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Abstract

As a vast number of multimedia become accessible, machine multimedia understanding becomes
more and more important to retrieve information, summarize contents, or answer to a query.
Currently, such tasks largely rely on label made by human which is prohibitively time consuming
and can be in-accurate. To automatize such tasks, it is important to analyze multimedia contents
itself by machines. Recent advance of deep learning greatly push the machine based multimedia
analysis forward, yet the success is mostly limited to some domains that have large dataset and the
analysis is often done in controlled or limited environment. For instance, most audio recognition
works focus on speech of major languages that have large dataset with manual annotation, and the
speech is often in controlled and non-overlapping environments. In this thesis, we focused on audio
and video analysis, and address the variety of problems which is essential for realizing machine
multimedia understanding in real-world, possibly not in a controlled environment. Specifically,
we address the problems of handling overlapping sounds, low-resource dataset, and making use
of non-speech sound for video analysis and propose a novel methods on audio source separation,
automatic speech recognition for low-resource languages, audio event recognition, and audio visual
video analysis including action recognition and highlight detection.
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Chapter 1

Introduction

1.1 Background

As mobile device become omnipresent, vast number of multimedia becomes available on the in-
ternet. Multimedia can be seen as a tool or another dimension for extending human cognition
beyond the limitation of time and space since one can know what happen there at that time
through multimedia even the place and time the multimedia recorded is physically not accessible.
However, it is prohibitively time consuming for human to go through vast number of videos and
extract necessary, interesting information. Machine can help to extend our sense and enrich our
activities by extracting only relevant information for individuals. Currently, multimedia search
or recommendation systems largely relies on human annotation or statistics of viewing/listening
history. Such information could be too abstract, take long time to collect or expensive to ob-
tain. Moreover, the current search recommendation systems mostly propose item wise, i.e. in
video search case, the system only propose video clips but do not tell which parts of the video
are most related. If machine instead understands multimedia itself as humans do rather than
relying on human annotations, it would greatly improve the accuracy of recommendation, search,
summarization or prediction. Therefore, multimedia analysis such as scene recognition, concept
classification, speech recognition, action recognition and highlight detection have become more and
more important. This thesis aims at providing sets of audio and audio-visual technologies to realize
the machine multimedia understanding that directly analyze multimedia data itself in real-world
scenarios, rather than relying on human annotations. We focus on audio and video as multimedia
contents since these are most widely shared, common multimedia beside text and image data.

1.2 Objectives

• what is the left Indian guy in this video saying?

• show me some videos in which two dogs are howling on the beach.

• create 1 min highlight video of my skate boarding from my archive.

To answer these questions or commands, the machine has to overcome many difficulties. For the
first question, there might be several persons talking at the same time in the video and the machine
has to selectively recognize the specified person’s speech. The person may speak minor Indian
local language, which is difficult to develop an automatic speech recognition (ASR) system due
to the lack of human annotated training data. For answering the second command, the machine
needs to recognize not only objects but also background and actions which emit sounds. The
last command requests machine to understand an abstract context and finely time aligned scene
analysis. Despite recent advance of deep learning based approach, it is still struggle to answer these
simple questions and commands: application of deep learning is still limited to some domains such
as controlled/limited environment, and/or domains that have large dataset. This thesis aim at
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Figure 1.1: Pipeline of multimedia analysis. Here, we focused on audio and video. Feature extrac-
tion part can be processed separately, or merged.

machine multimedia understanding in such realistic and challenging scenarios and providing sets
of techniques to address them.

1.3 Challenges

Figure 1.1 shows a general pipeline for the multimedia analysis, especially the cases of audio and
video. The data is first preprosessed to fit to the following processes. The prepossessing could
include normalization, filtering, resize/resampling and denoising. In addition to that, in audio
case, audio source separation can be also included when multiple sources are overlapped and we
wish to process each source individually, e.g. if two speakers speak at the same time,it is necessary
to separate the voices to transcribe individually. The feature extraction part can be further split
to low-level feature extraction and high level feature extraction. The low-level features are often
designed manually using expert knowledge. Examples of the low-level features for audio could be
the mel-frequency cepstrum coefficients (MFCC) or fbank features, while visual low-level features
could be optical flow, HOG, SURF, SIFT. The high-level feature extraction will be designed to
capture more abstract information which is more directly correlated with the final information
to be recognized. Recently, deep neural networks (DNN) are commonly used for the high level
feature extraction. It has become popular to combine low- and high-level feature extraction part
and use single DNN to extract and analyze data in end-to-end manner in vision domain. On
the other hand, in, audio domain, the low-level feature extraction is often incorporated, although
approaches directly working on waveform are actively investigated nowadays. The analysis part
extract the desired information from the features, e.g. transcribed text in the case of ASR, or
highlight score in the case of the video highlight detection.

This thesis addresses problems of all three components and focuses on four major tasks:

1. Audio source separation (SS) In real world, many sound sources emit sounds simulta-
neously. In this case, it is necessary to separate desired source signal from others to avoid a
confusion due to signals from other sources. For example, if multiple speakers speak simul-
taneously, the machine has to first separate voices to transcribe each speaker individually.
Or if we wish to transcribe vocal melody line in the music robustly, separating the singing
voice from other musical sound greatly helps to improve the accuracy. However, the audio
source separation problem has been considered very challenging due to the nature of highly
ill-posed problem. In this thesis, we consider different types of audio, namely speech, music,
and noise, and propose methods that achieve state-of-the-art separation accuracy.

2. Automatic speech recognition (ASR) Speech is arguably one of the most informative
and important signal for human. Automatic speech recognition (ASR) has been investigated
since long time ago, as it is an essential component for a natural man-machine communi-
cation. Although recent advance of deep learning technique greatly improve the accuracy
of ASR when the large corpus is available, ASR still struggles when a large corpus is not
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available which is the case for many local languages and dialects. The main challenge is ob-
taining reliable pronunciation dictionary, which map words to sequences of sub-word units,
from limited available resources. Manual preparation of such resources requires significant
investment and expertise. Therefore, an automatic generation of pronunciation dictionary
from the data is clearly required for many dialects and languages.

3. Audio event recognition (AER) Beside speech, non-speech sounds such as music or
laughter provide important information as well. In most conversations no mention is made of
the environment, like its location or people and objects present. Many application including
ASR, video analysis and man-machine interaction could benefit from having such contex-
tual knowledge. Furthermore, multi-media tasks such as video classification [1] and video
summarization [2] have been shown to improve when including audio information. Compare
to ASR, audio event recognition is less investigated, especially for DNN based method. It
was partially due to the lack of large dataset. Few works directly applied ASR approach to
AER, et, applying standard ASR approaches leads to inferior performance due to differences
between speech and non-speech signals. Here, we introduce a novel approach for AER.

4. Video analysis Video analysis such as concept classification [3, 4, 5], action recognition
[6, 7] and highlight detection [8] have become more and more important to retrieve [9, 10, 11]
or summarize [12] videos for efficient browsing. Most DNN works on video analysis relies
on visual cues only and audio is often not used at all. However, beside visual information,
humans greatly rely on their hearing for scene understanding. Audio is clearly one of the key
components for video analysis. Many works showed that audio and visual streams contain
complementary information [5, 6], e.g. because audio is not limited to the line-of-sight.

However, combining visual features and traditional audio features used for ASR such as
MFCC typically only leads to marginal improvements. Instead, we propose a novel audio
feature that extracted from AER model, which leads to significant performance improvements
on action recognition and video highlight detection.

1.4 Contributions

In this thesis, challenges on machine multimedia understanding in realistic environment are broken
down into aforementioned four technical domains and We provide sets of methods to overcome
challenges in each domain. The summary of contributions in each domain is as follows:

1. Audio source separation We investigate a neural network architecture that consider sev-
eral aspects of audio source separation and proposed novel neural network architectures that
achieve state-of-the-art accuracy in music separation task. We also provide a novel method
to recover target phase from mixture phase that is corrupted by other sources. We also in-
vestigate the problem of separating speech of multiple speakers and propose a novel method
to separate speech of unknown number of speakers with single model.

2. Speech recognition We propose a data-driven pronunciation estimation and acoustic mod-
eling method which only takes the orthographic transcription to jointly estimate a set of
sub-word units and a reliable dictionary. This provide a way to develop ASR without man-
ual preparation of a pronunciation dictionary which requires considerable investment and
expertise.

3. Audio event recognition We introduce novel network architectures for AER with up to 9
layers and a large input field which allows the networks to directly model entire audio events
and to be trained end-to-end. We also propose a data augmentation method which helps
to prevent over-fitting. Moreover, We built an audio event dataset which contains a variety
of sound events which may occur in consumer videos. The dataset was used to train the
networks for generic audio feature extraction. We also make the pre-trained model available
so that the research community can easily utilize our proposed features.

9



4. Video analysis We introduce AENet feature to leverage audio information more effectively
and improve video analysis. We conducted experiments on different kinds of consumer video
tasks, namely action recognition and video highlight detection, to show the superior perfor-
mance and generality of the proposed features. To the best of our knowledge, this is the
first work on consumer video highlight detection taking advantage of audio. On all tasks we
outperform the state of the art results by leveraging the proposed audio features.

1.5 Related Works

1.5.1 Audio Source Separation (SS)
Audio source separation (SS) has recently been intensively studied. Various approaches have been
introduced such as local Gaussian modeling [13, 14], non-negative factorization [15, 16, 17], kernel
additive modeling [18] and their combinations [19, 20, 21]. Recently, deep neural network (DNN)
based SS methods have shown a significant improvement over conventional methods. In [22, 23],
a standard feedforward fully connected network (FNN) was used to estimate source spectra. A
common way to exploit temporal contexts is to concatenate multiple frames as the input. However,
the number of frames that can be used is limited in practice to avoid the explosion of the model
size. In [24], long short-term memory (LSTM), a type of recurrent neural network (RNN), was
used to model longer contexts. However, the model size tends to become excessively large and the
training becomes slow owing to the full connection between the layers and the gate mechanism in
an LSTM cell.

Although previous research on SS based on DNN mainly focuses on estimating the magnitude
spectrum of target sources, there are several works on target phase recovering. One approach to
phase estimation is to promote consistency [25, 26], where it modifies the mixture phase depending
on the results of the estimated magnitude such that the modified phase satisfies consistency. Some
recent works [27, 28, 29] attempted to combine Wiener filtering with consistency-based techniques.
The extension of the above approach incorporating sinusoid models has shown promising results
[30]. However, the consistency constrain itself is not directly designed to recover the target phase.
There are few works that attempt to recover magnitude and phase concurrently. Williamson et al.
proposed a twin-head DNN to infer both real and imaginary parts of the target spectrogram [31].
Several authors attempted to construct a fully complex-valued network by updating parameters
based on complex back propagation [32, 33]. However, to achieve good performance, the network
needs to be constrained by sparsity. Moreover, the currently available DNN frameworks such as
PyTorch and Tensorflow do not support complex back propagation, thus preventing us from using
the various modules that the framework supports.

There are also works on separating same type of sources, especially on speech separation.
Previously, various approaches including spectral clustering [34] computational auditory scene
analysis (CASA) [35], non-negative matrix factorization (NMF)[36, 37, 38, 39] were proposed to
tackle this problem, yet showed limited success. Recent advances of deep learning based methods
including deep clustering (DPCL)[40, 41], permutation invariant training (PIT) [42, 43, 44], deep
attractor network (DANet) [45, 46] dramatically improved the accuracy of separation. However,
most of these methods assume that the number of speakers is known in advance.

1.5.2 Automatic Speech Recognition (ASR)
Developing ASRs for dialects and under-resourced languages has attracted growing attention over
the past few years [47, 48, 49]. A main challenge to develop ASR for under-resourced domains
is to produce a reliable pronunciation dictionary from limited available resources. For major
languages, however, a canonical pronunciation dictionary is usually already available. However,
such dictionaries may be error-prone due to the fact that they are manually generated and in most
cases do not cover pronunciation variants. There were several attempts to tackle these problems
[50, 51, 52, 53].

Lu et al. [54] proposed a data-driven dictionary generator to include new pronunciations based
on newly coming acoustic evidence. Goel et al. in [55] use a grapheme-to-phoneme approach to
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guess the pronunciation and iteratively refine the acoustic model and the dictionary. However,
these methods still require a high-quality initial pronunciation dictionary created by an expert.

In modern ASRs words are represented by smaller sub-word units such as phonemes and the
pronunciation dictionary maps words to sequences of sub-word units. However, sub-word units do
not essentially need to be linguistically motivated elements. In fact, given a set of acoustic samples,
the linguistically defined units are most probably not the optimal ones for speech recognition [56].
For instance telephony speech, where high frequency components have been filtered out, requires
a modified dictionary with slightly different set of fricatives than full-bandwidth speech.

Over the past few years, there have been several attempts to move beyond phoneme based
sub-word units by jointly learn a set of sub-word units and their corresponding dictionary directly
from the given data [57, 58, 54]. Bacchiani and Ostendorf [58] proposed an iterative acoustic
segmentation and clustering approach to build sub-word units from speech signals and subsequently
construct the dictionary based on the estimated sub-word units. Singh et al. [54] introduced a
divide-and-conquer strategy to recursively update sub-word units and dictionary. The dictionary
computation was done by means of an n-best type algorithm which is known to produce sub-
optimal solutions. Although their approach demonstrates some promising results, the performance
is still not comparable with a phoneme based ASR.

1.5.3 Audio Event Recognition (AER)

Traditional methods for AER apply techniques from ASR directly. For instance, Mel Frequency
Cepstral Coefficients (MFCC) were modeled with Gaussian Mixture Models (GMM) or Support
Vector Machines (SVM) [59, 60, 4, 61]. Yet, applying standard ASR approaches leads to inferior
performance due to differences between speech and non-speech signals. Thus, more discriminative
features were developed. Most were hand-crafted and derived from low-level descriptors such
as MFCC [62, 63], filter banks [64, 65] or time-frequency descriptors [66]. These descriptors are
frame-by-frame representations (typically frame length is in the order of tens ofms) and are usually
modeled by GMMs to deal with the sounds of entire audio events that normally last seconds at
least. Another common method to aggregate frame level descriptors is the Bag of Audio Words
(BoAW) approach, followed by an SVM [63, 67, 68, 69]. These models discard the temporal order of
the frame level features however, causing considerable information loss. Moreover, methods based
on hand-crafted features optimize the feature extraction process and the classification process
separately, rather than learning end-to-end.

Recently, DNN approaches have been shown to achieve superior performance over traditional
methods. One advantage of DNNs is their capability to jointly learn feature representations and
appropriate classifiers. In [70], a fully connected feed-forward DNN is built on top of MFCC
features. Miquel et al. [71] utilize a Convolutional Neural Network (CNN) [72] to extract features
from spectrograms. Recurrent Neural Networks are also used on top of low-level features such as
MFCCs and fundamental frequency [73]. These networks are still relatively shallow (e.g. less than
3 layers). The recent success of deeper architectures in image analysis [74] and ASR [75] hinges
on the availability of large amounts of training data. If a training dataset is small, it is difficult
to train deep architectures from scratch in order not to over-fit the training set. Moreover, the
networks take only a few frames as input and the complete acoustic events are modeled by Hidden
Markov Models (HMM) or simply by calculating the mean of the network outputs, which is too
simple to model complicated acoustic event structures.

Furthermore, these methods are task specific, i.e. the trained networks cannot be used for other
tasks. We conclude that there was still a lack a generic way to represent audio signals. Such a
generic representation would be very helpful for solving various audio analysis tasks in a unitary
way.

1.5.4 Features for Video Analysis

Traditionally, visual video analysis relied on spatio-temporal interest points, described with low-
level features such as SIFT, HOG, HOF, etc. [76, 77]. Given the current interest in learning deep
representations through end-to-end training, several methods using convolutional neural networks
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(CNN) have been proposed recently. Karpathy et al.introduced a large-scale dataset for sports
classification in videos [78]. They investigated ways to improve single frame CNNs by fusing spatial
features over multiple frames in time. Wang et al. [79] combine the trajectory pooling of [77] with
CNN features. The best performance is achieved by combining RGB with motion information
obtained through optical flow estimation [80, 81, 82], but this comes at a higher computational
cost. A compromise between computational efficiency and performance is offered by C3D [83],
which uses spatio-temporal 3D convolutions to encode appearance and motion information.

Many efforts have been dedicated to incorporate audio in video analysis by using audio only
[4] or fusing audio and visual information [6]. In audio-based video analysis, feature extraction
remains a fundamental problem. Many types of low level features such as short-time energy, zero
crossing rate, pitch, frequency centroid, spectral flax, and Mel Frequency Cepstral Coefficients
(MFCC) [3, 4, 7, 11] have been investigated. These features are very low level or not designed for
video analysis, however. For instance, MFCC has originally been designed for automatic speech
recognition (ASR), where it attempts to characterize phonemes which last tens to hundreds of
milliseconds. While MFCC is often used as an audio feature for the aural detection of events, their
audio characteristics differ from those of speech. Such sounds are not always stationary and some
audio events could only be detected based on several seconds of sound. Thus, a more discriminative
and generic feature set, capturing longer temporal extents, is required to deal with the wide range
of sounds occurring in videos.

Another common method to represent audio signals is the Bag of Audio Words (BoAW) ap-
proach [63, 69, 5], which aggregates frame features such as MFCC into a histogram. BoAW discards
the temporal order of the frame level features, thus suffering from considerable information loss.

1.5.5 Transfer Learning
Our works on video analysis is also related to transfer learaning. The success of deep learning is
driven, in part, by large datasets such as ImageNet [84] or Sports1M [78]. These kinds of datasets
are, however, only available in a limited set of research areas. Naturally, the question of whether
CNN representations are transferable to other tasks arose [85, 86]. Indeed, as these works have
shown, using CNN features trained on ImageNet provides performance improvements in a large
array of tasks such as attribute detection or image and object instance retrieval, compared to
traditional features [86]. Several follow-up works have analysed pooling mechanisms for improved
domain transfer, e.g. [87, 88, 89]. Video CNN features have also been successfully transferred
to other tasks [83, 90]. For this work, we have been inspired by these works and propose deep
convolutional features trained on audio event recognition and that are transferable to video analysis.
To the best of our knowledge, no other such features exist to date.

1.6 Structure of this Thesis
Reset of the thesis is organized according to the processing flow described in Figure1.1 and orga-
nized as follow: In chapter 2, we address problems in the audio source separation tasks. In chapter
3, ASR for under-resourced languages is discussed. Then we move on to the problem of AER.
In chapter 5, we discuss how the AER model described in Chapter 4 is used for video analysis.
Finally, we conclude the thesis in Chapter 6.
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Chapter 2

Audio Source Separation

Audio Source Separation (SS) typically operates on magnitude spectra domain. We first investigate
the DNN architectures that estimate the target magnitude spectrogram from the mixture spectro-
gram and propose a novel architectures devised for SS problem. Then, we investigate the phase
reconstruction problem in Section 2.2. Finally, we address the problem of separating unknown
number of speakers in Section 2.3.

2.1 DNN Architecture for Audio Source Separation

Early stage of deep learning based SS model used a standard feedforward fully connected network
(FNN) to estimate source spectra [23]. A common way to exploit temporal contexts is to concate-
nate multiple frames as the input. However, the number of frames that can be used is limited in
practice to avoid the explosion of the model size. In [24], long short-term memory (LSTM), was
used to model longer contexts. However, the model size tends to become excessively large and the
training becomes slow owing to the full connection between the layers and the gate mechanism
in an LSTM cell. Recently, convolutional neural networks (CNNs) [72] have been successfully
applied to audio modeling of spectrograms [91, 92], although CNNs were originally introduced
to address the transition-invariant property of images. A CNN significantly reduces the number
of parameters and improves generalization by sharing parameters to model local patterns in the
input. However, a standard CNN requires considerable depth to cover long contexts, making train-
ing difficult. Another problem in applying a two dimensional convolution to a spectrogram is the
biased distribution of the local structure in the spectrogram. Unlike an image, a spectrogram has
different local structures depending on the frequency bands. Complete sharing of convolutional
kernels over the entire frequency range may reduce modeling flexibility. To address these prob-
lems, we propose MMDenseNet architecture in the next section. Then, we further propose an
improved architecture, MMDenseLSTM, which combines LSTM and DenseNet in multiple scales
and multiple bands, improving separation quality while retaining a small model size.

2.1.1 DenseNet

In a standard feed forward network, the output of the lth layer is computed as xl = Hl(xl−1),
where the network input is denoted as x0 and Hl(·) is a non-linear transformation which can be
a composite function of operations such as Batch Normalization (BN) [93], rectified linear units
(ReLU) [94], pooling, or convolution. In order to mitigate difficulties of training very deep models,
ResNet [95] employs a skip connection which adds an identity mapping of the input to the non-
linear transformation:

xl = Hl(xl−1) + xl−1. (2.1)

The skip connection allows the network to propagate the gradient directly to the preceding layers,
making the training of deep architectures easier. DenseNet [96] further improves the information
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dense block 

Figure 2.1: dense block architecture. The input of a composite layer is the concatenation of outputs
of all preceding layers.
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Figure 2.2: MDenseNet architecture. Multi-scale dense blocks are connected though down- or up-
sampling layer or through block skip connections. The figure shows the case s = 3.

flow between layers by replacing the simple addition of the output of a single preceding layer with
a concatenation of all preceding layers:

xl = Hl([xl−1, xl−2, . . . , x0]), (2.2)

where [. . .] denotes the concatenation operation. Such dense connectivity enables all layers not
only to receive the gradient directly but also to reuse features computed in preceding layers. This
avoids the re-calculation of similar features in different layers, making the network highly parameter
efficient. Fig. 2.1 illustrate the dense block. In DenseNet, Hl comprises of BN, followed by ReLU
and convolution with k feature maps. In the reminder of this paper, k is referred to as growth
rate since the number of input feature maps grows linearly with depth in proportion to k (e.g. the
input of lth layer have l × k feature maps).

For image recognition tasks, a pooling layer, which aggregates local activation and maps to
the lower dimension, is essential to capture the global information efficiently. A down-sampling
layer defined as a 1 × 1 convolution followed by a 2 × 2 average pooling layer is introduced to
facilitate pooling. By alternately connecting dense blocks and down-sampling layers, the feature
map dimension is successively reduced and finally fed to a softmax classification layer after global
pooling layer. In the next section, We discuss how to apply these ideas to audio source separation.

2.1.2 Multi-scale DenseNet
Dense blocks and down-sampling layers comprise the down-sampling path of the proposed multi-
scale DenseNet. Down-sampled feature maps enable the dense block network to model longer
contexts and wider frequency range dependency while alleviating computational expense. In order
to recover the original resolution from lower resolution feature maps, we introduce an up-sampling
layer defined as a transposed convolution whose filter size is same as the pooling size. We again
alternate up-sampling layers and dense blocks to successively recover the higher resolution feature
maps. In order to allow forward and backward signal flow without passing though lower resolution
blocks, we also introduce inter-block skip connection which directly connect two dense blocks of the
same scale. With this connection, dense blocks in the down-sampling path are enabled to receive
supervision and send the extracted features without compressing and decompressing them. The
idea of the entire architecture is depicted in Fig. 2.2 in case that the number of different scales s
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Figure 2.3: MMDenseNet architecture. Outputs of MDenseNets dedicated for each frequency band
including full band are concatenated and the final dense block integrate features from these bands
to create final output.

is 3 which can be tuned depends on a data complexity and resource availabilities. Hereafter, we
refer to this architecture as MDenseNet. Note that the proposed architecture is fully convolutional
and thus can be applied to arbitrary input length.

2.1.3 Multi-band Multi-scale DenseNet

In the architecture discussed in Sec. 2.1.2, the kernels of the convolution layer are shared across
the entire input field. This is reasonable if the local input patterns appear in any position in the
input, as is the case for objects in natural photos. In audio, however, different patterns occur in
different frequency bands, though a certain amount of translation of patterns exists, depending
on the relatively small pitch shift. Therefore, limiting the band that share the kernels is more
suitable for efficiently capturing local patterns. Indeed, limited kernel sharing has been shown to
be effective in speech recognition [97]. We split the input into multiple bands and apply multi-
scale DenseNet to each band. However, simply splitting frequency band and modeling each band
individually may hinder the ability to model the entire structure of spectrogram. Hence, we build
in parallel an MDenseNet for the full band input and concatenate its output with outputs from
multiple sub-band MDenseNets, as shown in Fig. 2.3. Note that in this architecture, since fine
structure can be captured by band limited MDenseNets, the full band MDenseNet can focus on
modeling rough global structure, thus simpler and less expensive model can be used. We refer to
the architecture as MMDenseNet.

2.1.4 Combining LSTM with MMDenseNet

Blending two systems gives better performance even when one system consistently outperforms the
other [24]. The improvement tends to be more significant when two very different architectures are
blended such as a CNN and RNN, rather than the same architectures with different parameters.
However, the blending of architectures increases the model size and computational cost additively,
which is often undesirable when deploying the systems. Therefore, we propose combining the dense
block and LSTM block in a unified architecture. The LSTM block consists of a 1 × 1 convolution
that reduces the number of feature maps to 1, followed by a bi-directional LSTM layer, which
treats the feature map as sequential data along the time axis, and finally a feedforward linear layer
that transforms back the input frequency dimension fs from the number of LSTM units ms. We
consider three configurations with different combinations of the dense and LSTM blocks as shown
in Fig. 2.4. The Sa and Sb configurations place the LSTM block after and before the dense block,
respectively, while the dense block and LSTM block are placed in parallel and concatenated in the
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Figure 2.4: Configurations with different combinations of dense and LSTM blocks. LSTM blocks
are inserted at some of the scales
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Figure 2.5: MMDenseLSTM architecture. Outputs of MDenseLSTM dedicated to different fre-
quency band including the full band are concatenated and the final dense block integrates features
from these bands to create the final output.

P configuration. We focus on the use of the Sa configuration since a CNN is effective at modeling
the local structure and the LSTM block benefits from local pattern modeling as it covers the entire
frequency at once. This claim will be empirically validated in Sec. 2.1.5.

Naively inserting LSTM blocks at every scale greatly increases the model size. This is mostly
due to the full connection between the input and output units of the LSTM block in the scale
s = 1. To address this problem, we propose the insertion of only a small number of LSTM blocks
in the upsampling path for low scales (s > 1). This makes it easier for LSTM blocks to capture
the global structure of the input with a much smaller number of parameters. On the other hand, a
CNN is advantageous for modeling fine local structures; thus placing only dense block at s = 1 is
suitable. The multi-band structure is also beneficial for LSTM blocks since the compression from
the input frequency dimension fs to ms LSTM units is relaxed or it even allows the dimension
(fs < ms) to be increased while using fewer LSTM units, increasing the modeling capabilities as
discussed in [98]. The entire proposed architecture is illustrated in Fig. 2.5. To capture the pattern
that spans the bands, MDenseLSTM for the full band is also built in parallel along with the band
dedicated MDenseLSTM. The outputs of the MDenseLSTMs are concatenated and integrated by
the final dense block, as MMDenseNet.
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Table 2.1: The proposed architectures. All dense blocks are equipped with 3×3 kernels with L
layers and k growth rate. The pooling size and transposed convolution kernel size are 2×2.

Layer scale MMDenseNet MDenseNetlow high full
band split

1
first half last half - -

conv (t×f,ch) 3×4, 32 3×3, 32 3×4, 32 3×4, 32
dense 1 (k,L) 14, 4 10, 3 6, 2 12, 4
down sample 1

2

pool pool pool pool
dense 2 (k,L) 16, 4 10, 3 6, 2 12, 4
down sample 1

4

pool pool pool pool
dense 3 (k,L) 16, 4 10, 3 6, 2 12, 4
down sample 1

8

pool pool pool pool
dense 4 (k,L) 16, 4 10, 3 6, 4 12, 4
up sample

1
4

t.conv t.conv t.conv t.conv
concat. low dense 3 high dense 3 full dense 3 dense 3

dense 5 (k,L) 16, 4 10, 3 6, 2 12, 4
up sample

1
2

t.conv t.conv t.conv t.conv
concat. low dense 2 high dense 2 full dense 2 dense 2

dense 6 (k,L) 16, 4 10, 3 6, 2 12, 4
up sample

1
t.conv t.conv t.conv t.conv

concat. low dense 1 high dense 1 full dense 1 dense 1
dense 7 (k,L) 16, 4 10, 3 6, 2 12, 4
concat. (axis)

1

freq - -concat. (axis) channel
dense 8 (k,L) 4, 2 4, 2
conv(t×f,ch) 1×2, 2 1×2, 2

2.1.5 Experiments

Setup

We evaluated the proposed method on the DSD100 and MUSDB18 datasets, prepared for SiSEC
2016 [99] and SiSEC 2018 [100], respectively. MUSDB18 has 100 and 50 songs while DSD100 has 50
songs each in the Dev and Test sets. In both datasets, a mixture and its four sources, bass, drums,
other and vocals, recorded in stereo format at 44.1kHz, are available for each song. Short-time
Fourier transform magnitude frames of the mixture, windowed at 2048 samples with 50% overlap
for MDenseNet and MMDenseNet, and at 4096 samples with 75% overlap for MMDenseLSTM,
with data augmentation [24] were used as inputs. The networks were trained to estimate the source
spectrogram by minimizing the mean square error with the Adam optimizer. For the evaluation
on MUSDB18, we used the museval package [100], while we used the BSSEval v3 toolbox [101] for
the evaluation on DSD100 for a fair comparison with previously reported results. The SDR values
are the median of the average SDR of each song.

Architectural details

Details of the proposed network architectures of MDenseNet, MMDenseNet and MMDenseLSTM
are described in Table 2.1 and 2.2, respectively. The effective context window sizes of MDenseNet
and MMDenseneNet architectures are 153 frames while that of MMDenseLSTM is 356 frames. One
advantage of Multi-band architecture is that we can design suitable architectures for each band
individually and assign computational resources according to the importance of each band which
may differ depending on the target source or application. We design a relatively larger model for
the lower frequency band. For MMDenseNet, we split the frequency into two bands in the middle
while for MMDenseLSTM, we split the input into three bands at 4.1kHz and 11kHz. The LSTM
blocks of MMDenseLSTM are only placed at bottleneck blocks and at some blocks at s = 2 in
the upsampling path, which greatly reduces the model size. The final dense block has three layers
with growth rate k = 12. The effective context size of the architecture is 356 frames. Note that
MMDenseLSTM can be applied to an input of arbitrary length since it consists of convolution and
LSTM layers.
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Table 2.2: The proposed architecture. All dense blocks are equipped with 3×3 kernels with growth
rate k. l and ms denote the number of layer and LSTM units of LSTM block, respectively. ds
denotes scale s in the downsampling path while us is that in the upsampling path.

band k scale d1 d2 d3 d4 d5 u4 u3 u2 u1

1 14 l 5 5 5 5 - - 5 5 5
ms - - - 128 - - - 128 -

2 4 l 4 4 4 4 - - 4 4 4
ms - - - 32 - - - - -

3 2 l 1 1 - - - - - 1 1
ms - - 8 - - - - - -

full 7 l 3 3 4 5 5 5 4 3 3
ms - - - 128 - - - 128 -

Table 2.3: Comparison of SDR on DSD100 dataset.

SDR in dB
Method Bass Drums Other Vocals Acco.

DeepNMF [16] 1.88 2.11 2.64 2.75 8.90
NUG [22] 2.72 3.89 3.18 4.55 10.29
FNN [23] 2.54 3.75 2.92 4.47 11.12

BLSTM [24] 2.89 4.00 3.24 4.86 11.26
BLEND [24] 2.98 4.13 3.52 5.23 11.70
MDenseNet 2.74 4.37 3.33 4.91 11.21

MMDenseNet [102] 3.91 5.37 3.81 6.00 12.10
MMDenseLSTM 3.73 5.46 4.33 6.31 12.73

Comparison with state-of-the-art methods

We compared our method with other state-of-the-art approaches on DSD100 dataset.

• DeepNMF [16]: Non-negative deep network architecture which results from unfolding NMF
iterations and untying their parameters.

• NUG [22]: This approach estimates source spectra using DNN, and iteratively updates the
spatial and spectral estimates using expectation-maximization. This approach was referred
as NUG1 in [22].

• FNN [23]: The source spectra was estimated by feed forward fully connected DNN trained
with an additional dataset (MedleyDB [103]). Final outputs were obtained by applying
single-channel Wiener filter to each channel individually.

• BLSTM [24]: Three layer bidirectional long short time memory (BLSTM) was used to esti-
mate source spectrogram. This system marked second best score in SiSEC 2016 competition
[99] and can be considered as a good baseline since it also uses MWF, thus the performance
difference between these system highlight the effect of our proposed network architectures.

• BLEND [24]: This approach linearly blend the estimates of FNN and BLSTM before applying
MWF. The best score on SiSEC 2016 competition was obtained with this approach.

The task was to separate the four sources and accompaniment, which is the residual of the vocal
extraction, from the mixture. Here, the multichannel Wiener filter was applied to FNN, BLSTM,
BLEND, MDenseNet, MMDenseNet and MMDenseLSTM outputs as in [24, 102].

Table 2.3 shows the signal to distortion ratio (SDR) computed using the BSS Eval toolbox
[101]. Among the state-of-the-art baselines, BLEND showed the best performance, which was
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Table 2.4: Comparison of SDR on MUSDB18 dataset.

#params SDR in dB
Method [×106] Bass Drums Other Vocals Acco.
IBM - 5.30 6.87 6.42 7.50 10.83

BLSTM [24] 30.03 3.99 5.28 4.06 3.43 14.51
MMDenseNet [102] 0.33 5.19 6.27 4.64 3.87 15.41

BLEND2 30.36 4.72 6.25 4.75 4.33 16.04
MMDenseLSTM 1.22 5.19 6.62 4.93 4.94 16.40
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Figure 2.6: SDR comparison. Boxes indicate the 50% percentile and horizontal lines indicate the
median.

a fusion of BLSTM and FNN. MDenseNet performed as good as BLSTM, which also utilized
MWF. This suggests that the multi-scale architecture successfully learned to utilize long term
contexts using the stack of convolution layers instead of the recurrent architecture. This claim will
be further investigated in the next subsection. MMDenseNet significantly improved performance
and largely outperformed all baselines, showing the effectiveness of the multi-band architecture.
MMDenseLSTM architecture further improves the performance for most sources, improves SDRs
by an average of 0.2dB compared with MMDenseNet.

To further improve the capability of music source separation and utilize the full modeling
capability of MMDenseLSTM, we next trained models with the MUSDB dev set and an internal
dataset comprising 800 songs resulting in a 14 times larger than the DSD100 dev set. The proposed
MMDenseLSTM was compared with BLSTM [24], MMDenseNet [102] and a blend of these two
systems (BLEND2) as in [24]. All baseline networks were trained with the same training set,
namely 900 songs. For a fair comparison with MMDenseNet, we configured it with the same
base architecture as in Table 2.1, with an extra layer in the dense blocks, corresponding to the
LSTM block in our proposed method. We also included the IBM as an upper baseline since
it uses oracle separation. Table 2.4 shows the result of this experiment. We obtained average
improvements of 0.43dB over MMDenseNet and 0.41dB over BLEND2, achieving state-of-the-art
results in SiSEC2018 [100]. The proposed method even outperformed the IBM for accompaniment.
Table 2.4 also shows that MMDenseLSTM can efficiently utilize the sequence modeling capability
of LSTMs in conjunction with MMDenseNet, having 24 times fewer parameters than the naive
combination of BLSTM and MMDenseNet.
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Figure 2.7: Effect of LSTM block at different scales.

Table 2.5: Comparison of MMDenseLSTM configurations.

type Sa Sb P
SDR 2.83 2.31 2.47

Architecture validation

In this section we validate the proposed architecture for the singing voice separation task on
MUSDB18.
Combination structure The SDR values obtained by the Sa-, Sb- and P- type MMDenseL-
STMs are tabulated in Table 2.5. These results validate our claim (Sec. 2.1.3) that the Sa con-
figuration performs the best because the LSTM layer can efficiently model the global modulations
utilizing the local features extracted by the dense layers at this scale. Henceforth, all experiments
use the Sa configuration.
LSTM insertion scale The efficiency of inserting the LSTM block at lower scales was vali-
dated by comparing seven MMDenseLSTMs with a single 64 unit LSTM layer inserted at different
scales in band 1 (all other LSTM layers in Table 2.1 are omitted). Figure 2.7 shows the percentage
increase in the number of parameters compared with that of the base architecture and the mean
square error (MSE) values for the seven networks. It is evident that inserting LSTM layers at low
scales in the up-scaling path gives the best performance.
Contribution of dense and LSTM layers We further compared the l2 norms of the feature
maps (Fig.2.8) in the LSTM block d4 of band 1. It can be seen that the norm of the LSTM feature
map is similar to the highest norm among the dense feature maps. Even though some dense feature
maps have low norms, we confirmed that they tend to learn sparse local features.

2.2 Phase Reconstruction

Previous research on SS based on DNN mainly focuses on estimating the magnitude spectrum of
target sources and typically, phase of the mixture signal is combined with the estimated magnitude
spectra in an ad-hoc way. Although recovering target phase is assumed to be important for the
improvement of separation quality, it can be difficult to handle the periodic nature of the phase
with the regression approach. Unwrapping phase is one way to eliminate the phase discontinuity,
however, it increases the range of value along with the times of unwrapping, making it difficult for
DNNs to model. To overcome this difficulty, we propose to treat the phase estimation problem
as a classification problem by discretizing phase values and assigning class indices to them. All
the phase indices are equally treated in the discretized domain and the posterior probabilities for
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Figure 2.8: Average l2 norm of feature maps.

Table 2.6: Effect of Wiener Filtering (WF) on magnitude estimates of DNNs for MSS on DSD100
dataset. Values denote the Mean Squared Error (MSE) with respect to oracle magnitude.

Source DNN estimate WF estimate
Vocals 0.444 0.491

each class can be efficiently estimated by DNNs. The phase discretization or quantization has been
intensively studied in speech/audio codings [104, 105]. However, to the best of our knowledge, this
is the first attempt to apply source separation.

2.2.1 Phase Spectrogram in Source Separation
In audio source separation problems, the input signal is often transformed to the STFT domain to
perform separation methods. The mask-based approaches estimate the target maskM and apply it
to the input signal X ∈ C. The target source estimate can be computed by Ŝ = M�X, followed by
inverse STFT (iSTFT) to obtain the time domain signal ŝ, where � denotes element-wise product.
The target mask M can be either estimated by DNNs directly or computed from the maginitude
estimates ˆ|S| in the Wiener filtering way [24]. In the latter case, the mask is denoted as MWF to
distinguish it from the former case. In our preliminary experiment, we found that the magnitude of
the target source estimated by DNN, ˆ|S|, is more accurate than the magnitude of the filtered input
|MWFX|. The Table 2.6 shows the mean square errors, which motivates us further to estimate the
phase to improve the estimation of ŝ. Fig. 2.9 shows the magnitude and phase spectrogram of the
clean source and the mixture where the effect of frame shift was corrected based on the sinusoidal
model for the phase spectrogram. Unlike the magnitude spectrogram, the phase spectrogram does
not show clear structure. This is partly due to the periodic nature of the phase. Even though the
phase rotates smoothly around a complex plane, the phase value changes abruptly at the wrapping
point (e.g, if the value range is (−π, π], the wrapping point is π). One way to overcome the phase
discontinuity is phase unwrapping. However, it increases the value range along with the times
of unwrapping, where the value range at the later frame becomes larger than that at the earlier
frame, making it difficult for DNNs to model.

2.2.2 Discrete Phase Modeling
We assume that the periodic nature of the phase is one of the reasons that makes it difficult to apply
DNNs for phase estimation. Therefore, we address this problem by casting the phase regression
problem to a classification problem. The Fig. 2.10 illustrates the signal flow of the proposed
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Figure 2.10: Signal flow of PhaseNet in training and inference time.

method. During the training time, the target phase values ∠S are discretized (or quantized) and
encoded to one-hot vectors ∠Sq, such as (1, 0, · · · 0) for index 0, so that DNNs can handle the
problem as a classification problem. The DNNs are trained to predict the posterior probability of
the quantized target phase indices given the mixture phase ∠X through softmax distribution.

According to the sinusoidal model [106], the phase of slowly varying sinusoids can be written
as:

φ(f, t) = φ(f, t− 1) + 2πhν, (2.3)

where φ(f, t), ν and h denote the phase at time frame t, the normalized frequency, and the hop size
(in samples), respectively. Equation 2.3 suggests that the phase of the sinusoid varies depending on
the TF bins and influenced by the frame shift of the STFT window. To mitigate this modulation
effect for DNN phase estimation, we compensate the effect by subtracting 2πthν from each TF
bin, which is denoted as de-modulation in Fig. 2.10, and wrap to (−π, π].

The phase of mixture is dominantly affected by one of the sources if the magnitude of the
source is dominant in a TF bin. If the magnitude of a target source is much higher than that
of an interference, the mixture phase is most probably close to the target phase. On the other
hand, if the target magnitude is at similar level or lower than the interference, the phase could be
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training of regression approach, phase value change along with the unit circle. On the other hand,
each point is treated as equal in the classification approach.

tweaked by the interference and the phase of these TF bins need to be estimated. To incorporate
this characteristic property, we also feed the log magnitude ratio:

R = log

(
|S|
|X|

)
(2.4)

to the network by concatenating it along channel dimension. The network is trained to minimize
the cross entropy loss L:

L(θ) = −
∑
i

∠Sq
i logP (φq|∠Xi, Ri, θ), (2.5)

where ∠Sq
i (q = 1, · · ·Q) denotes the index of one-hot encoded quantized phase, P (φq|∠Xi, Ri, θ) is

the softmax output of DNN for quantized phase φq given ith sample. The quantization level and
the network parameters are denoted as Q and θ respectively. During the inference time, when the
magnitude of target source |S| is not available, it is estimated by any method to provide the log
magnitude ratio R̂ as an input to DNN. We can also use the estimated source magnitude |Ŝ| for
training or fine tuning to improve the phase estimation. The index that has the maximum prob-
ability, q̂ = argmaxqP (φq|∠Xi, R̂i, θ) is used to transform back to the quantized phase value φq̂.
Hereafter, we call the DNN trained with this approach as PhaseNet. Recent works show that even
when the data is implicitly continuous, the discrete softmax distribution works better [107, 108].
Moreover, the recent success of DNN based image classification methods suggest that converting
continuous image to discrete class would not be a problem. In the discrete representation, every
quantized point is treated equally and there is no explicit assumption on data, e.g., no periodic na-
ture as Fig. 2.11 illustrates. However, the PhaseNet successfully learned a meaningful relationship
among phase classes as discussed in Section 2.2.3.

2.2.3 Experiments
Quantization level

To assess the impact of the quantizing phase, we first conducted a subjective test. Speech signals
from the Wall Street Journal (WSJ0) corpus were transformed into STFT, the phase was uniformly
quantized by a different number of levels and was transformed back to the time domain signal.
Ten audio engineers participated in the subjective test. Audio is presented with Sony’s headphone
900ST. Six sentences from 3 male and 3 female speakers and 3 quantization levels (4, 8 and 12)
per sentence were prepared for the test. The subjective test was conducted in a similar way to the
double-blind triple-stimulus with hidden reference format (ITU-R BS.1116), where the reference
was the original speech signal and one among A and B was same as the reference, the other being
the quantized phase presented in a random order. The subjects were asked to identify which
one was the same as the reference signal among A and B. This resulted in 60 evaluations for
each quantization level. The Fig. 2.12 summarizes results. In the figure, blue bars indicate the
accuracy of finding the reference signal from A and B at quantization levels 4, 8 and 12. The
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Table 2.7: PhaseNet architecture based on MDenseNet.

scale 1 1
2

1
4

1
8

1
16

1
8

1
4

1
2

1

l 4 4 5 5 5 5 4 4 4
k 16 18 16 16 16 16 16 18 #Q×#ch

red plot indicates the average SDR values for each corresponding quantization level. As can be
observed, the accuracy of finding the correct reference signal is closer to the chance rate (50%) for
quantization levels 8 and 12. From this subjective test, we interpreted that at quantization level 8
and above, there is no noticeable difference from the reference signal perceptually.

Single channel speech enhancement (SCSE)

Next, we evaluated the proposed method on the single channel speech enhancement task. The
dataset used for training was the speaker independent subset of the WSJ0 corpus. For noise source,
the 3rd CHiME challenge (4 types noise) and AE Dataset [91, 92] (41 types noise) were used. AE
Dataset was down sampled to 16kHz to match the sampling rate and the original train/test split
was used. For the noise data from CHiME, we used session number 040 as a test set. The training
data was prepared by randomly mixing sources of varying SNR from −7 to 6 dB. The STFT was
performed with a frame size of 1024 samples with 75 % overlap. The PhaseNet architecture was
adapted from the MDenseNet architecture. Table2.7 presents the details of the architecture, where
l denotes the number of layers and k denotes growth factor of each dense block. The final layer of
PhaseNet has #Q×#ch number of feature maps, where #Q is the number of quantization levels
equal to 16 and #ch is the number of channels in the audio equal to 1. The PhaseNet was trained
with Adam optimizer until the loss curve plateaued.

We consider three baselines for comparison, the lower baseline which uses mixture phase, the
upper baseline which uses an oracle phase, and phase from a DNN trained with regression approach
(DNN-R). The DNN architecture of DNN-R is identical to PhaseNet except the last layer where
the softmax output for classification is replaced with a standard convolution output. The input of
DNN-R is same as PhaseNet and it is trained to estimate the difference of the target phase and
mixture phase (∠S − ∠X) by minimizing the mean square error (MSE).

For reconstructing the time domain target signal, we considered two cases, namely oracle mag-
nitude and noisy magnitude, since the magnitude of the target source is estimated by some method
in inference time, and that estimate is usually not perfect. We simulated the noisy magnitude esti-
mate by mixing the noise source in the input with −18 dB attenuation. Table 2.8 compares signal
to distortion ratios (SDRs) of estimated target signal are compared with baselines in three SNR
scenario, namely -6, -3, 0 dB. The results shows that the proposed method consistently outperform
lower baselines and the regression approach. As the SNR becomes low, the input phase is more
likely to be dominated by noise. Even in this case, PhaseNet improve the SDR more robustly. It
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Table 2.8: Comparison of SDR with different SNRs for speech enhancement.

Magnitude SNR Baselines Phase model
[dB] Lower Upper DNN-R PhaseNet

Oracle
-6 7.90 - 8.73 8.84
-3 9.60 - 10.59 10.75
0 11.46 - 12.59 12.74

Noisy
-6 5.30 13.64 5.85 6.16
-3 7.39 16.64 8.11 8.45
0 9.54 19.64 10.39 10.75

Table 2.9: Comparison of SDRs with different phase on DSD100.

Magnitude Phase SDR

Oracle
Mixture 10.58
CAW[30] 13.81
DNN-R 12.09
PhaseNet 13.83

Estimates

Oracle 7.04
Mixture 4.95
CAW[30] 5.02
DNN-R 5.42
PhaseNet 6.49

should be noted that even though the PhaseNet was trained only on the clean source magnitude,
it significantly improved the performance even when the source magnitude was not perfect.

Music source separation (MSS)

In this section we describe the evaluation of the proposed method on the music source separation
task. Specifically, focused on singing voice separation, where the vocals need to be extracted from a
mixture of musical sources. For the evaluation we used the Demixing Secrets Database (DSD100),
released as part of the SiSEC campaign [99], downsampled to a sampling rate of 22.05kHz. In
DSD100, the mixture and its four sources - bass, drums, vocals, and other, are available. Thus, our
task was to recover the phase of vocals ∠S from the song x. For the MSS task, we used quantization
level #Q as 20. The STFT was performed with frame size of 2048 samples with 75 % overlap. The
PhaseNet architecture was the same as that used in the SCSE task up to the final layer, where it
was changed based on the #Q and #ch values. The network was trained to estimate the quantized
phase index ∠Sq with the CE loss with Adam optimizer. The initial learning rate of 0.001, reduced
to 0.0001 after training curve saturated. Similar to the SCSE task, to reconstruct the time domain
signal, we considered two scenarios, oracle magnitude and estimated magnitude. For a realistic
evaluation, we used a MMDenseNet to estimate the magnitude of the target source. In addition to
the baselines mentioned in section 2.2.3, we compared PhaseNet with consistent anisotropic Wiener
filtering (CAW), which showed superior performance to Wiener filtering, consistent Wiener filtering
and anisotropic Wiener filtering [30].

The SDR values on Test set are compared in Table 2.9. From the results, it can be observed
that the phase estimated by PhaseNet gives an absolute improvement of about 3.2dB SDR over
lower baseline with oracle magnitude and 1.5dB SDR with estimated magnitude. Also worth noting
is that PhaseNet performs as well as CAW with oracle magnitude, but more robustly improves
performance in the realistic scenario of estimated magnitudes.
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Figure 2.13: Histogram of ’index difference’ between the quantized target indices and its estimates.

Estimated phase distribution

As described in Section 2.2.2, since PhaseNet is trained as a classification problem to predict
quantized target phase indices, there is no assumption about the data such as periodicity and
closeness of discretized points. Therefore, it is worth investigating how PhaseNet outputs are
distributed. Fig. 2.13 shows a normalized histogram of the difference of indices δq between the
target phase and the phase inferred by PhaseNet in Section 2.2.3. δq = 0 indicates that the phase is
correctly recovered, δq = 1 indicates that the phase is wrongly estimated to a closest neighboring
point, δq = 2 indicates the estimate is the second neighbor of the target, and so on (δq = 10
indicates the estimate is the opposite phase in case #Q = 20). For comparison, the histogram
of the mixture-source index difference was also presented. The histograms show that PhaseNet
shifted the peak of the histogram to δq = 0 and more rapidly decayed toward the opposite phase,
in comparison with the mixture-source index difference. It suggests that the PhaseNet learned a
natural posterior distribution that has clear peak at target phase, and was aware of "neighboring
points".

2.3 Recursive Speech Separation for Unknown Number of
Speakers

In section 2.1 and 2.2, we have discussed separating audio sources depending on type of sound
sources. In this section, we are discussing a separation of same type of sources, namely speech
separation. Speech communication often occurs in a multi-talker environment. In such a scenario,
speech separation is required to selectively process each speaker individually. For example, auto-
matic speech recognition first requires the separation of individual speakers from overlapping speech
to successfully transcribe the target speech. Compared with other source separation problems that
aim to separate different types of sources such as instrument types in music, speech separation has
been considered very challenging for decades since the statistics of sources are similar or the same
in the case of speaker independent speech separation problem.

Most recently, a time domain method has surpassed the ideal frequency masks performance
under a two-speaker condition[44]. However, most of these methods assume that the number of
speakers is known in advance. For example, the deep clustering approach requires information of
the number of speakers to cluster embeddings and obtain time-frequency (T-F) masks, although a
unified model can be used for 2 and 3 speakers mixture[40]. In actual cases, however, the number of
speakers is often unknown or varies, making it difficult to robustly estimate the number of speakers
in a mixture. In [42, 46], this problem is partially solved by assuming the maximum number of
speakers M in the mixture. The networks are trained to always output M channels regardless of
the actual number of speakers N in the input, but when N is smaller than M , M − N channels
are enforced to output silent signals. At the test time, the number of speakers is determined by
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Figure 2.14: Illustration of recursive speech separation when N = 3. The speech separation model
is trained to separate one speaker from remaining speakers with OR-PIT, and is recursively applied
to the second output.

detecting the silent channels. Although the method is shown to work when M = 3 [42, 46], it fails
when M < N .

One way to handle the separation of many speakers is to use visual information to leverage
the correlation between speech and mouth movement. In [109], spatio-temporal representations of
speakers’ faces computed by a neural network trained on the lip reading task are concatenated with
an audio signal and a separation network is trained to separate speech sources that correspond
to visual information. It is shown to work up to five speakers in [109]. However, such visual
information is often not available due to occlusion, frame out or lack of cameras. Thus, speech
separation for an unknown number of speakers that operate with audio only is clearly required.

To address this problem, we propose to progressively separate speeches by applying a speech
separation network recursively. Instead of separating all speakers in a mixture at once, the proposed
model separates only one speaker from a mixture at a time and the residual signal is fed back to
the separation model for the recursion to separate the next speaker, as shown in Fig. 2.14. To this
end, we propose one-and-rest permutation invariant training (OR-PIT). The proposed method can
handle different numbers of speakers using a single model by controlling the number of iterations.
Moreover, the proposed method can separate mixture of multi-speakers whose number is larger than
any of that seen during the training time. We further propose a method of robustly determining
when to stop the iteration for an unknown number of speakers. With the proposed iteration
termination criteria, we can more accurately identify the number of speakers than the number of
speaker classifier that accept the mixture as the input, and separate speakers of unknown number.

Another advantage of the proposed method is that it tends to separate first a speaker that is easy
to separate and sequentially tackle those that are harder to separate. Thus the first separation
usually has the highest quality and the quality gradually decreases with increasing number of
iterations. This is a preferable property since one can design a system that focuses on separating
some of the clearest speakers, that is, a few speakers who are close to the microphone. Recently,
similar recursive separation approaches are proposed [110, 111]. However, their works focus on the
case where the number of speakers are same or less than training time, and evaluated only up to 2
speaker mixture. Moreover, [111] requires speaker ID during the training time. On the other hand,
we show that our approach works even for 4 speaker mixture, which is greater than the number of
speakers in the mixtures used for training.

Our contributions are fourfold:

1. We propose a recursive speech separation method for separating a mixture of different numbers
of speakers with a single model, even for mixtures which have more number of speakers than
the mixtures used for training. To train the recursive separation model, we propose OR-PIT.

2. We further propose a robust and efficient recursion stopping method that enables to operate
the recursive speech separation model for an unknown number of speakers.

3. Experimental results showed that our proposed method achieves state-of-the-art results on
WSJ0-2mix and WSJ0-3mix datasets using a single model. Moreover, the proposed model
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can work surprisingly well for a four-speaker mixture, which was never encountered during
the training.

4. We further showed that our proposed approach can more accurately detect the number of
speakers in a mixture than the naive approach of directly classifying the number of speakers.

2.3.1 Recursive Speech Separation

Time domain single channel speech separation entails estimation ofN speaker sources s1(t), s2(t), ...sN (t)

from a mixture signal x(t), where x(t) =
∑N

i=1 si(t). In our work we consider the number of speak-
ers N to be unknown. At the jth recursion step, the recursive speech separator separates one
speaker source ŝj(t) and the mixture of residual speaker sources r̂j(t) from r̂j−1(t) as

ŝj(t), r̂j(t) = F (r̂j−1(t)), (2.6)

where F () denotes the recursive speech separator modeled as a neural network. We define r̂0(t) =
x(t). The residual signal estimated at each step is input to F recursively to obtain subsequent
speaker sources; thus, r̂j(t) consists of N − j speakers. The procedure is illustrated in Fig. 3.1.
The criterion for deciding the number of recursion steps required to estimate all N speaker sources
is described in 2.3.3.

2.3.2 One-and-Rest PIT

According to Eq. (2.6) the separation model F is to be trained to separate one speaker at a time
and be recursively applicable. However, the choice of one speaker is ambiguous, e.g., there are N
valid choices of one target speaker si(t) and corresponding residual signal ri =

∑
n 6=i sn(t). The

training with a random or constant choice of the target speaker fails since we do not assume any
prior on the order of sources, e.g., we do not assume s1 to be female and s2 to be male or so
on, and the model becomes confused how to choose the speaker during the test time. To address
this problem, we propose novel training method called OR-PIT. Inspired by uPIT [42], OR-PIT
computes the error l between the network output and the target for N possible splits of one and
rest assignment, si(t), ri(t). The assignment that yields the lowest loss is used for the training
objective L to optimize the network,

L = min
i
l(ŝ(t), si(t)) +

1

N − 1
l(r̂(t),

∑
n 6=i

sn(t)). (2.7)

We omit j for simplicity. The error of the residual signal output channel is divided by the number
of speaker sources in the residual mixture to balance it with the error of the single-speaker output
channel. For the error, in this work, we use the scale-invariant signal-to-noise ratio (SI-SNR)1,
which has successfully been used in speech separation in the literature [40, 43, 44]. SI-SNR is
formulated as: 

starget := 〈ŝ,s〉s
‖s‖2

enoise := ŝ− starget
lSI-SNR(ŝ, s) := 10 log10

‖starget‖2

‖enoise‖2

(2.8)

where ŝ and s are the mean normalized estimates and targets, respectively. The mean normalization
of the sources ensures the scale invariance property of the loss function.

In the case when the input to the network is a two speaker mixture, OR-PIT is equivalent to
the conventional uPIT [42]. However, when the input is a mixture of more than two speakers, the
permutations are computed by taking combinations of one speaker source and the sum of other
speaker sources. Thus, the number of permutations in our case is N rather than N !, which is the
case in uPIT. Another key difference from uPIT is that the sum of rest speaker sources (residual,
r̂j(t)) is always trained to be on the second output channel. The purpose of OR-PIT is to ensure

1Also denoted as SI-SDR in [41, 112].
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Table 2.10: SI-SNR improvement (dB) for 2- and 3-speaker separations before and after fine tuning

Model WSJ0-2mix WSJ0-3mix
Before fine tune 15.0 12.2
After fine tune 14.8 12.6

that the best combination of one speaker source and residual speaker sources are separated during
the training. This allows the model to be used recursively in the second output channel until the
stopping criterion is met.

One notable advantage of the proposed method is that it is not required to predefine the
maximum number of speakers and can be applied to an arbitrary number of sources even those
never seen during the training. We verify this in Sec. 2.3.4.

2.3.3 Iteration Termination Criteria

As the proposed method recursively separates one speaker from a mixture at a time, we obtain J
speaker sources by J recursion steps, where J 5 N . If we wish all speaker sources to be separated,
the number of iteration steps should be equal to the number of speakers, i.e., J = N . (J − 1 = N
is also possible since the residual signal at the J − 1th recursion step contains a single speaker.) A
naive approach is to estimate the number of speakers N using a neural network [113]. We argue
that estimating the number of speakers directly from the mixture is relatively difficult and propose
to leverage the recursive speech separation model. We propose a simple deep neural network
based binary classifier that accepts the residual outputs r̂j , (j = 1) and predicts whether the signal
is speech or not at each recursion step j. If r̂j is predicted as speech, we proceed to the next
recursion step. Otherwise, we stop the recursion and estimate N as j. Note that the energy based
approach in [42, 46] cannot be applied to our approach since we use SI-SNR as a training objective
and separating a single speaker input does not guarantee to produce a silent signal in one of the
outputs, ŝj(t), r̂j(t).

2.3.4 Experiments

Network Training

We trained our model for the speech separation task using the Wall Street Journal data set (WSJ0).
The model was trained concurrently with 2-speaker and 3-speaker mixture inputs. Following [40],
the input mixtures were generated by randomly selecting utterances of different speakers from
WSJ0 and mixing them at random SNR between -2.5 dB and 2.5 dB. The mixture was resampled
to 8 kHz to reduce computations.

As the network architecture, we adopted TASNet [44], which is a recently proposed time domain
speech separation network and produced state-of-the-art results on WSJ-2mix and WSJ-3mix
datasets. We used the best performing configuration described in [44]. We replaced the softmax
non-linearity used to generate the masks with a ReLU non-linearity in our architecture as we
found that it worked better in our recursive model. We chose a time domain approach as the
phase reconstruction is shown to be important for source separation to improve the performance
[41] and operating directly on time domain signals is possible. However, our proposed method is
also applicable to the T-F domain approach.

While training, we forced the first network output channel to always have one speaker and the
second channel to collect all the remaining speakers in the mixture input. The model was trained
using the OR-PIT with the SI-SNR loss function explained in Sec. 2.3.2. The network was initially
trained for 100 epochs with 2- and 3-speaker mixture inputs. The initial learning rate was set
to 1e−3. The Adam optimizer was used with a weight decay of 1e−5. The input mixtures were
4 seconds long with 50% overlap between two successive frames. In the decoder, the overlapping
segments were added together to generate the final reconstructions as in [44].

To further improve the performance of recursion, the model was fine tuned on a 2-speaker
mixture obtained from a separation of the first iteration of 3-speaker mixture, instead of clean 2-
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Table 2.11: Performance comparison of models trained on WSJ0 data sets. SiSNRi(dB), SDRi(dB)
and PESQ of models on WSJ0-2mix, WSJ0-3mix and WSJ0-4mix are compared. ( ’N/A’ - Not
applicable, ’-’ - Data not available )

Method WSJ0-2mix WSJ0-3mix WSJ0-4mix
SI-SNRi SDRi PESQ SI-SNRi SDRi PESQ SI-SNRi SDRi PESQ

2 speaker
model

DPCL++[40] 10.8 - -

N/A N/A N/A N/A N/A N/A
uPIT-BLSTM-ST[42] - 10.0 -

DANet[45] 10.5 - 2.64
ADANet[46] 10.4 10.8 2.82

Conv-TasNet-gLN[44] 14.6 15.0 3.25

3 speaker
model

DPCL++[40]

N/A N/A N/A

7.1 - -

N/A N/A N/A
uPIT-BLSTM-ST[42] - 7.7 -

DANet[45] 8.6 8.9 1.92
ADANet[46] 9.1 9.4 2.16

Conv-TasNet-gLN[44] 11.6 12.0 2.5

2&3 speaker
model

DPCL++[40] 10.5 - - 7.1 - -
N/A N/A N/AuPIT-BLSTM-ST[42] - 10.1 - - 7.8 -

ADANet[46] 10.4 - - 8.5 - -
OR-PIT (Proposed) 14.8 15.0 3.12 12.6 12.9 2.60 10.2 10.6 2.26

Oracle mask (Ideal binary mask) 13.0 13.5 3.33 13.2 13.6 2.91 11.8 12.0 2.42

speaker mixture. The loss was accumulated on both the first iteration (clean 3-speaker separation)
and the second iteration (residual 2-speaker separation), and back-propagated. Although the fine
tuning slightly decreased the performance of 2-speaker separation, it more significantly improved
the performance of the 3-speaker separation. The SI-SNR improvement of our model before and
after fine tuning is shown in Table 2.10.

Comparison with other approaches

We compared the proposed method with other state-of-the-art methods [40, 45, 42, 46, 44] on
WSJ0-2mix and WSJ0-3mix datasets[114]. The baseline methods are categorized into three groups,
namely the 2-speaker model which is trained for the 2-speaker separation task, the 3-speaker model
which is trained for 3-speaker separation task, and the 2&3-speaker model which is trained so that it
can be applied to both 2- and 3-speaker separation tasks with a unified model. Note that our model
is not grouped as 2&3-speaker model since it can be applied to arbitrary number of speakers even
though it was trained on two and three speaker mixture. On the other hand, [45, 46], 2&3-speaker
model is designed to handle an unknown number of speakers which is smaller than the maximum
number of speakers it is trained for. To confirm whether our proposed method can handle the
number of speakers that was never seen during the training time, we also evaluated the proposed
method on a newly created four-speaker mixture. The 4-speaker evaluation set (WSJ0-4mix) was
created from the WSJ0-3mix by adding one more speaker source to each of the 3-speaker mixture
and mixing them at random SNRs between -3 and 3dB. We also include the ideal binary mask as
the baseline.

The SI-SNR improvement (SI-SNRi), signal-to-distortion ratio improvement (SDRi) [101] and
perceptual evaluation of speech quality score (PESQ) [115] are shown in Table 2.11. In the cases
where the number of speakers in the mixture is different from that of the model target, we marked
them as Not Applicable (N/A). We assume an oracle iteration termination for OR-PIT. The
termination method is discussed in Sec. 2.3.4. As shown in the table, the proposed method
achieved the best results on SI-SNRi and SDRi on both WSJ0-2mix and 3mix datasets. Even
when compared with the models specifically trained for 2- or 3-speaker separation, the proposed
method outperforms most baselines with a single model. It is worth noting that our model uses
the same network architecture as Conv-TasNet-gLN [44] except the nonlinearlity of the last layer.
Comparison with these models suggests the effectiveness of the proposed recursive separation
method and generalization capability to the number of input speakers. This effectiveness is further
supported by the evaluation on four-speaker mixture. Even though the proposed method never
encountered the four-speaker mixture during the training, it separated four speaker surprisingly
well with three recursions.
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Table 2.12: Test accuracy of speech or noise binary classifier and multi-class count speakers clas-
sifier

Model Accuracy
Binary classifier 95.7%

Multi-class classifier 77.9 %
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Figure 2.15: SI-SNR of dominant-speaker separation on various numbers of interference speakers.

Identification of number of speakers

Since our model can perform speech separation of an unknown number of speakers in input by
recursion, it is very important to know when to terminate the recursion. We evaluated the proposed
iteration termination criteria described in Sec.2.3.3. We trained the Alexnet model [116] for the
task of binary classification of speech or noise on the residual inputs coming out from the second
channel. As a baseline, we also trained the Alexnet model for a multiclass classification task of
counting the number of speakers in the input mixture. The baseline model can be used with,
for example, DPCL[40] to decide the number of clusters. Please note that the capability of the
multiclass classifier is limited by the maximum number of speakers in a mixture input in the
training set. On the other hand, the binary classifier is independent of the number of speakers in
the mixture. For both models, input segments of 10 seconds long mel spectrogram with window
length 1024, 50% overlap and downsized to 128 mel bands were used as input features. The test
set consisted of 3000 samples each of clean 1, 2 and 3 speakers from the WSJ0 evaluation sets,
WSJ0-2mix and WSJ0-3mix, respectively. For the binary classifier, when the network predicts all
the iterations except the last as speech, it is considered as a successful classification and vice versa.
As shown in Table 2.12, the binary classifier more accurately detects the number of speakers than
the multiclass classifier. This clearly indicates the effectiveness of leveraging the recursive speech
separation model for the detection of the number of speakers.

Dominant speech separation

A notable property of the proposed method is that it tends to separate the most dominant (easiest)
speaker first and successively tackles the separation of less dominant (harder) speakers. This is
useful when we consider extracting a few speakers close to the microphone in a crowd since we can
often assume that the conversation takes place within a small area and one of speakers can hold or
attach a microphone. As a special case, we consider extracting the most dominant speaker from a
mixture of a large number of speakers. To simulate a speech in a crowd recorded by a microphone
attached to the target speaker, we created an evaluation dataset by adding N interference speakers
to the target speaker. We vary N from 1 to 50 and created an evaluation set of 500 samples for
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each of the cases. The first interference speaker level is scaled to be 18dB less than target speaker
and every Nth speaker was scaled to have 0.5 dB lower than the N−1th interference speaker. The
same model in Sec.2.3.4 was used and the model was never trained or fine-tuned for this task. , i.e.,
the model never saw a mixture of more than three speakers during the training. Fig. 2.15 shows
the SI-SNR of the proposed method and the mixture as a baseline. It is shown that the proposed
method consistently improved SI-SNR and achieved high SI-SNR even for a mixture of more than
10 speakers. It indicates that the proposed method can be robustly applied for a dominant-speaker
separation from a mixture of a large number of speakers.

2.4 Conclusion of this Chapter
We first investigated the deep neural network architecture that efficiently model the magnitude
spectrogram. To this end, proposed MMDenseLSTM that model the spectrogram in multi-
resolution and multi-band with combination of DenseNet and LSTM. The proposed architecture
achieves state-of-the-art results on DSD100 and MUSDB18 datasets, showing the effectiveness of
multi-band multi-scale structure with the dense connection and combination of convolutional and
recurrent layers. To reconstruct the phase, we proposed to treat the phase estimation problem as
a classification problem, and proposed PhaseNet that predict the quantized phase index of target
phase. For speech separation, we proposed a novel recursive speech separation approach that deal
with different numbers of speakers cases using a single model. Experimental results show that
our proposed method achieves state-of-the-art results on two and three speaker mixture with the
same model and even worked on a four-speaker mixture even though the model has never seen the
four-speakers mixture during the training.
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Chapter 3

Automatic Speech Recognition

The three principal resources typically required for developing a phoneme based automatic speech
recognizer (ASR) are: transcribed acoustic data for acoustic model estimation, text data for lan-
guage model estimation, and a pronunciation dictionary to map words to sequences of sub-word
units. Manual preparation of such resources requires significant investment and expertise. There-
fore, an automatic generation of pronunciation dictionary from the data is clearly required for
many dialects and languages.

The main focus of this thesis is to design an ASR based on an automatically generated dic-
tionary that outperforms commonly used phoneme based ASRs. While most of the solutions
proposed to find a pronunciation based on multiple utterances of a word are n-best type heuristics
[54, 117, 118], in this thesis, we employ an approximation of the K-dimensional Viterbi algorithm
proposed in our previous works [119, 56]. This approach gives us the maximum-likelihood estimates
of the pronunciations. These high-quality pronunciations are one of the key factors to outperform
phoneme based ASRs. Moreover, to learn proper sub-word units, we combine the strength of
Gaussian mixture models (GMM) and deep neural network (DNN) based acoustic modeling. We
formulate this problem as an instance of a semi-supervised self-learning process. By taking advan-
tage of the robustness of hidden Markov models (HMM) with GMM based observation probability
distribution against labeling errors, we train the first set of sub-word units and output the first
set of pronunciations. We then use this dictionary to re-label the data and employ the higher ex-
pressiveness of DNNs to improve the modeling of sub-word units and the dictionary in an iterative
process. In each iteration round, a new dictionary is generated and by means of this new dictionary
the data is re-labeled. This data is again used to train the DNN. As shown in the experiments, the
proposed results achieves more than 10% absolute improvement over the phoneme based approach
on TIMIT data in a continuous speech recognition task.

The reminder of this chapter is organized as follows. The proposed framework and its compo-
nents for joint sub-word units and dictionary learning are introduced in Section 3.1. In Section 3.2
the experimental results are demonstrated and finally, conclusions are summarized in Section 3.3.

3.1 Semi-supervised joint Dictionary and Acoustic Model
Learning

3.1.1 Framework

In the rest of this chapter, we refer to data-driven sub-word units as abstract acoustic elements
(AAEs) in contrast to phones. Our goal is to jointly learn the pronunciation dictionary d∗ =
{ω1, · · · , ωL} of L pronunciations ωi and N AAE models λ∗ = {A1, · · · , AN} that maximize the
joint likelihood:

λ∗, d∗ = arg max
Λ,D

P (X|T,Λ, D) (3.1)

33



Figure 3.1: Framework of joint sub-word and dictionary learning. K-dimensional Viterbi illustrated
in case of K = 2.

where X = (X1, · · · , XM ) is the set of training utterances, T = (T1, · · · , TM ) is the set of cor-
responding orthographic transcriptions, M is the number of utterances, Λ is the universe of all
possible sets of N AAEs and D is the universe of all the dictionaries which map words to AAEs
sequences. It is hard to find the optimal solution for the optimization problem in (3.1) due to its
complex non-linear nature. It is thus decomposed into two simpler optimization problems which
can be solved iteratively.

di = arg max
D

P (X|T, λi, D) (3.2)

λi+1 = arg max
Λ

P (X|T,Λ, di) (3.3)

Since the pronunciation of each word can be estimated independently from other words, the dic-
tionary estimation in (3.2) can be decomposed into L maximum likelihood estimations as follows:

ωl = arg max
ω

∏
j∈Ωl

max
Sj

P (Xj ,Sj |λ)

subject to: Sj ∈ Sω
(3.4)

where Ωl is the set of indices of utterances of word Wl, Sj is a sequence of AAEs and Sω denotes a
set of all possible AAE sequences of the pronunciation ω. For instance in Sω, if the pronunciation is
ω = A1A2A3, some samples in Sω may be A1A1A1A2A3, A1A2A2A3A3 and A1A1A2A3A3A3. The
constraint in (3.4) implies that all AAE sequences should be samples of the same pronunciation.
For the case where λ is modeled by a left-to-right HMM without skips, which is the most common
topology in HMM based ASRs, a solution of (3.4) has been proposed in [119] (Details are in
Section 3.1.3.). In (3.3), since the dictionary is fixed, the problem results in a common acoustic
model estimation given the dictionary. However, the labels re-assigned by using the estimated
dictionary are very noisy since the dictionary is automatically estimated from data without any
expert supervision. Therefore, a robust model is required at early stage of the training iteration
while a more expressive and powerful model such as a DNN [120, 121] can be used after the reliable
dictionary is obtained.

The joint dictionary and AAE learning framework is illustrated in Figure 3.1 and summarized
as follows:

3.1.2 Acoustic Model Initialization
Initial AAE models can simply be obtained by clustering the acoustic space. The acoustic space
can be described by any feature as long as it is informative enough to discriminate between different
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Algorithm 1 Semi-supervised joint AAEs and dictionary learning
1: i = 0

// Initialize AAE models λ0 (Section 3.1.2)
2: Clustering the acoustic space.
3: Model each cluster by GMM and set as λ0.

// Start joint AAEs and dictionary learning
4: while ( Performance is improved ) do
5: Given AAE models λi, update dictionary di by maximizing joint likelihood multiple utter-

ances (Section 3.1.3).
6: Given dictionary di, double the number of mixtures and update AAE models λi+1 (Sec-

tion 3.1.4).
7: i← i+ 1
8: end while
9: Replace GMM by DNN and train AAE model using labels obtained by HMM-GMM (Sec-

tion 3.1.4).
10: while ( Performance is improved ) do
11: Given AAE models λi, update dictionary di by maximizing joint likelihood multiple utter-

ances.
12: Given dictionary di, re-train DNN based AAE models λi+1 (Section 3.1.4).
13: i← i+ 1
14: end while

words. We employed the Linde-Buzo-Gray (LBG) algorithm [122] with a squared-error distortion
measure to cluster the acoustic feature vectors. The LBG clustering algorithm tends to assign more
codebook vectors to high-density areas which is a useful property in order to obtain discriminative
initial AAEs. Each cluster is then modeled by a GMM with a single Gaussian component. These
models are used as the initial models for AAEs.

3.1.3 Dictionary Generation

The solution of (3.4) proposed in [119] is an extension of the standard one-dimensional Viterbi
algorithm to K dimensions. The K-dimensional Viterbi algorithm calculates the most probable
HMM state sequence which is common to K given utterances. While this algorithm is rigorous, its
complexity grows exponentially with the number of utterances, which consequently makes it infea-
sible to apply it to more than a few utterances. An efficient approximation of the K-dimensional
Viterbi algorithm has been proposed in [56] where the problem to find the joint alignment and
the optimal common sequence for K utterances is decomposed into K−1 applications of two-
dimensional Viterbi algorithm. This approximation starts with finding the best alignment between
two utterances. Then, while keeping the alignment between the already processed utterances fixed,
the next utterance is aligned with this master utterance. The AAE sequence of the final master
utterance is the approximation of the K-dimensional Viterbi pronunciation.

3.1.4 Acoustic Modeling

Once the dictionary is updated, all utterances are decoded based on the new pronunciation of the
words in the dictionary and the AAEs are re-estimated according to the new labels. The AAEs
can be modeled by commonly used models such as HMM/GMM or HMM/DNN. However, at the
beginning of the training iteration, the model and dictionary are not accurate enough and more
probable to get stuck in a bad local optimum if the model’s degree of freedom is too high. In order to
avoid this situation, we start the training with a simple model, namely one Gaussian component for
each AAE with a diagonal covariance matrix. In each iteration, the dictionary gets more accurate.
Thus, the number of mixture components are doubled in order to increase the modeling power.
Once the performance is saturated the GMM is replaced with the DNN in order to utilize more
expressive modeling capability. This process makes the semi-supervised DNN training feasible and
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prevents it to get stuck in a bad local optimum. The HMM state-level transcription is obtained
by force-aligned decoding with optimised HMM-GMM and dictionary. This transcription provides
labels for DNN training. The DNN is trained to estimate HMM posterior states by minimizing
the cross entropy loss L with l1 regularization using back propagation:

arg min
W

∑
i,j

L(xi
j , y

i
j ,W ) + ρ‖W‖1 (3.5)

where xi
j ∈ Xi is the jth feature vector of the ith utterance, yij is the corresponding label and W

is the set of network parameters, respectively. ρ is a constant parameter which is set to 10−6 in
this work.

3.2 Experiments

We conducted several sets of experiments on the TIMIT corpus [123]. The TIMIT corpus provides
a manually prepared dictionary and phone-level transcriptions with 61 phones. As a baseline, 61
phone models were trained using the TIMIT dictionary and the provided transcriptions. We used
12 mel frequency cepstral coefficients (MFCCs) and energy with their deltas and delta-deltas as
descriptors of the acoustic space. The speech data was analyzed using a 25 ms Hamming window
with a 10 ms frame shift. We evaluated phone based DNN-HMM, GMM-HMM and AAE based
GMM-HMM model as baselines. The DNN architecture was comprised of 7 hidden layers. The
first hidden layer had 2048 nodes, next 5 layers had 1024 nodes and the number of nodes at the last
layer was equal to the number of HMM states to be predicted. All hidden layers were equipped
with the Rectified Linear Unit (ReLU) non-linearity [124]. The input to the network was 11
contiguous frames of MFCCs. The networks were trained using mini-batch gradient descent based
on back propagation with momentum. We applied dropout [120] to all hidden layers with dropout
probability 0.5. The batch size was set to 128. HMMs had left-to-right, no-skipping topology with
three states for each phoneme as opposed to one state for each AAE. HMMs were trained using a
modified version of HTK [125] and DNNs were implemented using Lasagne [126].

3.2.1 Isolated Word Recognition

The first set of experiments were on the isolated word recognition to test the performance of
the proposed methods and investigate the effects of hyper parameters such as the number of
mixture components and the number of AAEs. For joint pronunciation estimation and acoustic
models training, we collected a pronunciation training set comprising of words with more than
10 utterances from the TIMIT training set. The total number of utterances in the pronunciation
training set was 12800. After excluding words with less than 4 characters (e.g., a and the), 339
distinct words were collected from the TIMIT test set for the isolated word speech recognition task,
resulting in 3900 utterances in total. The baseline GMM based phone models were trained with 32
mixture components. During the GMM based AAE model training the number of mixtures was
doubled for each iteration until it reached 128 mixtures as described in Section 3.1.4.

Comparison with phonetic approach

The word error rates (WER) of each method are shown in Table 3.1. The results show that the
proposed data-driven method clearly outperforms the baseline methods. The proposed AAE-DNN
method achieved 10.3% and 2.4% improvement over GMM and DNN based phonetic acoustic
models, respectively. This suggests that a more accurate dictionary and better acoustic models
can be obtained directly from training data without any human expertise. Moreover, AAE-DNN
method improves the performance by 3.2% over the AAE-GMM method. This indicates that the
DNN was successfully trained in the semi-supervised manner and the final model could effectively
use the its expressive modeling power.
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Table 3.1: Comparison of word error rates of each method on 339 words isolated word recognition
(%). Baseline phone models are trained by using the TIMIT dictionary.

Method WER
Phone GMM 18.18
Phone DNN 10.31
AAE GMM 11.15
AAE DNN 7.93

Table 3.2: Word error rates in % of AAE based recognizers with different number of AAEs and
GMM mixture. The best performance for each number of AAE is plotted in Figure 3.2.

# of AAE # of mixture
16 32 64 128

64 19.48 18.33 17.52 16.93
128 14.33 13.87 13.09 13.70
192 13.39 13.31 12.68 13.98
256 11.97 11.56 12.65 14.33
320 11.46 11.15 11.69 14.10
384 11.63 11.56 12.14 13.75
448 11.20 11.33 12.45 -

Number of AAEs

Our second experiment focused on the effects of the number of AAEs, i.e. N . We trained the
dictionary and AAE models with N = 64, 128, 192, 256, 320, 384, 448. The word error rates of
DNN and GMM based AAE models are illustrated in Figure 3.2. The number of mixtures of the
GMMs were determined experimentally as shown in Table 3.2. For DNN based AAE models, the
best result are obtained with 384 AAEs in contrast to with 320 AAEs for the GMM based models.
Interestingly, the optimal number of AAE states is far higher than the number of states of the
phone models (61 phonemes × 3 states = 183 states). This is an indication that the proposed
data-driven approach to jointly generate the sub-word units and dictionary models the acoustic
space more precisely than the linguistically motivated phonetic units and the manually designed
dictionary. It is also worthwhile to mention that the optimal number of DNN based AAE models
was higher than that of GMM based models. This is perhaps due to the fact that the DNN was
trained discriminatively, allowing to efficiently model the interaction between higher number of
AAEs.

3.2.2 Continuous Speech Recognition

Unlike phoneme based ASRs, the proposed AAE based approach does not depend on linguistic
knowledge. It is therefore interesting to compare these approaches on a real-world continues speech
recognition (CSR) task. For this purpose, we used the SX records of the TIMIT corpus which
contains 450 sentences spoken by 7 speakers, i.e. 3150 utterances in total. We prepared the test
set by randomly selecting and putting aside one speaker for each sentence from the SX recordings
and used the remaining samples as the training set (450 sentences × 6 speaker = 2700 utterances).
We also included the SA and SI recordings of the TIMIT corpus in the training set. The number
of AAEs was 384. The number of mixture components in the GMM based phone models was 64.
The performance was evaluated in two scenarios: with and without language model. The language
model employed in the baseline and the proposed methods is a simple bigram model.

Table 3.3 shows that the proposed AAE-DNN based approach significantly outperforms baseline
methods in both scenarios. The performance improvements over the phone based HMM-DNN
method in with and without the language model scenarios were 10.68% and 5.11%, respectively.
The results suggest that the proposed data-driven dictionary and the AAE models are also useful
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Figure 3.2: Performance of AAE based recognizers with different number of AAEs on test set with
339 words.

Table 3.3: Comparison of word error rate of each method on continuous speech recognition. In
column ”No LM”, no language model was used.

Method No LM Bigram
Phone GMM 71.11 43.54
Phone DNN 50.18 20.89
AAE GMM 59.52 32.36
AAE DNN 39.05 15.78

for CSR and a more accurate representation of speech signals can be learned automatically. We
observed that all 384 AAEs were actually used in the trained dictionary, and the dictionary tend
to assign 39% more HMM states on average to each word as compare with the TIMIT phonetic
dictionary. This means that in AAEs, the stay-in-state probability is smaller resulting in more
frequent state transitions. This suggests that by using AAEs, the acoustic space was modeled at
a higher resolution. This consequently increased the precision of the word pronunciations.

3.3 Conclusion of this Chapter
In this Chapter we proposed a novel joint dictionary and sub-word unit learning framework for
ASRs. The proposed method does not require linguistic expertise, and can automatically cre-
ate the set of sub-word units and the corresponding pronunciation dictionary. In our method,
reliable pronunciations are estimated from multiple utterances by an efficient approximation of K-
dimensional Viterbi algorithm which estimates the most probable HMM state sequence common to
multiple utterances of a word. Experimental results show that the proposed method significantly
outperforms the phone based methods which even get manually prepared dictionary and hand
crafted transcriptions as inputs. We further investigated the effects of the number of data-driven
sub-word units and showed that the optimal number of sub-word units is much higher than the
total number of HMM states of the 61 phones. The future works will be directed towards applying
the proposed method to speech recognition for under-resourced languages and large vocabulary
continuous speech recognition tasks.
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Chapter 4

Audio Event Recognition

Next, we discuss the recognition of general audio event. As we discussed in the introduction 1, we
are aiming at creating a generic way to represent audio signals that can be used for solving various
audio analysis tasks in a unitary way. Existing audio event recognition such as [127, 128] consist of
complex events with multiple sound sources in a class (e.g. the "birthday party" class may contain
sounds of voices, hand claps, music and crackers). Classifiers learnt from these datasets are task
specific and not transferred well for other tasks such as generic video analysis since other classes
such as "Wedding ceremony" also would contain the sounds of voices, hand claps or music. To this
end, we introduce a novel dataset in which the audio event classes are more factorized and generic
so that the hidden representation of DNN classifier learnt on the dataset can be useful for other
tasks. We discuss the learnt feature transferability in Chapter 5.

In order to design the classifier, we introduce novel deep convolutional neural network (CNN)
architectures with up to 9 layers and a large input field. The large input field allows the networks
to directly model several seconds long audio events with time information and be trained end-
to-end. The large input field, capturing audio features for video segments, is suitable for video
analysis since this is typically conducted on segments several seconds long. Our feature descriptions
keep information on the temporal order, something which is lost in most previous approaches
[63, 4, 59]. In order to train our networks, we further propose a novel data augmentation method,
which helps with generalization and boosts the performance significantly. The proposed network
architectures show superior performance on AER over BoAW and conventional CNN architectures
which typically have up to 3 layers.

In the following sections, we introduce a novel CNN based AER including a new dataset, novel
network architectures and a data augmentation strategy. Then the proposed methods are validated
in Section 4.2.

4.1 Architectural and Training Novelties

4.1.1 Large Input Field

In ASR, few-frame descriptors are typically concatenated and modeled by a GMM or DNN [120,
121]. This is reasonable since they aim to model sub-word units like phonemes which typically
last less than a few hundred ms. The sequence of sub-word units is typically modeled by a HMM.
Most works in AER follow similar strategies, where signals lasting from tens to hundreds of ms are
modeled first. These small input field representations are then aggregated to model longer signals
by HMM, GMM [129, 59, 71, 130, 131] or a combination of BoAW and SVM [67, 68, 69]. Yet,
unlike speech signals, non-speech signals are much more diverse, even within a category, and it is
doubtful whether a sub-word approach is suitable for AER. Hence, we decided to design a network
architecture that directly models the entire audio event, with signals lasting multiple seconds
handled as a single input. This also enables the networks to optimize its parameters end-to-end.

39



Figure 4.1: Our deeper CNN models several seconds of audio directly and outputs the posterior
probability of classes.

4.1.2 Deep Convolutional Network Architecture
Since we use large inputs, the audio event can occur at any time and last only for a part, as
depicted in Table 4.1. There the audio event occurs only at the beginning and the end of the
input. Therefore, it is not a good idea to model the input with a fully connected DNN since
this would induce a very large number of parameters that we could not learn properly. In order
to model the large inputs efficiently, we used a CNN [72] to leverage its translation invariant
nature, suitable to model such larger inputs. CNNs have been successfully applied to the audio
domain, including AER [91, 71]. The convolution layer has kernels with a small receptive field
which are shared across different positions in the input and extract local features. As stacking
convolution layers, the receptive field of deeper layer covers larger area of input field. We also
apply convolution to the frequency axis to deal with pitch shifts, which are shown to be effective
for speech signals [97]. Our network architecture is inspired by “VGG Net” [74], which obtained
the second place in the ImageNet 2014 competition and was successfully applied for ASR [75]. The
main idea of VGG Net is to replace large (typically 9×9) convolutional kernels by a stack of 3×3
kernels without pooling between these layers. Advantages of this architecture are (1) additional
non-linearities, hence more expressive power, and (2) a reduced number of parameters (i.e. one
9×9 convolution layer with C maps has 92C2 = 81C2 weights while a three-layer 3×3 convolution
stack has 3(32C2) = 27C2 weights). We have investigated many types of architectures, including
the number of layers, pooling sizes, and the number of units in fully connected layers, to adapt
the VGG Net of the image domain to AER. As a result, we propose two architectures as outlined
in Table 4.1. Architecture A has 4 convolutional and 3 fully connected layers, while Architecture
B has 9 weight layers: 6 convolutional and 3 fully connected. In this table, the convolutional
layers are described as conv(input feature maps, output feature maps). All convolutional layers
have 3×3 kernels, thus henceforth kernel size is omitted. The convolution stride is fixed to 1. The
max-pooling layers are indicated as time × frequency in Table 4.1. They have a stride equal to
the pool size. Note that since the fully connected layers are placed on top of the convolutional and
pooling layers, the input size to the fully connected layer is much smaller than that of the input
to the CNN, hence it is much easier to train these fully connected layers. All hidden layers except
the last fully-connected layer are equipped with the Rectified Linear Unit (ReLU) non-linearity.
In contrast to [74], we do not apply zero padding before convolution, since the output size of the
last pooling layer is still large enough in our case. The networks were trained by minimizing the
cross entropy loss L with l1 regularization using back-propagation:

arg min
W

∑
i,j

L(xi
j , y

i
j ,W ) + ρ‖W‖1 (4.1)

where xj is the jth input vector, yj is the corresponding class label and W is the set of network
parameters, respectively. ρ is a constant parameter which is set to 10−6 in this work.

4.1.3 Data Augmentation
Since the proposed CNN architectures have many hidden layers and a large input, the number of
parameters is high, as shown in the last row of Table 4.1. A large number of training data is vital
to train such networks. Jaitly et al. [132] showed that data augmentation based on Vocal Tract
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Table 4.1: The architecture of our deeper CNNs. Unless mentioned explicitly convolution layers
have 3×3 kernels. The input size of each model is discussed in Sec 4.2.3.

Baseline Proposed CNN
#Fmap DNN Classic CNN A B

64 conv5×5 (3,64) conv(3,64) conv(3,64)
pool 1×3 conv(64,64) conv(64,64)

conv5×5(64,64) pool 1×2 pool 1×2
128 conv(64,128) conv(64,128)

conv(128,128) conv(128,128)
pool 2×2 pool 2×2

256 conv(128,256)
conv(128,256)

pool 2×1
FC FC4096

FC2048 FC1024 FC1024 FC2048
FC2048 FC1024 FC1024 FC2048
FC28 FC28 FC28 FC28

softmax
#param 258×106 284×106 233×106 257×106

Length Perturbation (VTLP) is effective to improve ASR performance. VTLP attempts to alter
the vocal tract length during the extraction of descriptors, such as a log filter bank, and perturbs
the data in a certain non-linear way.
In order to introduce more data variation, we propose a different augmentation technique. For most
sounds coming with an event, mixed sounds from the same class also belong to that class, except
when the class is differentiated by the number of sound sources. For example, when mixing two
different ocean surf sounds, or of breaking glass, or of birds tweeting, the result still belongs to the
same class. Given this property we produce augmented sounds by randomly mixing two sounds of a
class, with randomly selected timings. In addition to mixing sounds, we further perturb the sound
by moderately modifying frequency characteristics of each source sound by boosting/attenuating a
particular frequency band to introduce further varieties while keeping the sound recognizable. An
augmented data sample saug is generated from source signals for the same class as the one both
s1 and s2 belong to, as follows:

saug = αΦ(s1(t), ψ1) + (1− α)Φ(s2(t− βT ), ψ2) (4.2)

where α, β ∈ [0, 1) are uniformly distributed random values, T is the maximum delay and Φ(·, ψ)
is an equalizing function parametrized by ψ. In this work, we used a second order parametric
equalizer parametrized by ψ = (f0, g,Q) where f0 ∈ [100, 6000] is the center frequency, g ∈ [−8, 8]
is a gain and Q ∈ [1, 9] is a Q-factor which adjusts the bandwidth of a parametric equalizer. An
arbitrary number of such synthetic samples can be obtained by randomly selecting the parameters
α, β, ψ for each data augmentation. This data augmentation helps networks to be more robust and
thus generalize to moderate fluctuation of the number of sources, loudness, and sound color. We
refer to this approach as Equalized Mixture Data Augmentation (EMDA).

4.1.4 Dataset
In order to learn a discriminative and universal set of audio features, a dataset on which the
feature extraction network is trained needs to be carefully designed. If the dataset contains only
a small number of audio event classes, the learned features could not be discriminative. Another
concern is that the learned features would be too task specific if the target classes are defined at
too high a semantic level (e.g. Birthday Party or Repairing an Appliance), as such events would
present the system with rather typical mixtures of very different sounds. Therefore, we design
the target classes according to the following criteria: 1) The target classes cover as many audio
events which may happen in consumer videos as possible, 2) The sound events should be atomic
(no composed events) and non-overlapping. As a counterexample, "Birthday Party" may consist
of Speech, Cracker Explosions and Applause, so it is not suitable. 3) Then again, the subdivision
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Figure 4.2: Architecture of our deeper CNN model adapted to MIL. The softmax layer is replaced
with an aggregation layer.

of event classes should also not made too fine-grained. This will also higher the chance that a
sufficiently large number of samples can be collected. For instance, "Church Bell" is better not
subdivided further, e.g. in terms of its pitch.

In order to create such a novel audio event classification database, we harvested samples from
Freesound [133]. This is a repository of audio samples uploaded by users. The database consists
of 28 events as described in Table 4.21. Note that since the sounds in the repository are tagged in
free-form style and the words used vary a lot, the harvested sounds contain irrelevant sounds. For
instance, a sound tagged ’cat’ sometime does not contain a real cat meow, but instead a musical
sound produced by a synthesizer. Furthermore sounds were recorded with various devices under
various conditions (e.g. some sounds are very noisy and in others the audio event occurs during
a short time interval between longer silences). This makes our database more challenging than
previous datasets such as [134]. On the other hand, the realism of our selected sounds helps us
to train our networks on sounds similar to those in actual consumer videos. With the above goals
in mind we extended this initial freesound dataset, which we introduced in [91]), to 41 classes,
including more diverse classes from the RWCP Sound Scene Database [134].

In order to reduce the noisiness of the data, we first normalized the harvested sounds and
eliminated silent parts. If a sound was longer than 12 sec, we split the sound into pieces so that
the split sounds lasted shorter than 12 sec. All audio samples were converted to 16 kHz sampling
rate, 16 bits/sample, mono channel.

4.1.5 Multiple Instance Learning

Since we used web data to build our dataset (see Sec. 4.1.4), the training data is expected to be
noisy and to contain outliers. In order to alleviate the negative effects of outliers, we also employed
multiple instance learning (MIL) [135, 136]. In MIL, data is organized as bags {Xi} and within
each bag there are a number of instances {xij}. Labels {Yi} are provided only at the bag level,
while labels of instances {yij} are unknown. A positive bag means that at least one instance in the
bag is positive, while a negative bag means that all instances in the bag are negative. We adapted
our CNN architecture for MIL as shown in Fig. 4.2. N instances {x1, · · · , xN} in a bag are fed to a
replicated CNN which shares its parameters. The last softmax layer is replaced with an aggregation
layer where the outputs from each network h = {hij} ∈ RM×N are aggregated. Here, M is the
number of classes. The distribution of class of bag pi is calculated as pi = f(hi1, hi2, · · · , hiN )
where f() is an aggregation function. In this work, we investigate 2 aggregation functions: max

1The dataset is available at https://data.vision.ee.ethz.ch/cvl/ae_dataset
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Table 4.2: The statistics of the dataset.

Class Total
min-
utes

# clip Class Total
min-
utes

# clip

Acoustic guitar 23.4 190 Hammer 42.5 240
Airplane 37.9 198 Helicopter 22.1 111
Applause 41.6 278 Knock 10.4 108

Bird 46.3 265 Laughter 24.7 201
Car 38.5 231 Mouse click 14.6 96
Cat 21.3 164 Ocean surf 42 218
Child 19.5 115 Rustle 22.8 184

Church bell 11.8 71 Scream 5.3 59
Crowd 64.6 328 Speech 18.3 279

Dog barking 9.2 113 Squeak 19.8 173
Engine 47.8 263 Tone 14.1 155

Fireworks 43 271 Violin 16.1 162
Footstep 70.3 378 Water tap 30.2 208

Glass breaking 4.3 86 Whistle 6 78
Total 768.4 5223

aggregation

pi =
exp(ĥi)∑
i exp(ĥi)

(4.3)

ĥi = max
j

(hij) (4.4)

and Noisy OR aggregation [137],

pi = 1−
∏
j

(1− pij) (4.5)

pij =
exp(hij)∑
i exp(hij)

. (4.6)

Since it is unknown which sample is an outlier, we can not be sure that a bag has at least one
positive instance. However, the probability that all instances in a bag are negative exponentially
decreases with N , thus the assumption becomes very realistic.

4.2 Architecture Validation and Audio Event Recognition

We first evaluated our proposed deep CNN architectures and data augmentation method on the
audio event recognition task. The aim here is to validate the proposed method and find an appro-
priate network architecture, since we can assume that a network that is more discriminative for
the audio event recognition task gives us more discriminative AENet features for the other video
analysis tasks.

4.2.1 Implementation Details

Through all experiments, 49 band log-filter banks, log-energy and their delta and delta-delta were
used as a low-level descriptor, using 25 ms frames with 10 ms shift, except for the BoAW baseline
described in Sec. 4.2.2. The input patch length was set to 400 frames (i.e. 4 sec). The effects of
this length were further investigated in Sec. 4.2.3. During training, we randomly crop 4 sec for each
sample. The networks were trained using mini-batch gradient descent based on back propagation
with momentum. The learning rate was initially set to 0.001 and was reduced by a factor of 10
when the training error plateaued. The networks were trained for up to 5 ×104 iterations. We
applied dropout [138] to each fully-connected layer with as keeping probability 0.5. The batch size
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Table 4.3: Accuracy of the deeper CNN and baseline methods, trained with and without data aug-
mentation (%).

Data augmentation
Method without with

BoAW+SVM 74.7 79.6
BoAW+DNN 76.1 80.6
DNN+HMM 54.6 75.6
CNN+HMM 67.4 86.1

DNN+Large input 62.0 77.8
CNN+Large input 77.6 90.9

A 77.9 91.7
B 80.3 92.8

was set to 128, the momentum to 0.9. For data augmentation we used VTLP and the proposed
EMDA. The number of augmented samples is balanced for each class. During testing, 4 sec patches
with 50% shift were extracted and used as input to the Neural Networks. The class with the highest
probability was considered the detected class. The models were implemented using the Lasagne
library [126].

Similar to [131], the data was randomly split into training set (75%) and test set (25%). Only
the test set was manually checked and irrelevant sounds not containing the target audio event were
omitted.

4.2.2 State-of-the-art Comparison

In our first set of experiments we compared our proposed deeper CNN architectures to three dif-
ferent state-of-the-art baselines, namely, BoAW [63], HMM+DNN/CNN as in [139], and a classical
DNN/CNN with large input field.

BoAW We used MFCC with delta and delta-delta as low-level descriptor. K-means clustering
was applied to generate an audio word code book with 1000 centers. We evaluated both a SVM
with a χ2 kernel and a 4 layer DNN as classifiers. The layer sizes of the DNN classifier were (1024,
256, 128, 28).
DNN/CNN+HMM We evaluated the DNN-HMM system. The neural network architectures
are described in the left 2 columns of Table 4.1. Both the DNN and CNN models are trained to
estimate HMM state posteriors. The HMM topology consists of one state per audio event, and an
ergodic architecture in which all states have equal transitions probabilities to all states, as in [71].
The input patch length for the CNN/DNN is 30 frames with 50% shift.
DNN/CNN+Large input field In order to evaluate the effect of using the proposed CNN
architectures, we also evaluated the baseline DNN/CNN architectures with the same large input
field, namely, 400 frame patches.
The classification accuracies of these systems – trained with and without data augmentation – are
shown in Table 4.3. Even without data augmentation, the proposed CNN architectures outperform
all previous methods. Furthermore, the performance is significantly improved by applying data
augmentation, yielding a 12.5% improvement for the B architecture. The best result was obtained
by the B architecture with data augmentation. It is important to note that the B architecture
outperforms the classical DNN/CNN even though it has fewer parameters, as shown in Table 4.1.
This result corroborates the efficiency of deeper CNNs with small kernels for modelling large input
fields. This observation coincides with that made in earlier work in computer vision in [74].

4.2.3 Effectiveness of a Large Input Field

Our second set of experiments focuses on input field size. We tested our CNN with different patch
size 50, 100, 200, 300, 400 frames (i.e. from 0.5 to 4 sec). The B architecture was used for this
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Figure 4.3: Performance of our network for different input patch lengths. The plot shows the
increase over using a CNN+HMM with a small input field of 30 frames.

experiment. As a baseline we evaluated the CNN+HNN system described in Sec. 4.2.2 but using
our architecture B, rather than a classical CNN. The performance improvement over the baseline
is shown in Fig. 4.3. The result shows that larger input fields improve the performance. Especially
the performance with patch length less than 1 sec sharply drops. This proves that modeling long
signals directly with a deeper CNN is superior to handling long sequences with HMMs.

4.2.4 Effectiveness of Data Augmentation

We verified the effectiveness of our EMDA data augmentation method in more detail. We evaluated
3 types of data augmentation: EMDA only, VTLP only, and a mixture of EMDA and VTLP (50%,
50%) with different numbers of augmented samples 10k, 20k, 30k, 40k. Fig. 4.4 shows that using
both EDMA and VTLP always outperforms EDMA or VTLP only. This shows that EDMA and
VTLP perturb the original data and thus create new samples in a different way (VTLP changes
speed or pitch while EMDA changes number of sources, loudness, and sound color.). Applying
both provides a more effective variation of data and helps to train the network to learn a more
robust and general model from a limited amount of data.

4.2.5 Effects of Multiple Instance Learning

The A and B architectures with a large input field were adapted to MIL, to handle the noise in the
database. The number of parameters were identical since both the max and Noisy OR aggregation
methods are parameter-free. The number of instances in a bag was set to 2. We randomly picked
2 instances from the same class during each epoch of the training. Table 4.4 shows that MIL
didn’t improve performance in this case. However, MIL with a medium size input field (i.e. 2 sec)
performs as good as or even slightly better than single instance learning with a large input field.
This is perhaps due to the fact that the MIL took the same size input length (2 sec ×2 instances
= 4 sec), while it had fewer parameter. Thus it managed to learn a more robust model. We also
tried training the networks with 4 instances in a bag with 2 sec input field. However, we could not
observe improved performance compared to using 2 instances.
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Figure 4.4: Effects of different data augmentation methods with varying amounts of augmented
data.

Table 4.4: Accuracy of MIL and normal training (%).

Single MIL
Architecture instance Noisy OR Max Max (2sec)

A 91.7 90.4 92.6 92.9
B 92.8 91.3 92.4 92.8

4.3 Conclusions of this Chapter
We proposed a new, scalable deep CNN architecture to learn a model for entire audio events end-to-
end, and outperforming the state-of-the-art on this task. Experimental results showed that deeper
networks with smaller filters perform better than previously proposed CNNs and other baselines.
We further proposed a data augmentation method that prevents over-fitting and leads to superior
performance even when the training data is limited.
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Chapter 5

Video Analysis using AENet
Features

Finally, we are tacking video analysis by leveraging the audio event recognition (AER) networks
discussed in the previous Chapter.

Our work is partially motivated by the success of deep features in vision, e.g. in image [140] and
video [83] analysis. The features learnt in these networks (activations of the last few layers) have
shown to perform well on transfer learning tasks [140]. Yet, a large and diverse dataset is required
so that the learnt features become sufficiently generic and work in a wide range of scenarios.
Unfortunately, most existing audio datasets are limited to a specific category, e.g. speech [123],
music, environmental sounds in offices [141]). In Chapter 4, we designed an audio event dataset so
that such more general deep audio features can be trained. In this Chapter, we investigate if learnt
CNN deep feature is useful for video analysis tasks, namely action recgnition and video highlight
detection.

5.1 Audio Event Net (AENet) Feature
Once the network was trained, it can be used as a feature extractor for audio and video analysis
tasks. An audio stream is split into clips whose lengths are equal to the length of the network’s
input field. In our experiments, we took a 2 sec length (200 frame) patch since it did not degrade
the performance considerably (Fig. 4.3) but gave us a reasonable time resolution with easily
affordable computational complexity. Through our experiment we split audio streams with 50%
overlap, although clips can be overlapped with arbitrary length depending on the desired temporal
resolution. These clips are fed into the network architecture "A" and activations of the second last
fully connected layer are extracted. The activations are then L2 normalized to form audio features.
We call these features ‘AENet features’ from now on.

5.2 Action Recognition
We evaluated the AENet features on the USF101 dataset [142]. This dataset consists of 13,320
videos of 101 human action categories, such as Apply Eye Makeup, Blow Dry Hair and Table
Tennis.

5.2.1 Baselines
The AENet features were compared with several baselines: visual only and with two commonly
used audio features, namely MFCC and BoAW. Thirteen-dimensional MFCCs and its delta and
delta delta were extracted, with 25 ms window with 10 ms shift and averaged for a clip. In order
to form BoAW features, MFCC, delta and delta delta were clustered by K-means to obtain 1000
codebook elements. The audio features are then concatenated with the visual features.
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Table 5.1: Accuracy of the deeper CNN and baseline methods, trained with and without data
augmentation (%).

Method accuracy
C3D 82.2

C3D+MFCC 82.5
C3D+BoAW 82.9
C3D+AENet 85.3

5.2.2 Setup
The AENet features were averaged within a clip. We did not fine-tune the network since our goal
is to show the generality of the AENet features. For all experiments, we use a multi-class SVM
classifier with a linear kernel for fair comparison. As visual features, we used C3D features [83]
since it is a standard method for fast video analysis. More recent methods, such as [82] have higher
performance, but have a high computational cost, as they rely on optical flow inputs. We observed
that half of the videos in the dataset contain no audio. Thus, in order to focus on the effect of
the audio features, we used only videos that do contain audio. This resulted in 6837 videos of
51 categories. We used the three split setting provided with this dataset and report the averaged
performance.

5.2.3 Results
The action recognition accuracy of each feature set are presented in Table 5.1. The results show
that the proposed AENet features significantly outperform all baselines. Using MFCC to encode
audio on the other hand, does not lead to any considerable performance gain over visual features
only. One difficulty of this dataset could be that the characteristic sounds for certain actions only
occur very sparsely or that sounds are very similar, thus making it difficult to characterize sound
tracks by averaging or taking the histogram of frame-based MFCC features. AENet features,
on the other hand, perform well without fine-tuning. This suggests that AENet learned more
discriminative and general audio representations.

In order to further investigate the effect of AENet features, we show the difference between the
confusion matrices when using C3D vs C3D+AENet in Table 5. Positive diagonal values indicate
an improvement in classification accuracy for the corresponding classes, whereas positive values on
off-diagonal elements indicate increased mis-classification. The class indices were ordered according
to descending accuracy gain. The Fig. 5.1 shows that the performance was improved or remains
the same for most classes by using AENet features. The off-diagonal elements of the confusion
matrix difference also show some interesting properties, e.g. the confusion of Playing Dhal (index
8) and Playing Cello (index 10) was descreased by adding the AENet features. This may be due
to the clear difference of the cello and Dhal sounds while their visual appearance is sometimes
similar: a person holding a brownish object in the middle and moving his hands arround the
object. The confusion between Playing Cello and Playing Daf (index 2) , on the other hand, was
slightly increased by using AENet features, since both are percussion instruments and the sound
from these instruments may be reasonably similar.

5.3 Video Highlight Detection
We further investigate the effectiveness of AENet features for finding better highlights in videos.
Thereby the goal is to find domain-specific highlight segments [8] in long consumer videos.

5.3.1 Dataset
The dataset consists of 6 domains, “skating”, “gymnastics”, “dog”, “parkour”, “surfing”, and “skiing”.
Each domain has about 100 videos with various lengths, harvested from Youtube. The total
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Figure 5.1: Difference of confusion matrices of C3D+AENet and C3D only. Positive diagonal val-
ues indicate a performance improvement for this class, while negative, off-diagonal values indicate
that the mis-classification increased. The performance was improved or remains the same for most
classes by using AENet features.

accumulated time is 1430 minutes. The dataset was split in half for training and testing. Highlights
for the training set were automatically obtained by comparing raw and edited pairs of videos. The
segments (moments) contained in the edited videos are labeled as highlights while moments only
appearing in the raw videos are labeled as non-highlights. See [8] for more information.

5.3.2 Setup

If a moment contained multiple features, they were averaged within the moment. We used the
C3D features for the visual appearance and concatenated then with AENet features. A H-factor
y was estimated by neural networks which had two hidden layers and one output unit. A higher
H-factor value indicates highlight moments, while a lower value indicates a non-highlight moment,
as in [8]. Note that the classification model can not be applied since highlights are not comparable
among videos: a highlight in one video may be boring compared to a non-highlight moment in
other videos. A training objective which only depends on the relative ‘highlightness’ of moments
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from a video is more suitable. Therefore, we followed [8] and used a ranking loss

Lranking =
∑
i

max(1− yposi + ynegi ) (5.1)

where {ypos} and {yneg} are the outputs of the networks for the highlight moments and non-
highlight moments of a video. Eq. (5.1) required the network to score highlight moments higher
than non-highlight moments within a video, but does not put constraints on the absolute values of
the scores. Since all moments are labeled as a highlight if the moments are included in the edited
video, the label tends to be redundant and noisy. To overcome this, we modified the ranking loss
by applying the Huber loss [90]

LHuber =

{
1/2L2

ranking, if Lranking < δ

δ(−Lranking + 1/2δ), otherwise (5.2)

and further by replacing the ranking loss by a multiple instance ranking loss

Lmiranking = max(1−maxi(yposi ) + yneg). (5.3)

The Huber loss has a smaller gradient for margin violations, as long as the positive example
scores are higher than the negative, which alleviates the effect from ambiguous samples and leads
to a more robust model. Eq. (5.3) takes I highlight moments {yposi |i = 1, ..., I} and requires only
the highest scoring segment among them to rank higher than the negative. It is thus more robust
to false positive samples, which exist in the training data, due to the way it was collected [8]. We
used I = 2 in our experiment and the network was trained five times and the scores were averaged.

5.3.3 Baselines
As for action recognition, we consider three baselines, C3D features only, C3D with MFCC, and
BoAW. MFCC features were averaged within a moment and the BoAW was calculated for each
moment. A DNN based highlight detector was trained in the same manner as the ranking loss.

5.3.4 Results
The mean average precisions (mAP) of each domain, averaged over all videos on the test set, are
presented in figure 5.2. For most of the domains, AENet features perform the best or are compet-
itive with the best competing features. The overall performance of AENet features significantly
outperforms the baselines, achieving 56.6% mAP which outperforms the current state-of-the-art of
[8]. For ”skating” and ”surfing”, all audio features help to improve performance, probably due to
the fact that videos of these domains contain characteristic sounds at highlight moments: when a
skater performs some stunt or a surfer starts to surf. For ”skiing” and ”parkour”, AENet features
improve performance while some other features do not. In the ”parkour” domain, pulsive sounds
such as foot steps which may occur when a player jumps, typically characterize the highlights. The
MFCC features might have failed to capture the characteristics of the foot step sound because of
the averaging of the features within the moment. BoAW features could keep the characteristics
by taking a histogram, but AENet features are far better to characterize such pulsive sounds. For
”dog” and ”gymnastics”, audio features do not improve performance or even slightly lower it. We
observed that many videos in these domains do not contain any sounds which characterize the
highlights, but contain constant noise or silence for the entire video. This may cause over-fitting
to the training data. We further investigated the effects of loss functions. Table 5.2 shows the
mAPs trained with the ranking loss in Eq. (5.1), Huber loss in Eq. (5.2) and the multiple instance
ranking loss (MIRank) in Eq. (5.3). The Huber loss and MIRank both increase the performance
by 1.2% and 2.4%, respectively. This shows that more robust loss functions help in this scenario,
where the labels are affected by noise and contain false positives.

Qualitative evaluation: In figure 5.3, 5.4 and 5.5, we illustrate some typical examples of
highlight detection results for the domains parkour, skating and surfing, i.e. the domains that
were most improved by introducing AENet features. The last two rows give examples of highlight
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Figure 5.2: Domain specific highlight detection results. AENet features outperform other audio
features with an average improvement of 8.6% over the C3D (visual) features.

Table 5.2: Effects of loss function. Mean average precision trained with different loss functions.

Method mAP
Sum et al. [8] 53.6

C3D+AENet ranking loss 53.0
C3D+AENet Huber loss 54.2

C3D+AENet Huber loss MIRank 56.6

videos which were created by taking the moments with the highest H-factors so that the video
length would about 20% of original video. In the video of parkour shown in figure 5.3, a higher
H-factor was assigned around the moments in which a man was running, jumping and turning
a somersault, when we used AENet features, as shown in the second row. On the other hand,
the moments which clearly show the man in the video and have less camera motion tend to get a
higher H-factor when only visual (C3D) features were used. The AENet features could characterize
a footstep sound and therefore detected the highlights more reliably. Figure 5.4 illustrates a video
with seven jumping scenes. With the AENet features, we can observe peaks in the H-factor at all
jumps, since AENet features effectively capture the sound made by a skater jumping. Without
audio information, the highlight detector failed to detect some jumping scenes and tended to pick
moments with general motion including camera motion. For surfing, highlight videos created by
using AENet features capture the whole sequence from standing on the board up to falling into the
sea, while a highlight video created from visual features only sometimes misses some sequence of
surfing and contains boring parts showing somebody just floating and waiting for the next wave.
By including AENet features, the system really recognizes the difference in sound when somebody
is surfing or not, and it detects highlights more reliably.

5.4 Conclusions of this Chapter

We proposed the AENet feature, activations of the networks trained on ASR task. We showed the
generality of proposed AENet feature by showing superior performance on action recognition and
video highlight detection, compared to commonly used audio features. We believe that our new
audio features will also give similar improvements for other video analysis tasks, such as action
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Figure 5.3: An example of an original video (top), h-factor (2nd row), wave form (3rd row),
summarized video by using only visual features (4th row) and summarized video by using audio and
visual features for parkour. AENet features capture the footstep sound and more reliably derive
high h-factors around the moments when a person runs, jumps or performs some stunt such as a
somersault.

Jump 

Visual 
Visual+AENet 

V
is

u
al

 o
n

ly
 

V
is

u
al

 +
 A

EN
et

 

Su
m

m
ar

iz
ed

 v
id

eo
 

Jump Jump Jump Jump Jump 
Jump 

Figure 5.4: An example of an original video (top), h-factor (2nd row), wave form (3rd row),
summarized video by using only visual features (4th row) and summarized video by using audio
and visual features for skating. In the video, there are six scenes where skaters jump and perform
a stunt. These moments are clearly indicated by the h-factor calculated from both the visual and
AENet features. Sounds made by skaters jumping are characterized by the AENet well and help to
reliably capture such moments.
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Figure 5.5: An example of an original video (top), h-factor (2nd row), spectrogram of audio (3rd
row), summarized video by using only visual features (4th row) and summarized video by using
audio and visual features for surfing. Surfing scenes contain louder and high-frequency sounds
compared to scenes where a surfer is floating on the sea and waiting. This information helped to
more reliably detect the surfing scene.

localization and temporal video segmentation.Investigating recently proposed architectures such
as ResNet will be future work.
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Chapter 6

Conclusion

We addressed different kinds of problems that we are facing to realize machine multimedia under-
standing in real world and proposed sets of deep learning based audio technologies to overcome
them, namely audio source separation, joint acoustic model and pronunciation dictionary learning
for low resource languages, audio event recognition for general audio analysis, and audio features
for video analysis. Here, we summarize novelty, findings and utilities of our works and discuss
future works.

6.1 Novelty and Findings

Most of works in this thesis were done in early stage of deep learning evolution. Not many
works had been done in domains of audio source separation, low-resource speech recognition, audio
event recognition, and audio visual video analysis. Our works showed how to apply deep learning
approach in an efficient and effective ways and demonstrated superior performance over existing
methods.

In audio source separation, we proposed a deep neural network architectures that model the
spectrogram in multi-resolution and multi-band with combination of DenseNet and LSTM. Exper-
imental results show the effectiveness and efficiency of multi-resolution and multi-band modeling
with combination of DenseNet and LSTM, achieving state-of-the-art performance in DSD100 and
MUSDB18 datasets. Moreover, we proposed a classification based phase recovery method phase
to handle a periodic nature of phase. The proposed method outperforms a regression based phase
recovery method as well as the state-of-the-art consistent anisotropic Wiener filtering. This in-
dicates the effectiveness of the proposed method that discritize phase and estimate target phase
by classification approach. Furthermore, we also address the problem of separating a mixture of
unknown number of speakers by recursively separating a speaker one by one. For the first time, we
show that a single model can separate speakers even when the number of speakers in the mixture
is more than that seen during the model training.

To built automatic speech recognition for low resource languages, we proposed a novel joint
dictionary and sub-word unit learning framework for ASRs. The proposed method does not require
linguistic expertise, and can automatically create the set of sub-word units and the corresponding
pronunciation dictionary. In our method, reliable pronunciations are estimated from multiple
utterances by an efficient approximation of K-dimensional Viterbi algorithm which estimates the
most probable HMM state sequence common to multiple utterances of a word. Experimental
results show that the proposed method significantly outperforms the phone based methods which
even get manually prepared dictionary and hand crafted transcriptions as inputs.

For audio event recognition, we proposed a new, scalable deep CNN architecture to learn a
model for entire audio events end-to-end, and outperforming the state-of-the-art on this task.
Experimental results showed that deeper networks with smaller filters perform better than previ-
ously proposed CNNs and other baselines. We further proposed a data augmentation method that
prevents over-fitting and leads to superior performance even when the training data is limited.
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Although more advanced network architectures are proposed and applied to AER after our work
had been completed, basic concept on this work is widely used to date.

We used the learned network activations as audio features for video analysis and showed that
they generalize well. Using the proposed features led to superior performance on action recognition
and video highlight detection, compared to commonly used audio features. We believe that our
new audio features will also give similar improvements for other video analysis tasks, such as action
localization and temporal video segmentation.

6.2 Utilities
The audio source separation is applicable not only to machine multimedia understanding but also to
multi-channel audio creation and Karaoke. At Sony, we have been applying audio source separation
technology to our products, contents and services since recent years. For instance, we integrate
speech-noise separation to a dog robot ’aibo’ to robustly react owners voice in various conditions.
We also start to using the source separation for movie and music creation. The proposed method
has just started to be implemented to our society.

The automatic speech separation for low resource languages is useful event today. More than
1000 hours of speech corpus is available for major languages such as English, there are many
local languages that have very limited amount of data. For instance, there are hundreds of local
languages are spoken in India. Even when we consider major ones, about 20 languages are used in
India and very few languages have ASR systems due to the limited corpus. Our proposed method
has potential to address this problem since it does not require human experts to built pronunciation
dictionaries for these languages.

AER and making it use for video analysis becomes more and more demanding. An audio
tagging system for a recorded audio on mobile phone for an efficient search has been recently
announced. AER for surveillance is also tested for a service launch. machine has just started to
"listen" non-speech sounds in the real environment.

6.3 Future Works
In this thesis, we proposed sets of technologies for multimedia analysis in real world environment
such as existence of overlapping, many different kinds of sounds and low resource availability.
Combining and integrating individual methods to one system would be one possible direction of
future works.

Application of individual methods can be further explored. For instance, we discussed two
video analysis tasks to showcase the usefulness of the proposed audio feature. However, human
cognition is much more diverse: human recognize much more things and higher level of concept.
Increasing the number of concept or level of concept to be recognized is also important direction
for future works.

Another direction could be make DNN models more computationally efficient so that they can
operate on edge devices. Although network band width becomes wider and cloud computing be-
comes more popular, uploading data sometime has problem due to privacy, copy rights, or latency.
In this case, making models low footprint becomes more important to save power consumption,
avoid heat problem, or make product cost low.
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