1	Title: Estimation of 'Hass' avocado (Persea americana Mill.) ripeness by fluorescence
2	fingerprint measurement
3	
4	Authors: Mito Kokawa ^{a*} , Azusa Hashimoto ^b , Xinyue Li ^c , Mizuki Tsuta ^c , Yutaka
5	Kitamura ^a
6	
7	Affiliations:
8	a) Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai,
9	Tsukuba, 305-8572 Ibaraki, Japan
10	b) School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai,
11	Tsukuba, 305-8572 Ibaraki, Japan
12	c) National Agriculture and Food Research Association, Food Research Institute, 2-1-12
13	Kannondai, Tsukuba, 305-8642 Ibaraki, Japan
14	
15	Corresponding author:
16	Mito Kokawa

1		
2 3 4 5	17	kokawa.mito.ke@u.tsukuba.ac.jp
6 7 8	18	Tel: +81-29-853-4659
9 10 11 12	19	Fax: +81-29-853-4659
13 14 15	20	
16 17 18		
19 20 21 22		
22 23 24 25		
26 27 28		
29 30 31		
32 33 34		
35 36 37 38		
30 39 40 41		
42 43 44		
45 46 47		
48 49 50 51		
51 52 53 54		
55 56 57		
58 59 60		
61 62 63		
64 65		

Abstract

22	Avocados (Persea americana Mill.) are a climacteric fruit which ripen until after
23	harvesting, and their ripeness is an important quality attribute that determines consumer
24	liking. In this study, the ripening degree of 'Hass' avocados was evaluated non-
25	destructively by measuring the skin and flesh using the fluorescence fingerprint (FF).
26	FF, also known as the Excitation emission matrix (EEM), is a set of fluorescence
27	spectra obtained at consecutive excitation wavelengths. It was found that as ripening
28	progressed, the fluorescence signal of chlorophyll A in the skin and flesh decreased
29	significantly as the hardness of the avocado flesh decreased. The hardness value was
30	estimated from the FFs of the skin and flesh using partial least-squares regression, and
31	minimum prediction errors of 2.02 N cm ⁻² and 2.05 N cm ⁻² were obtained for the
32	prediction models using FFs of the flesh and skin, respectively. Furthermore, ripeness
33	levels (unripe, ripe, and over ripe) were discriminated non-destructively from the FFs of
34	the skin with an accuracy of 90% for the validation dataset. The measurement and
35	analysis technique demonstrated in this study is rapid and accurate, and can contribute
36	to supplying uniform agricultural products to consumers.

37 38 Keywords: 39 Excitation emission matrix (EEM); Partial least-squares regression; discrimination 40 analysis; texture measurement; polyphenol oxidase

41 Introduction

Avocados (Persea americana Mill.) are a climacteric fruit that ripens after harvesting. Maturation of the fruit occurs while the fruit is on the tree, and maturation is characterized by an increase in the fat content and a concurrent decrease in the water content (Clark et al. 2007). Interestingly, the avocado fruit does not ripen while it is on the tree and remains green and hard (Paliyath et al. 2008). After harvesting, ripening occurs, characterized by a change in color (green to black or purple, especially for the 'Hass' variety) and softening of the flesh. Although there have been many reports on predicting the maturity of avocado fruit non-destructively, as reviewed by Magwaza and Tesfay (2015), there have been fewer reports on monitoring avocado ripeness after their harvest. Gaete-Garretón et al. (2005) applied ultrasonic methods to assess avocado ripeness and showed that the adsorption coefficient had a strong correlation with firmness, but this correlation was only obtained from the average values of 15 fruit. Cox et al. (2004) showed that the avocado skin color changes during ripening owing to a decrease in chlorophyll and an increase in anthocyanins, more specifically, cyanidin-3-gluocoside. Color changes in the skin are

57	also an important indicator of ripeness for consumers (Pareek 2016) especially for
58	varieties such as 'Hass', but there has been no work using vibrational spectroscopic
59	techniques to accurately evaluate the ripening degree of avocados. However, evaluating
60	the ripening degree of avocados quickly and accurately is important for providing uniform
61	fruit to consumers, especially to the catering industry, where certain amounts of ready-to-
62	eat fruit are needed daily.
63	The skin and flesh of avocados contain multiple fluorescent compounds, including
64	chlorophyll, tocopherols and many polyphenols such as chlorogenic, cinnamic, and
65	caffeic acid (Rodriguez-Carpena et al. 2011; Schroeder 1987). During ripening, the
66	chlorophyll content in the skin (Cox et al. 2004) and flavonoids such as epicatechins
67	(George and Christoffersen 2016) decrease. Therefore, fluorescence measurement is
68	potentially effective for measuring the degree of ripeness of avocados.
69	Rather than directly targeting the fluorophores mentioned above and acquiring single
70	fluorescence spectra to measure each compound, this study uses the fluorescence
71	fingerprint (FF), also known as the excitation-emission matrix (EEM), to acquire more
72	comprehensive information about the fruit. FFs are a set of fluorescence spectra acquired

73	at consecutive excitation wavelengths (Jiang et al. 2010), giving a three-dimensional
74	diagram consisting of fluorescence intensity values at different excitation and emission
75	wavelengths. The advantage of the FF technique over conventional fluorescence
76	spectroscopy is that it includes the signals of many fluorescent constituents existing in
77	the sample. Therefore, simultaneous changes in multiple constituents can be measured at
78	once. Many studies using the FF technique to measure various food stuffs such as ham
79	(Moller et al. 2003), olive oil (Guimet et al. 2004), beer (Sikorska et al. 2008), cheese
80	(Kokawa et al. 2015), soymilk (Kokawa et al. 2016), and peaches (Trivittayasil et al.
81	2017) have been reported.
81 82	2017) have been reported. This study aims to use the FF technique to estimate the degree of ripeness of avocados
82	This study aims to use the FF technique to estimate the degree of ripeness of avocados
82 83	This study aims to use the FF technique to estimate the degree of ripeness of avocados non-destructively by measuring the fluorescence of the skin and flesh. Measurement of
82 83 84	This study aims to use the FF technique to estimate the degree of ripeness of avocados non-destructively by measuring the fluorescence of the skin and flesh. Measurement of the skin can be performed non-destructively and is applicable for product monitoring,
82 83 84 85	This study aims to use the FF technique to estimate the degree of ripeness of avocados non-destructively by measuring the fluorescence of the skin and flesh. Measurement of the skin can be performed non-destructively and is applicable for product monitoring, while measurement of the flesh enabled us to acquire comprehensive information about

89 1. Materials

Sixty avocados of the 'Hass' variety (geographical origin: Mexico) were acquired from Kasumi Co., Ltd. (Ibaraki, Japan) randomly at different purchase times, while they were still unripe. The fruits were stored at refrigeration temperatures during transport. After acquisition, they were transferred to a temperature-controlled room (21 °C) and stored until measurement. 2. Evaluation of flesh hardness and ripeness degree Flesh hardness was measured as an index of ripeness, following the method of Landahl et al. (2009) with some modifications. A texture analyzer (EZ-SX, Shimadzu Corporation, Kyoto, Japan) was used for the hardness measurement. Three cuboid samples of 2.5 cm width and length and 1 cm thickness were cut out from the flesh of each avocado, with the skin removed. A cylindrical plunger with a diameter of 2.0 cm was used to compress the sample for 1.0 mm at a speed of 10 mm min⁻¹, and the maximum stress (N cm⁻²) was recorded as the hardness of the avocado. The average value of three measurements was used as the hardness value. The hardness measurements of the avocados were performed

on the same day as the FF measurement explained in the next section. The ripeness degree ('unripe', 'ripe', and 'overripe') of the avocados were determined based on their hardness value as shown in Table 1. The correspondence between ripeness degree and hardness values was determined from pre-experiments using 20 avocados acquired independently from the 60 fruits used in the main experiment.

3. Fluorescence fingerprint measurement

FF measurement of the avocado skin and flesh was performed with a fluorescence spectrophotometer (FP-8500WRE, JASCO, Japan). The samples were measured on an epi-fluorescence platform (EFA-833, JASCO, Japan), where the samples could be pressed upon a flat window of 10 mm diameter. This platform made it possible to measure the avocados without cutting out small samples, thereby leaving the fruit intact for hardness measurement. The excitation and emission wavelength ranges were set to 200-850 nm and 230-850 nm, respectively, and were measured at 10 nm intervals at a speed of 60000 nm min⁻¹. The slit widths of the monochromator used for the excitation and emission lights were both set to 10 nm. The photomultiplier voltage was set at 350 V when

121	measuring the skin and 270 V when measuring the flesh. After two points on the skin
122	(one near the equatorial plane and one near the basal end) were measured, the avocado
123	was cut in half, and two points of the flesh (one point near the skin and the other near the
124	seed) were measured. The two points on both the skin and flesh were measured to take
125	the heterogeneity within the fruit into account, and the flesh was measured to clarify the
126	chemical changes occurring in the fruit during ripening.
127	
128	4. Prediction of flesh hardness from FF measurements
129	A partial least-squares (PLS) regression model was constructed to predict the avocado
130	flesh hardness from the FF data of the skin and flesh. The model was constructed using
131	PLS Toolbox version 8.5.1 (Eigenvector Inc., USA) in MATLAB (R2017b) software
132	(MathWorks Inc., USA).
133	The FF data were preprocessed before PLS analysis, following the procedure of
134	Kokawa et al. (2015). First, data whose excitation wavelengths were longer than the
135	emission wavelengths were removed. This is because fluorescence has a longer emission
136	wavelength than the excitation wavelength owing to the loss of energy between the

137	absorption and the fluorescence emission. Next, the first-, second-, and third-order scatter
138	light that occurred at emission wavelengths equal to, twice, and three times the excitation
139	wavelength, respectively, were removed (Fujita et al. 2010). The appearance of the
140	second- and third-order scattered light is due to the light dispersion mechanism of the
141	monochromator. The remaining data, consisting of 1790 combinations of excitation and
142	emission wavelengths, were unfolded (Guimet et al. 2004) into a two-dimensional matrix
143	whose rows represent samples and columns represent wavelength combinations.
144	The samples were divided into calibration and validation datasets. The fluorescence
145	data from 40 avocados (80 measurements on the skin and 80 measurements on the flesh)
146	were used for calibration, while those from 20 avocados (40 measurements on the skin
147	and 40 measurements on the flesh) were used for validation.
148	Three preprocessing methods were used for the FF data: mean centering, normalization
149	followed by mean centering, and autoscaling. These were combined with two
150	preprocessing methods for hardness; as is or converted to a log scale. Hardness values
151	were converted to a log scale because the change in fluorescence intensity at some
152	wavelengths was observed to be logarithmically correlated to hardness (details given in
151	were converted to a log scale because the change in fluorescence intensity at some

the discussion section). The data were normalized so that the area underneath each spectrum was equal to one. In autoscaling, each wavelength was scaled to zero mean and unit variance. The number of latent variables for the PLS models was determined by cross-validation with the calibration samples using the Venetian blinds method, where the data is split into groups of s samples, and each test set is determined by selecting stheopy ject in the group, starting at objects numbered 1 through s (s = 8) (Lenhardt et al. 2015). Prediction models formulated using different preprocessing methods were compared based on the root-mean-square error of cross-validation (RMSECV). 5. Discrimination analysis from FF measurements Avocado ripeness levels (unripe, ripe, and overripe, based on their hardness, Table 1) were predicted by Partial Least-Squares Discrimination Analysis (PLS-DA). Only the FFs of the skin were used for this analysis, assuming practical use where measurement would be done non-destructively without cutting the fruit open. The procedures of FF data preprocessing and construction of the models were similar to those of PLS regression,

169	except that the three ripeness levels were used as the objective variables. The same three
170	preprocessing methods, mean centering, normalization followed by mean centering, and
171	autoscaling were used to preprocess the FF data.
172	
173	Results
174	1. Flesh hardness
175	The hardness values of the avocados measured in this experiment ranged between 0.52
176	and 26.7 N cm ⁻² .
177	
178	2. FFs of avocado skin and flesh
179	Figure 1 shows the average FFs of the skin and flesh of the unripe, ripe, and overripe
180	avocados. The most prominent fluorescence peak in the FFs of the skin (Fig. 1 top row)
181	can be attributed to chlorophyll A, which fluoresces at emission wavelengths (Em) of
182	approximately 660-680 and 720-740 nm (Schulman 1985). The fluorescence intensity of
183	chlorophyll clearly decreases as ripening progresses. Another fluorescence peak with
184	peak excitation wavelengths (Ex) of 370 nm and Em 450 nm can be observed in the FFs

of the skin. This may be attributed to cinnamic acids such as chlorogenic acid and caffeic acid, which fluoresce around emission wavelengths of 450 nm (Belay et al. 2016; Lang et al. 1991). The FFs of the avocado flesh (Fig. 1 bottom row) also exhibit chlorophyll fluorescence, but there is a more prominent fluorescence signal at Ex 280 nm and Em 350 nm and a weaker signal at Ex 320 nm and Em 440 nm. This pair of fluorescence peaks is also observed in the FFs of tomatoes (Trivittayasil et al. 2015). Many chemical components emit fluorescence in this wavelength region including tryptophan, tocopherols, and several polyphenols such as epicatechin. 3. Estimation of avocado flesh hardness by PLS regression analysis Table 2 shows the results of the PLS regression analysis with different preprocessing methods. Estimation accuracy can be evaluated by the root-mean-square error of the calibration (RMSEC), cross-validation (RMSECV), and prediction (RMSEP), and the coefficients of determination of calibration (R^2C), cross-validation (R^2CV), and prediction (R²P). Models with a small error and a high coefficient of determination of

201	prediction (RMSEP and R^2P) are accurate. The ratio of the standard deviation of the
202	objective variable (hardness) to RMSEP, known as the residual predictive deviation
203	(RPD) (Lucas et al. 2008; Williams and Sobering 1993), is also shown as a measure of
204	the predictive power of the model. Saeys et al. (2005) stated that models with values of
205	RPD between 1.5 and 2.0 reveal the possibility of differentiating the variability of the
206	data, while values of RPD greater than 2.0 indicate a better predictive performance of the
207	model.
208	In general, FFs of the flesh showed better performance in predicting avocado hardness
209	than those of the skin. The best model was obtained when the FFs of the flesh were
210	combined with preprocessing by normalization followed by mean centering. The RMSEP
211	of this model was 3.57, indicating that the hardness could be predicted with an average
212	error of 3.57 N cm^{-2} .
213	Figure 2 shows the regression plots and the variance of importance (VIP) plots of three
214	models that performed well. VIP values summarize the importance of each variable in the
215	model, and because the average VIP value of all the variables equals one, a VIP value
216	greater than one indicates that the variable contributes positively to the model (Chong

217 and Jun 2005).

218	Figures 2(a) and 2(d) show the regression and VIP plots of the model using the FFs of
219	the flesh coupled with preprocessing by normalization followed by mean centering. The
220	values predicted from the FFs are generally in accord with those measured with the
221	texture analyzer; however, there are some samples with large errors having hardness
222	values around 12 N cm ⁻² , and some soft samples are predicted to have negative hardness
223	values. The VIP plot of this model shows a prominent peak with excitation and emission
224	wavelengths of 290 and 330 nm, and a smaller peak with excitation and emission
225	wavelengths of 320 and 450 nm, respectively. Furthermore, there is a weak peak
226	corresponding to the wavelengths of chlorophyll A.
226 227	corresponding to the wavelengths of chlorophyll A. To increase estimation accuracy for avocados with moderate hardness, data from
227	To increase estimation accuracy for avocados with moderate hardness, data from
227 228	To increase estimation accuracy for avocados with moderate hardness, data from avocado fruit whose hardness was above 15 N cm ⁻² were removed from the model
227 228 229	To increase estimation accuracy for avocados with moderate hardness, data from avocado fruit whose hardness was above 15 N cm ⁻² were removed from the model because these avocados were clearly distinguishable as unripe by their bright green skin.
227 228 229 230	To increase estimation accuracy for avocados with moderate hardness, data from avocado fruit whose hardness was above 15 N cm ⁻² were removed from the model because these avocados were clearly distinguishable as unripe by their bright green skin. When models were constructed with the samples softer than 15 N cm ⁻² , RMSE improved

of 2.05 and R²P of 0.75. Autoscaling worked well for FFs of the flesh, where RMSEP was 2.02 and R²P was 0.75. RPD increased only slightly because the decrease in RMSEP was canceled out by the limited range of hardness values. The regression plot for the model constructed from the FFs of the flesh preprocessed by autoscaling is shown in Fig. 2(b). Compared to the model constructed from all the samples, the prediction error for samples with small hardness values decreased considerably, and there were no samples with negative predicted values. Variables with VIP values over 1 (Fig. 2(e)) mainly existed around short excitation wavelengths of 200-300 nm and emission wavelengths of 250-350 nm; around Ex 320 nm and Em 330 nm; and around the wavelengths corresponding to chlorophyll A. The area in the left top corner where the emission wavelength is longer than twice the excitation wavelength may indicate secondary fluorescence, which appears at twice the emission wavelength of its original signal, similarly to secondary scattered light. Figures 2(c) and 2(f) show the regression and VIP plots of the model constructed from FFs of the skin, preprocessed with autoscaling. The prominent peak in the VIP plot is around Ex 540 nm and Em 780 nm. In contrast to the models using FFs of the flesh, there

4. Prediction of ripeness levels by PLS discrimination analysis Table 3 shows the results for the PLS discrimination analysis (validation data) using the FFs of the skin preprocessed by mean centering, normalization followed by mean centering, and autoscaling. The models were constructed with four, three, and three latent variables for mean centering, normalization followed by mean centering, and autoscaling, respectively. All three models produced a total of four classification errors, and the misclassified samples for models with preprocessing of mean centering and normalization followed by mean centering were the same. Most of the samples were correctly classified according to their ripeness degree. Discussion

are no important variables in the short-wavelength region.

During the ripening process of avocados, changes in color, flavor, and texture occur
simultaneously. Changes in texture occur through the breakdown of cellulose and pectin
into smaller water-soluble components due to the increased activity of cellulase and

265	pectinase (Paliyath et al. 2008). The skin color changes owing to the decrease in
266	chlorophyll and increase in anthocyanins (Cox et al. 2004). Additionally, high polyphenol
267	oxidase activity in the flesh leads to enzymatic browning (Paliyath et al. 2008). Prediction
268	of the ripening degree by FF measurement aims to capture these simultaneous changes
269	from the chemical viewpoint and create a link to the physical aspects, such as the hardness
270	which is an important sensory quality for consumers.
271	Figure 3 shows the fluorescence intensity at some of the wavelengths that made large
272	contributions to the PLS regression models, judging from their high VIP values. Fig. 3(a)
273	shows the emission spectra of the skin at Ex 540 nm, corresponding to the large VIP peak
274	in Fig. 2(f). Excluding the sharp peaks around Em 800 and 810 nm, which are related to
275	Raman scattering, there is a general trend ranging from unripe (high fluorescence
276	intensity) to overripe (low fluorescence intensity). To view this trend in more detail, the
277	fluorescence intensity at Ex 540 nm and Em 780 nm was plotted against the fruit hardness
278	value. This pair of wavelengths corresponds to the peak wavelength in Fig. 2(f). Although
279	there is some variation among the samples with hardness values around 18 N cm ⁻² , the
280	fluorescence intensity decreases as the hardness value decreases. This corresponds to the

281	literature stating that the chlorophyll content decreases as ripening progresses (Cox et al.
282	2004). The reason that some unripe samples showed low fluorescence values may be that
283	the curved sample surface was not completely in contact with the measurement window.
284	Figure 3(c) shows the fluorescence intensity of avocado flesh measured at Ex 290 nm
285	and Em 330 nm plotted against the hardness value of the fruit. The fluorescence
286	intensities are shown as normalized values because the models used to obtain Fig. 2(a)
287	and 2(d) were constructed from the normalized FFs. The fluorescence intensity gradually
288	decreases as the hardness value decreases from 30 to 5 N cm ⁻² and then rapidly decreases
289	as the hardness value approaches 0 N cm ⁻² .
290	This nonlinear relation with hardness suggested that better models could be created by
291	converting hardness values to a log scale, because PLS is a linear model. However,
292	converting hardness values to a log scale produced models with relatively large mean
293	errors. This was because the RMSE is calculated after converting the predicted objective
294	variables back to a linear scale, which magnifies the error when the values are large.
295	Nonlinear prediction models such as the support vector machine (SVM) and kernel
296	methods (Muller et al. 2001) may be suitable.

297	The fluorescence peak observed from the avocado flesh around the wavelengths shown
298	in Fig. 3(c) can be attributed to many fluorescence constituents such as tryptophan,
299	tocopherols, and several polyphenols such as epicatechin. However, we are unaware of
300	any reports indicating the decrease in these constituents as ripening progresses. A possible
301	hypothesis for this decrease in fluorescence intensity is the reabsorption of fluorescence
302	or competition for excitation light with other chemical constituents that increase with
303	ripening. A similar phenomenon is observed in apples and grapes, where the fluorescence
304	intensity of chlorophyll decreases owing to the increase in anthocyanins, which compete
305	with chlorophyll for the absorption of incident light (Agati et al. 2007; Merzlyak et al.
306	2008). The avocado flesh becomes dark with overripening owing to polyphenol oxidase
307	activity (Kahn 1975; Zauberman and Jobin-Decor 1995), and the oxidized polyphenols
308	absorb light.
309	The oxidation of avocado flesh and the resulting decrease in fluorescence were
310	indicated by cutting a ripe avocado and measuring the fluorescence of the flesh over time
311	(for 180 min at 30 min intervals). Figure 4 shows the change in fluorescence intensity at

312 Ex 290 nm and Em 330 nm of several samples and images of the measured surface

313	acquired with a flat-bed scanner (GT-X980, Epson, Japan). Although the initial
314	fluorescence intensity differed between samples, it followed a similar trend of decreasing
315	with time. These data support the hypothesis that the decrease in intensity at these short
316	wavelengths is not due to the decrease in some constituents with ripening, but rather due
317	to the increase in oxidized components, which indirectly leads to the decrease in
318	fluorescence intensity. Enzymatic activity in the avocado mesocarp has been studied in
319	relation to flesh discoloration, and polyphenols such as epicatechin (George and
320	Christoffersen 2016), caffeic acid, chlorogenic acid, and catechins (Van Lelyveld et al.
321	1984) are known to be oxidized by polyphenol oxidase.
322	For practical use, the discrimination of ripe fruits through measurement of the skin will
323	be necessary. In this respect, the results obtained from the PLS discrimination analysis
324	show the applicability of this technique for ensuring uniform products. Although the
325	discrimination accuracy was relatively high, there were a few misclassifications and the
326	characteristics of the misclassified fruits were investigated. In this study, we measured
327	two points on the skin for the FF data, and the two sets of data were analyzed in the model
328	as two samples. Therefore, the predicted groups may have been different for the two

measurements from the same sample. This was the case for all the misclassifications, except for the two ripe samples misclassified as unripe. This fruit showed a hardness value of 5.92 N cm⁻², which is on the borderline between ripe and unripe. Interestingly, all the other misclassified measurements were measured near the basal end. The larger curvature at the basal end may have induced changes in the reflectance, resulting in classification errors. PLS regression and PLS-DA models have an potential of improvement through variable selection using indices such as VIP and Selectivity Ratio (SR) (Trivittayasil et al. 2018) and the discriminating variable (DIVA) test (Rajalahti et al. 2009). Effective variable selection eliminates uninformative and irrelevant variables and decreases the risk of overfitting (Goodarzi and dos Santos Coelho 2014), and also leads to shorter measuring time. The prediction models presented in this study could also be improved by variable selection, leading to quick and accurate measurement of ripeness. Conclusions FFs of the skin and flesh of avocados proved to contain useful information on the degree

345	of ripeness of the fruit. Although FFs of the flesh, only measurable by cutting the fruit,
346	could predict the hardness value of avocados with higher accuracy, FFs of the skin
347	captured the ripening process well. The degree of ripeness (unripe, ripe, and overripe)
348	was predicted from the FFs of the skin with an accuracy of 90 % for the validation dataset,
349	and misclassifications occurred for fruit on the borderline or for measurements near the
350	basal end. By selecting fluorescence wavelength conditions that are important for the PLS
351	models constructed in this study, quicker and more accurate monitoring may be possible,
352	enabling the use of this technique in the distribution of agricultural products.
353	
354	Acknowledgements
355	This work was supported by JSPS KAKENHI Grant Number JP17K15354.
356	
357	Compliance with Ethical Standards:
358	Funding: This work was supported by JSPS KAKENHI Grant Number JP17K15354.
359	
	Conflict of interest: Mito Kokawa declares that she has no conflict of interest. Azusa
360	Hashimoto declares that she has no conflict of interest. Xinyue Li declares that she has
360	

no conflict of interest. Mizuki Tsuta declares that he has no conflict of interest. Yutaka

Kitamura declares that he has no conflict of interest.

Ethical approval: This article does not contain any studies with human participants or

animals performed by any of the authors.

Informed consent: Not applicable.

References

Agati G, Meyer S, Matteini P, Cerovic ZG (2007) Assessment of Anthocyanins in Grape (Vitis vinifera L.) Berries Using a Noninvasive Chlorophyll Fluorescence Method Journal of agricultural and food chemistry 55:1053-1061 doi:10.1021/jf062956k

Belay A, Kim HK, Hwang YH (2016) Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques Luminescence : the journal of biological and chemical luminescence 31:565-572 doi:10.1002/bio.2996

- Chong I-G, Jun C-H (2005) Performance of some variable selection methods when multicollinearity is present Chemometrics and Intelligent Laboratory Systems 78:103-112 doi:https://doi.org/10.1016/j.chemolab.2004.12.011
- Cox KA, McGhie TK, White A, Woolf AB (2004) Skin colour and pigment changes during ripening of 'Hass' avocado fruit Postharvest Biology and Technology 31:287-294 doi:https://doi.org/10.1016/j.postharvbio.2003.09.008
- Fujita K, Tsuta M, Kokawa M, Sugiyama J (2010) Detection of deoxynivalenol using fluorescence excitation-emission matrix Food and Bioprocess Technology 3:922-927
- Gaete-Garretón L, Vargas-Hernndez Y, León-Vidal C, Pettorino-Besnier A (2005) A
- Novel Noninvasive Ultrasonic Method to Assess Avocado Ripening Journal of Food
- Science 70:E187-E191 doi:10.1111/j.1365-2621.2005.tb07134.x
- George HL, Christoffersen RE (2016) Differential latency toward (-)-epicatechin and

- ²/₃ 387 catechol mediated by avocado mesocarp polyphenol oxidase (PPO) Postharvest Biology
 ⁴/₄ 388 and Technology 112:31-38 doi:https://doi.org/10.1016/j.postharvbio.2015.09.036
- ⁴₅ 388 and Technology 112:31-38 doi:https://doi.org/10.1016/j.postharvbio.2015.09.036
- 6 389 Goodarzi M, dos Santos Coelho L (2014) Firefly as a novel swarm intelligence variable 7 390 selection method in Chim Acta 852:20-27 8 spectroscopy Anal 9 391 doi:10.1016/j.aca.2014.09.045 10
- 11 392 Guimet F, Ferre J, Boque R, Rius FX (2004) Application of unfold principal component 12 13 393 analysis and parallel factor analysis to the exploratory analysis of olive oils by means of 14 394 excitation-emission matrix fluorescence spectroscopy Analytica Chimica Acta 515:75-85 15 16 395 Jiang JK, Wu J, Liu XH (2010) Fluorescence properties of lake water Spectroscopy and 17 18 396 Spectral Analysis 30:1525-1529 doi:10.3964/j.issn.1000-0593(2010)06-1525-05 19
- 20 397 Kahn V (1975) Polyphenol oxidase activity and browning of three avocado varieties 21 398 of 22 Journal of the Science Food and Agriculture 26:1319-1324 23 399 doi:doi:10.1002/jsfa.2740260910 24
- 400 Kokawa M et al. (2015) Measuring cheese maturation with the fluorescence fingerprint
 401 Food Science and Technology Research 21:549-555
- 402 Kokawa M, Nishi K, Ashida H, Trivittayasil V, Sugiyama J, Tsuta M (2016) Predicting
 403 the Heating Temperature of Soymilk Products Using Fluorescence Fingerprints Food and
 404 Bioprocess Technology:1-7 doi:10.1007/s11947-016-1835-6
- 405 Landahl S, Meyer MD, Terry LA (2009) Spatial and Temporal Analysis of Textural and
 406 Biochemical Changes of Imported Avocado cv. Hass during Fruit Ripening Journal of
 407 agricultural and food chemistry 57:7039-7047 doi:10.1021/jf803669x
- 408 Lang M, Stober F, Lichtenthaler HK (1991) Fluorescence emission spectra of plant leaves
 41 409 and plant constituents Radiation and Environmental Biophysics 30:333-347
 43 410 doi:10.1007/bf01210517
- 45411Lenhardt L, Bro R, Zeković I, Dramićanin T, Dramićanin MD (2015)Fluorescence46412spectroscopy coupled with PARAFAC and PLS DA for characterization and classification48413ofhoneyFoodChemistry175:284-291
- ⁵⁰ 414 doi:https://doi.org/10.1016/j.foodchem.2014.11.162
- 415 Lucas A, Andueza D, Rock E, Martin B (2008) Prediction of Dry Matter, Fat, pH,
 416 Vitamins, Minerals, Carotenoids, Total Antioxidant Capacity, and Color in Fresh and
 417 Freeze-Dried Cheeses by Visible-Near-Infrared Reflectance Spectroscopy Journal of
- ⁵⁷₅₈ 418 agricultural and food chemistry 56:6801-6808 doi:10.1021/jf800615a
- 419 Magwaza LS, Tesfay SZ (2015) A Review of Destructive and Non-destructive Methods
 60
- 61 62

- 63
- 64 65

420 for Determining Avocado Fruit Maturity Food and Bioprocess Technology 8:1995-2011
 421 doi:10.1007/s11947-015-1568-y

Merzlyak MN, Melø TB, Naqvi KR (2008) Effect of anthocyanins, carotenoids, and
 flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis,
 assessment, modelling, and relevance to photoprotection Journal of Experimental Botany
 59:349-359 doi:10.1093/jxb/erm316

- 13 426 Moller JKS, Parolari G, Gabba L, Christensen J, Skibsted LH (2003) Monitoring 14 427 chemical changes of dry-cured parma ham during processing by surface autofluorescence 15 16 428 of agricultural spectroscopy Journal and food chemistry 51:1224-1230 17 18 429 doi:10.1021/jf025662h 19
- 430 Muller KR, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel431 based learning algorithms Ieee Transactions on Neural Networks 12:181-201
- 432 Paliyath G, Murr DP, Handa AK, Lurie S (2008) Postharvest Biology and Technology of
 433 Fruits, Vegetables, and Flowers. Wiley-Blackwell Publishing, Iowa, USA
- 434 Pareek S (ed) (2016) Postharvest Ripening Physiology of Crops. Innovations in
 435 postharvest technology series. CRC Press, Florida, USA
- 436 Rajalahti T, Arneberg R, Kroksveen AC, Berle M, Myhr KM, Kvalheim OM (2009)
 437 Discriminating Variable Test and Selectivity Ratio Plot: Quantitative Tools for
 438 Interpretation and Variable (Biomarker) Selection in Complex Spectral or
 439 Chromatographic Profiles Analytical Chemistry 81:2581-2590 doi:10.1021/ac802514y
- 38 440 Rodriguez-Carpena JG, Morcuende D, Andrade MJ, Kylli P, Estevez M (2011) Avocado
- $^{39}_{40}$ 441 (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and $^{41}_{41}$ 442 inhibition of linit and matrix particle requirements of a crimination of the second field of the sec
- 41 442 inhibition of lipid and protein oxidation in porcine patties Journal of agricultural and food
 43 443 chemistry 59:5625-5635 doi:10.1021/jf1048832
- 444 Saeys W, Mouazen AM, Ramon H (2005) Potential for Onsite and Online Analysis of Pig
 445 Manure using Visible and Near Infrared Reflectance Spectroscopy Biosystems
 48
 446 Engineering 91:393-402 doi:https://doi.org/10.1016/j.biosystemseng.2005.05.001
- 447 Schroeder CA (1987) Fluorescence of Tissues in Avocado Fruit California Avocado
 448 Society Yearbook 71:257-258
- 449 Schulman SG (1985) Molecular luminescence spectroscopy methods and applications:
 450 Part 1. John Wiley & Sons, Inc., New York
- ⁵⁷₅₈ 451 Sikorska E, Glisuzynska-Swiglo A, Insinska-Rak M, Khmelinskii I, De Keukeleire D,
- 59 452 Sikorski M (2008) Simultaneous analysis of riboflavin and aromatic amino acids in beer
- 61 62

- 63 64
- 65

453 using fluorescence and multivariate calibration methods Analytica Chimica Acta
 454 613:207-217 doi:10.1016/j.aca.2008.02.063

Trivittayasil V, Kameya H, Shoji T, Tsuta M, Kokawa M, Sugiyama J (2017) Simultaneous estimation of scavenging capacities of peach extract for multiple reactive by fingerprint Food oxygen species fluorescence method Chemistry doi:http://doi.org/10.1016/j.foodchem.2017.04.011

- 459 Trivittayasil V et al. (2015) Fluorescence fingerprint as an instrumental assessment of the
 460 sensory quality of tomato juices Journal of the Science of Food and Agriculture 96:1167 461 1174 doi:10.1002/jsfa.7199
- 462 Trivittayasil V et al. (2018) Classification of 1-methylcyclopropene treated apples by
 463 fluorescence fingerprint using partial least squares discriminant analysis with stepwise
 464 selectivity ratio variable selection method Chemometrics and Intelligent Laboratory
 465 Systems doi:https://doi.org/10.1016/j.chemolab.2018.02.004
- 466 Van Lelyveld LJ, Gerrish C, Dixont RA (1984) Enzyme activities and polyphenols related
 467 to mesocarp discolouration of avocado fruit Phytochemistry 23:1531-1534
 468 doi:https://doi.org/10.1016/S0031-9422(00)83433-0
- 469 Williams PC, Sobering DC (1993) Comparison of Commercial near Infrared
 470 Transmittance and Reflectance Instruments for Analysis of Whole Grains and Seeds
 471 Journal of Near Infrared Spectroscopy 1:25-32 doi:10.1255/jnirs.3
- 472 Zauberman G, Jobin-Decor MP (1995) Avocado (Persea americana Mill.) quality changes
 473 in response to low-temperature storage Postharvest Biology and Technology 5:235-243
 474 doi:https://doi.org/10.1016/0925-5214(94)00027-P

477 Tables

478 Table 1 Ripeness degree of avocados

Ripeness	Hardness (N cm ⁻²)	Description
Unripe	>6	tough mouthfeel, green flesh, unripe odor
Ripe	2-6	soft mouthfeel, green to yellow flesh
Overripe	<2	very soft and squishy, dark or black flesh, deteriorated quality

Table 2. Results of the PLS regression analysis with different preprocessing methods and measurement positions. The conditions in bold letters show the
models that performed well.

	Preprocessing		Position	Number of LVs	RMSEC	RMSECV	RMSEP	R ² C	R ² CV	R ² P	RF
	X	Y									
	mean centering	-	skin	3	4.11	4.72	3.84	0.71	0.62	0.65	1.
	normalization + mean centering	-	skin	2	4.12	4.65	4.17	0.71	0.63	0.62	1.
	autoscaling	-	skin	3	4.04	4.79	3.96	0.72	0.61	0.63	1.
	mean centering	log10	skin	4	4.74	5.72	4.82	0.64	0.52	0.53	1.
	normalization + mean centering	log10	skin	3	4.92	5.63	4.12	0.61	0.52	0.64	1.
	autoscaling	log10	skin	4	5.35	6.47	4.68	0.56	0.45	0.55	1.
All samples	mean centering	-	flesh	3	3.77	4.13	3.89	0.76	0.71	0.61	1.
	normalization + mean centering		flesh	6	2.65	3.37	3.57	0.88	0.81	0.70	2
	autoscaling	-	flesh	4	2.99	3.57	3.47	0.85	0.78	0.70	2
	mean centering	log10	flesh	2	6.36	6.92	6.13	0.52	0.48	0.42	1.
	normalization + mean centering	log10	flesh	3	4.54	4.90	3.67	0.70	0.66	0.64	1.
	autoscaling	log10	flesh	1	6.11	6.23	5.68	0.42	0.41	0.36	1
	mean centering	-	skin	6	1.63	2.61	2.65	0.85	0.62	0.59	1.
	normalization + mean centering	-	skin	2	2.18	2.47	2.35	0.73	0.65	0.68	1.
	autoscaling	-	skin	4	1.91	2.34	2.05	0.79	0.69	0.75	2.
	mean centering	log10	skin	2	2.66	2.94	3.39	0.61	0.53	0.42	1.
Semales with	normalization + mean centering	log10	skin	2	2.52	2.71	2.62	0.66	0.61	0.64	1.
Samples with	autoscaling	log10	skin	4	2.47	2.85	2.39	0.68	0.60	0.69	1.
hardness	mean centering	-	flesh	3	2.33	2.71	2.07	0.69	0.58	0.76	2
< 15 N cm ⁻²	normalization + mean centering	-	flesh	1	2.76	3.04	2.88	0.56	0.47	0.53	1.
	autoscaling	-	flesh	5	1.68	2.49	2.02	0.84	0.65	0.75	2
	mean centering	log10	flesh	4	2.69	3.17	4.05	0.63	0.53	0.62	1.
	normalization + mean centering	log10	flesh	5	2.22	2.71	2.22	0.72	0.61	0.70	1.
	autoscaling	log10	flesh	4	2.79	3.46	3.02	0.63	0.50	0.73	1.

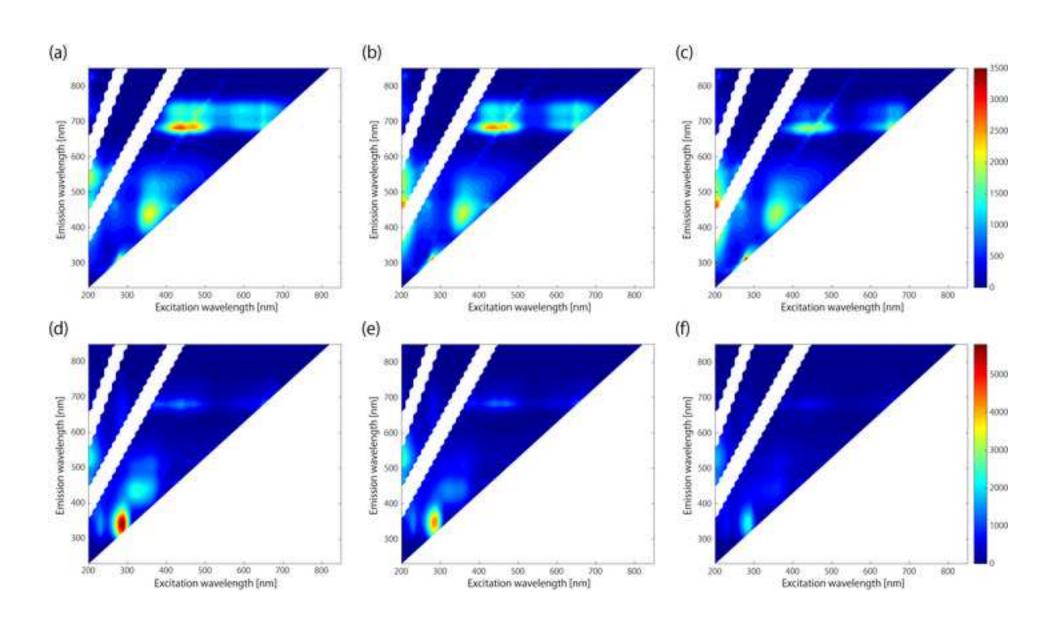
Table 3 Validation dataset results for the PLS discrimination analysis using the FFs of
the skin. The FFs were preprocessed by mean centering, normalization followed by
mean centering, and autoscaling, but there was no difference in the number of
misclassified samples.

			Actual group			
			Unripe	Ripe	Over ripe	
þe	_	Unripe	17	2	0	
Predicted	group	Ripe	1	10	1	
Pre	0	Over ripe	0	0	9	

491 Figure captions

492 Fig 1

493 Average FFs of the skin (top row) and flesh (bottom row) of the unripe (left), ripe (center), 494 and overripe (right) avocados. The color axis indicates the fluorescence intensity 495 (arbitrary units).


496 Fig 2

Regression plots (top row) and the variance of importance (VIP) plots (bottom row) of three models constructed to predict the hardness of the flesh from FF measurements. The left model ((a) and (d)) used the FFs of the flesh coupled with preprocessing by normalization followed by mean centering. The model shown in the center ((b) and (e)) were constructed from FFs of the flesh preprocessed by autoscaling, and samples with hardness values above 15 N cm⁻² were removed. The model on the right ((c) and (f)) show the model constructed from FFs of the skin, preprocessed with autoscaling, where samples with hardness values above 15 N cm⁻² were removed.

505 Fig 3

506 Fluorescence spectra and intensities at some of the wavelengths that made large

2 3 4 5 6 7	507	contributions to the PLS regression models. (a) shows the fluorescence spectra of the skin
	508	at Ex 540 nm. (b) shows the fluorescence intensity at Ex 540 nm and Em 780 nm plotted
9 0 1 2	509	against the fruit hardness value. (c) shows the normalized fluorescence intensity of
8 9 0 1 2 3 4 5 6 7 8 9 0	510	avocado flesh measured at Ex 290 nm and Em 330 nm plotted against the hardness value
5 7 8 9	511	of the fruit.
0 1 2 3	512	Fig 4
4 5 6 7	513	The change in fluorescence intensity of the flesh at Ex 290 nm and Em 330 nm taken over
7 8 9 0	514	time (a) and the corresponding images of the measured surface acquired with a flat-bed
	515	scanner (b).
1 2 3 4 5 6 7		
7 8 9 0		
1 2 3		
4 5 6 7		
8 9 0		
1 2 3		
4 5		
б 7		
8 9		
0 1		
2 3		

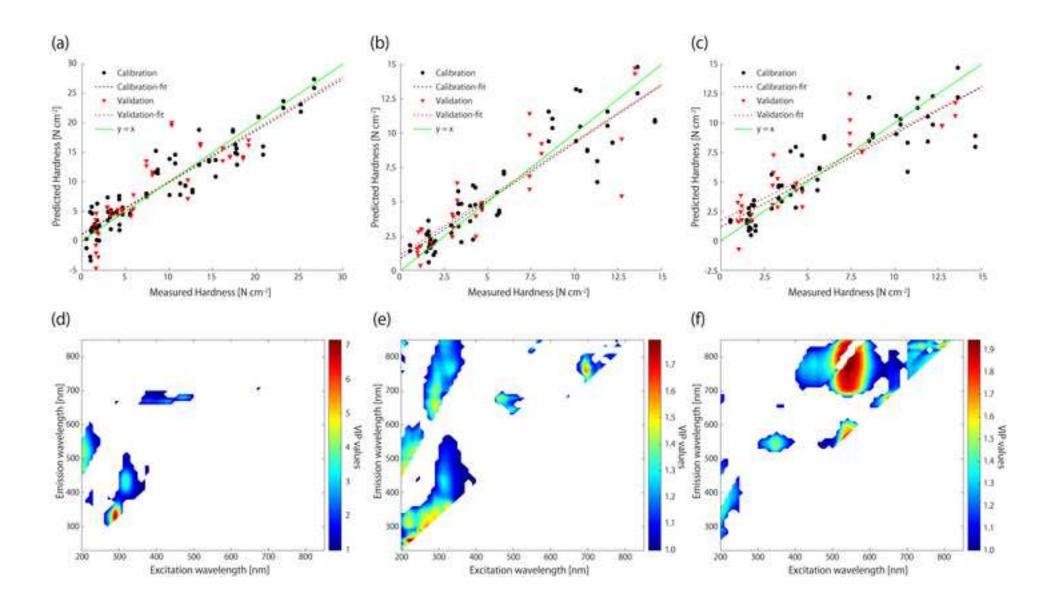
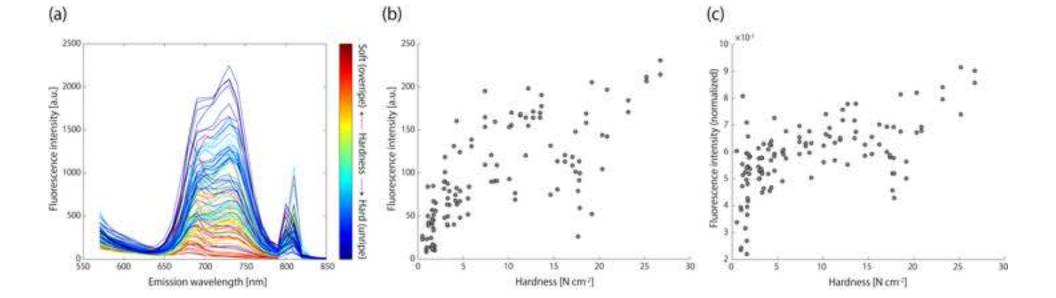
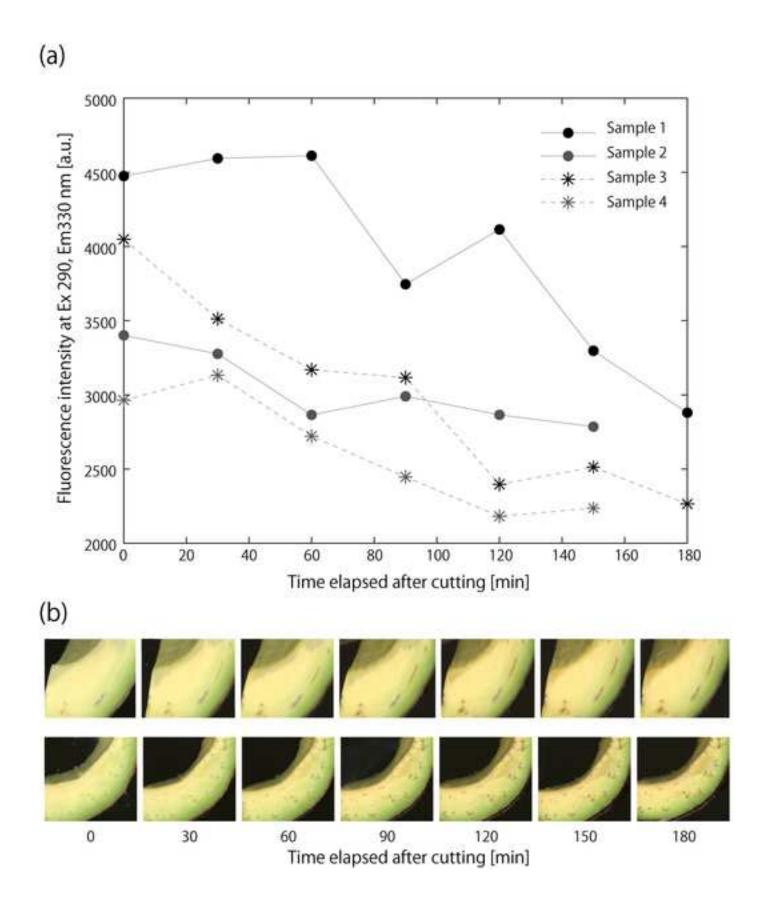




Figure 3

