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1 Introduction

Tensor network algorithms for coarse-graining of the classical partition functions were orig-

inally developed in the field of condensed matter physics [1–4]. In 2007 the tensor renor-

malization group (TRG) was proposed by Levin and Nave to study two-dimensional (2D)

classical models [3]. This work attracted the attention of elementary particle physicists

so that exploratory studies were performed for 2D scalar models consisting of continu-

ous variables [5] with the TRG method. To study wider variety of models in elementary

particle physics with the tensor network algorithms, however, it is necessary to develop

efficient algorithms for fermion systems and gauge theories. Recently one of the authors

and his collaborator have successfully applied the Grassmann tensor renormalization group

(GTRG) [6–8] to determine the phase diagram of the one-flavor Schwinger model with and

without the θ term employing the Wilson fermion formulation [6, 9, 10], which are the

first applications of the GTRG method to lattice gauge theory including fermions in the

path integral formalism. The analyses of these models explicitly demonstrated that the

GTRG method does not suffer from the sign problem and the complex action problem.

Furthermore, direct treatment of the Grassmann numbers in the GTRG method provides

us another virtue that the computational cost is comparable to the bosonic case. This work

was followed by an investigation of one-flavor 2D Gross-Neveu model with finite chemical

potential [11] and 2D N = 1 Wess-Zumino model [12]. The GTRG method was also ap-

plied to 3D fermionic systems [13, 14]. On the other hand, it has been difficult to develop

an efficient tensor network algorithm for gauge theories because of its redundancy of gauge

degrees of freedom. Although a couple of attempts have been made so far [15–18], the

question of their efficiency for lattice gauge theories still remains.

In this paper we apply the tensor network scheme to a study of 3D finite temperature

Z2 gauge theory on the V = N2
σ×Nτ lattice. This is a good test bed for the first feasibility
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study of tensor network scheme for lattice gauge theories. Especially the finite temperature

phase transition of this model was already investigated in detail by the high-precision Monte

Carlo calculation with the aid of the duality to the 3D Ising spin model [19]. Numerical

efficiency of our method is demonstrated by investigating the phase transition with the use

of finite size scaling analyses, in which the spatial extension Nσ is varied up to 4096 at

Nτ = 2, 3, 5. It is another virtue of the tensor network scheme that the computational cost

is in proportion to the logarithm of the system size so that we can take very large volume

regarded as the thermodynamic limit. The results for the transition temperature and the

critical exponent ν are compared to those obtained by the Monte Carlo method [19]. We

also discuss the consistency with the Svetitsky-Yaffe conjecture [20].

This paper is organized as follows. In section 2 we explain a tensor network scheme

and associated numerical algorithm to treat the 3D Z2 gauge theory. Numerical results for

the finite temperature phase transition of 3D Z2 gauge theory is presented in section 3.

Section 4 is devoted to summary and outlook.

2 Tensor network scheme

2.1 Tensor network formulation

The partition function of three-dimensional Z2 gauge theory is given by

Z = 2−3V
∑
{σ=±1}

∏
n,µ>ν

e−βσn,µν (2.1)

with

σn,µν = σn,µσn+µ̂,νσn+ν̂,µσn,ν , (2.2)

where σn,µ ∈ {−1, 1} is defined on the link labeled by a site n = (n0, n1, n2) with a direction

µ = 0, 1, 2. µ̂ and ν̂ denote unit vectors in µ and ν directions, respectively.

We first construct the tensor network representation of eq. (2.1) following ref. [15].

Each Boltzmann factor at site n is expanded by

eβσn,µν = coshβ
∑
p=0,1

(tanhβ)pσpn,µν (2.3)

= coshβ
∑

pn,µ,ν ,qn,ν,µ,qn,µ,ν ,pn,ν,µ=0,1

B(n,µν)
pn,µ,νqn,ν,µqn,µ,νpn,ν,µσ

pn,µ,ν
n,µ σ

qn,ν,µ
n+µ̂,νσ

qn,µ,ν
n+ν̂,µσ

pn,ν,µ
n,ν ,

where we introduce the tensor B by

Bpqrs = (tanh β)(p+q+r+s)/4δp,qδq,rδr,s. (2.4)

We can collect the terms involving a σn,µ and sum over it. For example, the case of σn,0 is

expressed as ∑
{σn,0=±1}

σ
pn,0,1+pn,0,2+qn−1̂,0,1+qn−2̂,0,2

n,0 = 2A(n,µ=0)
pn,0,1pn,0,2qn−1̂,0,1qn−2̂,0,2

, (2.5)
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Figure 1. Tensor network for Eq . (2.7). Dotted lines describe the cubic lattice. Black cubes and

spheres represent B and A, respectively. Red, blue and green bars denote the contractions of the

tensor indices.

where

Apqrs = δ mod (p+q+r+s,2)=0. (2.6)

So the partition function can be rewritten as the following tensor network representation:

Z = (cosh β)3V
∑
{p,q}

∏
n,µ>ν

B(n,µν)
∏
n,µ

A(n,µ). (2.7)

The connections between tensors are depicted in figure 1.

In addition, we reconstruct the tensor network representation to reduce the redundant

degrees of freedom. Taking µ = 0 as the temporal direction and µ = 1, 2 as the spatial

ones, we classify the sites as spatially even sites l with

mod (l1 + l2, 2) = 0 (2.8)

and spatially odd sites m with

mod (m1 +m2, 2) = 1. (2.9)

Let us rearrange the tensors so that all the tensors are collected at the spatially even sites.

In this procedure, we employ the gauge fixing with σm,0 = 1 at the spatially odd sites

m(m0 6= 0). Then, all the components of A(m,0) are one constantly and so we can omit

the A(m,0) i.e. sum up independently the indecies pm,0,1, pm,0,2, qm−1̂,0,1 and qm−2̂,0,2. At

the m0 = 0 sites, A(m,0) are decomposed as

A(m,0)
pm,0,1pm,0,2qm−1̂,0,1qm−2̂,0,2

=
∑
i=0,1

Ā
(m−1̂)
qm−1̂,0,1pm,0,2i

Ā
(m−2̂)
qm−2̂,0,2pm,0,1i

, (2.10)

Āpqi = δ mod (p+q+i,2)=0 (2.11)
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Figure 2. Decomposition of A(m,0) at the m0 = 0 sites. Gray spheres represent Ā.

Figure 3. Decomposition of B(l,21) (left) and B(m,21) (right). Gray cubes represent B̄.

as illustrated in figure 2. On the other hand, B(n,21) are decomposed as

B(l,21)
pl,2,1ql,1,2ql,2,1pl,1,2

=
∑
i=0,1

B̄
(l)
pl,1,2pl,2,1i

B̄
(l+1̂+2̂)
ql,1,2ql,2,1i

, (2.12)

B(m,21)
pm,2,1qm,1,2qm,2,1pm,1,2 =

∑
i=0,1

B̄
(m+2̂)
pm,2,1qm,1,2i

B̄
(m+1̂)
qm,2,1pm,1,2i

, (2.13)

B̄pqi = (tanh β)(p+q)/4δp,qδq,i (2.14)

as illustrated in figure 3. After contracting all the inner indices of the collected tensors, we
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obtain new tensors T on the sites of l0 > 0 as

T
(l)
xyzx′y′z′ =

∑
p,q

A(l,0)
pl,0,1pl,0,2ql−1̂,0,1ql−2̂,0,2

·B(l,10)
pl,1,0ql,0,1z1pl,0,1

B(l,20)
pl,2,0ql,0,2z2pl,0,2

B(l−1̂,10)
pl−1̂,1,0ql−1̂,0,1z3pl−1̂,0,1

B(l−2̂,20)
pl−2̂,2,0ql−2̂,0,2z4pl−2̂,2,0

·A(l,1)
pl,1,2pl,1,0ql−2̂,1,2z

′
1
A

(l,2)
pl,2,0pl,2,1z

′
2ql−1̂,2,1

A
(l−1̂,1)
pl−1̂,1,2pl−1̂,1,0ql−1̂−2̂,1,2z

′
3
A

(l−2̂,2)
pl−2̂,2,0pl−2̂,2,1z

′
4ql−2̂−1̂,2,1

· B̄(l)
pl,1,2pl,2,1x

B̄(l)
ql−1̂,2,1pl−1̂,1,2y

B̄
(l)
ql−1̂−2̂,1,2ql−1̂−2̂,2,1x

′B̄
(l)
pl−2̂,2,1ql−2̂,1,2y

′ (2.15)

and S on the sites of l0 = 0 as

S
(l)
xyzx′y′z′ =

∑
p,q

A(l,0)
pl,0,1pl,0,2ql−1̂,0,1ql−2̂,0,2

Ā
(l)
ql,0,1x2y

′
2
Ā(l)
ql,0,2x3y2

·B(l,10)
pl,1,0ql,0,1z1pl,0,1

B(l,20)
pl,2,0ql,0,2z2pl,0,2

B
(l−1̂,10)
pl−1̂,1,0ql−1̂,0,1z3x

′
3
B

(l−2̂,20)
pl−2̂,2,0ql−2̂,0,2z4x

′
2

·A(l,1)
pl,1,2pl,1,0ql−2̂,1,2z

′
1
A

(l,2)
pl,2,0pl,2,1z

′
2ql−1̂,2,1

A
(l−1̂,1)
pl−1̂,1,2pl−1̂,1,0ql−1̂−2̂,1,2z

′
3
A

(l−2̂,2)
pl−2̂,2,0pl−2̂,2,1z

′
4ql−2̂−1̂,2,1

· B̄(l)
pl,1,2pl,2,1x1

B̄(l)
ql−1̂,2,1pl−1̂,1,2y1

B̄
(l)
ql−1̂−2̂,1,2ql−1̂−2̂,2,1x

′
1
B̄

(l)
pl−2̂,2,1ql−2̂,1,2y

′
1

(2.16)

as illustrated in figure 4. Redefining the spatial even sites l as the new sites n, we obtain

the final form of the tensor network representation:

Z =
∑
{t,x,y}

 ∏
n;n0>0

T (n)

 ∏
n;n0=0

S(n)

 , (2.17)

where t (x, y) denotes the temporal (spatial) indices in the new network. Note that the

spatial size of the new network is half of the original one.

2.2 Algorithm for coarse graining

Our algorithm consists of three steps. Firstly we repeat coarse-graining of the tensor T

in the temporal direction using the HOTRG method [21] until the temporal size of T is

reduced to be one. In figure 5 we illustrate the procedure for the case of Nτ = 5. The

dimension of the new tensors T ′ and T ′′ is set to be D1 = 16, with which the HOTRG

calculation is exact up to two iterations of the coarse-graining procedure.

Secondly we apply the HOTRG procedure to the combination of T and S making the

trace of their temporal indices as depicted in figure 6. The dimension of the new tensor S′

is kept to be D1 = 16. After this procedure we are left with the two-dimensional tensor

network system.

Thirdly we make coarse-graining of the two-dimensional system until the size is reduced

to be 2 × 2 where the contraction of the indices are exactly carried out. In this work we

employ the TRG method for coarse-graining with D2 as the truncation parameter of the

tensor dimensions.1

1We need to increase D1 and D2 if we take much larger Nτ .
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 

Figure 5. The first step of the algorithm. Blue (red) line denotes the temporal (spatial) direction.

After two iterations of the HOTRG procedure, the temporal size of the tensor T is reduced to be one.
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 

Figure 6. The second step of the algorithm. Blue (red) line denotes the temporal (spatial)

direction.

3 Numerical study

3.1 Setup

We determine the phase transition temperature βc and the critical exponent ν applying

the finite size scaling analyses to the specific heat:

C(Nσ) ≡ β2∂
2 lnZ

V ∂β2
. (3.1)

The values of βc and ν are compared with the previous high-precision Monte Carlo re-

sults [19].

Numerical study of 3D Z2 gauge theory is performed by employing the algorithm

explained in section 2 on the N2
σ×Nτ lattice with the periodic boundary condition. We fix

the temporal extension at Nτ = 2, 3, 5. The spatial lattice size is varied up to Nσ = 4096 in

order to make finite size scaling analyses toward the thermodynamic limit. In figure 7 we

plot the D2 dependence of (lnZ)/V and δF = |1−lnZ(D2)/ lnZ(D2 = 160)| at β = 0.71115

on the 40962× 3 lattice, which illustrate a convergence behavior of (lnZ)/V almost on the

phase transition point as a representative case. We observe that the value of (lnZ)/V

monotonically converges as D2 increases. Since we find similar behaviors at other β values,

we take the results with D2 = 128 as the central values and their errors are estimated by

the difference from those with D2 = 144.

3.2 Results

In figure 8 we plot the specific heat of eq. (3.1) as a function of 1/β. We observe the clear

peak structure at all the values of Nσ and the peak height Cmax(Nσ) grows as Nσ increases.

In order to determine the peak position βc(Nσ) and the peak height Cmax(Nσ) at each Nσ

we employ the quadratic approximation of the specific heat around βc(Nσ):

C(Nσ) ∼ Cmax(Nσ) +R

(
1

β
− 1

βc(Nσ)

)2

with R a constant. Instead of fitting the specific heat itself we fit the internal energy E

with the following form around βc(Nσ):

E = −∂ lnZ

V ∂β
= P +

Cmax(Nσ)

β
+
R

3

(
1

β
− 1

βc(Nσ)

)3

with P another constant. This procedure suffers from less uncertainties associated with

the numerical derivative compared to the direct fit of the specific heat itself.
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D2

0.7798

0.7800

0.7802

0.7804

0.7806

0.7808

0.7810

(lnZ)/V

0 40 80 120 160
D2

10-6

10-5

10-4

10-3

δF

Figure 7. D2 dependence of (lnZ)/V (top) and δF (bottom) at β = 0.71115 on the 40962 × 3

lattice.

1.40 1.41 1.42
1/β

4.0

6.0

8.0

10.0

12.0

N
σ
=32

N
σ
=64

N
σ
=128

N
σ
=256

N
σ
=512

N
σ
=1024

N
σ
=2048

N
σ
=4096

C(N
σ
)

Figure 8. Specific heat C(Nσ) at Nτ = 3 as a function of 1/β with Nσ ∈ [32, 4096].
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10 100 1000 10000
N
σ

4.0

6.0

8.0

10.0

12.0

Cmax(Nσ
)

Figure 9. Peak height of specific heat Cmax(Nσ) at Nτ = 3 as a function of Nσ. The horizontal

axis is logarithmic. Solid line is to guide your eyes.

We expect that the peak height Cmax(Nσ) scales with Nσ as

Cmax(Nσ) ∝ Nα/ν
σ , (3.2)

with the critical exponents α and ν. We plot the peak height Cmax(Nσ) at Nτ = 3 as a

function of Nσ in figure 9. We observe a clear logarithmic Nσ dependence for Cmax(Nσ).

We have found similar features at other Nτ . These observation indicates α ' 0. We can

determine another critical exponent ν from the finite size scaling behavior of the peak

position βc(Nσ),

βc(Nσ)− βc(∞) ∝ N−1/νσ . (3.3)

Figure 10 shows Nσ dependence of βc(Nσ) at Nτ = 3 as a representative case. The solid

curve represents the fit result obtained with the fit function of βc(Nσ) = βc(∞) +BN
−1/ν
σ .

In table 1 we list the fit range at each Nτ which is chosen to avoid possible finite size

effects due to the smaller Nσ. The fit results for βc(∞), B, ν and χ2/d.o.f. are summarized

in table 1. The values of βc(∞) at Nτ = 2, 3, 5 estimated in ref. [19] are systematically

smaller than ours beyond the error bars. This may be attributed to the narrow range of

Nσ employed in ref. [19]. In table 1 we also list the transition temperature βX1
c and βX2

c

determined with the use of the quantities X1 and X2 introduced in ref. [4], which show

consistency with βc(∞) within 2 or 3σ error band. Figure 11 shows a typical behavior of the

values of X1 and X2 as a function of TRG steps. For the values of ν we observe that both

of our results and those in ref. [19] are consistent with ν = 1, which is the expected critical

exponent in 2D Ising model. This also satisfies the Josephson law of dν = 2−α with d = 2

in the two-dimensional case. These are supporting evidences for Svetitsky-Yaffe conjecture

that the finite temperature transitions in (d+ 1)-dimensional SU(N) and ZN lattice gauge

theories belong to the same universality class of those in the corresponding d-dimensional

ZN spin models [20]. In our case the universality class for the finite temperature Z2 lattice

gauge theory should coincide with that for the 2D Ising model whose critical exponents are

α = 0 and ν = 1.
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0.707
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0.711

0.712

βc(Nσ
) 

Figure 10. Peak position of the specific heat βc(Nσ) at Nτ = 3 as a function of 1/Nσ. Solid curve

represents the fit result.

This work

Nτ Nσ βc(∞) ν B χ2/d.o.f. βX1
c βX2

c

2 [512, 4096] 0.656097(1) 1.00(1) 0.116(6) 0.086 0.656094(1) 0.656094(1)

3 [512, 4096] 0.711150(4) 0.99(4) 0.10(3) 0.047 0.711151(1) 0.711151(1)

5 [512, 4096] 0.740730(3) 0.96(5) 0.08(3) 0.012 0.740734(1) 0.740734(1)

Ref. [19]

Nτ Nσ βc(∞) ν

2 4, 8, 16, 32 0.65608(5) 1.012(21)

3 24 0.71102(8)

5 40 0.74057(3)

Table 1. Fit results for the critical point βc(∞) and the critical exponent ν at Nτ = 2, 3, 5. βX1
c

and βX2
c are determined at Nσ ≤ 220. The value of ν at Nτ = 2 in ref. [19] is evaluated using the

pair of data at Nσ = 16 and 32.

0 10 20 30 40 50
TRG step

1

2

3

4

5

β=0.711150,X
1

β=0.711150,X
2

β=0.711152,X
1

β=0.711152,X
2

Figure 11. X1 and X2 above and below the transition temperature as a function of TRG steps at

Nτ = 3.
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4 Summary and outlook

We have applied the tensor network scheme to a study of 3D finite temperature Z2 gauge

theory. Its efficiency is demonstrated by a numerical study of the critical properties of

the 3D Z2 gauge theory. The tensor network scheme enables us to make a large scale of

finite size scaling analysis with the wide range of Nσ thanks to the lnV dependence of the

computational cost, which allows us a precise and reliable estimation of the critical point

and the critical exponent at the thermodynamic limit. This is the first successful application

of the tensor network scheme to one of the simplest 3D lattice gauge theories. Next step

may be the extension of this approach to the gauge theories with continuous groups.
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