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This paper is concerned with a weaking of D. G. Quillen [Homotopical algebra. Berlin-Heidelberg-
New York: Springer-Verlag (1967; Zbl 0168.20903)] model categories other than left semi-model cate-
gories [https://web.math.rochester.edu/people/faculty/doug/otherpapers/spitzweck.pdf] and
right semi-model categories [C. Barwick, Homology Homotopy Appl. 12, No. 2, 245–320 (2010; Zbl
1243.18025)]. The paper introduces a new notion of weak model category, in which it is only required
that arrows with both a cofibrant domain and a fibrant target can be factored, and the lifting property
between (acyclic) cofibrations with fibrant domains and (acyclic) fibrations with fibrant targets is asked
for. The notion is self-dual, being a generalization of the familiar notion of Quillen model category which
encompasses both left and right semi-model categories. The author defines the homotopy category of
a weak model category, a notion of Quillen adjunction and Quillen equivalence between weak model
categories, and so on as in the theory of Quillen model categories. The guiding principle of the author is
that only the notion of cofibration with cofibrant domain and that of fibration with fibrant target should
be considered meaningful.
It is shown that the projective model structure on chain complexes, the Kan-Quillen model structure
on simplicial set and the Verity model structure on stratified simplicial sets can all be proved to exist
constructively as weak model structures, opening the door to a constructive theory of higher categories,
which has, in [N. Gambino and S. Henry, “Towards a constructive simplicial model of Univalent Foun-
dations”, Preprint, arXiv:1905.06281], allowed, up to some coherent issue that still is to be taken
care of, to give a constructive version of Voevodsky’s simplicial model of homotopy type theory. It was
shown in [N. Gambino et al., “The constructive Kan-Quillen model structure: two new proofs”, Preprint,
arXiv:1907.05394, S. Henry, “A constructive account of the Kan-Quillen model structure and of Kan’s
Ex∞ functor”, Preprint, arXiv:1905.06160] that the Kan-Quillen modetl structure on simplicial sets
being a proper Quillen model category is to be constructively proved, though the author admits frankly
that a similar result for the Joyal model structure is out of reach at the moment.
This paper concentrates on the aspect of the theory of weak model categories that can be developed
within constructive mathematics. This means that many classical topics of the theory of Quillen model
categories such as the notion of combinatorial model structure and the theory of Bousfield localizations
are not even touched upon. The author addresses these non-constructive aspects as well as the theory of
combinatorial and accessible weak model categories and the precise relation weak model structures and
left and right semi-model structures in [S. Henry, “Combinatorial and accessible weak model categories”,
Preprint, arXiv:2005.02360].
Another advantage of weak model categories over Quillen model categories is several easy criteria for
constructing a weak model structure on a category, particularly in the case where we start from the
cofibrations and the fibrations without having a good description of the weak equivalences, as this is in
general a challenging task for Quillen model categories. This is a key point for constructing constructively
examples of weak model structues.
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