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Abstract

Recommender systems have been utilized in various online services. Recommendations help users

of these services to find interesting items. Recommender systems are also beneficial for businesses

since they can improve their objectives, such as sales volume, and users’ engagement. For the

success of a business, a crucial goal of the recommender systems is to increase positive user actions,

such as clicks and purchases. The increase in user actions leads to more sales and engagement.

User actions might be attributed to recommendations or other causes. Understanding and in-

creasing the causal effect of recommendations is essential for better designing of recommenders.

However, most previously conducted studies focused on the accuracy of recommendations, not on

their causal effect. Particularly, there are three issues for increasing the causal effect of recommen-

dations. The first is the difference in user behaviors with and without recommendations. Most

of the conventional recommendations’ studies disregarded the influence of recommendation when

they train and evaluate models. The second is that a user can purchase recommended items even

without recommendations. Although the recommendations are very accurate concerning purchase

prediction, sales may not increase if such items are recommended. The third issue is that users are

reluctant to take action. A user may be interested in a recommended restaurant but may not visit

it at the cost of time and money.

In this study, the aforementioned three issues are addressed to increase the causal effect of

recommendations. To solve the first issue, recommendation influences are explicitly modeled and

incorporated into purchase prediction. This enables accurate prediction of user behaviors for both

cases with and without recommendations. It also facilitates the understanding of how recommenda-
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tion influences relate to user and item characteristics. To solve the second issue, recommendations

are optimized toward uplift. Uplift is defined as an increase in user actions affected purely by recom-

mendations. There are two approaches for uplift optimization. The first approach is to recommend

items by the difference between predicted purchase probability with a recommendation and that

without. The second approach is to directly optimize a model toward uplift by deriving positive

and negative training samples specific to uplift. To solve the third issue, persuasive explanations

are provided for recommendations. Although previous explanation methods conveyed how an item

matches a user’s preference, they failed to convey the motivation for taking actions. Contexts such

as time, location, companion, and purposes, affect users’ actions. Showing context for item usage

can induce users’ actions, and a new explanation style using context is proposed.

To increase the causal effect of recommendations, this thesis provides the following three foun-

dations: modeling recommendation influence, uplift optimization, and context style explanation.

These foundations give a new perspective for future research in recommender systems.
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CHAPTER 1. INTRODUCTION 2

1.1 Research Background

1.1.1 Recommendation System

Recommendation systems1 are used in various online services [56]. E-commerce sites recommend

products to buy, music streaming services recommend music to listen, and news portals recom-

mend news to read. Recommendations help users of these services to find interesting items (i.e.,

products, music, and news) from numerous candidates. Nowadays, the recommendation has be-

come a standard feature of mainstream online services and users are getting accustomed to being

recommended.

Recommendation systems are also beneficial for businesses not only to users. Recommendations

facilitate business objectives, such as clicks, sales, and user engagement [38]. Clicks of Google

news are increased by better recommendation algorithms [28]. Recommendations boost sales in

various domains such as digital versatile disk (DVD) [77], books [128], grocery [32], and games [55].

Recommendations also raise user engagement, which in turn decrease customer churn, thereby

saving more than one billion dollars per year in Netflix [38].

Owing to the progress of ubiquitous computing and the accumulation of big data, the application

of recommendation systems has attracted much attention. They can recommend locations to visit,

people to communicate with, and other various daily activities. Since recommendation systems

are presently supporting numerous human lives, the importance of recommendation studies is fast

growing.

Recommendation systems infer users’ preferences by leveraging various data, such as users’

demographics, item attributes, and users’ interactions with items. There are many algorithms em-

ployed for recommender systems. A simple and non-personalized one is recommending popular

items to all users. In general, algorithms for generating personalized recommendations are mainly

categorized into collaborative filtering and content-based filtering [4]. Collaborative filtering lever-

ages the interaction logs of other users to recommend items that are preferred by users similar to a

target user. On the other hand, content-based filtering recommends items with contents similar to

1In this thesis, recommendation system and recommender system are used interchangeably.
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those preferred by a target user. Modern recommendation algorithms apply machine learning for

collaborative filtering and content-based filtering [70, 29, 151]. Parameters for expressing user or

item characteristics are trained to predict explicit feedback such as ratings and implicit feedback

such as purchases. The most common model is a matrix factorization (MF) [70], which expresses

a user’s preference on an item as an inner product of her or his latent vector and the item’s latent

vector.

New algorithms are commonly evaluated offline by employing the accuracy of the prediction

[43, 44]. For example, purchase2 logs can be split into training and test data, and models trained

with the former data predict purchases in the latter. Items with the highest purchase probabilities

are selected (recommended virtually in an offline evaluation environment) to each user. An algorithm

is considered better than others if its selected items are included in the purchases within the test

data more than those by the others. Although the offline evaluation is commonly used, it is known

that its recommendation accuracy does not always correlate with the online success of recommenders

[36, 115].

In addition to recommended items, an explanation for the recommendation is often provided

by recommendation systems [137, 138]. Previous explanation methods can be categorized into four

explanation styles: neighbor [47], influence [47, 13], demographic [7], and content [47, 13, 142]

styles. For example, neighbor style explanation provides an explanation like ”Users similar to you

also purchased this item.” Explaining the reason for recommendations supports users’ decision-

making since it helps them to know why an item is recommended. Various user surveys have been

conducted to evaluate the explanation of recommendations. It is known that the explanation is

generally perceived to be useful and that it increases the trust in recommenders [137, 138]. On the

other hand, it does not necessarily increase user actions in a real online environment [135].

Common metrics for measuring the business benefit are click-through rates, conversion, sales

volume, sales diversity, and user engagement [56]. Click-through rates and conversion are measured

through the actions for the recommended items, while other metrics are measured throughout the

actions for whole items. The most important metrics for a company are sales volume and user

2Other feedbacks such as clicks, likes, bookmarks, etc. can also be used. In this thesis, the term purchase is used
to express those positive actions in general.
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Figure 1.1: Issue 1: The difference between user behaviors with and without recommendations.

engagement. Click-through rates and conversion are considered as proxies for impact on sales

volume. User engagement can be defined in many ways, but it is essentially the user’s activeness

within the service. The increment in user actions improves both sales volume and user engagement;

hence, it can be considered as a major goal for business benefit.

1.1.2 Motivation and Objectives

For the success of businesses, recommendation systems aim at increasing user actions, such as clicks

and purchases. Therefore, the causal effect of recommendations on clicks and purchases is impor-

tant. The purpose of the research in this thesis is to increase the causal effect of recommendations.

Increasing the causal effect of recommendations can boost revenue for companies which in turn

can contribute to the economic growth of the world. Furthermore, it can help users change their

lives better. For example, when a user wants to have a healthy dietary habit but she or he is

tempted to her/his previous bad eating habits, recommendations can cause a change to the dietary

habit. Thus, increasing the causal effect of recommendations contributes to both the economy and

individuals.

However, there are three issues encountered when the causal effect of recommendations is in-

creased. The first is that user behaviors with recommendations differ from those without recommen-

dations [58] (Issue 1, see Figure 1.1). Most of the conventional recommendation studies disregard

the recommendation influence when they train and evaluate models. Understanding the recom-

mendation influence is essential for initiating actions by recommendations. The second is that a
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Figure 1.2: Issue 2: Recommended items could have been purchased even without recommendations.

Figure 1.3: Issue 3: A user may not take action even if a recommended item matches the user’s
preference.

user could have purchased recommended items even without the recommendation [129] (Issue 2, see

Figure 1.2). Sales may not increase if such items are recommended, although the recommendation

is very accurate concerning purchase prediction. For users, such recommendations do not lead to

changes in their behavioral patterns. The third issue is that users are reluctant to take action (Issue

3, see Figure 1.3). A user may be interested in a recommended restaurant but she or he may not

spend time and money on visiting it. In particular, this is true for costly actions, for example,

buying expensive products, or visiting distant places. Users could also be reluctant to take action

to get out of a previous degenerated habit.

In this work, to increase the causal effect of recommendations, the above three issues are ad-

dressed as follows.

A solution to Issue 1: Modeling Recommendation Influences. To solve this issue,
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recommendation influences are explicitly modeled and incorporated into purchase prediction. This

enables accurate prediction of user behaviors for both cases with and without recommendations.

It also facilitates the understanding of how recommendation influences relate to the user and item

characteristics.

A solution to Issue 2: Uplift Optimization. To address this issue, recommendations are

optimized toward uplift. Uplift is defined as an increase in the number of user actions affected by

the recommendations. There are two ways to optimize uplift. The first approach is to recommend

items by the difference between predicted purchase probabilities with and without recommendations

(models designed for Issue 1 can be used for this approach). The second approach is to directly

optimize a model toward uplift by deriving positive and negative training samples specific to uplift.

A solution to Issue 3: Persuasive Explanations. To address this issue, persuasive expla-

nations of recommendations are generated. Even though previous explanation methods convey how

an item matches a user’s preference, they fail to convey the motivation for taking action. Contexts,

such as time, location, companion, and purposes, affect users’ actions [24]. Since showing context

for item usage can induce users’ actions, a new explanation style using context is proposed.

1.2 Organizations and Contributions

1.2.1 Organizations of the Thesis

The subsequent chapters of this thesis are organized as follows:

• Chapter 2 describes basic concepts concerning recommendation methods and evaluations.

Specifically, a MF model and representative methods for training the model is introduced.

Besides, offline evaluation of recommendations is also explained.

• Chapter 3 shows the purchase prediction model that incorporates discount sensitivities of

users and items. A recommendation can be regarded as a kind of promotion. Understanding

the influence of a price discount, which is another kind of promotion, leads to the understand-

ing of the recommendation influences. First, it is shown that discount effects differ among
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users and items through preliminary analysis. Then, a MF model is extended to include dis-

count sensitivities that depend on users and items. The improvement of purchase prediction

accuracy by considering the discount sensitivity is demonstrated. Moreover, how discount

sensitivities relate to user and item characteristics are shown; the results are discussed in

connection with studies in psychology and marketing. Publications related to this chapter are

[120, 121], which address Issue 1.

• Chapter 4 presents the purchase prediction model that incorporates the recommendation re-

sponsiveness of users and items. By conducting preliminary analysis, it is shown that purchase

probability actually differs between cases with and without recommendations and that the

difference varies among users. Motivated by this conducted analysis, the recommendation

responsiveness is introduced, and the parameters are learned from a combination of purchase

logs and recommendation logs. The effectiveness of user- and item-dependent responsiveness

is confirmed in terms of both prediction accuracy and recommendation impact3. In the cases

where recommendation logs are insufficient, the responsiveness needs to be estimated from

other sources. How recommendation responsiveness correlates with user and item attributes

is investigated and the correlated attributes are utilized to estimate the responsiveness. Pub-

lication related to this chapter is [122], which addresses Issues 1 and 2.

• Chapter 5 introduces recommendation influence to exposure modeling [83], which represents

a user’s action on an item as a two-stage process: first, a user notices the item (exposure), and

then the user decides whether or not to purchase it (preference). Recommendations boost

awareness differently for various users; while some users are attentive to and trust recom-

mendations, whereas others disregard and distrust them. Furthermore, if a user purchases

an item from a recommendation list, she or he would have probably observed other items on

the same list. Exposure modeling is extended by considering the aforementioned influences

of recommendations on exposure. Experiments using public datasets with recommendation

logs demonstrate that considering recommendation influences improves purchase prediction.

3The term recommendation impact is used for the same meaning with uplift in this chapter.
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The relationship between the recommendation influences and user demographics is also in-

vestigated. Publication related to this chapter is [125], which addresses Issue 1.

• Chapter 6 presents uplift-based evaluation and optimization methods for recommenders.

Cases both with and without a recommendation cannot be observed for a specific user-item

pair at a particular time instance, making uplift-based evaluation and optimization difficult.

To overcome this difficulty, a causal inference framework is applied to estimate the average

uplift for the offline evaluation of recommenders. For uplift optimization, the relative pri-

orities of four observable item classes from purchase and recommendation logs are derived.

Then the priorities are used to construct both pointwise and pairwise sampling methods for

uplift optimization. Experiments with three public datasets demonstrate the effectiveness

of proposed optimization methods for improving the uplift. Further, the characteristics of

the optimization methods and the resulting recommendations are investigated. Publication

related to this chapter is [124], which addresses Issue 2.

• Chapter 7 describes the context style explanation for recommendation systems. The proposed

context style explanation method presents contexts (i.e., situations) suitable for consuming

the recommended items as explanations. The expected impacts of context style explanations

are the following: 1) persuasiveness: recognition of a suitable context for usage motivates

users to consume items, and 2) usefulness: envisioning a context can help users to make the

right choices since the values of items depend on contexts. The persuasiveness and useful-

ness of the context-style explanation are investigated by a crowdsourcing-based user study in

a restaurant recommendation setting. The context style explanation is compared with the

demographic and content style explanations. Besides, the combination of context style and

other explanation styles are explored, confirming that hybrid styles improve the persuasive-

ness and usefulness of the explanation. Further, investigation of the personal preferences for

explanation styles reveals how gender and age relate to such preferences. Publications related

to this chapter are [119, 123], which address Issue 3.

• Chapter 8 summarizes this thesis.
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1.2.2 Contributions of the Thesis

This thesis proposes solutions to three issues encountered when the causal effect of recommendations

is increased. More specifically, the major contributions of this thesis are the following:

• A recommendation model that incorporates personal discount sensitivity is proposed and

discussed (Chapter 3). As far as we know, this is the first study to unify item preference and

discount sensitivity into a single large-scale purchase prediction model.

• A recommendation model that incorporates personal recommendation responsiveness is pro-

posed and investigated (Chapter 4). The individualized difference of recommendation influ-

ences is original to this study. Further, the cold-start problem of recommendation logs is

newly addressed in this study.

• Extension of exposure modeling to include both direct and indirect recommendation influence

on exposure is proposed and investigated (Chapter 5). Considering recommendation influence

on exposure modeling is original to this work.

• Uplift-based evaluation and optimization methods are proposed and examined (Chapter 6).

This study enables uplift-based evaluations grounded in a causal inference framework. The

proposed optimization methods are generic and applicable to most machine-learning-based

recommendation models.

• Context style explanation methods are proposed and investigated (Chapter 7). Previous

explanation is based on user or item information and this is the first study that utilizes context

to explain recommendations. Further, this is the first user study to investigate personal

differences in preferences of explanation styles.
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2.1 Recommendation Methods

2.1.1 Matrix Factorization

Let U and I be defined as a finite set of users and items, respectively. Suppose a user u ∈ U gives

a feedback rui to an item i ∈ I. For explicit feedback, such as five-scale ratings to movies, rui

takes discrete values from the set {1, 2, 3, 4, 5}. For implicit feedback, such as purchases of books,

rui takes binary values from the set {0, 1}, which indicate purchased (rui = 1) or unpurchased

(rui = 0). Herein explicit means that the user consciously represents an evaluation of an item.

On the other hand, implicit means that the users’ evaluations are inferred from their behaviors;

purchased items are probably preferred more than unpurchased ones.

A matrix factorization (MF) [71] decomposes a large matrix of {rui|u ∈ U, i ∈ I} with size

|U | × |I| to low-dimensional latent factors.

r̂ui = θu · φi, (2.1)

where r̂ui ∈ R (the real coordinate space) denotes the estimated feedback, and θu ∈ Rd and

φi ∈ Rd denote the d-dimensional latent factors for the user and item, respectively. Typically,

d << |U |, |I|, hence the representation space of an MF, (|U | + |I|) × d, is much smaller than

|U | × |I|. Each dimension of item latent factors can be interpreted as item characteristics, such as

seriousness or futurism of a movie, while that of user latent factors as the user’s preference on the

characteristics. Since rui is not centered at 0 and has biases, biased MF is often used,

r̂ui = µ+ bu + bi + θu · φi, (2.2)

where µ ∈ R denotes a global bias, bu ∈ R and bi ∈ R denote the biases of the user and item,

respectively. For a binary feedback, the sigmoid function, σ(x) = 1/(1 + exp(−x)), is often applied

to confine the prediction to a proper range [0, 1]:

r̂ui = σ(x̂ui), (2.3)
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x̂ui = µ+ bu + bi + θu · φi. (2.4)

The MF forms a basis for most modern recommendation models. For example, factorization

machines generalize the interactions of the user and item latent factors of MF to the interactions

of any features [109]. Neural MF stacks multi-layer perceptron upon interactions of the user and

item latent factors [46]. More broadly, the transformation of users and items to the latent factors

is similar to word embedding in natural language processing [96, 76, 104, 81], and word2vec can be

applied to a recommendation [40, 141, 18].

2.1.2 Model Training

The training methods of recommender models are generally grouped into two categories: pointwise

[101, 51, 46] and pairwise [110, 130] methods. The pointwise method optimizes the model to reduce

the prediction loss for each feedback, and the pairwise method optimizes the model to reduce the

prediction loss for the relative ordering of paired feedbacks. More specifically, for each step of

stochastic gradient descent, a parameter Θ is updated as follows.

Θ← Θ− η ∂

∂Θ
L − λΘ, (2.5)

where η denotes a learning rate, L denotes a loss function, and λ denotes a regularization coefficient

to prevent overfitting. For biased MF, the trainable parameters are Θ ∈ {µ, bu, bi,θu,φi}. The

squared error loss (Lse
point) and the logistic loss (Lll

point) are common choices for the pointwise

optimization:

Lse
point = (rui − r̂ui)2. (2.6)

Lll
point = −(rui log(r̂ui) + (1− rui) log(1− r̂ui)). (2.7)

The representative pairwise loss is the Bayesian personalized ranking (BPR) loss [110]. Assuming

that user u prefers item i more than item j (e.g., the user purchased i but did not purchase j).

Then,

Lbpr
pair = − log(σ(r̂ui − r̂uj)). (2.8)
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The loss is small when r̂ui > r̂uj , whereas it is large when r̂ui < r̂uj . Therefore, the BPR loss

enables one to learn the correct ordering (rui > ruj).

In real datasets, implicit feedback is largely distorted against negative feedback (e.g., non-

purchase) and positive feedback (e.g., purchase) is very sparse. In addition, the fact that the user

has not purchased the product does not necessarily mean that the user does not like it. This is

because the user may not have noticed it. Consequently, in model training, it is common to assign

lower confidences to negative feedbacks either by downweighting them [51, 101] (i.e., multiplying a

smaller weight on the loss function) or downsampling them [46, 110]1. Another method to handle

negative feedback is exposure modeling [83], which models the probability of the awareness of

unpurchased items.

2.2 Evaluation of Recommendation Systems

Recommendation systems can be evaluated by deploying them in services and observing their

performances measured by a specific business metric, such as click-through rates, conversion rates,

and sales volumes. Such evaluation is called an online evaluation. However, an online evaluation

requires substantial time to deploy and obtain significant results. If the model is weak, then it can

greatly damage the business. Therefore, an evaluation before launching the system is necessary.

During the operation of a certain service such as an e-commerce site and a product review site,

user feedback logs, such as purchase logs and rating logs, are collected. Recommendation systems

can be evaluated by utilizing the collected feedbacks. Such evaluation is called an offline evaluation.

2.2.1 Offline Evaluation

For the offline evaluation of recommendation systems, collected feedbacks are first split into training

and test datasets. Then a recommendation model is trained using only the training dataset. If

hyperparameters need to be adjusted, the development dataset2 is sampled from the training dataset

1Note that BPR loss is a downweighting method since the number of negative items (denoted by ”j” in Equation
(2.8)) used in the training is equal to that of positive items (denoted by ”i”).

2The development dataset is also called the validation dataset.
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to obtain the hyperparameters that provide the best performance in the development dataset.

Finally, the model is evaluated by its performance on the test dataset. The procedure is similar to

the common evaluation procedure used for machine learning tasks outside of the research domain

of recommender systems.

Recommendation systems are commonly evaluated by their accuracy [43, 44]. There are two

common tasks setting: prediction and ranking tasks. In the prediction task, the model is evaluated

by how it accurately predicts each feedback. This type of evaluation is used for explicit feedback

such as five-scale ratings. Let Iu define a set of items in which user u gives feedback (e.g., ratings).

The mean squared error (MSE) is defined as follows:

MSE =
1

|Iu|
∑
i∈Iu

(rui − r̂ui)2. (2.9)

In the ranking task, the model is evaluated by the generated item ranking. This type of evaluation

is commonly utilized for implicit feedback, such as purchases. Let Lu = [i1, i2, ..., iN ] define a top-N

list of recommendations generated by a model for user u. Further, let I+
u define a set of items in

which the user gives positive feedback (e.g., clicks and purchases). The precision and recall measure

the accuracy of the list as follows:

Precision@N =
|I+

u ∩ Lu|
N

, (2.10)

Recall@N =
|I+

u ∩ Lu|
|I+

u |
. (2.11)

Here, ”@N” shows that the evaluations are based on top-N lists. The precision measures the ratio

of the purchased items in the recommended list. Therefore, it is a proxy of the click-through rates

or conversion rates with assumptions that the test dataset reflects the online environment and that

recommendations do not change user behaviors. If evaluations need to consider the order in a

list, some metrics assign higher weights to items higher in the list. For example, the discounted

cumulative gain (DCG) and the normalized discounted cumulative gain (NDCG) are defined as
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follows:

DCG@N =

N∑
n=1

ru,in
max(1, log2 n)

, (2.12)

NDCG@N =
DCG@N

DCGmax@N
. (2.13)

DCG downweights the gains of items lower in the list by log2 n. NDCG is the DCG normalized

by the maximum value of DCG (DCGmax) that can be obtained by an ideal ranking. Using these

metrics, recommendation accuracy can be evaluated offline.
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3.1 Introduction

Recommender systems help people find interesting information in the age of ”information overload”.

These systems learn the preference of each user from their past interactions with items and then

predict which items will be attractive to them. A vast number of research studies have been ded-

icated to the advancement of recommendation algorithms and the exploration of their application

fields [4, 113].

Recommender systems are beneficial not only for end-users but also for business operators.

E-commerce companies increase sales by recommending products [85]. Currently, the use of rec-

ommendation engines is prevalent in online shops. While research on recommendations has mainly

focused on the prediction of item preferences, users’ choices are not always determined by item

preferences alone. In the retail business, shopkeepers often offer bargains to attract customers.

Consumers are sensitive to these price changes when they make purchasing decisions.

Recently, recommender systems have started to incorporate various psychological aspects of

users to fulfill users’ needs in more depth [139]. The discount sensitivity of each user is one of these

aspects that differs among users.

In this work, a recommendation model with personalized discount sensitivity is proposed by ex-

tending the state-of-the-art recommender algorithm. The correlations between discount sensitivity

and other personal attributes are also analyzed.

The next section reviews prior work related to this study. Section 3.3 explains the proposed

model. Section 3.4 and 3.5 present the experimental procedures and results, respectively. Section

3.6 describes the correlation of discount sensitivity to other features. Finally, Section 3.7 summarizes

and concludes this research.

3.2 Related Works

The effect of price promotion has been extensively studied in the field of marketing science [14,

6], and recently, some recommendation studies [147, 64, 53, 61, 80] have taken into account the

influence of price. For instance, a hybrid recommender system for supermarkets including discount
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information was proposed in [147]. Price has also been personalized using a multi-armed Bandit in

[64], depending on three classes of consumers; those who purchase items regardless of promotion,

those who purchase items when they are discounted, and those who do not purchase items even

if they are discounted. The price range of each item has been incorporated into topic models to

learn intrinsic user characteristics concerning prices [53] and the item choice within a category has

also been predicted, given the effect of price cuts [61]. Further, the consumer responses to bundled

discounts have been modeled, accounting for the correlation of item preferences [80]. This work is

different from these studies in that it combines user preference and discount sensitivity in a unified

model that learns them simultaneously.

The relationship between personality and recommendation has also attracted interest. Person-

ality can be predicted implicitly [17] and acquired personality can be used to guess item preferences

[50, 148]. It has been found that like-logs in social networking services are correlated with personal-

ity [17]. Personality similarity has been used to address the difficulty in estimating the preferences

of new users [50]. Behaviors in microblog services is an indicator of personality and is useful for

inducing brand preferences [148]. Active learning for preference elicitation can leverage personality

to acquire ratings efficiently [34]. Personality has been found to be correlated not only to item

preference but also to diversity preference [146, 136]. For instance, diversity in movie recommenda-

tion was adjusted by personality in [146], and how personality influences the preference of diversity

types was investigated in [136]. Discount sensitivity can be regarded as an aspect of personality

and its relationship with diversity preference is investigated.

Recommendation model with discount sensitivity can be seen as an example of a multi-criteria

recommender system [2], consisting of two criteria: item preference and discount preference. In

addition, discount can be considered as one of the contexts and the proposed model can be cate-

gorized also in context-aware recommender systems [5]. Relevant contexts depend on domains; in

tourism, for example, distance, time available, crowdedness, and knowledge of the surroundings are

effective contexts [10].



CHAPTER 3. MODELING DISCOUNT SENSITIVITY 19

Figure 3.1: Discount rate distributions of purchased items.

3.3 Discount-Sensitive Model

This section describes the extension of the Bayesian personalized ranking (BPR) model [110]

with matrix factorization (MF) [71] to incorporate personalized discount effects. Subsection 3.3.1

presents a preliminary analysis of the personal difference in discount sensitivity, which provides

motivation to develop a recommendation algorithm that includes it. Subsection 3.3.2 introduces

the MF of item preferences in BPR, and Subsection 3.3.3 presents the proposed extensions.

3.3.1 Individual Difference of Discount Sensitivity

The effectiveness of a price promotion depends on the user and the item. Preliminary analysis of

the public retail dataset (described in Section 3.4.1) is in accordance with this hypothesis.

The purchase behaviors of two users under various price promotion conditions are compared in

Figure 3.1, which shows the distributions of purchase counts for various discount rates. The user

in the left panel tends to buy at regular prices and probably has low discount sensitivity. The

user in the right panel appears to search for discounted items, and thus should have high discount

sensitivity.
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Figure 3.2: Discount rate dependence of purchased rates.

The differences in the discount effect on items were also investigated. Figure 3.2 shows the

purchase rates of two items at different discount rates. The purchase rate is defined as the number

of purchases divided by the number of visiting users each day. The left and right panels show

characteristics of different items in different categories, with blue lines indicating linear regression.

Discounts increase sales for both items, but they increase them more for the right item, that is, the

discount sensitivity of the right item is much higher than that of the left item.

3.3.2 MF of Item Preference

Collaborative filtering is a recommendation technique to predict item preference of a user from the

preferences of similar items and similar users [110]. To overcome the sparsity of feedback data of

users for items, MF is commonly used in collaborative filtering [71]. MF decomposes preference

into the latent factors of users and items. Adding biases for item preference, the valuation of user

u to item i can be expressed as [71]:

vui = µ+ bi + bu + qT
i pu, (3.1)
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where µ ∈ R is a bias common to all items and users, bi ∈ R is an item-specific bias, and bu ∈ R

is a user-specific bias. Further, qi ∈ Rn is the n-dimensional latent factor of item i and pu ∈ Rn is

the n-dimensional latent factor of user u. BPR is a pairwise learning framework [110], that can be

adopted for various recommendation tasks [79, 132]. In BPR, probability that user u buys item i

and does not buy item j is expressed as a sigmoid function of rating difference between i and j:

p(i ∈ I+
u ∧ j ∈ I\I+

u ) =
1

1 + exp(−xuij)
, (3.2)

where,

xuij = vui − vui

= bi − bj + (qi − qj)Tpu.

(3.3)

Here, I+
u are items for which a user gives positive feedback (e.g., purchase), and I\I+

u are items for

which the user gives no feedback. Note that µ and bu are irrelevant in the BPR setting, and hence

the scope of the parameters is as follows:

Θ = {bi, qi,pu|i ∈ I, u ∈ U}. (3.4)

Training data set Ds for BPR is composed of user-item triplets:

Ds ≡ {(u, i, j)|i ∈ I+
u ∧ j ∈ I\I+

u }. (3.5)

Each triple corresponds to the observation that a user prefers item i over item j. The log-likelihood

of this observation is calculated as:

L ≡ ln p(Θ|Ds)

= ln p(Ds|Θ)p(Θ)− ln p(Ds).

(3.6)
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BPR optimizes model parameter Θ by maximizing log likelihood L under training data . Assuming

a normal distribution with zero mean and diagonal covariance for priors p(Θ), the gradient of the

log likelihood becomes the following.

∂L

∂Θ
=

∑
(u,i,j)∈Ds

exp(−xuij)
1 + exp(−xuij)

· ∂
∂Θ

xuij − λΘΘ. (3.7)

Here λΘ is the regularization coefficient for parameter Θ. In this study, stochastic gradient descent

was used, as in the original paper [110], and the update rule is:

Θ← Θ + α

(
exp(−xuij)

1 + exp(−xuij)
· ∂
∂Θ

xuij − λΘΘ

)
. (3.8)

3.3.3 Discount Sensitive Extensions

Let assume that item valuation comes from the preference for the item itself and the preference

for discount. The preference for discount can be formalized as the product of the discount rate

and discount sensitivity. In order to personalize discount sensitivity, an item-specific bias and a

user-specific bias are introduced. Considering the possibility that the combination of a user and an

item influences discount sensitivity, latent factors for the user and item are also added. Equation

3.1 is therefore extended to:

vui = µ+ bi + bu + qT
i pu

+ di(µ
d + bdi + bdu + qdi

Tpdu),

(3.9)

where di ∈ R denotes the discount rate of an item i. Terms µd, bdi , b
d
u, q

d
i ,p

d
u are discount sensitivity

terms, which are proportionality coefficients that drive up the valuation in response to the discount.

Specifically, µd ∈ R is a bias common to all items and users, which shows the general effect of

discounts, bdi and bdu ∈ R represent discount sensitivity biases for item i and user u, respectively,

and pdu and qdi ∈ Rd respectively correspond to the d-dimensional latent factors of user u and item

i.
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Including these terms, the rating difference in Equation 3.3 becomes:

xuij = bi − bj + (qi − qj)Tpu

+ di(µ
d + bdi + bdu)− dj(µd + bdj + bdu)

+ (diq
d
i − djqdj )Tpdu.

(3.10)

As a result, the optimized parameter Θ changes, as follows:

Θ = {bi, qi,pu, µd, bdi , b
d
u, q

d
i ,p

d
u|i ∈ I, u ∈ U}. (3.11)

Training dataset Ds then include the discount rate of each item on the day of shopping s ∈ S.

Ds ≡ {(u, i, j, di,s, dj,s)|i ∈ I+
u ∧ j ∈ I\I+

u ∧ s ∈ S}. (3.12)

These training data justify the change of item selection depending on price. For example, user u

could have bought item i instead of j when discount di,s > dj,s and on another day, user j could

have bought item j instead of i when discount di,s < dj,s.

The sampling scheme of the training data is also modified. First, user u is chosen randomly

and a shopping day s on which the user visited the shop is selected. Next, item i is chosen from

the items purchased by the user on that day, and item j from the items not purchased by the user.

As explained later in Subsection 3.4.2, items on the shelf might vary each day. As a result, the

sampling of j should be confined to items existing on the day.

3.4 Experimental Conditions

This section describes the experimental conditions. First, the dataset used in this study is described.

Next, the specifics of training and evaluation are detailed. In Subsection 3.4.3, the tested models

and accuracy metrics are specified.
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Table 3.1: Statistics of the Ta-Feng dataset and extracted dataset.

Data #records #users #items #subclasses

Original 817,741 32,266 23,812 2,012
Extracted 132,168 2,373 1,802 373

3.4.1 Dataset

The Ta-Feng dataset [49], which contains the transaction logs of a retail shop, is used for the

experiments. This shop sells a wide range of merchandise, from food and grocery items to office

supplies and furniture [49]. The transaction logs include user IDs, item IDs, dates, and prices. The

record covers four months. The name of the items and subclasses are not published; however, items

are categorized into subclasses, and a subclass ID is assigned to each item ID. The unit prices of

items on each day were extracted. In most cases, the prices were the same on the same day. If

there are multiple prices per day, the median price is the same day price. The discount rates of

each item on each day were calculated as:

1− the day price

max(prices of the item)
. (3.13)

A dense subset of the Ta-Feng data is extracted by filtering the data by users that visited the shop

10 times or more and items that sold 100 times or more. This subset comprises 7.4% of the users

and 7.6% of the items and includes 16.2% of the records. The basic statistics of the original and

extracted data are shown in Table 3.1.

3.4.2 Training and Evaluations

Of the 120 days covered by the dataset, the last 10 days were used for evaluation and the other 110

days for training, considering that the learning precedes the prediction in real scenarios. There was

at least one purchase log for all the extracted users in the training subset. In contrast, only 1,850

users had purchase histories in the test subset. The extracted parameters of all users were learned

in the training phase, but the evaluation was done for these partial users.

The items on the shelf changed every day. It is assumed that items with at least one purchase
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record on a certain day were on the shelf on that day. Of the 1,802 selected items, 1,087 items

on average were sold each day. At the evaluation stage, the recommended items of each day were

selected from the items on the shelf on that day. Items purchased during training periods were

not excluded from the recommended items. In contrast to movie or book consumption, repeat

purchase is common in grocery shopping and increasing repeat purchases by recommendations is

also beneficial for retailers. Besides, it is not easy to predict repeat purchases because item selection

is affected by price discounts and daily availability.

3.4.3 Accuracy Comparison

The conventional MF model was compared with several types of discount sensitive models: MF

with non-personalized discount sensitivity (MF-DS(NP)), MF with personalized discount sensitiv-

ity (MF-DS(P)), and MF with personalized and user-item-interactional discount sensitivity (MF-

DS(PI)).

The area under the curve (AUC), precision and recall were used as evaluation metrics. The

metrics were initially calculated for each user on each day and then taken the average for each

user over the test period. The statistical significance of the difference in accuracy among different

models was verified for user-by-user pairs of metrics using the Wilcoxon signed-rank test. As a

representative value, the average of all users was taken for each model.

3.5 Evaluation Results

The proposed model is evaluated for various matrix dimensions (Subsection 3.5.1). Detailed com-

parisons of each model and the results of the significance tests are shown in Subsection 3.5.2. The

data density was adjusted to verify the effectiveness of the proposed models under different densities

in Subsection 3.5.3.
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Figure 3.3: AUCs of MF and MF-DS(PI) at different matrix dimensions.

3.5.1 Comparison for Various Matrix Dimensions

The AUC of MF and MF-DS(PI) were evaluated at matrix dimensions ranging from 3 to 300.

Figure 3.3 shows results. The discount sensitive models improved the AUC at all dimensions.

3.5.2 Detailed Comparison of Models

Next, a detailed comparison of conventional MF, MF-DS(NP), MF-DS(P), and MF-DS(PI) was

conducted. The precision (P) and recall (R) were evaluated when the number of items recommended

by the system is 1, 10, and 100. Tables 3.2 and 3.3 show the results at 30 and 100 dimensions,

respectively. In most conditions, MF-DS(NP) outperformed MF and MF-DS(P) achieved further

improvement. MF-DS(PI) tends to increase accuracy, though not always significantly.

Table 3.2: Accuracy comparison of algorithms at 30 matrix dimensions. Marks * and ** indicate
statistically significant differences on the Wilcoxon signed-rank test with p < 0.1 and p < 0.01,
respectively. MF-DS(NP) was compared with MF, MF-DS(P) was compared with MF-DS(NP),
and MF-DS(PI) was compared with MF-DS(P).

Dimension
30

AUC
P/R

(1 item)
P/R

(10 items)
P/R

(100 items)

MF 0.7571 0.1467/0.0586 0.0624/0.2323 0.0152/0.4726
MF-DS(NP) 0.8012** 0.1666*/0.0661* 0.0570/0.2171 0.0165**/0.5247**
MF-DS(P) 0.8030** 0.2210**/0.0878** 0.0638**/0.2425** 0.0170**/0.5341**
MF-DS(PI) 0.8038 0.2226/0.0923* 0.0649*/0.2450* 0.0170/0.5387
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Table 3.3: Accuracy comparison of algorithms at 100 matrix dimensions. Marks * and ** indicate
statistically significant differences on the Wilcoxon signed-rank test with p < 0.1 and p < 0.01,
respectively. MF-DS(NP) was compared with MF, MF-DS(P) was compared with MF-DS(NP),
and MF-DS(PI) was compared with MF-DS(P).

Dimension
100

AUC
P/R

(1 item)
P/R

(10 items)
P/R

(100 items)

MF 0.7758 0.1993/0.0812 0.0792/0.2805 0.0172/0.5191
MF-DS(NP) 0.8198** 0.1984/0.0812 0.0646/0.2411 0.0184**/0.5705**
MF-DS(P) 0.8242** 0.2337**/0.0959** 0.0737**/0.2698** 0.0188**/0.5836**
MF-DS(PI) 0.8259* 0.2463**/0.1000* 0.0721/0.2639 0.0191**/0.5875*

Figure 3.4: AUCs of MF and MF-DS(PI) at different data densities.

3.5.3 Comparison at Various Data Densities

To confirm the universality of the discount sensitive effect, the data density was adjusted. Density

is defined by the ratio of purchased item-user pairs to all item-user pairs. Note that the data

density of the extracted data in Table 3.1 is 0.024 and experiments in Subsection 3.5.1 and 3.5.2

were conducted at this density. Figure 3.4 shows the AUCs of MF and MF-DS(PI) at different

densities. MF-DS(PI) improved the AUC for all densities and tends to be more effective on denser

datasets.

3.6 Analysis of Discount Sensitivity

This section investigates the discount sensitivity bias of users and items in MF-DS(P).
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Figure 3.5: Correlations of user discount sensitivity biases with user attributes. The residence area
in the left plot is ordered according to distance from the shop.

3.6.1 User Profile and Discount Sensitivity

The Ta-Feng dataset includes customer residence areas and ages. The influence of these factors on

discount sensitivity was analyzed.

The left panel of Figure 3.5 shows the distribution of the discount sensitivity biases of users by

residential areas. Areas are sorted in order of distance to the shop. The width of the shape expresses

the density of the distribution at each vertical value of the discount sensitivity bias. The correlation

coefficient r is 0.098 and the statistical significance level p is 6.9 × 10−6. A weak but significant

tendency was found in which users from distant areas responded to discounts more strongly. Distant

users might be prone to compensate for their transportation costs with good deals on purchases.

Age-dependence was also investigated, but no effect was observed.

Users with a strong tendency to buy particular items (item persistence) might react to discounts

differently. The persistence should be closely related to personality. For instance, persistence is

most likely correlated positively with neuroticism and negatively with openness and agreeableness.

Personal item persistence was extracted from repeat purchases of users within the same category.
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In [31], the propensity for diversity, which is the inverse of item persistence, was measured using

entropy. The entropy was used as an indicator of the weakness of a user’s item persistence.

The per-user subclass-level entropy was first calculated and then taken the average for each user

as:

H(u) = − 1

C

∑
c∈C

∑
i∈Ic

ri,u log ri,u, (3.14)

where Ic denotes the item set in a specific item subclass category, and ri,u represents repeat purchase

density, defined as the number of purchases for item i divided by the total purchases of the subclass

category. Subclasses purchased less than four times were omitted from the summation. Low entropy

in a subclass means that a user has strong persistence in that subclass and tends to buy specific

items. High entropy within a subclass means that users tend to purchase various items without

worrying about differences among items within a subclass. The average entropy over categories,

defined as Equation 3.14, represents whether the user is generally picky or not.

The right panel of Figure 3.5 presents the relation of entropy and discount sensitivity bias of

users. Discount sensitivity increases as entropy increases. The correlation coefficient was 0.12 and

the statistical significance level p was 3.2×10−7. The result indicates that users without persistence

tend to select discounted items, which is reasonable considering that picky users do not like another

item regardless of the price offered.

A linear regression model was applied for the discount sensitivity bias of users from the residential

area and the entropy. Estimated coefficients are positive (0.024 for residence area and 0.044 for

entropy) and significant (the p-values are 4.5 × 105 for residence area and 3.9 × 105 for entropy).

The root mean square error (RMSE) of the prediction is 0.2462 for 10-fold cross validation, an

improvement of the value of 0.2482, acquired from the mean estimate.

3.6.2 Item Profile and Discount Sensitivity

The correlation between the preference bias of items and discount sensitivity bias of items was

examined. The left panel of Figure 3.6 shows that a positive correlation was found between variables

with a correlation coefficient of r 0.38. The preference bias of items is similar to item popularity.
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Figure 3.6: Correlations of discount sensitivity bias of items with item attributes.

Therefore, this result suggests that discounts on popular goods are generally more attractive.

It is well known in the field of marketing research that frequent and deep discounts will change

consumers’ reference price and diminish discount sensitivity [14, 6]. This effect was confirmed by

comparing the average discount rates of various items and their discount sensitivity biases. As shown

in the right panel of Figure 3.6, the correlation coefficient was −0.17, and a negative correlation

was found among the variables.

A linear regression model for item discount sensitivity bias from the popularity and the mean

discount was then created. Estimated coefficients are positive (0.186) for the popularity and negative

(−0.436) for the mean discount. Both coefficients are significant (the p-values are 2× 1016 for the

popularity and 1.4× 109 for the mean discount). The RMSE of the prediction is 0.204 for 10-fold

cross validation, an improvement on the value of 0.222, obtained from the mean estimate.
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3.7 Conclusion

In this chapter, a recommendation model that incorporates the price discount effect is proposed.

Personalized discount sensitivity was introduced into the conventional MF. The proposed model

enhances the AUC, precision, and recall in a retail shopping dataset. The results demonstrate that

personalized discount sensitivity is a crucially important component in recommender systems in

the retail domain.

Individual differences in discount sensitivity associated with the user and item attributes were

analyzed. Item discount sensitivities are correlated with item popularity and mean discount rate,

and user discount sensitivities are correlated with the distance to the shop and users’ item per-

sistence. Persistence is closely related to personality, and these findings may contribute to under-

standing personality.

In future work, the proposed model could be extended with personality. Combining purchase

records and personality information, discount sensitivity can be estimated from personality. Cross-

item effects (e.g., how the purchase of a discounted item affects the purchase of another item)

have been investigated in marketing science [14, 6]. The fusion of other consumer psychologies and

recommendation algorithms is another potential direction for future research.
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4.1 Introduction

Recommender systems are prevalent in many fields. Electronic commerce websites display items

that users might like to buy, and social networking services find people whom users might know

and want to connect with. Recommendation research has attracted the interest of both academics

and practitioners.

Much effort has been dedicated to algorithms that estimate individual users’ preferences. Pref-

erences can be extracted from records of explicit feedbacks such as five-point ratings and implicit

feedbacks such as click logs and purchase logs. Traditionally, recommendation research has focused

on personal differences in item preferences. On the other hand, it has been indifferent to other

personal differences.

Recently, however, new kinds of personal differences have drawn the attention of researchers.

For example, the propensity to diversity depends on personality [136, 146]. Novelty-seeking be-

havior differs among users [66, 150]. Some users accept higher risks to get higher returns from

recommendations, while others avoid such risks [152]. Moreover, the change rate in preferences

over time is unique to each user [108].

In addition to these personal differences, the responsiveness to recommendations, which is de-

fined as the effect of recommendations to increase a user’s rating of an item, might also depend on

the user. However, responsiveness has been treated as independent of the users [15, 59, 128] and

the individual differences have never been investigated. The responsiveness to recommendations is

directly connected to the success of recommendations and requires further investigation in order to

design better recommender systems.

Along with the dependence of the responsiveness on users, individual items might trigger differ-

ent responses in users. This possibility is implied by in-situ experiments in actual stores [75, 32].

Researchers have demonstrated that while certain items in some categories sell easily through rec-

ommendations, other items in other categories do not.

In this chapter, a recommender system that incorporates individual differences in responsiveness

is proposed. The purchase probability is formulated as a sigmoid function of the sum of a rating
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and recommendation response. Recommendation responsiveness is decomposed into common re-

sponsiveness, user-specific responsiveness, and item-specific responsiveness. The responsiveness is

inferred from the combination of purchase logs and recommendation logs by maximizing the likeli-

hood of the model.

The effectiveness of the proposed model is evaluated in terms of purchase prediction and impact

maximization, using a grocery shopping dataset. The accuracy of the predictions made by the

proposed model was compared with that of the conventional model that assumes constant respon-

siveness. The recommendation impact, which is defined as the increase in purchase probability as

a result of recommendations, was also compared between the proposed model and the conventional

model.

To clarify the characteristics of responsiveness and estimate responsiveness despite inadequate

recommendation logs, the correlation between responsiveness and the other attributes of users and

items is investigated. The analysis use demographic information about users and features extracted

from purchase records. The correlated features were then applied to predict user- and item-specific

responsiveness. Furthermore, the recommendation impacts of an individualized responsiveness

model is estimated only from the correlated features without using the recommendation log.

The outline for this chapter is as follows. The next section reviews related work. Section

4.3 introduces the proposed model, along with a conventional model and the dataset used for

the evaluation. Section 4.4 presents performance comparisons between the proposed model and

the conventional model in terms of prediction accuracy and recommendation impact. Section 4.5

describes the correlation of recommendation responsiveness to other attributes and the estimate

of responsiveness from correlated attributes. Finally, Section 4.6 summarizes and concludes this

chapter.

4.2 Related Work

There are two branches of research that relate closely to this work: meta-personalization beyond

item preference, and purchase prediction of recommended items.
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4.2.1 Meta-Personalization

Accurately predicting item preferences does not in itself lead to user satisfaction [95]. Consequently,

there is a discrepancy between online and offline performances [27]. New perspectives have thus

been introduced to recommender systems. For instance, diversity and novelty are vogue topics in

recommendation research [19].

As research into diversity and novelty progresses, it is becoming apparent that the desired

degree of diversity and novelty differs among users. The propensity to diversity has been measured

in terms of the entropy in item selection, and the diversity of recommendations for each user can

be adjusted accordingly [31]. Indeed, the preference for diversity is correlated to personality [146],

and in particular to “openness to experience” [136]. Recommender system adapted to the novelty-

seeking traits of users has also been proposed [66, 150].

Such meta-personalization is not limited to diversity and novelty. Individual differences in risk

tolerance have been introduced to recommender systems in order to adjust the tolerance of the

variance in rating estimates for each user [152]. Dynamics of preference, or fickleness, also differ

among users, and this has been taken into account for recommendations [108].

The proposed modeling of individual users’ responsiveness would shed new light on the field of

meta personalization.

4.2.2 Recommended Purchase Prediction

A conventional task of recommender systems with implicit feedback is to predict which items

users will click or buy [51, 60, 101]. However, such predictions do not always consider the effect

of recommendations. Recommendation naturally increases the probability that an item will be

clicked or purchased. Recently, the effect of recommendations on purchase predictions has been

modeled in several ways. Shani et al. [128] assumed that the increase in purchase probability from

recommendations is proportional to the purchase probability without recommendations. Jiang et

al. [59] imposed the constraint that consumers buy an item only if the valuation is more than the

price of the item. They assumed that recommendation increases the valuation of the item and that
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the increase is constant. Bodapati [15] decomposed purchase probability into awareness probability

and satisfaction probability, and assumed that recommendations guaranteed awareness of the item.

Whereas the responsiveness to recommendations was considered to be independent of the user in

the previous work, this work introduces user-dependent responsiveness to further advance purchase

prediction.

4.3 Individualized Responsiveness

4.3.1 Base Model for Purchase Prediction

The probability of binary implicit feedback, such as clicks or purchases, can be formalized in a

sigmoid function of a rating of user u on item i (rui ∈ R) [60]:

p = σ(rui) =
1

1 + exp(−rui)
. (4.1)

The sigmoid function converts an unbounded real value to a range between zero and one. This

is a popular choice for converting a rating to a probability. The matrix factorization is known to

perform well in rating prediction [71] and used for the proposed model. The matrix factorization

decomposes a rating to the latent factors of the user and the item. Adding bias terms is a common

technique because ratings are not zero-centered. Hence rating rui is expressed as:

rui = bc + bu + bi + θT
uφi, (4.2)

where bc, bu, bi ∈ R are common, user-specific, and item-specific biases, respectively. Further,

θu,φi ∈ Rd denote the latent factors of the user and the item, respectively. Recommending an

item should increase the probability of purchasing the item. Adding recommendation responsiveness

γ ∈ R to rating rui, Equation (4.2) becomes

rui = bc + bu + bi + θT
uφi + δrecγ, (4.3)
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where δrec ∈ {0, 1} is an indicator function of the recommendation. Here, δrec = 1 when item i is

recommended to user u; otherwise, δrec = 0. Furthermore, γ can be constant or dependent on the

user and the item, as discussed below in Subsection 4.3.4. In the proposed model, the parameters

Θ to be learned are:

Θ = {bc, bu, bi, θu,φi, γ}. (4.4)

From purchase records and recommendation records, each term is determined such that it minimizes

the negative log likelihood (NLL):

NLL = − ln(
∏

purchase

σ(rui + δrecγ)× ln(
∏

non−purchase

(1− σ(rui + δrecγ))

=
∑

purchase

ln(1 + exp(−(rui + δrecγ))) +
∑

non−purchase

ln(1 + exp(+(rui + δrecγ))).

(4.5)

Denote by lpurchaseui and lnon−purchaseui each term in the summation of purchase records and that of

non-purchase records, respectively,

lpurchaseui ≡ ln(1 + exp(−(rui + δrecγ))), (4.6)

lnon−purchaseui ≡ ln(1 + exp(+(rui + δrecγ))). (4.7)

A stochastic gradient descent (SGD) method was used for iterative learning. For each iteration,

SGD randomly picks a user-item pair and updates the parameters in the opposite direction of the

gradient. The gradients of lpurchaseui and lnon−purchaseui are:

∂

∂Θ
lpurchaseui = −

(
1

1 + exp(rui + δrecγ))

)
∂

∂Θ
(rui + δrecγ), (4.8)

and

∂

∂Θ
lnon−purchaseui = −

(
1

1 + exp(−(rui + δrecγ)))

)
∂

∂Θ
(rui + δrecγ). (4.9)
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Table 4.1: Summary of the dataset.

Type #records #users #items #weeks

Purchase 3,743,300 6,937 4,150 39
Recommendation 30,174 6,897 36 10

Table 4.2: Sampling examples of the merged dataset.

User ID Item ID Week ID Purchase? Recommend?

1 1 1 True True
1 2 1 True False
2 1 1 True False
2 2 1 False True
1 2 2 True True
1 3 2 False False

Parameters are updated as:

Θ← Θ + ζΘ

(
− ∂

∂Θ
lpurchaseui − λΘΘ

)
, (4.10)

Θ← Θ + ζΘ

(
− ∂

∂Θ
lnon−purchaseui − λΘΘ

)
, (4.11)

where ζΘis the learning rate and λΘ is the regularization coefficient of the parameter Θ. Learning

the parameters of the model with the SGD always converged in the experiments.

4.3.2 Dataset

Proprietary data from grocery stores were used for the experiments. The dataset included purchase

logs and recommendation logs. There was no publically available data with recommendation logs1,

which are crucial for the experiments. Hence, only this dataset was used. The grocery stores

mainly deal with foods like vegetables, meat, fish, and various processed foods. The club members

of the shop received weekly catalogs of available products and purchased them by mail order.

For each week, several ”recommended items of the week” were selected by the shop owner. The

recommended items were selected from diverse categories of foods in the shop. Flyers with one of the

items printed were bundled with the catalog and posted for the club members over ten weeks. The

1At the time of the submission of this research.
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members targeted for recommendations were chosen randomly each week. The members received

at most one flyer per week and a flyer recommended only one item. Table 4.1 summarizes the

dataset. From the purchase records, non-purchase records were created, which are user-item pairs

comprising users who use the shop on a certain week and the items that they do not purchase

despite their availability in that week’s catalog. The shop changes the merchandize assortment

weekly. The above procedure generated 155 million non-purchase records. Both purchase records

and non-purchase records are necessary for evaluating the purchase probability of items.

Purchase records, non-purchase records, and recommendation records were merged each week.

It was assumed that the influence of recommendation continued for a week, because the flyers

showcased ”This week’s recommendation” and the merchandise assortment changed each week.

Table 4.2 shows examples of the merged dataset. Recommended items differ depending on the week

and the user. For example, Item 1 might be available on Week 1 but not on Week 2. Moreover, the

same user can repeatedly buy the same item; in this example, User 1 buys Item 2 on both Week 1

and Week 2.

4.3.3 Preliminary Experiment

First, the components of the rating, bc, bu, bi, θu,φi, were learned from data without recommen-

dations (Recommend? = False), so as to minimize the NLL. 10% of the data were reserved for

validation and hyperparameters such as the learning rate and regularization coefficient were tuned

with the validation data. The matrix dimensions were explored from 10 to 1000, and the improve-

ment of the NLL saturated at 300 dimension. Hence, the matrix dimension was set to 300.

Next, the relationship between the predicted purchase probability without recommendations and

the observed purchase probability with recommendations was investigated. For all user-item pairs

in the recommendation logs (Recommend? = True), the purchase probability without including the

recommendation responsiveness γ was calculated. Then, user-item pairs were clustered according

to the similarity of the probability. The estimated probabilities for each cluster were averaged.

Finally, the observed purchase probability pcluster was calculated using the recommendations for
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Figure 4.1: Purchase probabilities with and without recommendations.

each cluster, which is defined as:

pcluster =
the number of purchases in a cluster

the size of the cluster
. (4.12)

Figure 4.1 shows the results. The x-axis and the y-axis represent the estimated purchase probability

without recommendations and the observed probability with recommendations, respectively. If

recommendations do not influence purchase probability, both the probabilities should be the same,

i.e., y = x, as represented by the dotted line in Figure 4.1. The solid line represents the moving

average. Here, the solid line is above the dotted line, meaning that recommendations boost the

purchase probability. While the probability without recommendations is merely an estimate, it was

confirmed that the prediction is fairly accurate (the average NLL, defined later in Equation (4.14),

was 0.032 for data without recommendations). In addition, it can be assumed that the prediction

error is unbiased, and averaging within the clusters should decrease the error.

The increase in purchase probability among users of different ages is compared. While per-

sonality information regarding the users was unavailable in the experiments, it is known that some
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Figure 4.2: Increase in purchase probability from recommendations for various ages. The x-axis is
a log scale.

personality traits are correlated with age. For example, age has positive correlations with agreeable-

ness and conscientiousness, and negative correlations with neuroticism, extraversion, and openness

[93]. Conscientious people might notice recommendations more often than others, and agreeable

people might accept recommendations relatively easily. Hence, it can be expected that the effect of

recommendations might depend on age. The clusters of user-item pairs were split according to age,

by grouping users in their 30s, 40s, 50s, 60s, and 70s. Figure 4.2 illustrates the difference in the

probability increase. Indeed, the increase becomes more significant with advancing age. This result

implies that the responsiveness to recommendations depends on the type of user. This supplies the

motivation for personalizing responsiveness.

4.3.4 Individualized Responsiveness

The observations in Subsection 4.3.3 indicate that the responsiveness to recommendations differs

for each user and each item. Whether a user accepts a recommendation might depend on his or her

personality, e.g., the user’s agreeableness. In addition, some items might induce impulse shopping,
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whereas others might entail more deliberation. The recommendation responsiveness γ is split into

a common term γc, a user-specific term γu, and an item-specific term γi:

γ = γc + γu + γi, (4.13)

These terms can be obtained through SGD using the purchase logs and the non-purchase logs

with recommendations (Recommend? = True in Table 4.1). This formulation should explain the

observed differences in Subsection 4.3.3.

4.4 Comparative Evaluation

In this section, the effect of individualizing recommendation responsiveness is evaluated. The accu-

racy of purchase prediction and the impact of recommendations were measured. The effectiveness

of the model was examined by comparing it with a conventional model, in which responsiveness is

constant for all users and items.

4.4.1 Accuracy Comparison

The accuracy of purchase prediction in terms of NLL and precision was compared. The NLL for

each user-item pair in the testing data was calculated and then the average was taken.

lave =

∑
purchase l

purchase
ui +

∑
non−purchase l

non−purchase
ui

the number of the test data
. (4.14)

The precision was calculated for user-item pairs from the top n% in purchase probability:

Precision =
the number of purchase withing top n%

the number of u-i pairs withing top n%
. (4.15)

In the dataset, 27.1% of all the recommendations were purchased; the baseline for the precision

obtained by random recommendation was thus 0.271. The evaluation condition was n = 27.1%

because precision and recall are the same at this threshold, and this facilitates the comparison.
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Figure 4.3: Comparison of the average NLL.

The experiment compared four models: constant responsiveness (γ = γc, CR), user-specific

responsiveness (γ = γc + γu, USR), item-specific responsiveness (γ = γc + γi, ISR), and user- and

item-specific responsiveness (γ = γc + γu + γi, UISR). After pre-training of the components of

the rating, bc, bu, bi, θu,φi, from the data without recommendations (Recommend? = False), γ for

each model was trained using data with recommendations (Recommend? = True). Ten-fold cross

validation was performed on each model, and the obtained results were averaged. Figure 4.3 shows

a comparison of the mean NLL (lave), and Figure 4.4 shows a comparison of the precision. UISR

outperformed CR with both metrics. Both user- and item-specific terms improved the accuracy

and combining them further improved it. The significance of the results were also confirmed. The

paired Wilcoxon signed rank test was performed for CR vs. USR/ISR and USR/ISR vs. UISR

in terms of both NLL and precision. All of the differences were significant with p = 0.014 for CR

vs. USR in precision and p < 0.007 for the other comparisons. These results demonstrate the

effectiveness of modeling user- and item-specific responsiveness for accurate purchase predictions.
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Figure 4.4: Comparison of precision.

4.4.2 Impact Maximization

Next, the recommendation impact, which is defined as the increase in purchase probability through

recommendations, is evaluated. Although it is not common in the field of recommendation re-

searches, it is considered to be an important measure of evaluation. Traditional recommender

systems are designed to predict whether a user will purchase an item, regardless of whether it is

recommended. They then recommend the item with the highest purchase probability. These sys-

tems adopt the tacit assumption that there is a positive correlation between the increase in purchase

probability from recommendations and the purchase probability without recommendations:

p(δrec = 1)− p(δrec = 0) ∝ p(δrec = 0). (4.16)

However, this assumption is not necessarily true. Consider an extreme example where an item is

recommended to a user who has already decided to buy the item in spirit; the purchase probability

without a recommendation is almost 100% in this case, and there is no space for a recommendation

to further increase this probability. This corresponds to x ≈ 1 in Figure 4.1. On the other



CHAPTER 4. MODELING RECOMMENDATION RESPONSIVENESS 45

Figure 4.5: Comparison of recommendation impacts.

hand, recommending an item that a user has no intention of buying will not affect the purchase

probability either. This corresponds to x ≈ 0 in Figure 4.1. As can be seen in Figures 4.1 and 4.2,

the increase in purchase probability from recommendations is a convex function of the purchase

probability without recommendations. Based on the above observations, the convexity would be

observed in any recommendation domains, but the peak position may depend on the domain. It

is not an optimal strategy to recommend products that are most likely to be purchased without a

recommendation.

Recommender systems can be designed for various objectives [118]. End-users might want to

maximize utility surplus, which is defined as item utility minus price [42], and maximizing profit is

a major concern for retailers [9]. Maximizing recommendation impact can be seen as another form

of maximizing the utility surplus or the profit. However, the definition of recommendation impact

aims to evaluate the net influence of recommendations.

In order to calculate the recommendation impact, the purchase probability is needed both with

and without recommendations. Although their exact values cannot be known, the proposed model

can estimate them. Their difference yields the impact of each recommendation. Summing this

impact is equivalent to the expected value of the increase in sales volume through recommenda-
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tions. Hence, maximizing impact leads directly to profit maximization when commercial goods

are recommended for purchase. The experiment compared recommendation impacts obtained with

two strategies: 1) the strategy used by traditional systems that recommend items that have the

highest purchase probability without recommendations (HP); and 2) recommending items that will

result in the largest increase in probability through recommendations (LI). The latter strategy used

one of four models introduced in Subsection 4.4.2: the CR, USR, ISR, and UISR models (LI-CR,

LI-USR, LI-ISR, and LI-UISR, respectively). There are recommendation logs for 6,897 users and

36 items, and there are 248,292 possible user-item pairs. The best m pairs (the highest probability

for Strategy 1 and the largest increase for Strategy 2) were selected from the possible combination,

and then the average impact was calculated. The experiment set m = 3, 017, which is the average

number of recommendations per week in the dataset. The UISR model was used for estimating the

impacts because it is the most accurate.

The results are presented in Figure 4.5. LI-CR outperformed HP, proving that maximizing the

increase in probability is a superior strategy. Furthermore, LI-UISR had more of an impact than

LI-CR. Both LI-USR and LI-ISR surpassed LI-CR, meaning that both user- and item-specific re-

sponsiveness contribute to improvement. This result demonstrates the importance of individualized

responsiveness for maximizing recommendation impact.

4.5 Responsiveness Estimation

Correlations between responsiveness and other attributes of users and items were investigated to

characterize responsiveness and enable estimation despite insufficient recommendation logs. This

investigation is described in Subsection 4.5.1. The prediction accuracy of responsiveness from the

correlated attributes is evaluated in Subsection 4.5.2.

4.5.1 Correlation Analysis

Understanding the correlation between recommendation responsiveness and user and item attributes

will lead to clarifying the origin of individual differences in recommendation responsiveness. The
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(a) Correlation to age (ηage). (b) Correlation to the mean basket size (ηfam).

Figure 4.6: Correlation between user-specific responsiveness (γu) and user characteristics.

(a) The number of weeks items were displayed (ηfam). (b) The number of purchases per week (ηpop).

Figure 4.7: Correlation between item-specific responsiveness (γi) and item characteristics.
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demographic information of users and features derived from purchase records are analyzed.

The demographic features available were age and family size. Among these features, only age

was correlated significantly with user-specific recommendation responsiveness, as shown in Figure

4.6 (a). The line shows a linear regression. A positive correlation was found, meaning that elderly

people are more easily persuaded to buy an item. It is known that age is positively correlated

with agreeableness and conscientiousness [93], and this result might originate from the positive

correlations of user-specific responsiveness to agreeableness and conscientiousness.

Some users buy many items at once, while others buy only a few items. The mean basket size

of each user is defined as the average number of items purchased at one time. The mean basket size

was negatively correlated with recommendation responsiveness, as shown in Figure 4.6 (b). This

result suggests that bulk buyers tend to be indifferent to recommendations.

Regarding item-specific responsiveness, the relationship with the number of weeks an item was

displayed (ηfam) and that with the number of purchases per week (ηpop) were examined. It was

found that item-specific responsiveness increases the more time an item is displayed (Figure 4.7

(a)) and decreases with the number of weekly purchases (Figure 4.7 (b)). The number of weeks an

item is displayed is related to its familiarity to the user, and the number of weekly purchases tracks

the popularity of the item. Hence these results suggest that familiar yet unpopular items are good

candidates for recommendations.

4.5.2 Estimating Individual Responsiveness

Predicting user- and item-specific recommendation responsiveness is important if the recommenda-

tion logs are insufficient. Retailers often keep purchase logs, but they rarely keep recommendation

logs. Even when recommendation logs are properly recorded, one can not know the responsiveness

when firstly making recommendations to a certain user or when recommending a particular item for

the first time. The situation above resembles a situation, in which purchase logs of new users or new

items are insufficient for extracting preferences. This problem is known as a cold-start problem in

recommender systems [4, 126]. In this case, purchase logs are abundant, but recommendation logs

are inadequate. This is a new form of the cold-start problem with the proposed model. To over-
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Figure 4.8: Predictive performance of user- and item-specific responsiveness: comparing mean
estimates with linear regression estimates.

come the cold-start problem, the responsiveness is estimated from other sources. A linear regression

model was built to predict individual responsiveness. Owing to the correlation analysis conducted

in Subsection 4.5.1, effective predictors are already known. Thus, user-specific responsiveness can

be predicted merely from the age and the mean basket size:

γu = a1 · ηage + a2 · ηbas + a3, (4.17)

and item-specific responsiveness can be predicted from the familiarity and the popularity:

γi = b1 · ηfam + b2 · ηpop + b3, (4.18)

The coefficients obtained were, a1 = 0.0052, a2 = −0.0080, b1 = 0.0047, and b2 = −0.00055. It is

confirmed that all of the coefficients are statistically significant (p < 0.01).

Predictive performance was evaluated by 12 fold cross-validation. The reason why 12 times

of cross validation was chosen instead of 10 times of cross validation is that there are 36 items
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Figure 4.9: Comparison of recommendation impacts among the constant responsiveness model
(LI-CR), the user- and item-specific responsiveness model estimated from recommendation logs
(LI-UISR), and the model estimated from the correlated attributes (LI-UISR-E).

with the item specific responsiveness, and 36 is divisible by 12. Figure 4.8 shows the root mean

square errors (RMSEs) from predicting user-specific responsiveness (”User” in the figure) and item-

specific responsiveness (”Item” in the figure). The accuracy of the linear regression model (LR)

was compared with that of the mean estimate (Mean). The linear regression outperformed the

mean estimate when predicting both user- and item-specific responsiveness. Indeed, item-specific

responsiveness improved relatively more than user-specific responsiveness. However, both results

were statistically significant (the p-value from the paired Wilcoxon signed-rank tests was 2.6×10−6

for user-specific responsiveness and 0.047 for item-specific responsiveness). The individual respon-

siveness can be estimated at some level merely from the demographic information and purchase

logs.

Finally, the effect of the recommendations obtained from the estimated responsiveness was eval-

uated. Using the user-and item-specific responses estimated from Equations (4.17) and (4.18) for

the UISR model (UISR-E), and recommended an item with the largest increase in purchase prob-

ability for each user (Strategy 2 in Subsection 4.4.2, LI). Figure 4.9 compares the effects of LI-CR,
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LI-UISR, and LI-UISR-E. Note that the results for the LI-CR and LI-UISR models are the same as

the results in Figure 4.5. They are again provided in order to facilitate the comparison. LI-UISR-E

exceeded LI-CR with the statistical significance (p < 2.2 × 10−16 by the Wilcoxon signed-rank

test). LI-UISR was superior to LI-UISR-E, and learning responsiveness directly from recommen-

dation logs is desirable, where available. However, LI-UISR-E closely aligned with LI-UISR. This

result shows the potential applicability of the proposed model despite insufficient recommendation

logs.

4.6 Conclusions

This chapter proposes a purchase prediction model that incorporates individual differences in recom-

mendation responsiveness. The proposed model improved the accuracy of purchase prediction and

the impact of recommendations. These results confirmed the importance of modeling individualized

responsiveness. The analysis found a correlation between user-specific responsiveness and both age

and the mean basket size. The analysis also found correlations between item-specific responsiveness

and both familiarity and popularity. The estimated responsiveness from the correlated attributes

outperformed the mean estimates. It was further confirmed that the recommendation impact of

the user- and item-specific responsiveness model estimated from the correlated attributes exceeds

the impact of the constant-responsiveness model. These findings demonstrate the applicability of

the proposed model, even when there are insufficient recommendation logs. This work offers a new

research direction in personalizing recommender systems based on recommendation responsiveness.

In future work, the proposed impact-maximization approach can be compared with other ap-

proaches, such as diversity- and novelty-seeking approaches. This comparison would help uncover

the best recommendation tactics. Whereas a sigmoid function was applied to convert ratings into

purchase probabilities, other methods are available, such as Poisson distribution [39]. This research

was based on the analysis of purchases and recommendations in grocery shopping. Therefore, inves-

tigating the effectiveness of individualized responsiveness in other domains remains for future work.

Finally, recommendation responsiveness might relate closely to personality, and this relationship
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can be explored to better understand why users are affected by recommendations.
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5.1 Introduction

Recommender systems learn a user’s preferences for items from their feedback. There are two types

of feedback: explicit feedback such as a 5-scale rating or a thumb-up/down, and implicit feedback

such as a click or a purchase. While explicit feedback requires additional actions from users and is

scarce, implicit feedback comes from the natural use of services and is abundant. Implicit feedback

is more commonly used for real-world recommender systems.

There are two reasons for unpurchased items in the implicit feedback data set: the users do not

like them or are not aware of them. Owing to the difficulty in distinguishing between dislike and

unawareness, early approaches regarded all unpurchased items as negatives with lower confidences

either by downweighting them [51, 101] or downsampling them [110, 46].

Recently, Liang et al. [83] proposed an exposure modeling that represents a user’s action on

an item as a two-stage process; first a user notices the item (exposure), and then the user decides

whether to purchase it (preference). By separating exposure and preference in this way, potential

feedback can be better interpreted. The exposure modeling has been extended by incorporating

social influences [145, 21] and temporal dynamics [84, 144] to improve recommendation.

However, the recommendation itself influences the awareness of items. Recommendations attract

attention to the recommended items differently for different users. Some users might be attentive to

and trust recommendations and others might neglect or distrust recommendations. Furthermore,

if a user purchases an item from a recommendation list, the user would have likely noticed other

items on the same list.

This chapter extends the exposure model by considering the effects of the recommendations.

There are two kinds of influence on an item: (1) direct influence by the item’s recommendation and

(2) indirect influence from other recommended items. The effectiveness of the proposed method

is verified by purchase prediction experiments using public datasets with recommendation logs.

Furthermore, the recommendation influence is analyzed and its correlation with user demographic

is revealed.
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Figure 5.1: Graphical model of RecExpoMF.

Table 5.1: Notation.

Symbol Description

yui Implicit feedback (e.g., purchase or not) of user u to item i
θu Latent vector of user u
φi Latent vector of item i
aui Indicator of whether user u has been exposed to item i
µui Prior probability of exposure aui
γui Indicator of whether item i is recommended to user u
Λui Set of other items on the same recommendation list as item i

5.2 Exposure Modeling with Recommendation Influence

This section shows the exposure matrix factorization with recommendation influence (RecExpoMF).

The variables and the graphical model of the proposed method are shown in Table 5.1 and Figure

5.1, respectively.

5.2.1 Exposure Modeling

The proposed method is based on exposure matrix factorization (ExpoMF) [83] described in this

subsection. For every combination of user u from user set U and item i from item set I, consider
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two sets of binary variables: implicit feedback yui ∈ {0, 1} and exposure aui ∈ {0, 1}. The variable

yui indicates whether or not user u purchased item i, and aui indicates whether or not user u is

aware of item i. The exposure variable is assumed to follow Bernoulli distribution,

aui ∼ Bernoulli(µui), (5.1)

where µui ∈ R is the prior probability of exposure. The variable µui is expressed by a sigmoid

function, µui = σ(x(u, i)). User and item awareness biases are commonly used for exposure prior

[83, 84], µui = σ(x0(u, i)) was used as the base expression of the prior, where x0(u, i) = bAc +bAu +bAi ,

and bAc , b
A
u , b

A
i ∈ R denote common, user, and item biases, respectively.

When exposed (i.e., aui = 1), the purchase probability is determined by users’ preference for

items, which is represented by matrix factorization (MF),

p(yui = 1|aui = 1) = P(yui;θ
T
uφi), (5.2)

where P(yui;θ
T
uφi) is the Poisson distribution parameterized by θTuφi, and θu ∈ Rd and φi ∈

Rd represent a d-dimensional latent vector of user u’s preference and that of item i’s attribute,

respectively. This study uses Poisson distribution, which works well for binary data [39], and is also

used in [84, 87]. Note that Gaussian distribution is used in the original work [83]. A user can not

buy an item if the user is not aware of the item; hence,

p(yui = 1|aui = 0) = 0. (5.3)

In the exposure model, exposure and preference are modeled as independent events, thus a

purchase probability is expressed as follows:

p(yui = 1) = p(aui = 1)P(yui;θ
T
uφi). (5.4)

The reason for inaction comes from either unawareness (i.e., aui = 0) or dislike (i.e., θTuφi is low).
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5.2.2 Recommendation Influence on Exposure

This subsection models two kinds of recommendation influences on exposure to an item: direct

influence (τDI ∈ R) by the item’s recommendation and indirect influence (τII ∈ R) from other

recommended items. They are Incorporated into exposure prior, µui = σ(x0(u, i) + τDI(u, i) +

τII(u, i)).

Direct Influence on Exposure

It can be expected that recommendations generally increase the exposure probability of the item.

Further, the influence of recommendations could differ among users. Some users might be more

attentive to recommendations and others might not pay attention to recommendations. Previous

research has revealed that recommendation influence is also item-dependent [1, 78]. Hence, the

direct influence is expressed as:

τDI(u, i) = γui(b
R
c + bRu + bRi ), (5.5)

where γui ∈ {0, 1} is an indicator of recommendation; γui = 1 if item i is recommended to user

u. The terms bRc , b
R
u , b

R
i ∈ R denote common, user, and item biases, respectively, added by the

recommendation. Note that recommendation influence might also depend on the displayed order in

recommendation lists. The proposed model can be extended to incorporate the order dependence

if such information is available1.

Indirect Influence from Other Recommended Items

Recommendations are often provided as a list of items. If a user does not notice the list, exposures

would not increase for any items on the list. Conversely, if a user purchases one of the items on

the list, the user is highly likely to have noticed other items on the list. This indirect influence is

expressed by,

τII(u, i) = bL( max
k∈Λui

{yuk}), (5.6)

1There were no public datasets with the order information.
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where bLis a bias to exposure by indirect influence from other items on the list. Λui is a set of

items on the same recommendation list as i, but excluding the item i. The variable yuk is a binary

variable representing purchase and max{yuk} becomes 1 if a user purchases any other items on the

same list.

5.2.3 Inference

The expectation-maximization (EM) algorithm is used to infer model parameters {θu,φi, b
A
c , b

A
u , b

A
i ,

bRc , b
R
u , b

R
i , b

L}, following the previous research [83, 87, 84].

The E-step computes expectations of the exposure probability of unpurchased items.

E[aui|θu,φi, µui, yui = 0] =
µuiP(yui;θ

T
uφi)

µuiP(yui;θTuφi) + (1− µui)
. (5.7)

For purchased items, the exposure is deterministic, E[aui|yui = 1] = 1.

The M-step optimizes the model parameters conditioned on the current estimates of exposure

probability. The loss function for training is

logBernoulli(E[aui]|µui) + E[aui] log f(x = yui|θTuφi). (5.8)

E[aui] serves as a prediction target for µui and a training weight for P(yui;θ
T
uφi) [84]. Stochastic

gradient descent (SGD) is used to update parameters. EM + SGD optimization has been proved

to work efficiently in previous work [87, 84].

5.3 Related Works

5.3.1 Implicit Feedback and Exposure Modeling

In implicit feedback datasets, inaction is a mixture of dislike and unawareness; it cannot be treated

as completely negative. To handle implicit feedback, weighted matrix factorization (WMF) [101, 51]

downweights training from unpurchased items to decrease the confidence for inaction. Downsam-
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pling unpurchased items [46] can similarly decrease the confidence. Pairwise learning like Bayesian

personalized ranking (BPR) [110] trains a model through comparison between purchased and un-

purchased items, which also downsamples unpurchased items. Recently, an exposure model [83]

(ExpoMF) has been proposed to better model the reasoning behind inaction. A user’s awareness of

items can be affected by several factors. People may know items through their friends, and Wang

et al. [145] and Chen et al. [21] introduced such social influences on the exposure model. Further,

attention to items could change over time due to changes in the item’s popularity or the past con-

sumption of items by users. Such temporal dynamics of exposure have been modeled by historical

count-based features [84] and a hidden Markov model [144]. This work introduces recommendation

influence on exposure. Incorporating social and temporal influences are orthogonal to the proposed

methods; combining them would further increase performance.

5.3.2 Models with Recommendation Influence

Users might behave differently with and without recommendations. Increase in purchase probability

by recommendations was modeled in [122] (let call it RecResp). Bonner and Vasile [16] proposed

the CausE algorithm, which trains two prediction models: one with recommendations and the other

without, by regularizing the parameters of the two models to be close to each other. These works

do not model exposure. Bodapati [15] proposed a two-step model of user purchases: awareness

and satisfaction (let call it AwareSatis), which resembles exposure modeling. AwareSatis assumed

that recommendations force users to be aware of the recommended items, which might be too

strong an assumption. This work treats recommendation influence on exposure as user- and item-

dependent trainable parameters. Furthermore, the three works mentioned above only consider the

direct influence of recommendations; indirect influence from other recommended items is unique to

the proposed method.

5.4 Experiments

The experiments are designed to address the following research questions:
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• RQ1 Does including direct and indirect recommendation influences improve the performance

of the exposure model?

• RQ2 Who is affected by the recommendation? (more/less)

5.4.1 Experimental Protocol

Datasets

Two public datasets2 are used: Dunnhumby3, and Xing4. The statistics of datasets after prepro-

cessing are shown in Table 5.2. The purchase and recommendation logs are separated in discrete

time intervals because recommended items change over time5. Details of each data set are described

below.

Dunnhumby. This dataset includes purchase and promotion logs at a retailer. Stores promote

items by displaying them in special places. Such items were handled as recommendations and these

displays as recommendation lists (average list size is 24.9). The promotions change every week, so

the logs are separated by the week. The dataset includes logs from many stores, and promotions are

different for each store. If a user visited multiple shops in the same week, one shop was randomly

chosen and its logs were used. The datasets were filtered according to the following criteria: shops

that have at least one visitor for each week, items recommended for at least one week on average

among shops, items that have purchase logs for at least 46 weeks, and users who purchased for

at least five weeks. The dataset also includes user demographics which is used to analyze the

user-dependent influence of recommendations.

Xing. This dataset includes user interaction with an online job-seeking site. The dataset

was provided for a recommender systems competition: the RecSys Challenge 2017. The positive

user interactions of click, bookmark, and apply, were regarded as purchases. The dataset includes

impression logs of the items which are shown to users by the Xing platform. These impressions were

2The experiment requires the information of recommendation lists and user interaction logs for both recommended
and not-recommended items. Only these two datasets satisfy the requirements.

3https://www.dunnhumby.com/careers/engineering/sourcefiles
4http://www.recsyschallenge.com/2017/
5It was assumed that when recommended, recommendation influence is only within the defined discrete time

interval.
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Table 5.2: Statistics of datasets after proprocessing.

Dataset #User #Item #Time #Purchase #Recommend

Dunnhumby 1,683 2,091 93 428,229 11,968,126
Xing 4,886 6,886 26 28,031 158,783

considered as recommendations, and impressions with the same timestamp as items in the same

recommendation list (average list size is 5.8). The dataset was discretized by day. The dataset was

filtered according to the following conditions: users and items in Germany, items recommended on

at least one day, items that have logs for both first two days and the last two days6, and users

visiting the site on at least three days.

Evaluation Protocols

The experiment evaluated precision (Prec) and normalized discounted cumulative gain (NDCG).

The evaluation metrics were calculated for each discrete time, and then they were averaged over

the evaluation periods. The datasets were split chronologically for training and evaluation. The

lengths of the evaluation periods are 8 and 3 for the Dunnhumby and Xing datasets, respectively.

For a dataset with td discrete times indexed by 1 to td, with the evaluation periods being of length

te, each phase of validation and testing was conducted as follows:

• validation phase: train the model by periods from 1 to (td − 2te), and evaluate by periods

from (td − 2te + 1) to (td − te).

• test phase: train the model by periods from (te + 1) to (td− te), and evaluate by periods from

(td − te + 1) to td.

Compared Methods

The following methods are compared.

• BPR [110]: MF trained with a pairwise loss.

6This is to confine items available through whole period, since job posts become unavailable when the recruitment
is done.
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• WMF [51, 101]: MF trained with downweighting.

• RecResp [122]: MF with recommendation responsiveness.

• CausE [16]: Two MFs with and without recommendations.

• ExpoMF [83]: Exposure MF, which the proposed method based on.

• RecExpoMF: The proposed method with both direct and indirect recommendation influences

on exposure.

• RecExpoMF-D: RecExpoMF with only direct influence.

• RecExpoMF-F: Exposure is forced by recommendations (i.e., aui = 1 if γui = 1) as with

AwareSatis [15].

Parameter Settings

All the compared methods are MF-based, and the factor dimensions were set to 100. Poisson

distribution was used for all the methods except BPR. SGD with batch size 10000 was used.

Regularization coefficients, learning rates, and training iterations were tuned in the validation

phase.

5.4.2 Results and Analyses

Performance Comparison (RQ1)

Comparison of prediction accuracy is shown in 5.3 and 5.4. RecExpoMF outperforms ExpoMF,

showing the importance of incorporating recommendation influence for exposure modeling. RecEx-

poMF is mostly better than RecExpoMF-D, which supports the effectiveness of indirect influence.

Further, RecExpoMF-D is better than RecExpoMF-F, which validates the proposed modeling of

recommendation influences as trainable parameters, unlike forcing exposure as in AwareSatis. The

proposed RecExpoMF also outperforms RecResp and CausE, which are recent methods that con-

sider recommendation influence.
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Table 5.3: Performance comparison of recommendations in the Dunnhumby dataset. The best
result for each metric is highlighted in bold.

Prec@3 Prec@10 Prec@100 NDCG@3 NDCG@10 NDCG@100

BPR 0.2298 0.1427 0.0385 0.2658 0.2541 0.3524
WMF 0.2720 0.1675 0.0401 0.3106 0.2883 0.3767
RecResp 0.2597 0.1652 0.0404 0.2937 0.2788 0.3712
CausE 0.2715 0.1688 0.0394 0.3124 0.2887 0.3717

ExpoMF 0.2731 0.1686 0.0404 0.3119 0.2920 0.3808
RecExpoMF-F 0.2530 0.1518 0.0387 0.2922 0.2676 0.3572
RecExpoMF-D 0.2720 0.1663 0.0409 0.3139 0.2906 0.3840
RecExpoMF 0.2772 0.1699 0.0409 0.3170 0.2943 0.3860

Table 5.4: Performance comparison of recommendations in the Xing dataset. The best result for
each metric is highlighted in bold.

Prec@3 Prec@10 Prec@100 NDCG@3 NDCG@10 NDCG@100

BPR 0.1712 0.0741 0.0104 0.3384 0.3873 0.4284
WMF 0.1658 0.0719 0.0099 0.3332 0.3815 0.4205
RecResp 0.2117 0.0951 0.0111 0.4046 0.4700 0.4971
CausE 0.1784 0.0743 0.0098 0.3561 0.3994 0.4337

ExpoMF 0.1766 0.0708 0.0094 0.3488 0.3854 0.4181
RecExpoMF-F 0.1946 0.0911 0.0109 0.3911 0.4636 0.4894
RecExpoMF-D 0.2000 0.0968 0.0113 0.3865 0.4677 0.4931
RecExpoMF 0.2135 0.0987 0.0112 0.4147 0.4878 0.5080

Table 5.5: Correlation between user demographics (household composition, age group, and income
range) and recommendation influence (bRc + bRu ) in Dunnhumby.

Household comp. (bRc + bRu )

One Adult Kids 0.224
Two Adults Kids 0.333
Two Adults No Kids 0.389
Single Female 0.392
Single Male 0.379

Age group (bRc + bRu )

19-24 0.263
25-34 0.210
35-44 0.429
45-54 0.389
55-64 0.432

Income range (bRc + bRu )

0-25K 0.375
25-49K 0.420
50-99K 0.398
100-149K 0.286
150K+ 0.129
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Analysis of Recommendation Influence (RQ2)

The Dunnhumby dataset includes user demographics (household composition, age group, and in-

come range). It was investigated how the trained parameter of user-dependent recommendation

influence relates to them (Table 5.5). The recommendation influences (bRc +bRu ) are lower for single-

parent households (One Adult Kids) when compared with two-parent households (Two Adults Kids),

maybe because they are busy taking care of their children. Regarding age, the parameter is larger

for older users (over 35) than for younger users (below 35). This may be because of the difference in

personalities [93]; some studies have found that the elderly tend to be more conscientious. Further,

high-income classes have lower recommendation influences.

5.5 Conclusions

This chapter extends the exposure model by incorporating the direct and indirect influence of rec-

ommendation. Compared with the method proposed in the previous section, this method provides

a deeper interpretation of recommendation influence on user actions by decomposing exposure and

preference. Experimental results show the effectiveness of the proposed method in terms of pre-

diction accuracy. Relations between recommendation influence and user demographics are further

analyzed.
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6.1 Introduction

One of the major goals of recommender systems is to encourage positive user interactions, such as

clicks and purchases. Because increases in user interactions directly benefit businesses, recommender

systems have been utilized in various areas of industry.

Recommendations are typically evaluated in terms of purchases1 of recommended items. How-

ever, these items may have been purchased even without recommendations. For a certain e-

commerce site, more than 75% of the recommended items that were clicked would have been

clicked even without the recommendations [129]. The true success of recommendations should be

represented by the increase in user actions caused by recommendations. Such an increase affected

purely by recommendations is called an uplift. The development of a recommender should focus

more on the uplift than the accurate prediction of user purchases.

However, evaluating and optimizing the uplift is difficult because of its unobservable nature. An

item is either recommended or not for a specific user at a given time instance, so the uplift cannot

be directly measured for a given recommendation. This means that there is no ground truth for

training and evaluating a model.

Previous studies targeting uplift construct purchase prediction models incorporating recommen-

dation effects [15, 122]. The items recommended are ones that have the largest differences between

the predicted purchase probabilities for cases with and without recommendations. Another ap-

proach builds two prediction models: one for predictions with recommendations and the other for

predictions with no recommendations [16]. All of these methods are based on purchase prediction

models optimized for prediction accuracy, even though they target uplift. Improvement of uplift

performance is expected by optimizing models directly for the uplift.

This study proposes new evaluation methods and optimization methods for uplift-based recom-

mendation. First, it is shown that common accuracy-based evaluation metrics such as precision do

not align with the uplift. Then, evaluation protocols to estimate the average uplift for recommenda-

tions is derived, based on a potential outcome framework in causal inference [116, 52, 91]. Further-

1The term purchase is used to refer to positive interactions in general.
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more, optimization methods for recommenders to improve the uplift are proposed. These methods

are applied to the matrix factorization model [51, 101, 110], which is the most common model

for recommenders. To verify the effectiveness of the proposed optimization methods, the uplift

performance of the proposed methods are compared with baselines, including recent recommenders

[122, 16] that target the uplift. The characteristics of the proposed uplift-based optimizations and

the recommendation outputs are further investigated.

The contributions of this chapter are summarized as follows.

• It proposes offline evaluation metrics for the recommendation uplift (Section 6.2).

• It presents both pointwise and pairwise optimization methods for uplift-based recommenda-

tion (Section 6.3).

• It demonstrates the effectiveness of the proposed optimization methods through comparisons

with baselines (Subsection 6.5.2).

• It clarifies the characteristics of the optimization (Subsection 6.5.3) and the recommendation

outputs (Subsection 6.5.4).

6.2 Uplift-based Evaluation

Recommenders are typically evaluated in terms of recommendation accuracy. A recommender is

considered to be better than others if a larger number of its recommended items are purchased.

Let refer to this evaluation approach as accuracy-based evaluation. Precision, which is a commonly

utilized accuracy metric for recommenders, is defined as the number of purchases divided by the

number of recommendations. However, items may have been bought even without recommendations

if the user was already aware of and had a preference for those items. Thus, this section aims to

evaluate recommenders in terms of the uplift they achieve.
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6.2.1 Discrepancy between Accuracy and Uplift

This subsection demonstrates that accuracy metrics such as precision are unsuitable for the goal of

increasing user purchases. To describe two cases with and without a recommendation, let adopt the

concept of potential outcome from causal inference [116, 52, 91]. Let Y T ∈ {0, 1} be the potential

outcome with a recommendation (treatment condition) and Y C ∈ {0, 1} be the potential outcome

without a recommendation (control condition)2. Y T = 1 and Y C = 1 indicate that an item3 will

be purchased when recommended and not recommended, respectively. The uplift τ of an item for a

given user4 is defined as Y T − Y C . Considering the two possible actions of a user in the two given

scenarios, there are four item classes for the user:

• True Uplift (TU). Y T = 1 and Y C = 0, hence τ = 1. The item will be purchased if

recommended, but will not be purchased if not recommended.

• False Uplift (FU). Y T = Y C = 1, hence τ = 0. The item will be purchased regardless of

whether it is recommended.

• True Drop (TD). Y T = 0 and Y C = 1, hence τ = −1. The item will be purchased if it is

not recommended, but will not be purchased if it is recommended.

• False Drop (FD). Y T = Y C = 0, hence τ = 0. The item will not be purchased regardless

of whether it is recommended.

To intuitively illustrate the difference between the uplift and accuracy in an offline evaluation

setting, consider four lists of ten recommendations, as shown in Figure 6.1. Let assume that there

is an offline dataset, which includes both purchase logs and recommendation logs for a currently

deployed recommender. Note that TU items are only purchased if recommended, and TD items

are only purchased if not recommended. Purchases of other FU and FD items do not depend

on recommendations. The total uplift that would have been obtained if all the ten items were

2Control condition means that no recommendation is provided for a specific user-item pair at a given time, not
the absence of a recommender.

3Items can be product- or category-level ones, depending on the interest of a business.
4Recommendations generally change over time. In this study, it is assumed that the influence of a recommendation

is within some discrete time interval when recommended.
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Figure 6.1: A hypothetical example to illustrate the discrepancy between the accuracy and uplift.
Four different recommendation lists, LM1, LM2, LM3, and LM4 are generated by different recom-
mendation models, M1, M2, M3, and M4, respectively. The items with solid borders are actually
recommended in the offline dataset, and those with dotted borders are not recommended. Shaded
items are purchased by the user. The recommendation of circular items (TU) increases purchases,
whereas the recommendation of triangular items (TD) decreases purchases. The recommendations
of rectangular items (FU or FD) does not affect sales. An evaluation of these lists is presented in
Table 6.1.

recommended in the past is shown in Table 6.1. Precision under two settings: one with all items on

the list, and the other with only the items recommended in the logs, are also listed. The former is

a common setting for the offline evaluations of recommenders [43]. The latter is a setting employed

in the previous work [82, 37] to estimate the online performance of a recommender. The former

precision value and total uplift exhibit opposite trends for these samples. This means that the best

model for achieving a higher uplift cannot be selected based on this former precision. Excluding

items without recommendations does not resolve this issue. The latter precision value, calculated

using only the recommended items (items with solid boundaries in Figure 6.1), exhibits the same

value for all lists and is still unable to select the best model.

As demonstrated by the above illustration, accuracy-based evaluation is not suitable for eval-

uating the uplift caused by recommenders. Hence an evaluation metric designed for uplift-based

evaluation is needed. However, it is not possible to directly calculate the total uplift, because either

Y T or Y C for a user-item pair is observed at a given time. To overcome this difficulty, a causal

inference framework to estimate the average treatment effect is applied.
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Table 6.1: Total uplift and evaluation metrics for four recommendation lists in Figure 6.1. The
total uplift of a list is indicated by the number of TU items subtracted from the number of TD
items. The proposed uplift metric is described in Subsection 6.2.3.

LM1 LM2 LM3 LM4

Total Uplift (unobservable ground truth) 4 2 0 -2

Precision (all items) 0.2 0.3 0.4 0.5
Precision (items recommended in the log) 0.4 0.4 0.4 0.4
Proposed uplift metric (Subsection 6.2.3) 0.4 0.2 0.0 -0.2

6.2.2 Causal Inference Framework

This subsection introduces the causal inference framework [116, 52, 91], which is applied to the

uplift-based evaluation of recommenders in the next subsection. The treatment effect τ for a

subject is defined as the difference between the potential outcomes with and without treatment:

τ ≡ Y T −Y C . Note that τ is not directly measurable, because each subject is either treated or not,

and either Y T or Y C is observed. However, it is possible to estimate the average treatment effect

(ATE), which is expressed as E[τ ] = E[Y T ]− E[Y C ].

Let Z ∈ {0, 1} be the binary indicator for the treatment, with Z = 1 and Z = 0 indicating

that the subject does and does not receive treatment, respectively. The covariates associated with

the subject are denoted by X, e.g., demographic and past records of the subject before treatment

assignment. Let assume that the random variable X takes values in Rd for some d. Consider

N subjects, indexed by n. That is, consider an independent and identically distributed (i.i.d.)

sequence of random variables
{

(Xn, Y
T
n , Y

C
n , Zn)

}N
n=1

. Denote by ST and SC the sets of subjects

who do and do not receive treatment, respectively. Naively, the ATE can be estimated as the

difference between the average outcomes of the two sets;

τ̂ =
1

|ST |
∑
n∈ST

Y T
n −

1

|SC |
∑
n∈SC

Y C
n . (6.1)

If treatment is randomly assigned to subjects independent of the potential outcomes, i.e., (Y T , Y C)⊥Z,

then τ̂ converges to the ATE almost surely when N →∞ (see the proof of [100, Theorem 9.2]).

Because the independence condition (Y T , Y C)⊥Z is a strong assumption, instead consider con-
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ditional independence (Y T , Y C)⊥Z|X, which means that the covariates X contain all confounders

of (Y T , Y C) and Z [91]. Under the conditional independence, the inverse propensity scoring (IPS)

estimator,

τ̂IPS =
1

N

∑
n∈ST

Y T
n

e(Xn)
− 1

N

∑
n∈SC

Y C
n

1− e(Xn)
, (6.2)

is known to be an unbiased estimator of the ATE. Here, e(Xn) = p(Zn = 1|Xn) is the probability

of treatment assignment conditioned on the covariates X, which is called the propensity score [114].

However, the IPS is prone to suffer from the high variance of estimates, because a small propensity

score leads to a large weight on an outcome for a certain subject. To remedy this, self-normalized

inverse propensity scoring (SNIPS) has been proposed [133]. This adjusts the estimates by the sum

of the inverse propensity scores:

τ̂SNIPS =

∑
n∈ST

Y T
n

e(Xn)∑
n∈ST

1
e(Xn)

−

∑
n∈SC

Y C
n

1−e(Xn)∑
n∈SC

1
1−e(Xn)

. (6.3)

Under the independence condition (Y T , Y C)⊥Z|X, the estimator τ̂SNIPS converges to the ATE

almost surely when N →∞.

6.2.3 Uplift Estimates for Recommenders

This subsection designs evaluation protocols for the uplift caused by recommendation, based on

the causal inference framework described in the previous subsection. The goal is to evaluate the

uplift performance of a new recommender model M . Let assume that there is an offline dataset

comprising purchase and recommendation logs under a currently deployed model D. For the uplift

evaluation of recommenders, a treatment Z is a recommendation by D, and Y T
ui = 1 means that a

user u purchases an item i when it is recommended. Let R be a binary variable such that R = 1

if M recommends the item. The objective is to evaluate E[τ ] = E[Y T − Y C |R = 1]. Let define

pT = E[Y T |R = 1] and pC = E[Y C |R = 1], purchase probabilities of items selected by M with and

without an actual recommendation by D, respectively. The uplift can then be interpreted as the

increase in purchase probability caused by the recommendation: pT − pC .
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Let LM
u be a recommendation list for user u, generated by the new model M that needs to be

evaluated. In the recommendation logs, there is a list, LD
u of actually recommended items for the

user by the deployed model D. Let assume that some items in LM
u are included in LD

u , and some

are not. Let write LM∩D
u for items in both LM

u and LD
u , and L

M\D
u for items in LM

u but not in

LD
u . LM∩D

u and L
M\D
u can be regarded as the treatment set ST and control set SC , respectively.

Therefore, Equation (6.1) becomes,

τ̂LM
u

=
1

|LM∩D
u |

∑
i∈LM∩D

u

Y T
ui −

1

|LM\D
u |

∑
i∈LM\D

u

Y C
ui . (6.4)

The left and right terms are the purchase probabilities of items in LM
u if recommended and if not

recommended, respectively.

Recommendation lists of Figure 6.1 are evaluated using this metric. The results are shown in the

bottom row of Table 6.1. This metric aligns well with the total uplift, indicating that the proposed

metric is appropriate for evaluating recommenders in terms of the uplift.

One can also derive the SNIPS estimate of the uplift from Equation (6.3):

(τ̂LM
u

)SNIPS =

∑
i∈LM∩D

u

Y T
ui

e(Xui)∑
i∈LM∩D

u

1
e(Xui)

−

∑
i∈LM\D

u

Y C
ui

1−e(Xui)∑
i∈LM\D

u

1
1−e(Xui)

. (6.5)

For recommenders, Xui can be past records of purchase and recommendation, user demographics,

and item contents.

As an evaluation metric of the model M , the average is taken over all users U for both estimators:

τ̄ ≡ 1

|U |
∑
u∈U

τ̂LM
u
, and τ̄SNIPS ≡

1

|U |
∑
u∈U

(τ̂LM
u

)SNIPS . (6.6)

In this study, these metrics are employed for the offline evaluation of uplift performance. Let refer

to τ̄ as Uplift@N and τ̄SNIPS as UpliftSNIPS@N , where N = |LM
u | is the size of the recommenda-

tion. Using the protocol described in this subsection, the uplift performance of a new model M is
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evaluated offline using the purchase and recommendation logs under a currently deployed model D.

If the purchase probability without recommendation is negligible, e.g., in case of ad clicks, the

right terms of Equations (6.4) and (6.5) disappear. The equations then become similar to the

previous counterfactual offline evaluation [37, 82]. The proposed evaluation is an extension which

considers the possibility of purchase without recommendation.

The uplift estimate by Equation (6.4) depends on the assumption that potential outcomes of

items in LM
u do not relate to logged recommendations by D. The uplift estimate by Equation

(6.5) depends on the assumption that covariates X used for estimating the propensity include

enough information to resolve dependency between (Y T , Y C) and Z. Though it is difficult to

guarantee these assumptions, in practice, one can be confident in the evaluation if the results of

model comparison are consistent for both Uplift@N and UpliftSNIPS@N .

6.3 Uplift-based Optimization

Of the four item classes TU, FU, TD, and TD, defined in Subsection 6.2.1, only TU items can lead

to uplift when recommended. However, identification of these four classes requires observation of

both Y T and Y C , which is not feasible by nature. This implies that there is no observable ground

truth against which to train models. This section proposes uplift optimization methods to overcome

the above problem.

6.3.1 Classification of the Observations

In Subsection 6.2.1, items are categorized into four hidden classes based on the combinations of

potential outcomes. Now let categorize items into observable classes from purchase and recommen-

dation logs, while aligning them with the hidden classes. In the observed dataset, for a given user

and time instance, an item is either recommended (R) or not (NR); and either purchased (P) or

not (NP). This provides the following observable classes (also summarized in Table 6.2):

• An item is recommended and purchased (R-P). Possible hidden classes of the observed item

are TU or FU.
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• An item is recommended and NOT purchased (R-NP). Possible hidden classes of the observed

item are FD or TD.

• An item is NOT recommended and purchased (NR-P). Possible hidden classes of the observed

item are FU or TD.

• An item is NOT recommended and NOT purchased (NR-NP). Possible hidden classes of the

observed item are TU or FD.

Table 6.2: Observable records and possible hidden item classes. An item is either recommended
(R) or not (NR), and either purchased (P) or not (NP).

P NP

R TU or FU FD or TD
NR FU or TD TU or FD

Let define Cclass as the set of items in class ∈ {R-P, R-NP, NR-P, NR-NP}5 for a particular

user, u ∈ U . Let also define I+
u and I−u as the set of positive and negative items for that user. In

traditional accuracy-based optimizations [101, 51, 110], I+
u ∼ CR−P ∪ CNR−P (purchased items)

and I−u ∼ CR−NP ∪ CNR−NP (non-purchased items). This sampling method is not optimal for

uplift and the positive and negative samples need to be redefined. Since TU items result in an

uplift, classes that include TU items are considered as positive. Thus, (CR−P ∪ CNR−NP ) should

be a reasonable choice for positive item sampling. Following the same reasoning, since CR−NP and

CNR−P do not include TU items, I−u ∼ (CR−NP ∪ CNR−P ).

However, using these positive samples has some problems. Most purchase logs are extremely

sparse (NP is large) and most recommenders limit the recommendations to a small number (NR is

large). This means that the cardinality of CNR−NP is much larger than that of the other classes

and is close to the total number of items. Owing to a consumer’s limited purchasing power, the

number of TU items should be much smaller than the total number of items. Hence, the probability

5In Figure 6.1, CR−P items in LM1 are {1,3}; in LM2 are {1,3}; in LM3 are {3,5}; and in LM4 are {3,5}. CNR−P

items in LM2 are {2}; in LM3 are {2,8}; and in LM4 are {2,6,8}. CR−P items are either TU or FU and CNR−P

items are either FU or TD. Hidden classes of CR−NP and CNR−NP items can be checked similarly.
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of the items in CNR−NP belonging to TU should be low:

P (i ∈ TU |i ∈ CNR−NP ) ≡ |TU ∩ CNR−NP |/|CNR−NP |

≈ |TU ∩ CNR−NP |/|I| < |TU |/|I| � 1.

(6.7)

On the contrary, considering the fact that recommenders generally improve sales substantially [12],

the possibility of the items in CR−P belonging to TU should not be relatively low. Hence,

P (i ∈ TU |i ∈ CR−P ) > P (i ∈ TU |i ∈ CNR−NP ). (6.8)

Because of the above, CNR−NP cannot be considered to be completely positive. Thus, let introduce

a parameter α, which is the probability of items from set CNR−NP being sampled as positive. This

parameter is further discussed in the following subsection.

6.3.2 Proposed Sampling Method

The optimization methods of recommender models are generally grouped into two categories: point-

wise [101, 51, 46] and pairwise [110, 130] methods. This subsection proposes pointwise (ULOpoint)

and pairwise (ULOpair ) optimization methods for uplift.

Following the discussion in the previous subsection, items in CR−P are relatively better than the

items in the other classes, and thus positive labels are assigned to them. On the contrary, the items

in CNR−P and CR−NP are relatively worse and assigned negative labels. The items in CNR−NP

are positive with probability α, and negative with probability 1− α.

Furthermore, stratified sampling is conducted because the number of items in each observed

class is different. A parameter γP represents the ratio of sampling from the purchased items. This

kind of downsampling for unpurchased items is a common technique for implicit feedback data [46],

which is equivalent to downweighting unpurchased items [51, 101]. Similarly, γR is the ratio of

sampling from the recommended items. For example, the ratio of the items sampled from CR−P

is γP γR and that from CNR−NP is (1 − γP )(1 − γR). For pairwise optimization, the positive and

negative samples are selected simultaneously. Positive samples are chosen from CR−P ∪ CNR−NP
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with probability α, and from CR−P with probability 1−α. The negative samples are selected from

the other classes. Candidate classes are sampled with the same probability; that is, if items are

selected from CR−P ∪CNR−NP , the half are sampled from CR−P and the other half from CNR−NP .

Algorithms 1 and 2 describe the details of each algorithm. rui is the label for the u-i pair,

L is the loss function, η is the learning rate, and λ is the regularization coefficient. Stochastic

gradient descent is used for training. Parameters Θ related to each point or pair are updated at

each iteration. As for loss function, the logistic loss [60] is used for the pointwise optimization,

Lll
point = −(rui log(σ(x̂ui)) + (1− rui) log(1− σ(x̂ui))). (6.9)

The predicted value x̂ui is converted into the label prediction using the sigmoid function, σ(x) =

1/(1 + exp(−x)). The Bayesian personalized ranking (BPR) loss [110] is used for the pairwise

optimization:

Lbpr
pair = − log(σ(x̂ui − x̂uj)), (6.10)

where i is the positive sample and j is the negative sample. In both types of learning, the L2

regularization term Ω = ||Θ||22 is added to prevent the overfitting of the parameter Θ. Matrix

Factorization (MF) [71] is applied for the expression of x̂ui.

x̂ui = µ+ bu + bi + θu · φi, (6.11)

where µ ∈ R is a global bias, bu ∈ R and bi ∈ R are the biases of the user and item, respectively,

and θu ∈ Rd and φi ∈ Rd are the d-dimensional latent factors for the user and item, respectively.

In the case of pairwise learning, µ and bu are dropped by subtraction. The above procedure builds

uplift-optimized regularized MF (ULRMF) and uplift-optimized BPR (ULBPR), which are MFs

trained by algorithms 1 and 2, respectively.

As for time complexity, the proposed algorithms perform a random sampling of items from pre-

pared sets of observable classes, which is O(1). The bottleneck is for parameter updates, which is

O(d) for MF with d factor dimensions. This is common to conventional accuracy-based optimiza-
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Algorithm 1: Pointwise uplift optimization (ULOpoint).

Input: α, γP , γR, η, λ
Output: Θ

1 Random initialization of Θ
2 while not converged do
3 draw u from U
4 draw i from I, with stratification by γP and γR
5 if i ∈ CR−P then
6 set rui = 1
7 else if i ∈ CNR−NP then
8 if random(0, 1) ≤ α then
9 set rui = 1

10 else
11 set rui = 0

12 else
13 set rui = 0

14 Θ← Θ− η ∂
∂Θ (L+ λ||Θ||22)

15 return Θ

tions. Further, Subsection 6.5.3 shows empirically that the proposed uplift-based methods converge

faster than accuracy-based ones in terms of iterations required.

6.4 Related Work

6.4.1 Causal Inference for Recommenders

Causal inference [116, 52, 91] estimates outcomes through the counterfactual reasoning. It has

previously been used to evaluate recommendations in [82, 37, 23, 54, 41], which used IPS, SNIPS,

and their extensions. These work evaluated purchases under recommendations, which is equivalent

to the use of only the left terms in Equation (6.4) and (6.5). The proposed approach is different,

in that it considers the possibility of items being purchased even without recommendation, and

evaluate the uplift as the difference between potential outcomes with and without recommendations.

Causal inference is also used to handle the missing-not-at-random (MNAR) nature [92, 131]

of user feedback. IPS estimators were used to adjust the item selection bias of explicit feedback

[127] and implicit feedback [149]. Another approach to MNAR is exposure modeling [83], which
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Algorithm 2: Pairwise uplift optimization (ULOpair).

Input: α, η, λ
Output: Θ

1 Random initialization of Θ
2 while not converged do
3 draw u from U
4 if random(0, 1) ≤ α then
5 draw i from CR−P ∪ CNR−NP

6 draw j from CNR−P ∪ CR−NP

7 else
8 draw i from CR−P
9 draw j from CNR−P ∪ CR−NP ∪ CNR−NP

10 Θ← Θ− η ∂
∂Θ (L+ λ||Θ||22)

11 return Θ

decomposes missing feedback to either a user’s unawareness of or dislike for an item. User exposures

have been modeled with social influence [145, 21] and temporal dynamics [144], but not with

recommendation influence.

6.4.2 Recommendation Targeting Uplift

Most recommendation methods have focused on the accurate prediction of user behavior, and there

have only been a few methods targeting uplift. Bodapati [15] proposed a two-stage model of user

purchases, comprising awareness and satisfaction stages for items. In this model, recommendations

make users aware of the items (let call it AwareSatis). Recent work [122] has incorporated user-

and item-dependent responsiveness to recommendations into a purchase prediction model (let call

it RecResp). Very recently, Bonner and Vasile [16] proposed the CausE algorithm, which trains two

prediction models: one with treatment and the other without. They jointly trained two models

as a multi-task objective problem, by regularizing the parameters of the two models to be close to

each other. There have also been other methods [140, 120, 143] that incorporated price discount

information to improve the purchase prediction accuracy. Price discounts can be regarded as a type

of treatment, which could be personalized by recommender systems, although these studies do not

target uplift.
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Table 6.3: Classification of recommenders targeting uplift.

Approach Method

Two-Model CausE [16]
Treatment Variable AwareSatis [15], RecResp [122]

Label Transformation ULRMF (proposed one), ULBPR (proposed one)
Tree-based -

A closely related field is uplift modeling [30, 107], which is a technique to select the target users

of a promotion. Methods of uplift modeling can be classified into four approaches: two-model,

treatment variable, label transformation, and tree-based methods. The two-model approach [45]

creates two prediction models: one to predict outcomes if treated and the other to predict outcomes

if not treated. The treatment variable approach [88] incorporates additional variables for predictions

under treatment. Then, the difference between the predicted values with Z = 1 and Z = 0 is used

for uplift prediction. The label transformation approach [57, 65] converts the labels to train the

model if not treated. Finally, in the tree-based approach [106, 117], the splitting criteria for a

decision tree are modified for uplift.

Recommendation methods targeting uplift are classified in terms of these four approaches in the

uplift modeling literature (Table 6.3). CausE [16] is basically a two-model approach, enhanced by

a regularizer between the two models. AwareSatis [15] and RecResp [122] are treatment variable

approaches. The proposed methods can be classified as label transformation approaches, although

the proposed handling of NR-NP as an intermediate between positive and negative (using parameter

α) is an original approach to overcome the class imbalance in typical datasets for recommenders.

It has been argued that recommendation should pursue objectives beyond accuracy [95], and

various objectives such as diversity, novelty, and serendipity have been studied [63]. Among them,

the most relevant is serendipitous recommendation [73, 72, 48], which aims to recommend items

relevant, novel, and unexpected to users. Several methods targeting serendipity have been proposed,

including serendipity-oriented pointwise [154] and pairwise [89] optimization methods. Serendipity

focuses on user perception, while uplift focuses more on user behavior.
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6.5 Experiments

Experiments are designed to address the following research questions:

• RQ1 How do the proposed uplift-based recommenders perform compared with other existing

methods?

• RQ2 What are the properties of uplift-based optimization?

• RQ3 How do recommended items differ for traditional and uplift-based recommender meth-

ods?

6.5.1 Experimental Settings

Datasets and Preprocessing

Experiments are conducted with three publicly available datasets6: Dunnhumby7, Tafeng [49],

and Xing8. The statistics of datasets after filtering are presented in Table 6.4. The purchase

and recommendation logs are separated in discrete time intervals (by day or by week) because

recommended items change over time. The details for each dataset are explained below.

Dunnhumby. This dataset includes purchase and promotion logs at a retailer. It provides

product category information and these product categories are considered as items. Items featured

in the weekly mailer, which is information included in the promotion logs, are regarded as recom-

mendations. Promotions change each week, and so purchase and recommendation logs are separated

by week. The dataset includes logs from many stores, and promotions are different for each store.

If a user visited a shop when an item was promoted, then the user is regarded to have received a

recommendation for the item. The dataset is filtered according to the following conditions: shops

that have at least one visitor for each week, items recommended for at least one week on average

among the shops, items that existed for at least half the period (47 weeks), and users visiting more

than one store in at least five weeks.
6Other public datasets are either missing recommendation logs or recording user interactions only for recommended

items.
7https://www.dunnhumby.com/careers/engineering/sourcefiles
8http://www.recsyschallenge.com/2017/
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Table 6.4: Statistics of datasets after filtering.

Dataset #User #Item #Time #Purchase #Recommend

Dunnhumby 1,760 905 93 968,296 12,479,247
Tafeng 7,520 725 120 362,316 10,988,079
Xing 13,605 15,867 26 105,375 722,882

Tafeng. This dataset contains purchase logs with price information from a Chinese grocery

store. This includes the category id for each product, and each category id is considered as a

separate item. If the discount ratios of any products in a certain category is over 0.1, then the

item is considered to be recommended9. The dataset is discretized by days. The dataset is filtered

according to the following conditions: items recommended on at least one day, items that existed

for at least half of the periods (60 days), and users visiting the shop on at least five days.

Xing. This dataset contains interactions of users at an online job-seeking site. The positive user

interactions of click, bookmark, and apply, are regarded as purchases. This includes the impression

logs of items that are shown to users by the Xing platform. These impressions are considered as

recommendations. The dataset is discretized by days. The dataset is filtered according to the

following conditions: items recommended on at least one day, items that existed for at least half of

the time period (13 days), and users visiting the site on at least three days.

Evaluation Protocols

The uplift performance of each method is evaluated using the proposed Uplift@N and UpliftSNIPS@N

for N=10, 30, and 10010. Precision@30 was also measured, as a reference. Training and evaluation

was conducted on each discrete time period. For each training step, a time period from among the

training periods is firstly sampled, and then users from among the active users who purchased at

least one item during the time period are drown. For evaluation, the metric for each discrete time

is calculated, and then they are averaged over the evaluation periods. Chronological splitting of

the datasets are conducted for training and evaluation, to prevent the leakage of future information

9The discount ratio is calculated as 1- (day price)/(normal price). The median price on the same day is regarded
as the day’s price. The normal price of a product is defined as the median of the days’ prices on all days.

10N is set to be typical numbers of recommendations. The average numbers of recommendations users receive at
each time are 189.3, 141.7, and 12.1 for Dunnhumby, Tafeng, and Xing, respectively.
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for training. The length of evaluation periods are 8, 14, and 3 for the Dunnhumby, Tafeng, Xing

datasets. For a dataset with td discrete time periods indexed by 1 to td, with the evaluation periods

being of length te, each phase of validation and testing was conducted as follows:

• validation phase: train the model by periods from 1 to (td − 2te), and evaluate by periods

from (td − 2te + 1) to (td − te).

• test phase: train the model by periods from (te + 1) to (td− te), and evaluate by periods from

(td − te + 1) to td.

Evaluation of UpliftSNIPS@N requires estimates of propensity e(X). For the Xing dataset,

in which recommendations of currently deployed model D are personalized, the propensities are

estimated using logistic regression with features representing matches of titles, disciplines, career

levels, industries, countries, and regions, between the users and items. The features used were the

same as in the baseline model11 provided by Xing for the RecSys Challenge 2017 competition. Here,

covariates X are these features created from user and item information. The recommendations of

D are not personalized in the Dunnhumby and Tafeng datasets. For the Tafeng dataset, the

propensities are estimated by the ratio of recommended times for each item in the training periods.

That is, past recommendation logs are used as covariates X. For the Dunnhumby dataset, in

which time period is much longer (roughly 22 months for Dunnhumby and 4 months for Tafeng),

the propensities are estimated by a logistic regression that uses the numbers of purchases and

recommendations during previous four weeks as features.

Compared Methods

The following methods are compared.

• RMF [101, 51]12: The regularized MF trained with accuracy-based pointwise optimization.

• BPR [110]: The MF trained with accuracy-based BPR loss.

• RecResp [122]: The MF with user- and item-specific bias terms for recommendations.

11https://github.com/recsyschallenge/2017/tree/master/baseline
12While original work downweight unpurchased items, this work downsamples them by γP .
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• CausE [16]: The joint training of two MFs with and without recommendations.

• CausE-Prod [16]: The variant of CausE, which has common user factors for two MFs.

• ULRMF (proposed): The MF trained with proposed ULOpoint .

• ULBPR (proposed): The MF trained with proposed ULOpair .

RMF and BPR are trained by conventional accuracy-based optimization, i.e., CR−P ∪ CNR−P

as positive samples. RecResp and CausE are recent recommendation methods targeting uplift.

For these methods, the uplift is predicted using the difference between purchase probabilities with

and without recommendations, and they are used for top-N recommendation as described in [122].

They once train models for accurate purchase prediction (CR−P ∪ CNR−P as positive samples), and

then target uplift using the accuracy-optimized models. Only the proposed methods, ULRMF and

ULBPR, are optimized directly for uplift by the unique sampling strategy described in Subsection

6.3.2.

Implementation and Parameter Settings

All the compared methods are latent factor models, and the factor dimensions are set to 100. Adam

[68] was employed with batch size 1000, and the initial learning rate was set to 0.0001. For pointwise

learning, there are two stratifications of data sampling: one is between purchased and unpurchased

items (by γP ), and the other is between recommended and not recommended items (by γR). γP is

set to 0.2, an optimal ratio for various datasets in [46], for RMF and ULRMF. This stratification is

not applied to RecResp and CausE, because it distorts the purchase probability and prohibits the

uplift prediction. γR is set to 0.5 for RecResp, CausE, and ULRMF.

The regularization coefficient λ ∈ {10−2, 10−4, 10−6, 10−8} and other model-specific hyperpa-

rameters were tuned in the validation phase to maximize Uplift@10 . The model-specific hyper-

parameters and their exploration ranges are as follows: regularization coefficient between the

treatment and control latent factors λbet ∈ {10−2, 10−4, 10−6, 10−8} and its distance metric ∈

{L1, L2, cosine} for CausE, the probability that NR-NP is regarded as positive α ∈ {1.0, 0.8, 0.6,

0.4, 0.2, 0.0} for ULRMF and ULBPR.
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Figure 6.2: Scalability of the proposed methods. Used datasets are Dunnhumby for (a) and Xing
for (b).

6.5.2 Performance Comparison (RQ1)

The uplift performances between the proposed methods and baselines are compared (Table 6.5).

The key observations are the followings:

• The proposed ULRMF or ULBPR methods achieve the best in Uplift@N and UpliftSNIPS@N

for most cases.

• The accuracy-based methods (RMF and BPR) perform the best in Precision; however, for

the most part, they perform worse in the uplift metrics than other methods.

• The methods targeting uplift (RecResp, CausE, and the proposed methods) tend to outper-

form RMF and BPR. This implies that the proposed uplift metrics can measure the uplift

improvement as expected.

6.5.3 Uplift-based Optimization Properties (RQ2)

The learning curves are investigated in the Dunnhumby dataset (Figure 6.2 (a)). Uplift@10 in-

creases with training iterations. The learning curve of ULBPR tends to be steadier than that of

ULRMF. ULRMF and ULBPR converge faster than RMF and BPR, which shows the scalability

of the proposed methods in terms of computation time.
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Table 6.5: Performance comparison in the three datasets. The best result of each metric is high-
lighted in bold. * indicates that the method outperforms the others at a significance level of p < 0.01
by paired t-tests. Comparisons are only with other families of methods, namely, CausE-Prod is not
compared with CausE or ULRMF with ULBPR.

Uplift UpliftSNIPS Precision

N=10 N=30 N=100 N=10 N=30 N=100 N=30

RMF 0.0644 0.0496 0.0356 0.0393 0.0247 0.0174 0.1598*
BPR 0.0729 0.0505 0.0353 0.0431 0.0259 0.0168 0.1545

RecResp 0.1594 0.1043 0.0471 0.1009 0.0578 0.0260 0.1056
CausE 0.1621 0.1165 0.0575 0.0942 0.0481 0.0223 0.0862
CausE-Prod 0.1889 0.1042 0.0471 0.1298 0.0539 0.0236 0.0801

ULRMF 0.2477* 0.1897* 0.1227* 0.1726* 0.0816* 0.0234 0.0400
ULBPR 0.1881 0.1481 0.1068 0.1481 0.0815 0.0345* 0.0416

(a) Dunnhumby dataset.

Uplift UpliftSNIPS Precision

N=10 N=30 N=100 N=10 N=30 N=100 N=30

RMF 0.0732 0.0566 0.0374 0.0706 0.0526 0.0314 0.0565
BPR 0.0713 0.0534 0.0360 0.0685 0.0522 0.0328 0.0582*

RecResp 0.0595 0.0484 0.0286 0.0532 0.0726 0.0325 0.0560
CausE 0.1157 0.0745 0.0384 0.1011 0.0696 0.0306 0.0403
CausE-Prod 0.1230* 0.0609 0.0273 0.1077* 0.0419 0.0173 0.0341

ULRMF 0.1145 0.1109* 0.0919* 0.0986 0.0826* 0.0467* 0.0129
ULBPR 0.1026 0.0986 0.0777 0.0916 0.0796 0.0376 0.0188

(b) Tafeng dataset.

Uplift UpliftSNIPS Precision

N=10 N=30 N=100 N=10 N=30 N=100 N=30

RMF 0.1037 0.1118 0.1108 0.1038 0.1121 0.1110 0.0189
BPR 0.1056 0.1168 0.1157 0.1057 0.1168 0.1157 0.0239*

RecResp 0.0839 0.1017 0.1149 0.0838 0.1015 0.1148 0.0060
CausE 0.1163 0.1243 0.1280 0.1163 0.1243 0.1281 0.0099
CausE-Prod 0.1159 0.1230 0.1296 0.1158 0.1228 0.1297 0.0088

ULRMF 0.1227 0.1266 0.1298 0.1228 0.1268 0.1299 0.0104
ULBPR 0.1242* 0.1283 0.1282 0.1244* 0.1285 0.1284 0.0113

(c) Xing dataset.
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Figure 6.3: Dependence on the probability of regarding NR-NP as positive (α). The regularization
coefficient λ is set to 10−2.

Table 6.6: Ratios of the observable classes for the recommended items in each method.

Dunnhumby Xing

R-P NR-P R-NP NR-NP R-P NR-P R-NP NR-NP

RMF 0.151 0.096 0.384 0.369 0.027 0.017 0.115 0.841
BPR 0.144 0.092 0.380 0.384 0.031 0.026 0.122 0.821
ULRMF 0.085 0.013 0.251 0.651 0.022 0.007 0.069 0.902
ULBPR 0.069 0.005 0.289 0.637 0.023 0.008 0.073 0.896

In the experiments, items were filtered by the time periods existed in purchase logs. The

filtering criteria were modified from 7 to 19 days by 3-day interval for the Xing dataset, in which

the numbers of items varied from 41,099 to 5,828. As shown in Figure 6.2 (b), ULBPR outperforms

BPR in all these conditions. Experiments were also conducted with items in product-level instead of

category-level for the Dunnhumby dataset, in which the number of items is 4,287. In this condition,

Uplift@10 are 0.0826 and 0.0484 for ULBPR and BPR, respectively. These results indicate that the

proposed uplift-based optimization can improve uplift for datasets in wide range of data densities.

ULRMF and ULBPR have a model-specific hyperparameter α, which is the probability of re-

garding NR-NP as positive. Figure 6.3 shows the dependence on α. The optimal α is less than 1,

which supports the claim of treating NR-NP as an intermediate between positive and negative in

Subsection 6.3.1.

The proposed optimization methods handle R-P as positive and NR-P as negative, while the

accuracy-oriented methods treat both as positive. To see the effect of this difference, the distribu-

tion of the recommended items in the observable four classes were investigated (Table 6.6). ULRMF
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Table 6.7: Ten items recommended most often by RMF and ULRMF for the Dunnhumby dataset.
Numbers in parentheses are popularity ranks from purchase logs. Names of some items are shortened
from the original ones.

RMF ULRMF

FLUID MILK WHITE ONLY(1) SHELF STABLE MICROWAVE(831)
SOFT DRINKS PK CAN(4) REFRIGERATED PASTA SAUCE(848)

SHREDDED CHEESE(5) DRY & SPRAY STARCH(805)
MAINSTREAM WHITE BREAD(3) JARRED FRUIT(889)

POTATO CHIPS(7) TEA UNSWEETENED(833)
SFT DRNK 2LITER BTL(6) NUTS OTHER(829)

BEERALEMALT LIQUORS(11) INFANT FORMULA TODDLER(863)
100% PURE JUICE ORANGE(8) DECOR BULBS(687)

TOILET TISSUE(10) FLUID MILK WHITE ONLY(1)
TORTILLA/NACHO CHIPS(15) BEEF STEW(638)

and ULBPR successfully reduce the recommendations of the NR-P class, in which items can be

purchased without recommendations. The R-NP ratio also decreases, thereby avoiding recommen-

dations that result in no outcome. Further, the sum of R-P and R-NP ratios, which is equal to

the ratio of items included in the recommendation logs, is not higher for ULRMF and ULBPR

compared to RMF and BPR. This indicates that the proposed optimization methods do not orient

a model M for mimicking the recommendation policy of the currently deployed model D.

6.5.4 Trends of the Recommended Items (RQ3)

To intuitively understand the difference in the recommendation outputs between the accuracy-based

optimization and uplift-based optimization, Table 6.7 shows the often-recommended items by RMF

and ULRMF in the Dunnhumby dataset. While RMF tends to recommend popular items, ULRMF

recommends items without an emphasis on popular ones13. Often-recommended items by ULRMF

include those that might induce impulse purchases such as pasta sauce and heat-and-serve meals.

13Average popularity ranks of RMF and ULRMF are 149.6 and 671.4, respectively. Average Jaccard index between
recommendation outputs of RMF and ULRMF is 0.0599.
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6.6 Conclusions

This study proposed new evaluation and optimization methods for uplift-based recommendation.

The illustrative examples demonstrated that accuracy metrics such as precision cannot be utilized

to assess recommenders in terms of uplift. Based on a causal inference framework, an offline evalu-

ation protocol to estimate the expected uplift of items in a recommendation list is proposed. Then,

the relative priorities of four observation classes are derived from purchase and recommendation

logs and their priorities are utilized to construct pointwise and pairwise sampling methods. The

experiments using three public datasets confirmed that the proposed optimization methods outper-

form conventional accuracy-based methods and recent methods targeting uplift. The characteristics

of uplift-based optimization and its output recommendations were also investigated.

Because the proposed uplift-based optimizations are generic methods, they can be applied to

various recommender models. Recently, recommender models using neural networks have outper-

formed conventional models [46, 130]. Applying the proposed uplift-based optimizations to neural

network models would further enhance the uplift, which is left for future work.
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Figure 7.1: Proposed context style explanation.

7.1 Introduction

Recommender systems help users select items from a large number of candidates. Such systems

estimate user’s preference for items (such as books, movies, and restaurants) from past histories of

user’s actions (such as purchases, views, and visits), and then present an item that fits the user’s

preference. Users can then select their favorite items from the recommended items.

Explaining the reason for recommendations further supports user decision-making, as it helps a

user understand why the item is recommended. Such an understanding leads to a better decision

regarding whether to choose the recommended item. The explanation also invokes the user’s interest

in the recommended item.

Several explanation styles have been proposed [103, 137, 138, 153]. For example, the neighbor

style explanation provides ratings from similar users. The influence style explanation shows items

related to those recommended from the user’s purchase history. The demographic style explanation

describes the user’s age and gender. The content style explanation displays item features, such as

keywords for books and user-generated tags for movies. These four styles are based on information

related to users or items. This is because these factors affect the user’s decision-making process

[26, 105].

Contextual factors such as time, location, companion, and purpose are also essential elements

that affect user’s decision-making [24]. Context-aware recommender systems [3, 5] have been de-

veloped to model user’s choices under various contexts, improving the prediction performance for
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items preferred by users.

However, contexts have never been used for the explanation of recommendations. Contexts are

entities different from users and items, and previous explanation methods have used information

of either users or items. Considering that the user’s decisions depend on contexts, explaining

recommendations using context will help users.

This study proposes a new explanation style using context (Figure 7.1). The context style ex-

planation indicates the appropriate context for the recommendation. For example, “This restaurant

is recommended to you because it is suitable for dates with your girlfriend/boyfriend”, where ”dates

with your girlfriend/boyfriend” is the context presented as an explanation. The selected context

should also be related to the user; the user might be more interested in the explanation if she

or he is familiar with the context. To generate appropriate context style explanations and item

recommendations, context-item pairs are selected for each user by fulfilling three affinities: a) a

user-item match, b) an item-context match, and c) a user-context match.

There are two possible effects of context on the explanation.

• Persuasiveness: the exhibited context makes users recognize a future consumption situation

for the recommended item. Then the recognition of suitable context for usage motivates users

to consume the item. of suitable context for usage motivates users to consume items.

• Usefulness: users select items based on contexts. Therefore, suggested usage contexts should

help user’s decision-making.

In this study, the above effects of the context style explanations are investigated from three

viewpoints: 1) comparison with other explanation styles, 2) hybridization of context style and

other styles, and 3) dependence on gender and age. To investigate these aspects, a restaurant

recommender system is implemented with context style explanations, conducting a user study via

crowdsourcing.

The contributions of this chapter are summarized as follows.

• This work proposes a novel context style explanation for recommender systems.
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• This work verifies the persuasiveness and usefulness of the proposed explanation methods by

conducting a user study.

• This work reveals that the personal preference of explanation styles depends on gender and

age.

The remainder of this chapter is organized as follows. Related work is presented in the next

section. Subsequently, the context style explanation method is described. After that, the experi-

mental details are explained, followed by results and discussion. conclusions are summarized in the

last section.

7.2 Related Works

This work is mostly related to two research fields: 1) explanation of recommendation and 2) use of

context in recommendation.

7.2.1 Explanation of Recommendation

Explaining recommendations is important for users to understand the reasoning behind them.

Explanations have various effects on users [103, 137, 138, 153]. They can help gain users’ trust

[105] and increase the acceptance of recommendations [47]. They also help users evaluate items

accurately [13] and change user’s evaluation of items [26].

Various explanation styles have been proposed and evaluated through user studies. Herlocker et

al. [47] compared various explanations with different styles and different visualizations, including

histograms of user neighbor ratings (i.e., neighbor style); similarity to other items in the user’s

profile (i.e., influence style); and the user’s favorite actor or actress (i.e., content style). Demo-

graphic information has been used for explanations in the tourism domain (i.e., demographic style)

[7]. Bilgic et al. [13] demonstrated that explanations using keywords (i.e., content style) or show-

ing items influencing recommendations (i.e., influence style) help users evaluate items effectively.

Various kinds of contents and ways to visualize them have been explored for content style explana-
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tions. User-annotated tags are used for explanations [142] and are displayed in a tagcloud interface

[25]. Musto et al. [98] showed that fusing linked open data and choosing specific properties im-

proves explanations. Organizational explanations show the pros and cons of items extracted from

user reviews, according to user’s priorities [97]. Chen et al. [22] further elaborated the organiza-

tional explanation by grouping similar trade-off items. Recent research has endeavored to generate

personalized natural language explanations of items [20, 86, 33, 90], which can be regarded as ad-

vanced content style explanations. Chang et al. [20] generated explanations via the collaboration

of crowdworkers and intelligent systems. State-of-the-art neural network models are also used for

that purpose [86, 33, 90].

Although there is a vast amount of research on explaining recommendations, most rely on

the four types of information shown in Table 7.1: neighbor, influence, demographic, and content.

In addition to these four types, context significantly influences user’s decision-making [24]. Zheng

[156] and Papadimitriou [103] alluded to the possibility of using contexts for explanations. However,

contexts have not yet been used for explaining recommendations. This work is the first study of

context style explanations.

Furthermore, several explanation styles can be hybridized [103, 134]. Symeonidis et al. [134]

combined content and influence style explanations. The visualization of complex hybrid explana-

tions has also been investigated in [74]. This study investigates the hybrids of context style with

other explanation styles.

The preferences of explanation styles might depend on users, which has not been well explored in

the previous research. Recently, McInerney et al. used a bandit algorithm to personalize explanation

styles [94]. This work also explores the personal preferences of explanation styles. While McInerney

et al. focused on model performance, this work clarifies how the preferences differ by gender and

age. In addition, this work’s investigation of the personal preference includes the proposed context

style explanation and hybrids of explanation styles, which were not included in the previous study.
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Table 7.1: Overview of the conventional explanation styles and the proposed context style expla-
nation.

Explanation Style Displayed Information Example

Neighbor
Ratings or the fact of purchases

of similar users
Users similar to you

also visit this restaurant.

Influence
Items related to recommended ones

from users’ past consumption
Recommend for those

who also visited Restaurant C.

Demographic
Gender, age, profession, etc.

of users
Recommend for female
students in their 20s.

Content
Content of recommended items, represented

by extracted keywords or annotated tags
Recommend for those
who like hamburgs.

Context (ours)
Context when users would consume

recommended items
Recommend for use

in a matchmaking party.

7.2.2 Use of Context in Recommendation

Since users evaluate items differently depending on the context, recommender systems need to

recognize the influence of the context [5]. Context-aware item recommendation is a task that in-

volves recommending items suitable for a user in a specific context. The traditional approaches

to context-aware recommendations are contextual pre-filtering and post-filtering, in which ratings

or items are filtered by relevance to the context either in the initial stage or in the final stage of

the recommendation process [3, 102]. Direct modeling of user-item-context relation is called con-

textual modeling and tends to outperform pre-filtering or post-filtering. Since multi-dimensions

of user-item-context can be expressed as a tensor, the direct approach involves utilizing a ten-

sor factorization [67]. However, an exact tensor factorization with Tucker decomposition requires

a vast amount of computational resources. Approximation for pairwise interactions can achieve

comparable or even better performance [112, 111, 11].

Even if a user has already chosen items, there is room to choose contexts for consuming the

items. The notion of recommending contexts to users has recently been investigated [11, 155, 156].

Context recommendation is a task that involves recommending contexts suitable for users and

items. Baltrunas et al. [11] collected a dataset of the best usage context for each piece of music

and predicted the context using variants of the nearest neighbor technique. Zheng [155] compared

several multi-label classification techniques for the same task to recommend contexts conditioned

on users and items. Zheng [156] also recommended the context to the user according to the user’s
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Table 7.2: Comparison of task settings.

Task Input Output
Context-aware item recommendation User + Context Item

Context recommendation User (+ Item) Context
Context style explanation (ours) User Context + Item

preference for the context.

To generate context style explanations, context-item pairs are selected for each user. The differ-

ences between the task for context style explanations and the conventional tasks are summarized

in Table 7.2. Context-aware recommendation generates lists of recommended items for a specified

user and context. Contexts are pre-selected, either explicitly (e.g., users input purpose of travel into

a hotel booking site) or implicitly (e.g., current place and activity can be estimated from wearable

sensors). There are two kinds of tasks for context recommendation: recommending context for

specified user-item pair [11, 155], and recommending context for a user [156]. In the former task,

items to be consumed in recommended contexts are fixed. In the latter task, items are irrelevant

to context recommendations. In the case of the proposed context style explanation, pairs of items

and contexts are provided for each user. Both contexts and items are undetermined. Therefore, the

context style explanation is different in terms of the recommendation task setting. This difference

is addressed by modifying negative sampling in model training. The main focus of this study is

to evaluate the impacts of the context style explanation, and the performance improvement of the

above task remains for future researches.

7.3 Context Style Explanation

The generation of context style explanations involves two steps: (1) selection of context-item pairs

for users, and (2) suggestion of the context of a context-item pair as the item’s explanation.
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7.3.1 Selection of Context-Item Pairs

Our context style explanation suggests contexts that the user might encounter in the future. This

means both the context and the item are unknown in the proposed task, while the context is

predetermined in context-aware item recommendation. In this case, the recommender needs to

select appropriate pairs of contexts and items for the users. This requires three affinities: a) a

user-item matching, b) an item-context matching, and c) a user-context matching. For a restaurant

recommendation, the recommended restaurant should match the user’s preferences, just as with non-

contextualized recommender systems (user-item match). Moreover, the recommended restaurant

should match the suggested context (item-context match). If the context of eating with children is

suggested in an explanation, then the recommended restaurant should be suitable for that situation.

Additionally, the recommended context should be the one anticipated by the user (user-context

match). If the user does not have children and lacks many opportunities to eat out with children,

a suggestion of eating out with children would likely be inappropriate.

These above three affinities can be learned via the latent representation of pairwise interactions

among user, item, and context features [11, 62, 111]. This work uses field-aware factorization

machines (FFMs) [62] for their efficiency and performance. The FFM splits features to “fields,”

and incorporates interaction effects among the features of different fields. The FFM is formulated

as,

ŷ =

n∑
j1=1

n∑
j2=j1+1

(wf2
j1
·wf1

j2
)xj1xj2 , (7.1)

where ŷ ∈ R is a prediction by the FFM; wf
j ∈ Rd is a d-dimensional latent vector of a feature j

that interacts with a field f ; and xj ∈ R is the value of the feature j.

To model interaction among users, items, and contexts, the proposed method prepares a user

field, an item field, and a context field. Example features in the user field are gender and age. The

latent factors of a female user u in her 30s are expressed as,

wItem
u = wItem

female +wItem
30s , (7.2)
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wContext
u = wContext

female +wContext
30s . (7.3)

Features in the item field can be restaurant genres or places. The latent factors of IndianFood

restaurant i located in PlaceA are composed as,

wUser
i = wUser

IndianFood +wUser
PlaceA, (7.4)

wContext
i = wContext

IndianFood +wContext
PlaceA . (7.5)

Similarly for context c of BusinessEntertaining,

wUser
c = wUser

BusinessEntertaining, (7.6)

wItem
c = wItem

BusinessEntertaining. (7.7)

Then, Equation (7.1) is expressed as follows,

ŷ = wItem
u ·wUser

i +wContext
i ·wItem

c +wContext
u ·wUser

c . (7.8)

Each term in Equation (7.8) represents a) a user-item match (wItem
u · wUser

i ), b) an item-context

match (wContext
i · wItem

c ), and c) a user-context match (wContext
u · wUser

c ). Latent factors can be

learned using the user’s past interactions. More specifically, if a user u consumed an item i under

a context c, a triplet (u, i, c) is assigned a positive label. Triplets that have not appeared in past

consumption logs are assigned negative labels. The FFM is trained using these positive and negative

samples.

Note that the definition of negative samples depends on the task settings in Table 7.2. In

the conventional context-aware item recommendation, negative samples are defined for each pair

of user-context existing in the logs. Items not consumed under a user-context pair are negative

samples. In this case, negative samples are defined for each user. Item-context pairs that have

not appeared in the user’s logs are negative samples. While the former negative samples include
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contexts only experienced by the user, the latter negative samples include contexts not experienced

by the user. This enables to learn the affinity between users and contexts.

After the training, the best context-item pairs are selected by the score of Equation (7.8).

7.3.2 Suggestion of a Context as Explanation

Selected context-item pairs are used to produce recommendations and explanations. If there is a

context-item pair with context c and item i, then item i is presented to a user as a recommendation

and context c is used for an explanation. An explanation is generated using human-crafted tem-

plates, for example, “item i is recommended to you because it is suitable for context c.” In case there

are several contexts suitable for the recommended item, then the multiple contexts can be displayed

together. This study only uses one best context for an explanation for experimental simplicity.

7.4 Experiment

First, users’ restaurant visit logs were collected with context via crowdsourcing. Second, a context-

item pair selector was trained using the acquired logs and prepared recommendations and explana-

tions. Finally, the same users were asked to evaluate explanation styles.

7.4.1 Collecting Dataset

Restaurant visit logs were collected using a Japanese crowdsourcing platform. For each restaurant,

there are three entries: name of a visited restaurant, the URL to the restaurant within a restaurant

information site, and the usage scene of the visit (i.e., context). Each crowdworker is asked to

input a maximum of 20 restaurants. To limit the area of the visit log, the experiment recruited

cloud workers living in specific urban areas1. The questionnaire asked for original contexts of users’

visits instead of asking for evaluation under a provided context because users behave differently

under supposed contexts and real contexts [8, 99]. Usage scenes were selected from 15 options,

1The urban areas are Tokyo and Kanagawa, the Japanese capital and a neighboring prefecture of Tokyo, respec-
tively.
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Table 7.3: Candidates of 15 usage scenes (contexts) and counts selected by crowdworkers. The
crowdworkers chose one context for each visit. The usage scenes were shown to the crowdworkers
in the same order as this list. If crowdworkers thought that more than one scene can be associated
with the visit, then they were advised to select the uppermost scene on the list.

Usage scene Count
Matchmaking party 20

Girls’ lunch or night out 184
Business entertaining 39

Banquet or drinking party in a large group 15
With children or grandchildren 163

With parents, sisters, or brothers 212
With a husband or wife 414

Dating with opposite gender 275
With close friends (only eating) 284
With close friends (with drink) 325

With colleagues or acquaintances (only eating) 191
With colleagues or acquaintances (with drink) 108

In solitude 386
Take-away 73

None of the above 16

Table 7.4: Statistics of collected dataset via crowdsourcing.

data numbers
total visits 2,884

unique users 155
unique items (restaurants) 2,730

unique contexts (usage scenes) 15
genres of restaurants 210

nearest stations of restaurants 473

as described in Table 7.3. As for usage scenarios, the explanations of usage scenarios on several

restaurant information sites were referred to make it easy for users to understand. If crowdworkers

thought that more than one scene can be associated with the visit, then they were advised to select

the uppermost scene on the list. The numbers of times each context were chosen by crowdworkers

are also shown in Table 7.3. Most contexts obtained substantial votes and “none of the above”

received only a small portion of the votes. This supports the validity of the context candidate

design. If the context candidates did not include appropriate contexts for users, the votes for

“None of the above” would have been high.
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2,884 visit logs from 155 crowdworkers were obtained after removing logs with improper URLs

and crowdworkers who provided improper URLs more than half the time. Careless crowdworkers

who input improper URLs were removed. There are 2,730 unique URLs in the remaining visit logs.

The statistics of the collected dataset are summarized in Table 7.4. The genders and approximate

ages of the crowdworkers were provided from the crowdsourcing platform. Among the 155 crowd-

workers, 108 were female and 47 were male. Further, 44 crowdworkers were in their 20s, 39 in

their 30s, 26 in their 40s, 13 in their 50s, 2 in their 60s, and the ages of 31 were unknown. The

average number of visits per restaurant was 1.056 and the sparsity was 99.32%. The obtained URLs

were crawled and the restaurant’s content information, including genres and nearest stations2, was

collected. Note that each restaurant is assigned multiple genres (2.3 genres on average). There are

210 unique genres and 473 unique stations.

7.4.2 Training the Recommender and Preparing Explanations

The context-item selector was trained using the collected dataset. The libffm library3 was used for

the FFM. The features of the user field are user ID, gender, and age. The features of the item field

are genre and nearest station. Using the demographic features of users and the content features of

items alleviated the issue of data sparsity. The features of the context field included context ID,

which is assigned to 15 usage scenes.

The training of the recommender proceeded as follows. First, the dataset was randomly split into

80% training and 20% validation data. Next, hyper-parameters of the FFM were then optimized to

maximize the AUC (areas under the curve) of the validation data. The following hyper-parameters

were chosen: learning rate 0.05, regularization coefficient 0.0005, and dimensions of factor 100. The

obtained AUC with these hyper-parameters was 0.865. Finally, the model was trained using the

entire dataset to select context-item pairs.

After training the model, seven best context-item pairs were selected for each user, according

to the score of Equation (7.8). Then, the order of the selected context-item pairs was shuffled,

2Restaurants are located in urban areas where public transportation is well developed.
3https://github.com/guestwalk/libffm.
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Table 7.5: Samples of seven explanation styles. Phrases emphasized in italics are tailored to fit
users, recommended items, and supposed contexts.

Style Sample

Non-specific Recommend based on your visit logs

Demographic
Recommend for

”women in their 30s”

Content
Recommend for those who often visit

”Italian restaurants”

Context
Recommend for use

”with husband or wife”

Demographic
+ Context

Recommend for use
”in business entertaining”

of ”men in their 50s”

Content
+ Context

Recommend for use
”in solitude”

for those who often visit ”noodle shops”

Demographic
+ Content
+ Context

Recommend for use
”with close friends (with drink)”

of ”women in their 20s”
who often visit ”cafes”

to ensure that recommendation quality did not correlate to the presentation order. Restaurants

visited in the past were removed from the list, whereas contexts experienced in the past were not

omitted. The same restaurant was recommended only once per user.

Seven explanation styles were prepared as described in Table 7.5. The non-specific explanation

did not include any specific information regarding demographics, contents, and contexts. This

explanation was the same for all users and all recommended items. For the context style explanation,

the context of context-item pair was directly assigned for the explanation. For the demographic

style explanation, user age and gender were used for the explanation. Recommended items related

to the user age and gender, because the recommender incorporates them as user features. The

content style explanation used a genre common among the recommended restaurants and those

that the user visited in the past. The hybrid explanation styles are generated via combinations of

the above steps.



CHAPTER 7. CONTEXT STYLE EXPLANATION 102

Table 7.6: Demographics of participants (crowdworkers) in the evaluation of the explanation styles.
The participants were recruited from the respondents of the initial data collection; this is necessary
for personalized recommendations and explanations to the participants.

Age Female Male Total
20s 10 9 19
30s 20 4 24
40s 14 2 16
50s 4 2 6
60s 1 0 1

unknown 15 4 19
Total 64 21 85

7.4.3 Evaluating Explanation Styles

The crowdsourcing recruited the 155 crowdworkers who had appropriately submitted restaurant

visit logs, and 85 participated in the user study. The participants’ demographics are shown in Table

7.6. The experiment presented seven restaurant recommendations with seven different explanation

styles to each user. Each recommendation was generated by the same FFM model.

The order of the explanation styles was randomly shuffled among users in order to cancel any

biases related to the display order. The questionnaire asked the following four evaluation questions

using a 7-point Likert scale for each pair of restaurant recommendations and explanations.

• Persuasiveness 1 (P1): The explanation is convincing.

• Persuasiveness 2 (P2): The explanation triggers interest.

• Usefulness 1 (U1): The explanation is useful for choice.

• Usefulness 2 (U2): The explanation is easy to understand.

In addition to these evaluation questions, the questionnaire asked whether the participants

visited the recommended restaurants in the past and whether they knew of them in advance. There

were also free entry fields to express any other comments.
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Figure 7.2: Responses to four evaluation questions for four single explanation styles. Error bars
represent 95% confidence intervals of average response values.

7.5 Results and Discussion

7.5.1 Quantitative Analysis

Among the restaurants recommended to the participants, 21% were visited in the past and 20%

were known in advance. Note that recommended restaurants were those not visited by each user

in the collected dataset. This indicates that the item recommendation was fairly accurate and that

the recommender system works fine.

This subsection investigates the persuasiveness and usefulness of context style explanations with

the following three aspects: 1) comparison with other explanation styles, 2) hybridization of context

style and other styles, and 3) dependence on gender and age.

Comparison with other explanation styles

The experiment compared four single explanation styles: non-specific, demographic, content, and

context styles. Responses to the four questions are shown in Figure 7.2. Responses ranged from

strongly disagree (-3) to strongly agree (+3). The average response for the context style explanation

was higher than that for the demographic style (p = 0.008, 0.10, 0.047, and 0.036 for P1, P2, U1,
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Figure 7.3: Comparison between single and hybrid explanation styles. Error bars represent 95%
confidence intervals of average response values.

and U2, respectively, via the Wilcoxon signed-rank test). The average response for the context

style explanation also tended to be higher than that for the content style, though not statistically

significant. The non-specific explanations tended to perform better than other single styles; the

possible reasons are discussed in the later section.

Hybridization of context style and other styles.

The context styles were combined with other styles. Figure 7.3 shows the comparison between

single and hybrid explanation styles. The combination of the demographic and context styles

outperformed the demographic-only style (p < 0.01 for all questions), and the combination of the

content and context styles outperformed the content-only style (p = 0.061 for P2, and p < 0.01 for

others). The combination of content and context styles also tended to outperform non-specific style

(though not statistically significant). The triple combination of demographic, content, and context

styles did show better performance compared to the dual combination of demographic and context

styles.
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(a) Female users.
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(b) Male users.

Figure 7.4: Responses for single explanation styles by gender.

Dependence on gender and age.

The preference of explanation styles might depend on users. The experiment investigated the

difference in the response for each explanation style in terms of gender and age.

First, the difference by gender is described. Figures 7.4 and 7.5 show the comparisons of single

explanation styles and hybrid explanation styles, respectively, for female and male users. While

female users tended to prefer the context style over the content style, male users tended to prefer

the content style over the context style (Figure 7.4). In terms of hybrids (Figure 7.5), male users

preferred the triple combination more than the dual combinations (not significant for P1 and P2,

p = 0.062 for U1 and p = 0.020 for U2 with comparison of Demographic & Content & Context vs.

Content & Context).

Next, the difference by age is investigated. Figures 7.6 and 7.7 show the comparisons of single

explanation styles and hybrid explanation styles, respectively, for young to elder users. While

young users preferred the content style over the context style, middle-age users tended to prefer

the context style over the content style (Figure 7.6). In terms of hybrids (Figure 7.7), there was no

clear difference by age.
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(a) Female users.
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(b) Male users.

Figure 7.5: Comparison between single and hybrid explanation styles by gender.

7.5.2 Qualitative Analysis

Sixty-four participants input at least one comment and 293 comments were obtained in total.

To further understand the user perception of the context style explanation, these comments were

investigated.

User comments indicated two reasons of persuasiveness:

1. Relevance of the proposed context to users:

• ”Under my current environment, it’s a very interesting recommendation, so I became to

feel like going.”

• ”I think I want to go because this situation is probable for me.”

2. Recognition of appropriate context for usage:

• ”I think I am going to use this when I organize a drinking party.”

• ”I have been interested in Japanese rice wine bars, but few of my close friends like it.

Visiting here with my colleagues sounds nice.”

Users also mentioned the usefulness of the context for decision-making.
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(a) Young users (20s).
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(b) Middle-age users (30s).
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(c) Elder users (40s, 50s, 60s).

Figure 7.6: Responses for single explanation styles by age.



CHAPTER 7. CONTEXT STYLE EXPLANATION 108

0

1

2

3

P1_convincing

P2_trig
ger_interest

U1_useful

U2_easy_understand

re
s
p
o
n
s
e
 v

a
lu

e

Context
Demographic & Context
Content & Context
Demographic & Content & Context

(a) Young users (20s).

0

1

2

3

P1_convincing

P2_trig
ger_interest

U1_useful

U2_easy_understand

re
s
p
o
n
s
e
 v

a
lu

e

Context
Demographic & Context
Content & Context
Demographic & Content & Context

(b) Middle-age users (30s).
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(c) Elder users (40s, 50s, 60s).

Figure 7.7: Comparison between single and hybrid explanation styles by age.
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• ”I’m afraid of making a wrong choice for a girls’ night out, so this explanation is useful.”

These findings from the qualitative analysis support the importance of context for the explanation.

On the other hand, there were three kinds of negative responses to the context style explanations.

1. Mismatch of context and restaurants:

• ”This restaurant is a standing bar, which is not suitable for dating.”

• ”I don’t think it’s a good idea to use a buffet restaurant for a banquet.”

2. Context is irrelevant for someone’s choice:

• ”I choose restaurants by whether I like the menu or not.”

• ”I eat out only with my close friends, so information about situation is useless.”

3. Needs for finer granularity of context:

• ”You mention just dating, but is it referring to ordinary dating or anniversary dating?”

7.5.3 Discussion

The non-specific explanation tended to perform better than the context style, and the hybrid of

content and context styles tended to perform better than the non-specific explanation (Figures 7.2

and 7.3). Relatively high appraisals of the non-specific explanation might be a result of familiarity

with the explanation style. Some users commented as follows: “There is a comfort in this type of

explanation,” and “This writing style suits me the best.” The used crowdsourcing platform provides

task recommendation for users with explanations of this style: “Recommendation is based on your

past task.” Another reason might be the occasional mismatch of the presented context, as seen in

the example comments indicating the mismatch shown in the previous section. User evaluation

tends to be affected more by negative experiences (i.e., mismatches) than by positive experiences

(i.e., good matches). Similar observations were reported in an experiment of personalizing engaging

messages [69]. Improving the accuracy of context-item pair selections is future work. As described
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in Subsection 7.2.2, the selection of context-item pairs is an unexplored new task setting. Thus,

there should be much room for improvement.

The trio of demographics, contents, and contexts did not produce a significant improvement over

the duo of contents and contexts. Users may have felt excessive complexity. Determining adequate

amounts of information for an explanation would be an interesting challenge.

As for gender dependence in the preferences of explanation styles, female users tended to prefer

the context style and male users tended to prefer the content style (Figure 7.4). This might be

a result of the difference in personality traits; it is known that women are more tender-minded

than men [35]. The used contexts in this study included accompanying persons, which is important

information for tender-minded people. Regarding age dependence in the preferences of explanation

styles, users in their 20s tended to prefer the content style and users in their 30s tended to prefer

the context style (Figure 7.6). Tender-mindedness correlates positively with ages [93]; this might be

the reason for the age dependence. However, the preference for the context style does not increase

for users over the age of 40 years compared to users in their 30s.

This work was conducted in a restaurant recommendation domain. Context is important for

recommendations in various domains such as movie, travel, and music [5]. Hence, context style

explanations would be applied to various domains, though relevant contexts should be unique to

those different domains. Future research should investigate those other domains. Further, the

experiments compared and hybridized context style explanations with demographic and content

styles. Future studies should experiment with other conventional explanation styles (e.g., neighbor

and influence styles). Besides, this work evaluated persuasiveness and usefulness to verify the

hypothesis of the effects of the context-style. Evaluation of other factors, such as user trust and

decision efficiency, should be conducted in future work.

7.6 Conclusions

This chapter proposed the context style explanation for recommenders. The crowdsourcing-based

user study was conducted to measure persuasiveness and usefulness. The context style explanation
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was better than the demographic style. The context style also tended to show better performance

than the content style, but the difference was not statistically significant. It was further confirmed

that the hybrids of the context style and other explanation styles improve persuasiveness and

usefulness. Findings from user comments support the importance of contexts for explanations.

Furthermore, the personal preferences of explanation styles in terms of gender and age were revealed.

While female or middle-age users tended to prefer the context style over the content style, male or

young users tended to prefer the content style.
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This thesis aimed to increase the causal effect of recommendations by resolving three issues:

1) incomplete modeling, 2) causality of recommendation, and 3) users’ reluctance. These issues

were addressed by applying the following three methods: 1) modeling recommendation influences

(Chapters 3, 4, and 5), 2) uplift optimization (Chapters 4 and 6), and 3) persuasive explanation

(Chapter 7).

• Solution 1: modeling recommendation influences. This thesis models recommendation influ-

ences in various ways. A recommendation model that incorporated personal discount sen-

sitivity was proposed and studied (Chapter 3). As far as we know, this is the first study

that unified item preference and discount sensitivity into a single purchase prediction model.

A recommendation model that incorporated personal recommendation responsiveness was

proposed and investigated (Chapter 4). The individualized difference of recommendation in-

fluences is original to this study. Further, the cold-start problem of recommendation logs is

newly addressed in this study. An extension of exposure modeling to include both direct and

indirect recommendation influences on exposure was proposed and discussed (Chapter 5).

• Solution 2: uplift optimization. There were two approaches to uplift optimization. The first

approach was to design a purchase prediction model that incorporated recommendation in-

fluences and then estimate uplift by the difference between predicted purchase probabilities

with and without recommendations. Chapter 4 employed this approach for uplift optimiza-

tion. The second approach was to directly optimize a model toward uplift by deriving positive

and negative training samples for uplift. Chapter 6 proposed unique optimization methods

based on this approach. The proposed optimization methods are generic and applicable to

most machine-learning-based recommendation models.

• Solution 3: persuasive explanation. Users consume items under a specific context. Therefore,

it is expected that envisioning the context of usage may motivate users to take action. This

thesis proposed to explain recommendations using contexts and verified the assumption that

the proposed context style explanation is persuasive (Chapter 7). Previous explanation styles

were based on user or item information and this is the first study to apply context to explain
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recommendations.

This thesis provides foundations for increasing the causal effect of recommendations. The pro-

posed uplift-based evaluation can be extended in various ways, for example, weighting items upper

in the list like NDCG or considering continuous outcomes, such as the prices of purchased items.

Uplift-based optimization can be applied to most recommendation models including recent neural

recommenders. To motivate users to take action, currently deployed explanation of recommenders

can be replaced or combined with the new context style explanation. Besides, the context style

explanation also introduces a new task setting for recommendation algorithms, that is, selecting

context-item pairs for each user that leaves much room for improvement.
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