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Abstract: Atrial fibrillation (AF) is the most prevalent arrhythmia in the general population. There is
a close association between chronic kidney disease (CKD) and AF. In recent years, attention has been
focused on the relationship between AF and uremic toxins, including indoxyl sulfate (IS). Several
animal studies have shown that IS promotes the development and progression of AF. IS has been
shown to cause fibrosis and inflammation in the myocardium and exacerbate AF by causing oxidative
stress and reducing antioxidative defense. Administration of AST-120, an absorbent of uremic toxins,
decreases uremic toxin-induced AF in rodents. We have recently reported that patients with a higher
serum IS level exhibit a higher rate of AF recurrence after catheter ablation, with serum IS being a
significant predictor of AF recurrence. In this review, we discuss the possible mechanisms behind
the AF-promoting effects of uremic toxins and summarize the reported clinical studies of uremic
toxin-induced AF.
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Key Contribution: We discuss the atrial fibrillation-promoting effects of uremic toxins by summarizing
both basic research and clinical studies.

1. Introduction

Atrial fibrillation (AF) is a common and chronic cardiovascular condition. AF requires expensive
health monitoring and treatment because AF patients have an increased risk of stroke, sudden
death, heart failure, unplanned hospital admissions, and other complications [1–4]. Although the
management of AF has substantially advanced, with significant developments in the past few decades,
the contributing factors and mechanisms promoting AF are still unclear.

An association between chronic kidney disease (CKD) and AF has been described, and several
studies have revealed the complex relationship between CKD and AF. In this review, we focused on
the causative association between uremic toxins and AF.

2. Epidemiology of AF

AF is the most prevalent arrhythmia in the general population [1] and is associated with an
increased risk of stroke [2], heart failure [3], and mortality [4]. The number of people with AF has been
increasing worldwide because of an aging general population, and an increased incidence of AF is
expected with the increasing life expectancy of society [1,5]. The Global Burden of Disease Study in
2010 [6] stated that the age-adjusted mortality rate (per 100,000 population) for AF patients in 1990
was 0.8 for men and 0.9 for women. The age-adjusted mortality rate had increased to 1.6 and 1.7 by
2010, representing a 2-fold and 1.9-fold increase for men and women, respectively. In 1990, the overall
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incidence rates of AF in the world population were 60.7 per 100,000 person-years in men and 43.8 in
women. In 2010, the estimated incidence rates had increased to 77.5 per 100,000 persons-years in men
and 59.5 in women. It is predicted that AF will affect 5–16 million people in the United States and more
than 1 million people in Japan by 2050 [5]. Therefore, AF is one of the most important cardiovascular
diseases that needs to be effectively managed in aging populations.

3. Pathophysiological Mechanisms of AF

3.1. Triggers and Substrate of AF

AF is a supraventricular tachyarrhythmia characterized by uncoordinated atrial activation with
the subsequent deterioration of atrial mechanical function. It is well accepted that AF development
needs both a trigger and a susceptible substrate. AF is produced by triggered activity from pulmonary
vein ectopic foci or the genesis of re-entry circuits in atrial substrates [7], and sustained high frequency
reentrant AF drivers (rotors) can be produced by a focal trigger. The electrical waves emerge from the
rotors and undergo spatially distributed fragmentation and give rise to fibrillatory conduction [8].

3.2. Cardiac Autonomic Nervous System and Triggered Spontaneous Pulmonary Vein Firing

Autonomic nerve input to the atria originate from both the central autonomic (preganglionic)
nervous system and the intrinsic cardiac autonomic nervous system. The intrinsic cardiac autonomic
nervous system contains autonomic ganglionated plexi, or clusters of ganglia. The autonomic
ganglionated plexi receive input from the central extrinsic autonomic nervous system and numerous
interconnecting neurons that provide communication within and between the ganglionated plexi.
Focal firing in the pulmonary veins by ganglionated plexi stimulation requires both sympathetic
and parasympathetic activity. Parasympathetic stimulation shortens the action potential duration
and effective refractory period in atrial and pulmonary vein myocytes, and sympathetic stimulation
increases calcium loading and automaticity. Ganglionated plexi may promote AF by activating
triggered spontaneous pulmonary vein firing [8].

4. Treatment of AF

The three domains of AF management are (1) the stabilization of underlying and accompanying
cardiovascular conditions, (2) stroke risk assessment and oral anticoagulation for stroke prevention,
and (3) heart rate and rhythm control therapy [9].

4.1. Stabilization of Underlying and Accompanying Cardiovascular Conditions

The presence of AF strongly indicates that other cardiovascular comorbidities are present, such
as hypertension, heart failure, valvular heart disease, obesity, and coronary artery disease. Focusing
on heart failure, it is well known that AF increases the risk of stroke, hospitalization, and death in
heart failure patients. The treatment of AF can substantially alter long-term outcomes in patients with
heart failure. In addition, heart failure may promote AF by creating an AF-promoting atrial substrate
via left atrial dilatation, activating the cardiac autonomic nervous system and inducing a focus of
inflammation [10].

4.2. Stroke Risk Assessment and Oral Anticoagulation for Stroke Prevention

AF patients have a hypercoagulable state, and AF is one of the most important causes of
thromboembolism. The presence of AF is an independent risk factor for stroke and thromboembolism,
and stroke associated with AF increases mortality and morbidity [11]. Patients with one or more
stroke risk factors (CHA2DS2-VASc score of ≥1) should be treated with oral anticoagulants such as
well-controlled warfarin or a direct oral anticoagulant.
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4.3. Rate and Rhythm Control Therapy

In AF, each part of the atrial myocardium is stimulated at a rate of 300–400 activations per minute.
The rapid reactivation of atrial myocardium leads to a cessation of atrial contractility and results in
rapid and irregular ventricular rates. Heart rate control is achieved pharmacologically by slowing
the atrioventricular nodal conduction using the β-blockers digoxin or digitoxin, as well as verapamil
or diltiazem. Rhythm control with antiarrhythmic drugs are not superior to heart rate control in
patients with coexisting heart failure and AF [12]. Another way to maintain sinus rhythm is through
catheter ablation, which is a well-established option for drug resistant symptomatic AF in patients
with otherwise normal cardiac function [13–17] and in patients with heart failure [18–22]. Moreover, a
recent study has shown that catheter ablation is superior to drug therapy for AF patients with heart
failure, resulting in an improvement in left ventricular ejection fraction, quality of life, functional status,
and mortality [23–26]. Although catheter ablation has become an established treatment option as
implemented in the current guidelines for the treatment of AF [17,27], post-procedure AF recurrence
remains a major clinical problem. Unfortunately, the mechanisms of AF recurrence after ablation
are unknown. Patient selection seems to play an important role in the procedural success and
risk stratification for the prevention of AF recurrence. This is based on pre-existing clinical patient
characteristics, such as age, the pattern and duration of AF, and the degree of atrial enlargement.
However, these indicators are insufficient to predict AF recurrence [28]. Therefore, new AF biomarkers
are needed to predict treatment response after catheter ablation and better understand the mechanisms
that promote AF development and recurrence.

5. AF and CKD

Several clinical trials have shown that AF and CKD are closely related [2,29–32]. It has been reported
that the prevalence of AF in CKD patients is 2–3 times higher than that in the general population [33,34].
Moreover, the prevalence of AF in dialysis patients is as high as 27% [35–38], compared to 1.0% in the
general population [16], indicating that dialysis cannot reduce the risk of AF. Therefore, non-dialysis
uremic factors are thought to be factors that promote atrial fibrillation. Uremic cardiomyopathy is
a distinctive type of heart failure associated with CKD. Uremic cardiomyopathy is caused by an
impairment of microvascular function, low-grade inflammation, oxidative stress, and enhanced cardiac
fibrosis. In addition, hypertension, anemia, and activation of the renin–angiotensin–aldosterone system
and sympathetic nervous may contribute to the occurrence of uremic cardiomyopathy in CKD. The
pathophysiological effects of CKD contribute multiple arrhythmogenic factors to the development of
AF [39–41].

In addition, the relationship between AF recurrence after catheter ablation for AF and CKD has
been addressed in recent reports [42–44]. Patients with CKD were at high risk of AF recurrence after
catheter ablation. Although atrial remodeling associated with renal dysfunction was thought to be
responsible for the poor prognosis after AF ablation in CKD patients, the exact mechanism has not
been fully elucidated.

6. Uremic Toxins and Cardiovascular Diseases

Protein-bound uremic toxins, such as indoxyl sulfate (IS), indole-3 acetic acid (IAA), p-cresol, and
p-cresyl sulfate, which originate from protein fermentation, can increase oxidative stress, inflammation,
and activate the neurohormonal system that results in cardiovascular fibrosis and oxidative injury [45,46].
Furthermore, uremic toxins produce pro-hypertrophic, pro-inflammatory, pro-fibrotic conditions in
cardiomyocytes [47–49].

IS is a uremic toxin that has high protein-binding ability and is poorly dialyzable. Even after
hemodialysis, the serum IS level remains high [50]. IS is one of the most common uremic toxins
derived from dietary protein metabolism by the gut microbiota and is involved in the pathogenesis of
cardiovascular diseases including AF [51–54]. Recently, the relationship between IS and cardiovascular
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diseases among CKD patients is attracting increasing attention. Barreto et al. reported that an elevated
serum IS level was associated with an increased overall death and cardiovascular-related death
among CKD patients [55]. Furthermore, Lin et al. [56] indicated that a serum IS level was a useful
biomarker in predicting cardiovascular events in advanced CKD patients [56]. Other researchers have
reported an association between elevated IS levels and an increased risk of left ventricular diastolic
dysfunction [57,58].

Although IAA has not been studied as much as IS, a recent study suggests that IAA has
a cardiovascular toxic effect and is associated with the progress of cardiovascular disease [53].
Dou et al. [53] studied patients with CKD and found that mortality and cardiovascular events were
significantly higher in the higher IAA group (IAA > 3.73 mM) than in the lower IAA group (IAA
< 3.73 mM). The IAA concentration positively correlated with malondialdehyde and C-reactive
protein (CRP) was used to evaluate oxidative stress and inflammation. In multivariate Cox regression
analysis, serum IAA was a significant predictor of mortality and cardiovascular events even after
adjustments for CKD stage [53]. They also demonstrated direct effects of IAA on endothelial cells. In
culture experiments with human endothelial cells, IAA activated an inflammatory nongenomic aryl
hydrocarbon receptor (AhR)/p38 MAPK/NF-kB pathway involved in the pro-inflammatory enzyme
cyclooxygenase-2 upregulation. Moreover, IAA increased production of reactive oxygen species from
the endothelial cells. Thus, IAA has prooxidant and pro-inflammatory effects in human endothelial
cells, which may explain the association between IAA concentration and the increased risk of mortality
and cardiovascular events in CKD patients [53].

Acute kidney injury (AKI) is also a known risk factor for AF [59] and IS is associated with higher
mortality in AKI patients [60]. Thus, therapies targeting both AKI and IS are needed [61].

7. IS and AF

In recent years, attention has been focused on the relationship between AF and uremic toxins,
especially IS. Several animal studies have revealed that IS has a causative role in exacerbating AF. IS has
been shown to promote AF via its effect on cardiac fibrosis and inflammation by increasing oxidative
stress; the administration of AST-120, an absorbent of uremic toxins, decreased AF inducibility in
rodents [62,63]. In the clinic, we have recently reported that patients with elevated serum IS levels
showed a higher AF recurrence rate after successful catheter ablation, with serum IS being a significant
predictor of AF recurrence [64].

7.1. Experimental Studies in Animal Models

The arrhythmogenic effects of IS have been demonstrated in in vitro, ex vivo, and in vivo
experiments (Figure 1). Chen et al. [63] showed that IS induced an increased occurrence of delayed
after-depolarizations, burst firing, and increased calcium leakage in isolated pulmonary veins, and
decreased spontaneous beating of the sinoatrial nodes and shortened the action potential durations
in left atria isolated from rabbits. Stimulation with burst pacing and isoproterenol (a β-agonist)
induced an increased occurrence of AF and a longer AF duration in the left atrial tissue with IS than
without IS. This IS-induced arrhythmogenesis was attenuated by the antioxidant ascorbic acid. These
data suggested that IS increases pulmonary vein and atrial arrhythmogenesis through an oxidative
stress-dependent mechanism.
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Figure 1. Role of indoxyl sulfate (IS) in the progression of atrial fibrillation (AF). IS induces oxidative 
stress and promotes arrhythmogenesis in the pulmonary vein and atrium. In the pulmonary vein, IS 
induces an increased occurrence of delayed after-depolarizations, burst firing, and increased calcium 
leakage. In the atrium, IS shortens the action potential duration. IS also induces inflammation and 
fibrosis in the atrium, which leads to conduction time prolongation. These IS effects on the pulmonary 
vein and atrium exacerbates the development of AF substrates through increased ectopic firing and 
re-entry circuits in atrial substrates. 

Lekawanvijit et al. demonstrated direct effects of IS on cardiac fibroblasts and myocytes [47]. 
Stimulation with IS in neonatal rat fibroblasts and cardiomyocytes increased collagen synthesis and 
myocyte hypertrophy, respectively. They also showed that proinflammatory effects of IS in cultured 
THP-1 cells, a human monocytic cell line, determined by a significant increase in inflammatory 
cytokines tumor necrosis factor-alpha, interleukin-6 (IL-6), and IL-1β. Thus, IS may have pro-fibrotic, 
pro-hypertrophic, and pro-inflammatory effects on cardiac cells. 

In a rat model of CKD induced by 5/6 nephrectomy, Aoki et al. demonstrated that IS increases 
the occurrence of AF in vivo [62]. Serum IS level was significantly increased after 5/6 nephrectomy. 
In electrophysiological experiments, AF was induced by atrial extrastimuli at almost 100% of the 
induction rate. They showed that administration of AST-120—that is commonly used in clinical 
settings in Japan as an absorbent of uremic toxins to delay incident renal replacement therapy—
decreased the serum level of IS, resulting in decreased oxidative stress, reduced inflammation, 
reduced fibrosis in the left atrium, and decreased occurrence of AF. Incubation of cultured atrial 
fibroblasts with IS upregulated the expression of NADPH oxidase 2 and 4 and malondialdehyde 
(oxidative stress markers), along with an increase in profibrotic and inflammatory molecules, such as 
α-smooth muscle actin, transforming growth factor β1, collagen type 1, and monocyte 
chemoattractant protein 1 (MCP-1), [62]. These data suggested that IS could have a pathogenetic 
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Figure 1. Role of indoxyl sulfate (IS) in the progression of atrial fibrillation (AF). IS induces oxidative
stress and promotes arrhythmogenesis in the pulmonary vein and atrium. In the pulmonary vein, IS
induces an increased occurrence of delayed after-depolarizations, burst firing, and increased calcium
leakage. In the atrium, IS shortens the action potential duration. IS also induces inflammation and
fibrosis in the atrium, which leads to conduction time prolongation. These IS effects on the pulmonary
vein and atrium exacerbates the development of AF substrates through increased ectopic firing and
re-entry circuits in atrial substrates.

Lekawanvijit et al. demonstrated direct effects of IS on cardiac fibroblasts and myocytes [47].
Stimulation with IS in neonatal rat fibroblasts and cardiomyocytes increased collagen synthesis and
myocyte hypertrophy, respectively. They also showed that proinflammatory effects of IS in cultured
THP-1 cells, a human monocytic cell line, determined by a significant increase in inflammatory
cytokines tumor necrosis factor-alpha, interleukin-6 (IL-6), and IL-1β. Thus, IS may have pro-fibrotic,
pro-hypertrophic, and pro-inflammatory effects on cardiac cells.

In a rat model of CKD induced by 5/6 nephrectomy, Aoki et al. demonstrated that IS increases the
occurrence of AF in vivo [62]. Serum IS level was significantly increased after 5/6 nephrectomy. In
electrophysiological experiments, AF was induced by atrial extrastimuli at almost 100% of the induction
rate. They showed that administration of AST-120—that is commonly used in clinical settings in Japan
as an absorbent of uremic toxins to delay incident renal replacement therapy—decreased the serum
level of IS, resulting in decreased oxidative stress, reduced inflammation, reduced fibrosis in the left
atrium, and decreased occurrence of AF. Incubation of cultured atrial fibroblasts with IS upregulated
the expression of NADPH oxidase 2 and 4 and malondialdehyde (oxidative stress markers), along with
an increase in profibrotic and inflammatory molecules, such as α-smooth muscle actin, transforming
growth factor β1, collagen type 1, and monocyte chemoattractant protein 1 (MCP-1), [62]. These
data suggested that IS could have a pathogenetic factor for AF in renal dysfunction mediated by the
progression of atrial remodeling by oxidative stress, fibrosis, and inflammation.
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7.2. IS and AF Recurrence after Catheter Ablation

The high AF recurrence rate after ablation in CKD patients suggests that uremic toxins may be
involved in the development of AF. Although several studies have investigated the association between
IS and cardiovascular disease as we described above, limited clinical data support the association
between IS and AF. Therefore, we investigated the association between IS levels and AF recurrence
after radiofrequency catheter ablation [64]. The study investigated 125 consecutive patients with
nonvalvular AF scheduled for catheter ablation for AF. This cohort included patients with normal or
mild-to-moderate reduced renal function (CKD 1–3). Serum levels of IS and IAA were measured by
reversed-phase high-performance liquid chromatography before catheter ablation [65]. After catheter
ablation, follow-ups were performed at 1, 3, 6, and 12 months. In this cohort, serum IS levels were
significantly increased in patients with CKD stage 3 compared to CKD stage 1 and 2. On the other hand,
IAA levels were not statistically different among patients with CKD stage 1, 2, and 3. The correlations
of serum IS levels with estimated glomerular filtration rate (eGFR) (r = −0.295, p = 0.002) and creatinine
clearance (CrCl) (r = −0.263, p = 0.007) were weak. IAA levels were also weakly correlated with eGFR
(r = −0.255, p = 0.009), but not with CrCl (r = −0.102, p = 0.30). Patients were divided into two groups
based on serum IS levels, the high (≥ 0.65 µg/mL) and low (< 0.65 µg/mL) IS group, which was set as
the optimal cutoff value determined by the maximum Youden index (sensitivity + specificity − 1), on
the basis of receiver operating characteristic curve analysis. The 1-year AF-free survival was markedly
lower in patients with high serum IS levels than in those with low IS levels (60.1 ± 10.4% versus 85.2 ±
3.9%, p = 0.007) (Figure 2). In the univariate analysis, a serum IS level ≥ 0.65 µg/mL was associated with
the recurrence of AF (hazard ratio = 3.10 [1.26–7.32], p = 0.015), and this association was maintained in
multivariate Cox proportional hazard model (hazard ratio = 3.67 [1.13–11.7], p = 0.031) [64]. Thus, in
patients undergoing successful catheter ablation, we identified that baseline IS levels independently
predict AF recurrence.
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8. Therapeutic Potential of AST-120 for AF

AST-120 (KREMEZIN) is approved in Japan, Korea, and the Philippines for progressive CKD
patients as an absorbent of uremic toxins to delay incident renal replacement therapy in clinical
settings [66]. AST-120 inhibits the absorption of indoles from the intestines and thus effectively reduces
circulating and renal IS levels independent of renal dysfunction [52,67,68] AST-120 decreases serum IS
levels in a dose-dependent fashion [69]. In uremic animal models, AST-120 has been shown to improve
renal function and structure [68,70]. In humans, several prospective clinical trials have demonstrated
the protective effects of AST-120 against the progression of renal dysfunction [71–74]. However, recent
large-scale randomized controlled trials in humans have not observed any beneficial effects of AST-120
on impeding CKD progression [75,76]. There are several ongoing or unpublished clinical studies
registered in ClinicalTrials.gov, which will reveal the role of AST-120 in CKD.

On the other hand, many animal studies and small human studies have suggested that AST-120
may have protective effects in cardiovascular disease. Endothelial dysfunction induced by the acute
and chronic inflammatory status in CKD patients contributes towards overt cardiovascular disease [77].
There are several reports regarding the beneficial role of AST-120 on vascular function in CKD animals
and patients. Treatment with AST-120 has been shown to ameliorate the following: endothelial
dysfunction in CKD rats [78]; the extent and instability of atherosclerosis induced by kidney disease in
apolipoprotein E-deficient mice [79]; flow-mediated vasodilation in pre-dialysis CKD patients [80];
and microvascular endothelial dysfunction and carotid arterial intima-media thickness in patients
receiving hemodialysis [81]. There are also several reports supporting the beneficial effects of AST-120
in the prevention of left ventricular hypertrophy in CKD rats [82,83] and pre-dialysis patients [84].
More recently, Asanuma et al. [85] demonstrated that AST-120 treatment inhibits cardiac remodeling,
attenuates apoptosis, and prevents the progression of heart failure in a dog model of heart failure
induced by rapid right ventricular pacing.

There has been only one study that has examined the protective effects of AST-120 on AF [62].
Aoki et al. [62] examined the effect of AST-120 treatment in a rat model of CKD induced by 5/6
nephrectomy. AF induced by atrial extra stimuli in perfused hearts extracted from CKD rats was
attenuated by AST-120 treatment. Left atrial enlargement and ventricular concentric hypertrophy
were significantly prevented by AST-120 treatment, without significant improvement in systolic blood
pressure and renal function [62]. AST-120 treatment suppressed expression of MCP-1 and vascular cell
adhesion molecule 1 and infiltration of CD68-positive inflammatory cells in the atrium, suggesting that
AST-120 attenuated monocyte-mediated inflammation in the atrium [62]. Overall, AST-120 appears to
have protective effects against cardiovascular diseases including AF; however, additional randomized
controlled trials are required to determine whether AST-120 reduces the risk of cardiovascular diseases
in CKD patients.

9. Conclusions

In this review, we investigated the effects of protein-bound uremic toxins, especially IS, on the
pathogenesis of AF. Using animal models, several studies have demonstrated that IS can exacerbate AF
directly and indirectly by promoting enhanced oxidative stress and reduced antioxidative defense via
its effect on cardiac fibrosis and inflammation. Clinical studies have supported the association between
IS and AF by identifying elevated IS levels as a strong and independent predictor of AF recurrence in
patients undergoing successful catheter ablation.

Methods to remove uremic toxins in the body are limited due to their high protein-binding
capacity. AST-120 might be a new therapeutic compound to prevent AF and reduce AF recurrence in
patients after catheter ablation.
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