in two different ways: by a discounting factor and by a factor predicting a larger

reward. Future work should investigate whether the two directions of correlation are related to the

discounting or prediction.

At the population level, the peak firing rates of delay-act and delay-sup cells were distributed

largely around the delay-onset. As a result, population vector analysis demonstrated segmented and

sustained network activity during the delay in the CA1 region, suggesting a role in prospective cod-

ing of specific periodic events centered on the delay. The decoding analysis demonstrated that par-

ticularly during short delay blocks, delay length could be decoded with population activity even

prior to the delay initiation. This may reflect the animal’s experience with the task and expectation

of an impending reward. In addition, in the specific circumstance where a fixed delay was constantly

presented, the population coding of delay may be more precise.

A significant fraction of both the delay-act and the delay-sup neurons that we recorded also car-

ried spatially tuned delayed information. Thus, the activity of most delay-act and delay-sup cells in

dorsal CA1 does not appear to represent solely delay information, but rather, may represent inte-

grated information of the chosen option, reflecting both location and delay. This result is consistent

with the idea that hippocampal cells are coding not only within the space and time dimensions indi-

vidually, but rather across them jointly (Eichenbaum, 2014; Howard and Eichenbaum, 2015;

MacDonald et al., 2011).

Changing reward size modulated the firing rates of both the delay-act and the delay-sup cells in

CA1. It is widely known that the activity of CA1 neurons can depend on reward (Ambrose et al.,

2016; Hölscher et al., 2003; Singer and Frank, 2009). Studies focusing on goal-directed behavior

have demonstrated that some CA1 neurons fire when animals approach, wait for, or acquire

rewards, but not when animals visit the same location in the absence of the reward

(Eichenbaum et al., 1987; Fyhn et al., 2002; Hok et al., 2007; Kobayashi et al., 2003; Rolls and

Figure 6 continued

conditions corresponded to the raster plots on the left. Red dots indicate the number of sugar pellets. Bottom left, Peri-event time histograms showing

the averaged firing rates. Magenta lines indicate the firing rate of the left choice with a 20 s delay. Black-filled histograms indicate the firing rate of the

right choice with a 20 s delay. Bottom right, color-coded rate maps for the two conditions (normal delay and switch or both-side conditions). (C)

Percentage of place-dependent and -independent CA1 delay-active and delay-suppressed neurons. Error bars indicate 95% Clopper-Pearson’s

confidence intervals. **: p<0.01, Mann-Whitney’s U-test.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Daily timeline of the switch and both-side conditions.

Table 3. Distribution of side-dependent and side-independent, delay-active and delay-suppressed,

CA1 excitatory and inhibitory neurons.

Delay responsibility Side-dependency Cell types N %

Delay-active Side-dependent Excitatory neuron 114 73.5

Inhibitory neuron 12 60.0

Side-independent Excitatory neuron 41 26.5

Inhibitory neuron 8 40.0

Delay-suppressed Side-dependent Excitatory neuron 124 64.9

Inhibitory neuron 45 71.4

Side-independent Excitatory neuron 67 35.1

Inhibitory neuron 18 28.6
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Xiang, 2005), indicating that a certain subset of CA1 neurons are highly sensitive to reward expecta-

tion or motivation. However, in monkeys, omission of a reward activated some CA1 neurons

(Watanabe and Niki, 1985). This is consistent with our results demonstrating that during the delay,

dissociable subsets of CA1 neurons were positively or negatively correlated with reward size. The

scatter plot of the firing rate ratio of small/large reward conditions and long/short delay conditions

(Figure 7E) shows that there are no global trends, suggesting that the CA1 neurons exhibit indepen-

dent relationship between delay and reward manipulation responses. We found, however, that a

fraction of neurons reacted in the same way to delay and reward manipulation, suggesting that there

may be value-coding neurons in the CA1. Further study will be required to isolate specific neurons

encoding subjective value, focusing on specific pathways or cell types. Accordingly, a distinct sub-

population of CA1 neurons may encode the delay-reward integration and may support the valuation

process in delay-based decision making.

The phenotype of ‘lowered delay discounting’ caused by a loss of the NMDAR may also be

interpreted as an abnormal repetition of an unpleasant choice, referred to as ‘compulsive behavior’.

Systemic injection of the partial NMDAR agonist D-cycloserine reduces compulsive lever-pressing in

a model of obsessive-compulsive disorder (OCD) in rats (Albelda et al., 2010). In addition, polymor-

phisms in a subunit of NMDAR have been considered as a risk factor in OCD (Arnold et al., 2004).

The present study suggests that the hippocampal NMDARs are required for delay discounting and

provides additional evidence that hippocampal NMDARs may be associated with compulsive disor-

ders. It is widely believed that synaptic plasticity via NMDAR-dependent machinery contributes to

association learning and that, in the hippocampus, this contributes to the formation of long-term,

spatial memories (Martin et al., 2000). Studies using several lines of conditional knockout mice have

pointed out that NMDAR in the hippocampus is involved in spatial learning (Tsien et al., 1996a),

nonspatial learning (Huerta et al., 2000; Rondi-Reig et al., 2001), anxiety (Bannerman et al., 2004;

Kjelstrup et al., 2002; McHugh et al., 2004; Richmond et al., 1999), time perception

(Huerta et al., 2000), and decision making (Bannerman et al., 2012). In addition, physiological stud-

ies have demonstrated that a hippocampus that lacks NMDAR exhibits less specific spatial represen-

tation in place cells (McHugh et al., 1996). We found that NMDAR deficiency disrupted the

proportion of delay-act and delay-sup cells, and population coding for the delay. These findings sug-

gest that the NMDAR in the hippocampus may be required to maintain or develop time-coding. It

should be noted that the NR1 knockout may be extended to other telencephalic regions (CA3, den-

tate gyrus, deep cortical layers) in the cKO animals in the present study. Further research is required

in order to identify more specific mechanistic roles of the hippocampal NMDAR in delay-based deci-

sion making. In addition, in contrast to previous studies showing that rats with hippocampal lesions

exhibit higher discount rates (Cheung and Cardinal, 2005; Mariano et al., 2009; McHugh et al.,

2008), the NMDA KO mice demonstrated the opposite phenotype. Thus, there may be considerable

differences between the effect of the lesions and that of NMDAR knockout in the hippocampus on

the full network engaged during delay-based decision making.

In conclusion, our results show that CA1 neuronal activity during delay is segregated into two

populations, delay active and delay suppressed neurons. Further, these groups demonstrate oppos-

ing responses to changes in motivational background. In addition, NMDAR-dependent plasticity

mechanisms appear to be required for the formation of the firing patterns during delay and for the

delay-discounting. These findings further clarify the role of the hippocampus in decision making, as

well as in the control of impulsive or compulsive behaviors.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Mus musculus)

C57BL/6J RIKEN Bio
Resource Center

RRID:
IMSR_JAX:000664

Wild-type mouse

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Mus musculus)

NR1flox PMID: 8980237 005246
(Jackson Laboratory)

Targeted mutation line

Strain, strain
background
(Mus musculus)

Tg(Camk2a-cre)
T29-1Stl/J

PMID: 8980237 005359
(Jackson Laboratory)

Cre transgenic line

Strain, strain
background
(Mus musculus)

Tg(Camk2a-cre)
T29-1Stl/J, NR1flox/flox

PMID: 8980237 RRID: MGI:3581524 Conditional
knockout line

Commercial
assay or kit

T-maze O’hara and Co., Ltd. RRID: SCR_018016 Automatic
operant test

Other Neural probes NeuroNexus A4 � 2-tet-5mm
-150-200-312

32-ch electrode

Other nDrive NeuroNexus RRID: SCR_018019 Micro driver to control
movement of electrode

Other Amplipex: KJE-1001 Amplipex RRID: SCR_018017 Recording system
for neural signals

Software,
algorithm

MATLAB_R2018a Mathworks RRID: SCR_001622

Software,
algorithm

Klusters PMID: 16580733 RRID:SCR_015533

Software,
algorithm

NDmanager PMID: 16580733 RRID:SCR_015533

Software,
algorithm

Neuroscope PMID: 16580733 RRID:SCR_015533

Software,
algorithm

KlustaKwik2 PMID: 25149694 RRID:SCR_014480

Sequence-
based reagent

Cre_F PMID: 28244984 PCR primers ACC TGA TGG ACA TGT TCA GGG ATC G

Sequenced-
based reagent

Cre_R PMID: 28244984 PCR primers TCC GGT TAT TCA ACT TGC ACC ATG C

Sequenced-
based reagent

NR1flox-F PMID: 28244984 PCR primers TGT GCT GGG TGT GAG GGT TG

Sequenced-
based reagent

NR1flox-R PMID: 28244984 PCR primers GTG AGC TGC ACT TCC AGA AG

Other DAPI stain ThermoFisher Thermo Fisher
Scientific
Cat# D1306

(1 mg/mL)

Other DiI stain ThermoFisher Thermo Fisher
Scientific
Cat# D3911

(200 mg/mL)

Animals
All procedures were approved by the RIKEN Animal Care and Use Committee. A total of 29 male

C57B6/J mice were used for this study (wildtype, n = 5; cKO, n = 11 (8 for behavioral study); control:

n = 13 (9 for behavioral study]). Mice lacking NMDAR in the hippocampus (RRID:MGI:3581524) were

generated by crossing the line gene-targeted for loxP-tagged Nr1 (Grin1) alleles (Nr1flox;

Tsien et al., 1996a) and a transgenic line carrying Camk2a promoter-driven Cre recombinase

(Camk2a-Cre, T29-1Stl; Tsien et al., 1996a). In this mutant, deletion of NR1 is delayed until about 4

weeks after birth and is restricted to the CA1 pyramidal cells until about 2 months of age

(Fukaya et al., 2003). Most of the behavioral analysis using the mutant was done until this age.

Hence, it is unlikely that the behavioral impairment observed was the result of undetected develop-

mental abnormalities. Physiological characterization, however, may have harbored a more
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Figure 7. The firing of CA1 delay-active and delay-suppressed cells is distinctly changed by reward size manipulations. (A) Left, experimental reward

loss conditions: the reward size was changed from 4 to 1 (or 0) pellets. Right, experimental reward gain conditions: the reward size was changed from 1

(or 0) to 4 pellets. (B) Example CA1 delay-active (top) and delay-suppressed cells (bottom) fired during delay in reward loss conditions. Green lines

indicate delay-onset. Red lines indicate expected delay-offset. Red dots indicate the number of sugar pellets. (C) Ratio of firing rates of delay-active

Figure 7 continued on next page
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widespread deletion of the NR1 gene as the ages of cKO animals in the recording session

were slightly more than 2 months old (Table 5).

Delay-based decision-making task
Adult mice were trained in a delay-based decision-making task under an automated T-maze

(O’HARA and Co., Tokyo, Japan, RRID:SCR_018016) before electrophysiological recording. The

maze was partitioned off into six areas (Start, Junction, Right-Goal, Right-Back, Left-Goal, and Left-

Back) by seven sliding doors (S-J, J-R, R-RG, RG-S, J-L, L-LG, and LG-S). The detailed protocol has

been described previously (Kobayashi et al., 2013; Zhang et al., 2018). In short, the mice had food

restriction to approximately 80% of free-feeding weight, were habituated to the maze, and baited

with scattered pellets (30 min/day) for 2 days. The large reward arm and the small reward arm were

allocated to the right or left side arm randomly for each mouse. Four pellets were available in the

large reward arm, whereas only one pellet was available in the small reward arm. Mice were allowed

to roam freely and without delay to select either arm for 5–10 days for the initial training period until

they preferred the large arm (>80%). Then, all animals were trained in the extension delay conditions

for at least 5 days. For the first block of trials for each day, the large reward arm was associated with-

out delay (0 s), and then, during the later blocks, it was associated with a 5 s, 10 s, 20 s, or 40 s

delay. In the meantime, the small reward arm was always associated with no delay. Each block con-

sisted of 10 trials or more (15 or 30 min). If the trial number was lower than 10, additional blocks

were employed. Next, the mice, except cKO and control, were trained in the switched and both-

side conditions. In the switched condition, the side of the delayed-large arm was switched to the

other side. In the both-side condition, both sides were set as delayed-small and delayed–large arms.

The switched conditions were performed initially and then under both-side conditions. In changing

the conditions, 10 or more trials were continuously performed to develop a sustained reaction from

the animals. Finally, the mice were trained in the Reward loss and gain conditions. We decreased the

reward size to investigate whether the firing rate reflected a positive or negative aspect in the

delayed option. Initially, we set a delay for a short time with the normal large reward, and then we

changed the delay to be long without any change in the large reward, similar to other conditions.

After these two continuous sessions, we changed the reward size from four to one pellet. As

for other control conditions, we also performed the opposite flow (long delay with one pellet first,

long delay with four pellets next). For all experiments, during the time between blocks, mice were

allowed to drink water. Four to six consecutive daily sessions were performed per week.

Histological identification of the localization of the recorded sites
Owing to the small thickness of the silicon probe shanks, the tracks of shanks were hard to detect.

Painting at the back of the shanks with DiI (Thermo Fisher Scientific Cat# D3911) and/or the creation

of an electrical lesion by a small current (5 mA for 5 s) was used to facilitate track identifications

under DAPI staining (Thermo Fisher Scientific Cat# D1306) (Figure 2—figure supplement 1).

Recording and spike sorting
Mice were anesthetized with isoflurane during surgery. Silicon probes or wire tetrodes were

implanted in the hippocampal CA1 region (AP = �2.0 to �2.8 mm, ML = 1.2 to 2.0 mm, DV = 1.2 to

Figure 7 continued

and -suppressed cells in reward loss and gain conditions. Dots indicate individual data for delay-active cells (red) and delay-suppressed cells (blue).

Central bars indicate the medians. *, p<0.05; **, p<0.01, Mann-Whitney’s U-test. (D) Ratio of firing rates of delay-active and -suppressed cells in mixed

population. Error bars indicate SEM. *, p<0.05; **, p<0.01, One-sample t-test. (E) Scatter plots of firing rate ratios between small/large reward

conditions and between long delay/short delay conditions. The computed correlation coefficient R and p value are indicated.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Source Data File for Figure 7C and D.

Figure supplement 1. Daily timeline of reward loss and gain conditions.

Figure supplement 2. Firing in CA1 delay-active cells depended on animal preference.

Masuda et al. eLife 2020;9:e52466. DOI: https://doi.org/10.7554/eLife.52466 16 of 23

Research article Neuroscience

https://scicrunch.org/resolver/SCR_018016
https://doi.org/10.7554/eLife.52466


A

B

L
a

rg
e
 r

e
w

a
rd

 c
h

o
ic

e
 r

a
te

 (
%

)

0

20

40

60

80

100

0 5 10 20 40

CA1-NR1cKO

NR1 f/f

* *
**

**

Delay length (s)

D Delay-act cells

C
e

ll 
n

u
m

b
e
r

P
ro

b
a
b

ili
ty

-20 0 20 40

-20

0

20

40

D
e

la
y
-o

n
s
e
t 

(s
)

-20 0 20 40

NR1 f/f

10

20

30

-20 0 20 40 60
0

0.1

0.2

0.3

cKO

F
ir

in
g

 r
a

te

max

0

-0.2

1.0

C
o

rr
e

la
ti
o

n
 

*
80

cKO NR1 f/f

R
a

ti
o

 o
f 
d

e
la

y
-a

c
t 

c
e

lls
 (

%
)

R
a

ti
o

 o
f 
fi
ri
n

g
 r

a
te

lo
g

(s
m

a
ll 

re
w

a
rd

/l
a

rg
e
 r

e
w

a
rd

)E

cKO NR1 f/f

0 20 400

2

4

6

8

0 20 400

2

4

6

8

M
e

a
n
 f

ir
in

g
 r

a
te

 (
H

z
)

Delay-onset (s) Delay-onset (s)

delay 40s

delay 20s

delay 10s

delay 5s

delay 0s

Delay-start 

(s)

Goal door openDelay-start 

(s)

Goal door open

C

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Control

(pooled)cKO

*

Delay-act cells

60

20

0

40

5

10

15

20

25

-20 0 20 40 60
0

0.1

0.2

Delay-onset (s) Delay-onset (s)

Figure 8. NMDAR-dependent mechanism for delay-discounting. (A) Impaired delay-discounting in CA1-NR1 cKO mice. *, p<0.05; **, p<0.01; post-hoc

Scheffe’s test. Error bars indicate SEM. (B) NMDAR deficiency disrupted the delay tuning in the CA1 activity. Average firing patterns of the CA1 delay-

active cells from cKO and control mice for different delay lengths (0, 5, 10, 20, and 40 s). (C) Abnormal delay-active and –suppressed cell proportion in

cKO mice. Ratio of delay-act cells to delay-sup cells for cKO and control mice. Error bars indicate 95% Clopper-Pearson’s confidence intervals. *,

p<0.05; Mann–Whitney’s U test. (D) NMDAR deficiency disrupted the populational activity in CA1. Top, color-coded temporal firing patterns of the CA1

delay-active cells in cKO and control mice. Neurons were ordered by the time of their peak firing rates. Middle, temporal distribution of neurons. Green

lines indicate delay-onset. Red lines indicate expected delay-offset. Bottom, correlation matrix of population vectors as a function of time for CA1

Figure 8 continued on next page
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1.5 mm). In all experiments, ground and reference screws were fixed in the skull atop the cerebel-

lum. The silicon probes attached to micromanipulators (nDrive, NeuroNexus, Michigan, USA), or

to nichrome wire tetrodes combined with a micro-drive (Middleton and McHugh, 2016), which

enabled us to move their positions to the desired depth, were implanted into the mice. Electrophysi-

ological signals were acquired continuously at 20 kHz on a multi-channel recording system (KJE-

1001, Ampliplex Ltd, Szeged, Hungary, RRID:SCR_018017). The wide-band signal was down-sam-

pled to 1.25 kHz and used as the LFP signal. We detected SWRs (their timing, power, and durations)

from filtered signal (120–230 Hz), which corresponded to more than three SD of log-power in the

same frequency band. To trace the temporal positions of the animals, two color LEDs were set on

the headstage and were recorded using a digital video camera at 30 frames/s. Spikes were extracted

from the high-pass filtered signals (median filter, cut-off frequency: 800 Hz). Spike sorting was per-

formed semi-automatically, using KlustaKwik2 (RRID:SCR_014480, https://github.com/kwikteam/

klustakwik2/; Kadir et al., 2014). The cell types of the units were classified by peak-trough latency

and width. In total, we analyzed 831 putative excitatory neurons (n = 639 for wildtype; n = 123 for

cKO; n = 69 for NR1f/f mice; Table 1 and S4) and 250 inhibitory neurons (n = 169 for wildtype;

n = 53 for cKO; n = 28 for NR1f/f mice). The positions of the animals were determined by the posi-

tion of the LEDs mounted on the headstage. The rate maps of the spike number and occupancy

probability were generated from 4 cm binned segments from the position and spiking data. The nor-

malized PSTH for individual neurons in delay-act and delay–sup cells in the CA1 was computed

under delay 20 s conditions. The autocorrelation of the population vector was then computed.

Determination of delay-active and delay-suppressed neurons
To examine the effect of delay on neuronal activities, we quantified changes in the firing rate of each

neuron during the long delay period. First, we calculated the firing rate in the delay zone

(Rdelay = spike number in delay zone ndelay/time spent in delay zone tdelay; see Figure 1A), and that

in all zones (Rtotal = spike number in all zones ntotal/time spent in all zones ttotal) in long-delay trials,

and then computed the ratio of them (Rdelay/Rtotal). Second, we performed a permutation test in

order to determine whether the ratio of the firing rates Rdelay/Rtotal shows significant change or not.

To make surrogate data, we resampled the spike trains by permuting the inter-spike-intervals and by

realigning with them. We repeated this process 1000 times to obtain 1000 resampled datasets. The

rank of the original firing rate ratio Rdelay/Rtotal in the resampled 1000 firing rate ratios was used to

Figure 8 continued

delay-act cells in cKO and control mice. (E) NMDAR deficiency disrupted the negative skew in the firing rate ratio of delay-active cells. Ratio of firing

rates of delay-active cells in CA1 of cKO and WT mice. Dots indicate individual data for cKO (gray) and control (black) mice. The central bar indicates

the median. *, p<0.05; Mann–Whitney’ U test.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Source Data File for Figure 8A and E.

Figure supplement 1. Mutant mice (CA1-NR1cKO) exhibiting impaired delay discounting showed less specific spatial representation in place cell

activities and less in the number of delay-active cells.

Table 4. Full distribution of CA1 excitatory neurons for the NMDAR mutant study.

The numbers in parentheses are cells from the wildtype.

Test conditions Delay responsiveness

Neurons

cKO Control

Extension Delay-active 28 25

Delay-suppressed 56 20

Other 22 19

Reward loss and gain Delay-active 8 33 (30)

Delay-suppressed 6 0

Other 3 2
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define the statistical assessment (delay-act cells — significant higher firing rate [rank <50, top 5%];

delay-sup cells — significant lower firing rate [rank >950, bottom 5%]).

Decoding of delay length from population spike activity
To quantify the information of delay length reflected in the population spike activity, we performed

decoding analysis. We used the fitcecoc.m function from MATLAB statistics and the machine-learn-

ing toolbox, which enables to train a multiclass, error-correcting output codes (ECOC) model of lin-

ear support vector machines (SVM) for binary choices (e.g., Reber et al., 2019; Stavisky et al.,

2019). In this, multiple binary SVMs between all pairs of labels are trained. All parameters were set

to their default values. We constructed a feature vector for one or two trials, consisting of the firing

activity of each neuron (normalized firing rate [0 to 1]) in 25 bins of 200 ms (over 5 s). The classifier

was trained on spike trains from �25 s to 60 s after delay-onset of all five conditions, with labels of

the delay length (delay lengths are 0, 5, 10, 20 and 40 s) for each animal (no fewer than 17, not more

than 43 neurons from one animal) at every 2 s time step in each trial (Figure 5—figure supplement

1A). Classification performance was cross-validated using a leave-one-trial-out method and quanti-

fied as the correction probability. We separately calculate the correction probability of each delay

length. The performance was shown together with surrogate decoding performance as chance pre-

diction, obtained from artificial testing datasets created by shuffling the neuron labels and/or delay

lengths (Figure 5—figure supplement 1B and D).

Statistical analysis
Correlation coefficients and P values between firing rates and delay length were calculated by the

Matlab function (corrcoef). To estimate statistical significance of the obtained percentage of neurons

correlated with delay length, we resampled firing rate and delay length in all trials with 1000 repeats.

We then compared the observed percentage from the permutated percentage. To compare the fir-

ing rates between short and long delay conditions, we performed Wilcoxon’s rank sum test. Kolmo-

gorov–Smirnov test (kstest) (Salz et al., 2016) was conducted to test the normality. To assess side-

dependency in firing rates, three-way ANOVA (side [right and left] � phase [start, delay, and

goal] � delay length [5 and 20]) was used. To compare the effect of reward loss and gain on firing

rate of delay-act and delay-sup cells and average firing rates between cKO and control mice, Mann-

Whitney’s U test was carried out. To examine the ratio distribution, we performed two-tailed one-

sample t tests against 0. The behavioral impact of NMDAR conditional knockout was evaluated by

two-way ANOVA (genotype [cKO and control] � choice probability) followed by post-hoc Scheffe’s

test. Fisher’s exact test was applied to compare the cell-type distributions between cKO and control

mice.
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