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ABSTRACT
Matrix factorization, which factorizes matrix into low-rank matrices, is a central
task in data analysis, such as finding hidden structure within the matrix, and matrix
completion. Among matrix factorization techniques, non-negative matrix factoriza-
tion (NMF), which factorizes a non-negative matrix into two non-negative matrices,
has been recognized as an effective method of dimensionality reduction over matri-
ces, because of extensibility and model explainability. NMF has been successfully
applied for a wide variety of tasks in different domains, such as text, image, and
audio. Several studies have attempted to give probabilistic interpretation to NMF,
which brings probabilistic properties to the model, for example, the generative pro-
cess of the data, and prior/posterior probability of the matrix. However, these algo-
rithms can only be applied to limited tasks, which decays the extensibility of NMF.

In this thesis, we propose a novel framework for non-negative matrix factor-
ization under probability constraints named probability matrix factorization (PMF),
which is a novel class of matrix factorizations. In PMF, an input matrix and out-
put matrices represent as probability matrix, in which each element represents the
probability value; i.e. non-negative and the sum is 1. In this thesis, we investigate
the optimization scheme for PMF, general forms of PMF, theoretical relationships
between probabilistic topic models, and the applications of PMF. The optimization
scheme is widely applicable to many types the differentiable loss functions such as
multi-tasking problems. For the applications of PMF, we employed a probabilistic
topic modeling task, and multi-tasking clustering task named CAR-clustering for
multi-attributed graphs. For CAR-clustering, this thesis proposes CARPMF which
consists of multiple PMFs for different tasks to ensure mutually complement each
other tasks.

Experimental results showed that the superiority of PMF. Topic modeling us-
ing PMF outperforms than the ordinary NMF and LDA in terms of perplexity and
clustering accuracy without losing the efficiency of NMF. CARPMF outperforms
the ordinary NMF and related works of community detection tasks in terms of clus-
tering accuracy. Moreover, CARPMF achieves better accuracy than that of do not
consider probability constraints, which implies that the effectiveness of probability
constrains for multi-tasking problems. These results indicate that PMF is useful
for probabilistic modeling and multi-tasking problems which are prevalent in many
kinds of research areas, namely data mining, machine learning, and AI researches.
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Chapter 1

Introduction

1.1 Introduction

Matrix is one of the most prevalent data models to represent data that holds rela-
tionships between objects, such as social-graphs, user-item relationships in online
shopping, images, and document-word cooccurrence of document datasets. For the
matrix data, by applying data analysis techniques, we can detect hidden structures
within the matrix or some interesting aspects of the input data.

For well understanding of such matrix, dimension reduction techniques, such as
eigen-decomposition [1,2], singular value decomposition (SVD) [3] or non-negative
matrix factorization (NMF) [4,5], are adapted to compress the large matrix. The ba-
sic idea of the dimension reduction techniques is approximate the input matrix by
the low-dimensional matrices. These techniques enable us to understand the latent
structures within the data which well represent the global tendency. These tech-
niques are used to achieve the visualization of data, link prediction on relational
data, recommendation on online shopping. Also, the low-dimensional representa-
tion of the data is used to feature or classification or clustering.

Among these techniques, NMF is very successful in understanding the latent
structures in the large matrix. NMF is a method that approximates a non-negative
matrix by the product of two low-rank non-negative matrices [4, 5]. Due to its
efficiency and effectiveness, NMF is widely used for different types of data anal-
ysis, such as document clustering [6] and topic detection [7] over document data,
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community detection over graph data [8], audio signal analysis [9], and image pro-
cessing [4]. Moreover, several studies have shown that combining multiple NMF
tasks could contribute to improving output quality [7, 10–13].

It should be noticed that, in many data analysis tasks, the probabilistic interpre-
tation of models plays an important role because probability allows us to explicitly
explain the generative process of the observed data, which could lead to an inter-
pretable model generation as well. In particular, probabilistic interpretation is a
quite powerful tool when combining different tasks, because it allows us to deal
with completely different models in terms of probability. Moreover, by introducing
the Bayesian interpretation for the model, we can define the prior and posterior dis-
tributions of the model. The prior distribution enables us to control the probability
distribution of the model whereby smoothing the output probability or engage the
sparseness. On the other hand, by deriving the posterior distributions of the latent
variables based on the Bayes rule, we can analyze the behavior of latent variables,
that enrich the model interpretability and extensibility.

Several studies have attempted to give a probabilistic interpretation to NMF [14–
17]. However, these studies only focused on specific tasks, i.e. these studies can
not apply to general tasks such as multitasking problems. In fact, several previous
studies, where multiple NMF tasks are combined, have attempted to give an inter-
pretation of the probability of input and output matrices [10, 11, 13]. However, the
optimization methods in these studies do not pay attention to the probabilistic con-
straint in a matrix, i.e., a probability is a non-negative value which is less than 1 and
the sum of all probabilities is equal to 1. Instead, when performing NMF, updated
matrices do not meet probabilistic constraints, which are in turn forced to satisfy
the constraints by applying normalization. As can easily be conjectured, it would
be desirable and beneficial as well if the optimization of multiple NMF tasks can be
performed in such a way that probabilistic constraints are naturally integrated.

1.2 Contributions

In this study, we propose a novel matrix factorization scheme called probability
matrix factorization (PMF), which factorizes the input probability matrix into two
probability matrices. The probability matrix is a matrix of which each element
are interpretable as a probability value, ensuring the sum of the elements always
be 1 without any operations such as normalization. This property of PMF enables
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us to consider the probabilistic aspects of matrix factorization such as prediction
probability, posterior probability distribution, and probabilistic generative process
of the data. It is worth to notice that, the framework of PMF is widely applicable
to many types the differentiable loss functions, which enables us to consider wide
variety of loss measures and complex forms of loss functions such as multitasking
problems. This thesis investigates how to realize PMF, and applicability of PMF to
data mining tasks. This section summarizes contributions of this thesis.

1.2.1 Framework for Probability Matrix Factorization

In this study, we provide a framework for probability matrix factorization (PMF).
PMF is defined as a minimization problem for loss function under constraints. The
loss function measures the difference between the input probability matrix and the
multiplication of the output matrices. Constraints for the output matrices consist
of non-negativity constraints which constrains each element to have non-negative
value and equality constraint enforces that the sum of the elements is 1 to ensure
the element represents the probability.

In this thesis, we investigate the optimization scheme for PMF. We derive iter-
ative updating rules for the output matrices based on Karush-Kuhn-Tucker (KKT)
conditions of non-negativity and equality constraints for probability interpretation
of the output matrices. The derived optimization scheme is applicable to a wide
range of differentiable loss functions. We theoretically prove that the updating rule
monotonically decreases the loss function and the output matrices always meet the
constraints while not sacrificing the calculation cost.

For more general use of PMF, we derive the variation of the PMF. Specifically,
we investigate the patterns of probability constraints and regularization for output
matrices. As for probability constraints, we derive 4 patterns of constraints that
probabilistic interpretation of elements in the input matrix and of multiplication of
the output matrices are consistent. As for the regularization term, we introduce
Dirichlet regularization, which controls the probability distribution of the output
matrices.

Moreover, we investigate the relationships between PMF and probabilistic topic
models by analyzing the optimization problem of PMF and the other topic models.
As a result, we found that the special cases of PMF strongly relates to pLSA and
LDA.
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Experiments using benchmark document datasets revealed that PMF outper-
forms the ordinal NMF and LDA in the viewpoints of perplexity and document
clustering while the calculation time is compatible with the ordinal NMF.

1.2.2 Multi-task Probability Matrix Factorization

PMF facilitates to mixture multiple tasks more precisely, because of the probability
values in PMF explicitly describes the probabilistic generative processes of the data.
In this study, we examine the usefulness of PMF for a multi-tasking model.

The task is named CAR-clustering, which is a clustering scheme for multi-
attributed graphs in which the nodes have multiple types of attributes. CAR-clustering
includes Community detection over nodes of graphs, Attribute-cluster detection for
multi-types of attributes and the Relationships detection between communities and
attribute-clusters. By detecting them, the community is characterized by the related
attribute clusters, and the relationships between different communities are also de-
scribed by the related attribute clusters. CAR brings us the global view of large
scale multi-attributed graphs.

For this task, we propose a model for CAR-clustering called CARPMF, where
the loss function consists of multiple types of PMF loss functions to make the loss
functions mutually complement each other. The basic idea of CARNMF is that
communities and the attribute clusters are strongly related to each other. This as-
sumption is supported by the property of graphs called homophily effects [18].

Experiments using real-world bibliographic datasets show that CARNMF per-
forms better than the ordinary NMF, related works, and CARPMF that do not con-
sider the probabilistic constraints, in the viewpoint of the accuracy of community
detection and attribute cluster detection. Moreover, CARPMF detects reasonable
communities, attribute clusters and the relationships between communities and the
attribute clusters.

1.3 Overview of the Thesis

In the previous section, we discuss background, motivations and main contributions.
This section summarizes the overview of the thesis:
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Chapter 2: Background and Survey. In this chapter, we discuss the position
of this thesis by thoroughly reviewing the related works. This chapter summarizes
relationships between PMF and traditional matrix factorization techniques, appli-
cations of NMF which is the range of the applications of PMF, related works of
CARPMF, relationships between optimization schemes for PMF and NMF.

Chapter 3: A Framework of Probability Matrix Factorization. This chap-
ter provides a framework for PMF. We formally define the optimization problem
for PMF and derive an optimization scheme for PMF and give a generalized form
of PMF. This chapter also describes the relationships between PMF and the prob-
abilistic topic models. The experiments using benchmark datasets show that PMF
outperforms ordinary NMF and LDA in the viewpoint of perplexity and clustering
accuracy.

Chapter 4: A Multi-tasking Probability Matrix Factorization. In this chap-
ter, we investigate the usefulness of PMF for a multi-tasking model. This chapter
formally defines the multi-attributed graphs, CAR-clustering. Then, CARPMF is
proposed as a mixture of multiple PMFs for CAR-clustering. Experimental results
using real-world bibliographic datasets show that CARPMF outperforms ordinary
NMF and related works.

Chapter 5: Conclusions. This chapter concludes the thesis and outlines some
directions for future advances in this research.
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Chapter 2

Background and Survey

As mentioned in chapter 1, in this thesis, we investigate non-negative matrix factor-
ization under probability constraints which is called probability matrix factorization
(PMF) of which the input and output matrices are interpreted as probability matrix.
This chapter, we discuss the position of this research by thoroughly reviewing the
related works. Section 2.1 discusses relationships between NMF and another ma-
trix factorization techniques. Section 2.2 reviews the possible applications of NMF.
Section 2.3 gives related algorithms for optimizing the loss function of NMF. Sec-
tion 2.4 reviews the related works that attempted to give probabilistic interpretation
to NMF.

2.1 Matrix Factorization

There are many kinds of studies which decomposes input matrix into low rank ma-
trices. NMF is a special case of the matrix factorization techniques. In the following
subsection, we summarize the variants of the matrix factorizations, namely eigen-
decomposition, singular value decomposition, and non-negative matrix factoriza-
tion, which are the most fundamental techniques in the area of matrix factorization.
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2.1.1 Eigen-decomposition

Eigen-decomposition [1, 2] decomposes input real-valued square matrix into two
eigenvector matrix and eigenvalue matrix. Given a input matrix A ∈ RN×N the
eigen-decomposition is:

A = PΛP−1, (2.1)

where P ∈ RN×N is eigenvector matrix whose column represents eigenvector, and
Λ ∈ RN×N is a diagonal matrix, which is called eigenvalue matrix, whose elements
contains eigenvalues.

Eigen-decomposition have many possible applications: minimum cut in graph
data, graph matching [19], spectral clustering [20] and kernel k-means cluster-
ing [21].

2.1.2 Singular Value Decomposition

One of the most famous method of matrix decomposition technique is singular value
decomposition (SVD) [3], which factorizes the input matrix into two orthogonal
matrices and a singular value matrix. Given a matrix X ∈ RN×M , singular value
decomposition is:

X = UΣV ⊤, (2.2)

where Σ is a diagonal matrix called singular value matrix whose element contains
the singular values, and U ∈ RN×N and V ∈ RM×M are the eigenvector matrix of
XX⊤ and X⊤X , respectively.

SVD enables us to get low rank representation by ignoring the lowest singular
values. It is well known that principal component analysis (PCA) [22] is identical
to SVD. Latent semantic analysis [23] for text data is very famous approach for
dimension reduction based information retrieval. SVD have many potential appli-
cations such as recommender system [24, 25], graph embedding [26, 27], and word
embeddings [28].
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2.1.3 Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) [4, 5] decomposes input non-negative
matrix into two non-negative matrices. Given a non-negative matrix X ∈ RM×N

+ ,
NMF is:

X ≈ UV, (2.3)

where U ∈ RM×K
+ and V ∈ RK×N

+ are the output matrices. K is usually set to
K ≪ M,N The output matrices are found by minimizing the loss function which
measures the difference between input matrix and product of the output matrices.
Thanks to the output matrices always satisfy non-negative value, NMF has high
model interpretability than the other matrix factorization techniques. This nature of
NMF enables us to develop many kinds of applications.

2.2 Applications of Non-negative Matrix Factoriza-
tion

Non-negative Matrix Factorization is one of the most famous data mining tech-
niques in the context of data summarization, recommendation and dimension reduc-
tion. In this section, we discuss the applications of NMF and relationships between
our proposals and the other methods. Especially, we focus on the representative
categories below:

1. Topic modeling.

2. Community detection.

3. Recommendation.

4. Audio signal processing.

5. Multi-tasking method.
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2.2.1 Topic Modeling

In this thesis, we evaluate the effectiveness of PMF in the task of topic modeling.
In this section, we review related works on topic modeling. Topic modeling is a
task summarizing documents of natural languages. Typicaly, topic models assume
each document has topic proportions and each topic has the word proportions. By
maximizing the appearance probability words, the model expresses the bird-eye-
view of the documents.

The primal studies on topic modeling are probabilistic latent semantic analysis
(p-LSA) [29] and latent Dirichlet allocation (LDA) [30]. p-LSA parameterize the
topic proportions of each of the input documents and the word proportion of each
of the topics. The parameters are optimized by using the EM algorithm [31]. LDA
is a first full-bayes model for topic modeling, which infers the probability of word
occurrence in each document by integrate out all of the parameters. Note that, by
assuming the prior probability distribution to models in p-LSA, namely the topic
proportion and the wor proportion, the model represents as LDA. For inference,
there are several schemes to maximize the likelihood of the output words, namely
variational bayes inference [30, 32] and gibbs sampling [33, 34].

There are many variants of topic models. CTM [35] models the relationships be-
tween topics via introducing a matrix that represents the relationships between top-
ics. DTM [36] models the chronological change of the topic distributions. HDP [37]
introduces Dirichlet process for the model that can deal with the infinite mixture of
the topics and can determine the proper number of topics. TM-LDA [38] predicts
the future proportion of the topics.

NMF is also used for topic detection, especially in the context of information
summarization. By applying NMF to the document-term relation matrix, we can
detect topics in the document and the topic weight of each document. In this sce-
nario, one output matrix represents the word weight of each topic while another
output matrix represents the topic weights for each of the documents. Several stud-
ies [6,39,40] proposed a mathod that detects topics from documents via NMF. Cao
et al. [41] proposed online NMF which track the change of the latent factors, and
proposed the algorthm that efficiently learns the latent factors. Kasiviswanathan et
al. [42] proposed a method that detects emerging topics from text streams. Vaca et
al. [43] proposed a topic tracking method based on NMF to monitor the evolution
of topics. Choo et al. [44] proposed a NMF based document visualization system
that interactively detect topics and visualize the document. Saha et al. [45] proposed
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a method that detect, track and emergence of topics via a temporal regularization
term. Kim et al. [46] proposed a method that simultaneously detects common topics
and discriminative topics from two document datasets.

For evaluating topic models, perplexity is a major criterion that measures the
prediction likelihood of word appearance on unseen documents. Even though NMF
is useful for document clustering and summarization, NMF can not be applied to
predict word occurrence. It is because of NMF is not a probabilistic model. Our
proposal named probabilistic matrix factorization overcome the shortcomings of
NMF by bringing strict probabilistic interpretation for NMF based modeling.

2.2.2 Community Detection

Community detection is a task that detects densely connected nodes from graphs.
NMF is one of the useful tools for detecting overlapping communities. By applying
NMF to an adjacency matrix of a graph, node-community relation matrices are de-
tected. By interpreting each element of the matrix as membership of a community,
we can achieve community detection.

In this thesis, we propose multi-tasking PMF that contains community detec-
tion. In this section, we summarize the related works that attempted to detect the
communities in graph, and discuss the relationships between the related works.

Community detection in graphs is a current topic of interest in graph analysis
and AI research. Existing works for non-attributed graphs can be categorized ac-
cording to the techniques used: graph separation [47, 48], probabilistic generative
model [49–51], and matrix factorization [52–54]. [47] defined modularity, which
indicates how separated a community is from other nodes. More comprehensive
surveys can be found in [55, 56].

Recently, several works have addressed the problem of detecting communities
and their semantic descriptions on node-attributed graphs. [57] proposed CESNA,
where communities and their attributes are simultaneously detected in an efficient
manner. [58] proposed SCI to detect communities and their semantics using NMF.
[59] proposed a probabilistic generative model called the author-topic model to
model communities and related topics. [60] proposed COMODO to detect commu-
nities with shared properties using subgroup discovery techniques. [61] proposed a
method for detecting communities and their descriptions from an attributed graph
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where detection of communities and induction of description are alternated. [62]
proposed a joint community profiling and detection model which characterizes com-
munities with user published contents and user diffusion links. Likewise, [63] pro-
posed LCTA, where communities and their topics are modeled separately, and then
their relationships are modeled using a probabilistic generative model. A compre-
hensive survey over these works can be found in [64].

The aforementioned works only consider single textual attributes or uniformly
handle multiple attributes without any distinction. In reality, each attribute repre-
sents different aspects of the nodes. In our research, we deal with heterogeneous
attributes individually. In addition to community detection, we perform clustering
over attribute values for each attribute, which, in turn, can be used to improve the
quality of communities detected.

Some works have investigated clustering over networks containing different
types of nodes and/or edges. [65] studied community detection with characteriza-
tion from multidimensional networks, which is defined as a graph consisting of a set
of nodes and multiple types of edges. [66] studied subgraph detection from multi-
layer graphs with edge labels. In contrast, we assume a different model where each
node is characterized by multiple attributes. As we shall see later, we model mul-
tiple attributes using different types of nodes, and community detection as well as
attribute-value clusterings can be described on such a graph consisting of differ-
ent types of nodes (nodes and multiple types of attribute values), and try to detect
communities over the nodes as well as the clusters over other types of attribute
values. [67] proposed a scheme of ranking-based clustering for multi-typed hetero-
geneous networks, where two or more types of nodes are included. Similarly, [11]
proposed an NMF-based method for such networks. These methods differ from ours
in that they define a cluster consisting of all types of nodes. In other words, these
methods cannot handle each attribute in a unique way. In contrast, our work deals
with different attributes individually, but solves community detection and attribute-
value clustering in a unified manner.

More recently, several kinds of network methods are proposed, which can clus-
ter nodes/attributes by applying a vector space based clustering methods for vector
representations of nodes/attributes. Deepwalk [68] achieves vector representation
of nodes by applying skip-gram [69] for the sequences of nodes by sampled short
random walks. LINE [70] learns vector representations of nodes by preserving one-
hop and two-hop adjacency of nodes. node2vec [71] extends DeepWalk with a con-
trolled path sampling process, which captures proximity and structural similarity of
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nodes on a graph. LANE [72] is a method that captures the vector representations of
nodes which consider proximity of nodes, attribute similarity and label similarity.
metapath2vec [73] achieves vector representations of any kinds of nodes in het-
erogeneous information networks, by applying skip-gram for sequences of nodes
which controlled by meta-path schemes [74]. These methods are research aimed at
network embedding, fundamentally different from the purpose of our research.

2.2.3 Recommendation

Recommendation is a task that recommend items to the users in a system. A ba-
sic idea of the recommendation by matrix factorization is matrix completion via
multiplication of low-rank matrices derived by matrix factorization [75,76]. By us-
ing NMF for user-item relationship matrix with missing values, the output matrices
captures the hidden preferences of the users and the hidden properties items, and
by reconstructing the input matrix, the missing values are filled in, i.e. system can
recommend the items to the users. Zhang et al. [77] proposed NMF based recom-
mendation system which fills user rating for items in an incomplete rating matrix.
Luo et al. [78] proposed a fast algorithm for NMF based collaborative filtering.
Yoo et al. [79] proposed weighted non-negative matrix co-tri-factorization which
collaboratively predicts the rating with side information of contents. Li et al. [80]
proposed NMF based privacy preserving recommendation algorithm.

2.2.4 Audio Signal Processing

NMF is also used for signal audio processing. In this scenario, the input matrix
typically represents relationships between frequency bins and time frames. By fac-
torizing the matrix, different sources of the signals are detected. Wilson et al. [81]
proposed NMF based method that separates the input signal into clean sound and
noises by modeling the probability distribution of the sound and the noises. Ci-
chocki et al. [82] proposed an NMF based blind source separation method, that
separates the sound data into sources of sounds. Wang et al. [83] proposed a proce-
dure for the separation of pitched musical instruments and drums from polyphonic
music using NMF. Ozerov et al. [84] proposed a method for detecting sound source
from multi-channel audio data.
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2.2.5 Multi-Tasking Method

s For more complicated tasks, several studies have shown that concurrent process-
ing of two or more NMF tasks is useful to improve the output performance. Wang
et al. [10] showed that, by solving NMF of community detection and detecting
attributes of communities from an attributed network, the quality of detected com-
munity could be improved. Liu et al. [12] proposed multi-view clustering scheme
based on multiple NMFs for multi-view data. In our previous work, we proposed
an NMF based clustering scheme for multi-attributed graph called CARNMF [13],
which outputs community detection, attribute-value clustering, and derivation of
relationships between communities and attribute-value clusters at the same time.
Notice that all of these researches assume probabilistic interpretation on the output
matrices, thereby enabling integration of different types of data. However, none of
the above studies guarantee that output matrices satisfy the probability constraints
and/or the optimization method is exclusively dedicated for the problem being ad-
dressed in the respective paper and is therefore not applicable to other problems.

2.3 Algorithms for Non-negative Matrix Factoriza-
tion

In this section, we review the algorithms in previous studies for optimizing the
NMF, and discuss the relationships between algorithm for PMF and them.

To realize NMF, we consider the loss function which measures deference be-
tween input matrix and output matrices. NMF is accomplished by minimizing the
loss function under non-negative constraints. Given an input non-negative matrix
X ∈ RM×N

+ , typical example of loss function for NMF is as follows:

U, V = arg min
U,V

L = arg min
U,V

D (X||UV )

subject to U ≥ 0, V ≥ 0. (2.4)

D is any distant metrics for matrices, typical examples are Frobenius norm and
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generalized KL-divergence, where

DFro(X||UV ) = ∥X − UV ∥2F (2.5)

DKL(X||UV ) =
∑
d,w

Xdw log
Xdw

Ud·V·w
−Xdw + Ud·V·w, (2.6)

respectively.

For this optimization problem, there are several researches that attempted to op-
timize the loss function. Lee et al. [5] proposed a optimization algorithm which
consists of alternative updating rules for each of the output matrix. Each of the
updating rules are composed of multiplication of the matrices, which is called mul-
tiplicative updating rules. The updating rules are following:

U ′
dz ← Udz

[∂Udz
L]−

[∂Udz
L]+

, V ′
zw ← Vzw

[∂VzwL]
−

[∂VzwL]
+ ,

where [∂Udz
L]+ and [∂Udz

L]− are the plus part and the minus part of the partial
differential function, respectively. The optimization process is derived by KKT
conditions [85–87] for the optimization problem. Under the algorithm, the loss
function is non-increase, and at the convergence point, it is ensured that the loss
function is the local minimum. The optimization algorithm proposed in chapter 3 is
based on the multiplicative updating rules.

There are variants of optimization algorithms for NMF. Hoyer [88] proposed an
optimization method based on gradient descent. Under the algorithm, the minus
values are projected to 0 to ensure the non-negativity. However, there is a drawback
that the projection of the algorithm makes harder to analyze the convergence of
the loss function. Paatero and Tapper [89] proposed an algorithm based on the
alternative least square (ALS) algorithm. The basic idea of ALS based algorithm
is that alternately find the optimal values of the output matrices. Because of the
loss function of NMF is a convex function when assuming an output matrix is a
constant, when the gradient for the objective matrix is 0, the point would be the
optimal value. So that, by alternately find the optimal value, the loss function for
NMF is gradually decreased.

15



2.4 Probabilistic Interpretation for Matrix Factoriza-
tion

This section discusses the related works on probabilistic interpretation of matrix
factorization techniques. Specifically, we discuss in two different viewpoints; (1)
probabilistic interpretation for non-negative matrix factorization, (2) Bayesian mod-
eling for matrix factorization.

2.4.1 Probabilistic Interpretation for Non-negative Matrix Fac-
torization

Several works have studied how NMF can be applied to probabilistic models. Stud-
ies in Ding et al. [14, 15], and Gaussier and Goutte [90] revealed that the loss func-
tion of NMF under KL-divergence is equivalent to the loss function of pLSI. By
contrast, in this thesis, we investigate the optimization scheme for not only the KL-
divergence based but the Frobenius norm, which is more prevalent in NMF based
research. Moreover, the optimization scheme of ours can deal with more general
form of non-negative matrix factorization that has a differentiable loss function.

Luo et al. [16] proposed probabilistic NMF for topic modeling that directly ap-
proximates the input probabilistic matrix by the product of output probabilistic ma-
trices with low rank. However, the proposed optimization algorithm needs iterative
updating for each output matrix in addition to the outer iteration, which makes the
number of calculation much larger than the ordinary NMF. By contrast, as we will
see later, the computational complexity of our proposed optimization scheme the
same to the ordinary NMF and also the learning speed is comparable. Moreover,
our optimization scheme is widely applicable to other problems that exploit proba-
bilistic matrix.

2.4.2 Beyesian Modeling for Matrix Factorization

Several studies have attempted to introduce bayesian interpretation for matrix fac-
torization. Mnih et al. [91] proposed a probabilistic matrix factorization of which
the elements in the output matrix represents the probabilistic random values that
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have prior distributions. By assuming the prior distribution, we can avoid overfit-
ting to the output matrix. The output matrices are estimated by MAP estimation.
Salakhutdinov and Mnih [92] proposed a fully Bayesian treatment for probabilistic
matrix factorization that can deal with the uncertainty of the matrix by integrating
over all parameters and the hyperparameters. It has been revealed that bayesian
matrix factorization is effective to many kinds of data mining tasks such as link
prediction [76, 93], predicting drug-target interaction [94, 95], and recommenda-
tion [93, 96–99]. However, because of these models assume that elements in the
output matrix are random variables of the normal distribution, the elements repre-
sent not only the positive variables but the negative variables.

Schmidt [17] proposed Bayesian non-negative matrix factorization, that of the
elements in the output matrices are assumed to be generated by gamma distribution
as prior distributions. The Bayesian NMF is widely used for data mining tasks [54,
100, 101] because that can avoid overfitting to the input data. However, in these
models, the elements are merely the random variables, that do not represent the
probability value that describes the generative process of the elements. By contrast,
in this study, we investigate the matrix factorization technique of which the matrices
represent the probability matrix; i.e. each element represents the probability value.
So that the probabilistic generative process of the data is expressed in each element
in the matrix, that enrich the model explainability, and enables us to collaborate the
multiple tasks.
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Chapter 3

A Framework for Probability Matrix
Factorization

In this chapter, we propose a novel matrix factorization technique called probabil-
ity matrix factorization (PMF). PMF factorizes the input probability matrix into two
probability matrices. PMF is formulated as a minimization problem of loss-function
under inequality condition (non-negativity) and equality constraints (the sum of the
elements equals 1). For PMF, we develop an iterative updating algorithm that finds
the local minimum of the loss function satisfying the conditions while do not sac-
rifice the efficiency. The algorithm can be applied to a wide range of differentiable
loss-functions of which nature enables us to consider many kinds of tasks. More-
over, theoretical analyses for the loss-function reveal the relationships between PMF
and the probabilistic topic models namely pLSA and LDA. The experiments using
benchmark document datasets show that PMF achieves higher performance than
the related works in topic modeling in the viewpoint of perplexity and topic-based
document clustering. This chapter gives a formal definition of PMF, optimization
algorithm, extensions of PMF, theoretical analysis for loss-function of PMF, and
experiments for topic modeling using PMF.
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3.1 Introduction

In this thesis, we propose a novel matrix factorization scheme called probability ma-
trix factorization (PMF). We develop a novel optimization method for NMF under
probabilistic constraint, which is called probability matrix factorization, whereby
the output matrices are interpretable as probability matrices without any operation
such as normalization. Specifically, we exploit topic modeling as an example of
PMF and derive an optimization scheme for it. The loss function is formulated as
difference between document-term matrix (each element indicates the joint proba-
bility of presence of a document and a term) and multiplication of document-topic
matrix (each element indicates the joint probability of presence of a document and
a topic) and topic-term matrix (each element indicates the conditional probabil-
ity of presence of a term given a topic). We derive iterative updating rules for
the output matrices based on Karush-Kuhn-Tucker (KKT) conditions [85–87] of
non-negativity and equality constraints for probability interpretation of the output
matrices.

For more general use of PMF, we extend PMF to a more flexible formulation.
In this formulation, loss measure between the input and the outputs are generalized,
and regularization terms for the output matrices are taken into account. For proba-
bility constraint, we derived 4 variety of PMFs, which the probability interpretation
of the input matrix and the product of the output matrices are consistent. For the
regularization term, we propose a novel regularization term called Dirichlet regular-
ization term, as a log-likelihood of Dirichlet distribution of the output matrix, which
enables us to control the output matrices to smooth or sparse.

Moreover, we theoretically analyze the loss-function of PMF. Consequently,
we revealed that PMF strongly relates to probabilistic topic models. Specifically,
(1) minimizing the loss-function of PMF of the third variation in generalized KL-
divergence is equivalent to maximizing the log-likelihood of probabilistic latent
semantic analysis (pLSA) , and (2) minimizing the loss-function of PMF of the first
variation in generalized KL-divergence with Dirichlet regularization is equivalent
to MAP estimation of latent Dirichle allocation (LDA) in which the hidden variable
z is marginalized out.

The key contributions of this research can be summarized as follows:

• We propose a novel matrix factorization scheme, probability matrix factor-
ization (PMF), which factorized the input probability matrix into two prob-
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ability matrices.

• We propose a novel optimization scheme for PMF. For the method, we give
theoretical supports for the validity of update rules: (1) our optimization
scheme monotonically decrease the objective function; (2) the output ma-
trices always meet the probability constraints; (3) the time complexity of
the proposed optimization scheme remains the same as the ordinary NMF;
(4) our optimization scheme can apply to many kind of differentiable loss-
functions.

• We propose a novel regularization term for the output matrices, Dirichlet
regularization term, which enables us to control the probability distribution
of the output matrix.

• The theoretical analysis for loss-function of PMF revealed that PMF strongly
relates to probabilistic topic models, namely pLSA [29] and LDA [30].

• The experimental results show that PMF is more accurate than the ordi-
nary NMF regarding clustering and perplexity without sacrificing efficiency
compared with ordinary NMF.

The rest of this chapter is organized as follows. Section 3.2 states the problem
definition of PMF. Section 3.3 describes the derivation process of an optimization
scheme for PMF. In Section 3.4, we extend PMF to more general forms and intro-
duce the Dirichlet regularization. In Section 3.5, we analyze the loss-function of
PMF and derive the relationships between probabilistic topic models. Section 3.6
provides experiments for topic modeling using benchmark document datasets. Fi-
nally, Section 3.7 concludes this chapter.

3.2 Problem Definition

In this study, we propose an optimization scheme for non-negative matrix factoriza-
tion (NMF) under probabilistic constraints where each output matrix is constrained
to be stochastic; i.e., each element is a non-negative real number representing prob-
ability. Hereafter, we call it probability matrix factorization (PMF). In this paper,
we exploit topic modeling over documents as an easy-to-understand example to de-
rive optimization for loss function. However, the proposed scheme is not limited
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to topic modeling and can be applied to other problems as long as it is based on
probabilistic representations of matrices.

First, we give a formulation of loss function for topic modeling under PMF.
Figure 3.1 is an image of probability matrix factorization. Given a set of docu-
ments, we represent them using a document-term matrix X ∈ RN×M , where N
is the number of documents and M is the length of a dictionary. We normalize
X as

∑
d,wXd,w = 1 so that each element Xd,w in matrix X represents the joint

probability p(d, w) of document d and word w in the input document. In the PMF
based topic modeling, the ratio of the topic of the document is represented by a
matrix U ∈ RN×K , where K is the number of topics satisfying K ≪ M . The
rows and columns of matrix U denote documents and topics, respectively. Each
element Ud,z of the matrix represents the joint probability p(d, z) of document d
and topic z. Also, the probability distribution of words in the topic is represented
by a matrix V ∈ RK×M . Similarly, the rows and columns of matrix V denote
topics and words, respectively. Each element Vz,w of the matrix represents the con-
ditional probability p(w|z), i.e., the appearance of word w given topic z. In prob-
ability p(d, z, w), document d has word w through topic z which is represented by
Ud,zVz,w = p(d, z)p(w|z) = p(d, z, w). Furthermore, the joint probability p(d, w),
which is equal to Xd,w, is expressed by

∑
z Ud,zVz,w =

∑
z p(d, z, w) = p(d, w).

By using frobenius norm as a function to evaluate the difference, the optimization
problem is expressed as follows:

U, V = arg min
U,V

∥X − UV ∥2F

subject to U ≥ 0, V ≥ 0,∑
d,z

Udz = 1,
∑
w

Vzw = 1, ∀z.
(3.1)

This optimization problem is formulated as a minimization problem under two
types of the constraints: inequality constraints as non-negativity constraints, equal-
ity constraints as the probability constraints. By solving this problem, the most
reasonable topic model can be estimated, thereby making it possible for us to get an
interpretation of the probability to the output matrices U and V .
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Figure 3.1: An image of probability matrix factorization. Each element of matri-
ces represents the probability value. The sum of the elements in red rectangle is 1.
The probabilistic interpretation of elements in the input matrix and multiplication
of the output matrices is consistent; i.e. both are p(d, w).

3.3 Optimization

In this section, we propose an optimization scheme for the problem described in
the previous section. Similar to the ordinary NMF, the loss function L is convex
with respect to each output matrix (U or V ) but is not when considering both output
matrices at the same time. In this paper, we propose iterative update rules for U and
V whereby the output matrices are alternately adjusted while optimizing the loss
function L. However, unlike the ordinary NMF, our PMF has equality constraints as
the probability constraints on U and V , leading to a more complicated optimization
problem. To tackle this problem, we employ Karush-Kuhn-Tucker (KKT) condition
to derive the update rules for each matrix U and V . In the KKT conditions, the
Lagrange multipliers are introduced for the equality constraints in addition to the
non-negativity constraints, which must be determined. As a result, by determining
the Lagrange multipliers for non-negativity and equality constraints, we derive the
following update rules:
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U ′
dz ← Udz

[∂Udz
L]− + λ−

[∂Udz
L]+ + λ+

, (3.2)

λ− =

1−
∑

d,z

Udz[∂Udz
L]

−

[∂Udz
L]

+
+λ+∑

d,z
Udz

[∂Udz
L]

+
+λ+

, (3.3)

λ+ = max
(
max

(
−∂U·,·L

)
, 0
)
, (3.4)

V ′
zw ← Vzw

[∂VzwL]
− + ψ−

z

[∂VzwL]
+ + ψ+

z

, (3.5)

ψ−
z =

1−
∑

w
Vzw[∂VzwL]

−

[∂VzwL]
++ψ+

z∑
w

Vzw
[∂VzwL]

++ψ+
z

, (3.6)

ψ+
z = max (max (−∂Vz·L) , 0) , (3.7)

where

∂Udz
L = [∂Udz

L]+ − [∂Udz
L]− ,

[∂Udz
L]− = (XV ⊤)dz, [∂Udz

L]+ = (UV V ⊤)dz,

∂VzwL = [∂VzwL]
+ − [∂VzwL]

− ,

[∂VzwL]
− = (U⊤X)zw, [∂VzwL]

+ = (U⊤UV )zw.

These update rules monotonically decrease the loss function under satisfying the
constraints. From the following subsections, we will describe the derivation process
of each update rule and theoretical supports of validity about update rules.

3.3.1 Derivation of update rules

Based on KKT condition, we introduce Lagrange multiplier matrices Θ = (θdz) and
Ξ = (ξzw) for non-negative constraint of Udz and Vzw, respectively, and Lagrange
multipliers λ and Ψ = (ψi) for equality constraint of Udz and Vzw, respectively. We
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have the following equivalent objective functions:

L(Udz) = L+
∑
d,z

θdzUdz + λ

(∑
d,z

Udz − 1

)
, (3.8)

L(Vzw) = L+
∑
z,w

ξzwVzw +
∑
z

ψz

(∑
w

Vzw − 1

)
. (3.9)

KKT conditions are:

U ≥ 0, V ≥ 0,
∑
d,z

Udz = 0,
∑
w

Vzw = 0, ∀k. (Primal feasibility) (3.10)

Θ ≥ 0, Ξ ≥ 0. (Dual feasibility) (3.11)
Udzθdz = 0, ∀d, z, Vzwξzw = 0, ∀z, w. (Complementary slackness) (3.12)

Set derivative of L(Udz) with respect to Udz, and L(Vzw) with respect to Vzw to
0, we have:

∂Udz
L(Udz) = ∂Udz

L+ θdz + λ = 0, (3.13)
∂VzwL(Vzw) = ∂VzwL+ ξzw + ψz = 0. (3.14)

Following the KKT condition for the non-negativity of Udz, and Vzw, we have the
following equations:

Udzθdz = Udz (−∂Udz
L− λ) = 0, (3.15)

Vzwξzw = Vzw (−∂VzwL− ψz) = 0. (3.16)

Let ∂Udz
L = [∂Udz

L]+ − [∂Udz
L]− and λ = λ+ − λ−, where [∂Udz

L]+ ≥ 0,
[∂Udz

L]− ≥ 0, λ+ ≥ 0, and λ− ≥ 0, the equation 3.15 is equivalent to:

Udz
(
[∂Udz

L]+ − [∂Udz
L]− + λ+ − λ−

)
= 0. (3.17)

Similarly, let ∂VzwL = [∂VzwL]
+− [∂VzwL]

− and ψz = ψ+
z −ψ−

z , where [∂VzwL]
+ ≥

0, [∂VzwL]
− ≥ 0, ψ+

z ≥ 0, and ψ−
z ≥ 0, the equation 3.16 is equivalent to:

Vzw
(
[∂VzwL]

+ − [∂VzwL]
− + ψ+

z − ψ−
z

)
= 0. (3.18)
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These are the fixed point equations that the solutions must satisfy at convergence.
Given an initial value of Udz and Vzw, we can get the following update rules:

U ′
dz ← Udz

[∂Udz
L]− + λ−

[∂Udz
L]+ + λ+

, (3.19)

V ′
zw ← Vzw

[∂VzwL]
− + ψ−

z

[∂VzwL]
+ + ψ+

z

. (3.20)

Next, we determine the Lagrange multipliers λ and ψz for equality constraints∑
d,w Udz = 1 and

∑
w Vzw = 1. λ+, λ−, ψ+

i , and ψ−
i must satisfy following

equations:

∑
d,z

U ′
dz =

∑
d,z

Udz
[∂Udz

L]− + λ−

[∂Udz
L]+ + λ+

= 1, (3.21)

∑
w

V ′
zw =

∑
w

Vzw
[∂VzwL]

− + ψ−
z

[∂VzwL]
+ + ψ+

z

= 1 (3.22)

which are equivalent to:

∑
d,z

Udz [∂Udz
L]−

[∂Udz
L]+ + λ+

+ λ−
∑
d,z

Udz

[∂Udz
L]+ + λ+

= 1, (3.23)

∑
w

Vzw [∂VzwL]
−

[∂VzwL]
+ + ψ+

z

+ ψ+
z

∑
w

Vzw

[∂VzwL]
+ + ψ+

z

= 1. (3.24)

From Equations 3.23 and 3.24, let λ+ and ψ+
z be the parameters of λ− and ψ−

z ,
respectively. With the constraints λ+, λ−, ψ+

z , ψ
−
z ≥ 0, we have the following in-

equalities:

λ− =

1−
∑

d,z

Udz[∂Udz
L]

−

[∂Udz
L]

+
+λ+∑

d,z
Udz

[∂Udz
L]

+
+λ+

≥ 0, (3.25)

λ+ ≥ 0, (3.26)

ψ−
z =

1−
∑

w
Vzw[∂VzwL]

−

[∂VzwL]
++ψ+

z∑
w

Vzw
[∂VzwL]

++ψ+
z

≥ 0, (3.27)

ψ+
z ≥ 0. (3.28)
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Under satisfying inequalities 3.25 and 3.26, the updated U ′
dz satisfies

∑
d,w U

′
dz =

1,U ′
dz ≥ 0; and satisfying inequalities 3.27 and 3.28, the updated V ′

zw satisfies∑
w Vzw = 1,V ′

zw ≥ 0.

Next, we determine λ+ and ψ+
z . First, we derive the condition of λ+ to satisfy

inequality 3.25, which is equivalent to

1−
∑
d,z

Udz [∂Udz
L]−

[∂Udz
L]+ + λ+

=
∑
d,z

Udz −
∑
d,z

Udz [∂Udz
L]−

[∂Udz
L]+ + λ+

=
∑
d,z

[∂Udz
L]+ + λ+

[∂Udz
L]+ + λ+

Udz −
∑
d,z

Udz [∂Udz
L]−

[∂Udz
L]+ + λ+

=
∑
d,z

([∂Udz
L]+ − [∂Udz

L]− + λ+)Udz

[∂Udz
L]+ + λ+

=
∑
d,z

(∂Udz
L+ λ+)Udz

[∂Udz
L]+ + λ+

≥ 0.

Hence, by satisfying

∀d, z, λ+ ≥ −∂Udz
L, (3.29)

inequality 3.25 is satisfied. Likewise, we can ensure

∀z, ψ+
z ≥ −∂VzwL (3.30)

which is the inequality condition for satisfying inequality 3.27.

Next, we determine the optimal values of λ+ and ψ+
z . Update rules 3.19 and

3.20 can be written as the following gradient descent manner:

U ′
dz ← Udz

[∂Udz
L]− + λ−

[∂Udz
L]+ + λ+

= Udz −
Udz

[∂Udz
L]+ + λ+

(∂Udz
L+ λ)

= Udz − η · (∂Udz
L+ λ), (3.31)
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V ′
zw ← Vzw

[∂VzwL]
− + ψ−

z

[∂VzwL]
+ + ψ+

z

= Vzw −
Vzw

[∂VzwL]
+ + ψ+

z

(∂VzwL+ ψz)

= Vzw − δ · (∂VzwL+ ψz), (3.32)

where η and δ indicate the step size parameters for gradient descent. Therefore, the
smaller λ+ and ψ+

z leads to the larger step size. Thus, we can determine λ+ and ψ+
z

as follows:

λ+ = max (max (−∂U··L) , 0) , (3.33)
ψ+
z = max (max (−∂Vz·L) , 0) (3.34)

which are the smallest value of λ+ satisfying inequalities 3.25 and 3.26, and ψ+
z

satisfying inequalities 3.27 and 3.28. Finally, by setting the derivatives of L to be
zero, we can achieve:

[∂Udz
L]+ = (UV V ⊤)dz, (3.35)

[∂Udz
L]− = (XV ⊤)dz, (3.36)

[∂VzwL]
+ = (U⊤UV )zw, (3.37)

[∂VzwL]
− = (U⊤X)zw. (3.38)

3.3.2 Theoretical supports

The validity of update rules of U and V are supported by the following theorems.
Theorem 1 (Satisfaction of equality condition for U ). Under the update rule of U ,∑

d,z Udz = 1.

Proof. Under the update rule, λ+ and λ− satisfy inequalities 3.25 and 3.26. There-
fore, Udz satisfies

∑
d,z Udz = 1. □

Theorem 2 (Satisfaction of equality condition for V ). Under the update rule of V ,∑
w Vzw = 1.

Proof. Under the update rule, ψ+
z and ψ−

z satisfy inequalities 3.27 and 3.28. There-
fore, Vzw satisfies

∑
w Vzw = 1. □
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Theorem 3 (Satisfaction of non-negative constraint for U ). Under the update rule
of U , Udz ≥ 0.

Proof. When λ+ and λ− satisfy inequalities 3.25 and 3.26, Udz, [∂Udz
L]+,[∂Udz

L]−,
λ+ and λ− are all non negative. Thus, updated Udz satisfies Udz ≥ 0. □

Theorem 4 (Satisfaction of non-negative constraint for V ). Under the update rule
of V , Vzw ≥ 0.

Proof. When ψ+
z and ψ−

z satisfy inequalities 3.27 and 3.28, Vzw, [∂VzwL]
+,[∂VzwL]

−,
ψ+
z and ψ−

z are all non negative. Thus, the updated Vzw satisfies Vzw ≥ 0. □

Theorem 5 (Convergence). When Udz and Vzw converges, then the final solutions
satisfy the KKT optimality conditions.

(Proof in Appendix 6.1.)
Theorem 6 (Non increasing of loss function). Loss function L is non-increasing
under the iterative update rules.

(Proof in Appendix 6.2.)

Therefore, under our proposed iterative optimization scheme, the value of loss
function never increases while matrices U and V satisfy the probabilistic con-
straints.

3.3.3 Computational Complexity

In this section, we analyze the computational complexity of the proposed optimiza-
tion algorithm. The update rules in our algorithm have the following complexities:

For update rule for U .

• Calculate [∂Udz
L]+ requires O(NMK).

• Calculate [∂Udz
L]− requires O(NMK).

• Calculate λ requires O(NK).
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For update rule for V .

• Calculate [∂VzwL]
+ requires O(NMK).

• Calculate [∂VzwL]
− requires O(NMK).

• Calculate ψ requires O(MK).

In summary, update rule of our method requires the following time-complexity,
where iter is the number of outer iteration:

O(iterNMK) (3.39)

which is equal to the time complexity of update rule in standard NMF. Conse-
quently, we can say that our optimization algorithm is efficient enough.

3.4 Extensions of PMF

In this section, we give a generalized forms and extensions of PMF. PMF generally
represent as following optimization problem:

U, V =arg min
U,V

D(X||UV ) +R1(U) +R2(V ) (3.40)

subject to Probability Constraints.

,where D(X||UV ) is the loss measure between input matrix X and the product
of output matrices UV , R1(U) and R2(V ) are regularization term for U and V
respectively, probability constraints represents the constraints that determines the
types of normalization.

3.4.1 Loss Measures

For the loss measure, we can consider any differentiable loss measures that rep-
resent the difference between the input matrix and the product of output matrices.
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In this study, we consider two types of loss measures: Frobenius norm loss and
generalized KL-divergence loss. The definitions are:

D(X||UV ) =

{
DFro(X||UV ) = ∥X − UV ∥2F
DKL(X||UV ) =

∑
d,wXdw log

Xdw

Ud·V·w
−Xdw + Ud·V·w

(3.41)

respectively, and their derivatives are:

[∂Udz
DKL(X||UV )]− =

∑
w

Xdw

(UV )dw
Vzw, [∂Udz

DKL(X||UV )]+ =
∑
w

Vzw,

[∂VzwDKL(X||UV )]− =
∑
d

Xdw

(UV )dw
Udz, [∂VzwDKL(X||UV )]+ =

∑
d

Udz,

[∂Udz
DFro(X||UV )]− = (XV ⊤)dz, [∂Udz

DFro(X||UV )]+ = (UV V ⊤)dz,

[∂VzwDFro(X||UV )]− = (U⊤X)zw, [∂VzwDFro(X||UV )]+ = (U⊤UV )zw.

3.4.2 Dirichlet Regularization Term

For regularization terms, we can consider any kinds of regularization terms such as
ℓ2, ℓ1 norm regularization and manifold regularization. In this study, we propose a
new type of regularization terms for output matrices called Dirichlet regularization
term. The basic idea is since the output matrices can be represented as a point on
probability simplex, by introducing regularization term that represents the negative
likelihood of Dirichlet distribution, it enables us to control the tendency of the prob-
ability distribution of output matrix. Dirichlet regularization term is formulated as
the following equation:

RDir(U, α, β) = −β ·
∑
d,z

(α− 1) log(Udz). (3.42)

The regularization term represents the log-likelihood of Dirichlet distribution
given a parameter α which control the probability distribution of Dirichlet distribu-

31



tion, namely,

logDir(U ;α) = log
∏
d

Γ(αK)

Γ(α)K

∏
z

Uα−1
dz ∝

∑
d,z

(α− 1) log(Udz). (3.43)

Note that, based on the property of Dirichlet distribution, by changing the parameter
α, we can control the probability distribution of output matrices. If α > 1, then the
matrices become more smooth. If α < 1, then the matrices become more sparse. If
α = 1, then the regularization term does not contribute to restricting the probability
distribution of the matrices. β controls the intensity of regularization.

The derivatives of Dirichlet regularization term are:

[∂Udz
RDir(U, α)]

− = β
α

Udz
, [∂Udz

RDir(U, α)]
+ = β

1

Udz
. (3.44)

3.4.3 Possible Probability Constraints

The probability constraints can represent 4 modes of PMF. Under these modes, the
probability interpretation of the input matrix and the product of the output matrices
are consistent. Each of them is described in Figures 3.2. In these figures, the prob-
ability interpretation of each element in matrices and the probability constraints
are described. The red rectangles represent the probability constraint, the sum of
the elements in the rectangle is constrained to be 1. Note that, PMF described in
section3.2 is PMF mode5. The constraints are as follows:

Mode1 :
∑
w

Xdw = 1,∀d,
∑
z

Udz = 1,∀d,
∑
w

Vzw = 1,∀z. (3.45)

Mode2 :
∑
d

Xdw = 1,∀w,
∑
d

Udz = 1,∀z,
∑
z

Vzw = 1,∀w. (3.46)

Mode3 :
∑
d,w

Xdw = 1,
∑
d,z

Udz = 1,
∑
w

Vzw = 1,∀z. (3.47)

Mode4 :
∑
d,w

Xdw = 1,
∑
d

Udz = 1,∀z
∑
z,w

Vzw = 1. (3.48)
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For optimizing the loss functions for each mode, we can use the optimization
algorithm described in section3.3 by setting the Lagrange i.e. λ or ψz in an appro-
priate way. For updating the matrix of constraint that the sum of all elements is
1, we can use the updating rule for U in section3.3. For entire constraint, such as∑

ij Uij = 1, we can use the updating rule for U in section3.3. For row-wise con-
straint, such as

∑
j Uij = 1, we can use the updating rule for V in section3.3. For

column-wise constraint, such as
∑

i Uij = 1, we can use the updating rule for V in
section3.3 by setting the index z of ψz are ranged to column-wise. In summary, the
updating rules for the matrices under constraints are follows:

For entirely constrained matrix.

S ′
ij ← Sij

[
∂Sij

L
]−

+ ζ−[
∂Sij

L
]+

+ ζ+
, (3.49)

ζ− =

1−
∑

i,j

Sij[∂Sij
L]

−

[∂Sij
L]

+
+ζ+∑

i,j
Sij

[∂Sij
L]

+
+ζ+

, (3.50)

ζ+ = max
(
max

(
−∂S·,·L

)
, 0
)
, (3.51)

For row-wisely constrained matrix.

S ′
ij ← Sij

[
∂Sij

L
]−

+ ζ−i[
∂Sij

L
]+

+ ζ+i
, (3.52)

ζ−i =

1−
∑

j

Sij[∂Sij
L]

−

[∂Sij
L]

+
+ζ+i∑

j
Sij

[∂Sij
L]

+
+ζ+i

, (3.53)

ζ+i = max
(
max

(
−∂Si,·L

)
, 0
)
, (3.54)

For column-wisely constrained matrix.

S ′
ij ← Sij

[
∂Sij

L
]−

+ ζ−j[
∂Sij

L
]+

+ ζ+j
, (3.55)

ζ−j =

1−
∑

i

Sij[∂Sij
L]

−

[∂Sij
L]

+
+ζ+j∑

i
Sij

[∂Sij
L]

+
+ζ+j

, (3.56)

ζ+j = max
(
max

(
−∂S·,jL

)
, 0
)
. (3.57)
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3.5 Theoretical Analyses for Loss Functions

In this section, we theoretical analyse the loss function of PMF . We revealed that
the loss function of generalized KL-divergence is equivalent to probabilistic latent
semantic analysis [29], and the KL-divergence based proposed loss function with
Dirichlet regularization is equivalent to a loss function of latent Dirichlet allocation
with MAP estimation [30].

3.5.1 Relationships between pLSA and PMFmode3

In this sebsection, we analyse the likelihood function of pLSA and the loss func-
tion of PMFmode3 on generalized KL-divergence. Consequently, we found that
the minimization of loss function of PMFmode3 is equivalent to maximizing the
log-likelihood function of pLSA. In the following section, we summarize genera-
tive processes of pLSA and PMFmode3, and we analyze the relation ships between
them.

Generative process of pLSA

In pLSA model, the probability of dataset D is

p(D) =
∏
d

∏
w

∑
z

p(w|z)p(z|d)p(d). (3.58)

The probability p(D) is equivalently parameterized by

p(D) =
∏
d

∏
w

∑
z

p(w|z)p(d|z)p(z). (3.59)

pLSA estimates the parameters by maximizing the log-likelihood of the generative
probability of dataset p(D). The log-likelihood of p(D) is

log p(D) =
∑
d,w

log
∑
z

p(w|z)p(z|d)p(d) =
∑
d,w

log
∑
z

p(w|z)p(d|z)p(z)

(3.60)
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Theoretical analysis of loss function for PMFmode3

In this section, we give a theoretical analysis for loss function of PMFmode3 and
relationships between pLSA.

Let ndw = N · Xdw = N · p(w, d), which is the number of a word w in a
document d, the generalized KL-divergence loss term for input matrix and output
matrices is

N · DKL(X||UV ) = N
∑
d,w

Xdw log
Xdw

Ud·V·w
−Xdw + Ud·V·w

= N
∑
d,w

Xdw log Xdw

−N
∑
d,w

Xdw log Ud·V·w

−N
∑
d,w

Xdw +N
∑
d,w

Ud·V·w

= −N
∑
d,w

Xdw log Ud·V·w

+N
∑
d,w

Ud·V·w + C

= −
∑
d,w

ndw log
∑
z

p(d, z)p(w|z)

+N
∑
d,w,z

p(z|d)p(z|w) + C

= −
∑
d,w

ndw log
∑
z

p(d, z)p(w|z) + C ′

= −
∑
d,w

ndw log
∑
z

p(z|d)p(w|z)p(d) + C ′

= −
∑
d,w

ndw log
∑
z

p(d|z)p(w|z)p(z) + C ′,

which is equivalent to the negative log-likelihood of pLSA with some constant.

In conclusion, minimizing the loss function of PMFmode3 is equivalent to max-
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imizing the log-likelihood function of pLSA.

3.5.2 Relationships between LDA and PMFmode1 with Dirichlet
regularization

In this subsection, we analyse the likelihood function of LDA and the loss function
of PMFmode1 with Dirichlet regularization. Consequently, we found that the mini-
mization of loss function of PMFmode1 with Dirichlet regularization corresponds to
MAP estimation of LDA with weighted likelihood for prior distributions of output
matrices. In the following sections, we summarize generative processes of LDA and
PMFmode1 with Dirichlet regularization, and we analyse the relationships between
them.

Generative process of LDA

Generative process of LDA is as follows:

• For each topic k in K

– Vk ∼ Dirichlet(Vk|β)

• For each document d in dataset D

– Ud ∼ Dirichlet(Ud|α)

– For each word wdn in a document Nd:

∗ zdn ∼Multinomial(zdn|Ud)

∗ wdn ∼Multinomial(w|Vzdn).

In the original paper [30], the parameters Vk and Ud correspond to θ and ϕ
respectively. Graphical model of LDA is fig. 3.3a. The probability of dataset D is

p(D|α, β) =
D∏
d

Nd∏
n

∫∫ ∑
z

p(wdn|zdn, Vzdn) p(zdn|Ud) p(Ud|α) p(Vk|β) dUdV

(3.61)
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The posterior probability of parameters is

p(U, V |D,α, β) = p(U, V,D|α, β)
p(D|α, β)

, (3.62)

where

p(U, V,D|α, β) =
D∏
d

Nd∏
n

∑
z

p(wdn|zdn, Vzdn) p(zdn|Ud) p(Ud|α) p(Vk|β).

(3.63)

Considering MAP estimation for U and V , the optimal parameters UMAP and
VMAP are determined by maximizing the log-likelihood of posterior probability
given dataset D.

UMAP , VMAP = arg max
U,V

log p(U, V |D,α, β)

= arg max
U,V

log p(U, V,D|α, β)

= arg max
U,V

log
∑
z

p(U, V, z, D|α, β)

= arg max
U,V

∑
d,n,k

ndw log
∑
z

p(wdn|zdn, Vzdn) p(zdn|Ud) p(Ud|α) p(Vz|β)

= arg max
U,V

∑
d,n

ndw log
∑
z

p(wdn|zdn, Vzdn) p(zdn|Ud)

+
∑
d

log p(Ud|α)

+
∑
z

log p(Vz|β),

where ndw is a number of appearance of a word w in a document d.

Generative process of PMFmode1 with Dirichlet regularization

Generative process of PMFmode1 with Dirichlet regularization is as follows.
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• For each topic k in K

– Vz· ∼ Dirichlet(Vz·|β)

• For each document d in dataset D

– Ud· ∼ Dirichlet(Ud·|α)

– For each word wdn in a document Nd:

∗ wdn ∼Multinomial(wdn|Ud·V·w)

Graphical model of PMFmode1 with Dirichlet regularization is fig. 3.3b. Note
that, marginalizing out zdn in generative process in LDA, the generative process of
PMFmode1 with Dirichlet regularization and LDA is equivalent.

𝑁"
𝐷

𝐾
𝛼 𝛽𝑤"(𝑧"(𝑈" 𝑉,

(a) Graphical model of LDA

𝑁"
𝐷

𝐾
𝛼 𝛽𝑤"(𝑈"⋅ 𝑉,⋅

(b) Graphical model of PMFmode1 with Dirichlet regularization terms

Figure 3.3: Graphical models of LDA and PMFmode1. The generative process
of PMFmode1 is similar to LDA. The parameter z is marginalized out by matrix
multiplication.
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Theoretical analysis of loss function for PMFmode1 with Dirichlet regulariza-
tion

In this section, we give a theoretical analysis for loss function of PMFmode1 with
Dirichlet regularization.

Let ndw = N ·Xdw = N ·p(w|d), which is the number of a wordw in a document
d, the generalized KL-divergence loss term for input matrix and output matrices is

N · DKL(X||UV ) = N
∑
d,w

Xdw log
Xdw

Ud·V·w
−Xdw + Ud·V·w

= N
∑
d,w

Xdw log Xdw

−N
∑
d,w

Xdw log Ud·V·w

−N
∑
d,w

Xdw +N
∑
d,w

Ud·V·w

= −N
∑
d,w

Xdw log Ud·V·w

+N
∑
d,w

Ud·V·w + C

= −
∑
d,w

ndw log Ud·V·w

+N
∑
d,w,z

p(z|d)p(z|w) + C

= −
∑
d,w

ndw log p(w|Ud·V·w) + C ′

= −
∑
d,w

∑
z

ndw log p(w, z|Ud·V·w) + C ′

= −
∑
d,w

∑
z

ndw log p(w|z, Vzw) p(z|Ud,·) + C ′

So that, the generalized KL-divergence loss term in loss function of PMFmode1 is

N · DKL(X||UV ) = −
∑
d,w

∑
z

ndw log p(w|z, Vzw) p(z|Ud,·) + C ′, (3.64)
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which is a negative log-likelihood of word appearance in documents. In other
words, minimizing the generalized KL-divergence loss term corresponds to max-
imizing the log-likelihood of word appearance in documents.

Next, we consider maximization of log-likelihood for posterior probability of
LDA with weighting prior probability of output matrices U and V by parameters
γ′ and δ′ respectively. The optimal output matrices U∗, V ∗ which maximizes the
log-likelihood of posterior probability is

U∗, V ∗ = arg max
U,V

∑
d,n

ndw log
∑
z

p(wdn|zdn, Vzdn) p(zdn|Ud)

+ γ′
∑
d

log p(Ud|α)

+ δ′
∑
k

log p(Vk|β)

= arg max
U,V

∑
d,w

nd,w log p(w, |Ud,·V·,w)

+ γ′
∑
d

log p(Ud·|α)

+ δ′
∑
z

log p(Vz·|β)

= arg max
U,V

∑
d,w

nd,w logUd,·V·,w

+ γ′
∑
d

log Dir(Ud·;α)

+ δ′
∑
z

log Dir(Vz·;α)

= arg min
U,V

−N
∑
d,w

Xdw logUd,·V·,w

− γ′
∑
d

log Dir(Ud·;α)

− δ′
∑
z

log Dir(Vz·;α)

= arg min
U,V

DKL(X||UV ) +RDir(U, α, γ) +RDir(V, β, δ).
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Note that, the probability constraints are omitted due to the space limitation. In
conclusion, minimizing the loss function of PMFmode1 with Dirichlet regulariza-
tion corresponds to MAP estimation of LDA.

3.6 Experiments

In the experiment, we evaluate our proposed optimization scheme. Specifically, we
apply the proposed scheme for topic modeling. We discuss the results of applying
the proposed optimization scheme for topic modeling based on PMF. The evaluation
criteria are as follows: (1) perplexity, (2) accuracy of topic-based clustering, and (3)
convergence speed of the loss function.

3.6.1 Experimental Setting

For the dataset, three benchmark data sets [102] are employed. The first dataset is
Reuters dataset. We excluded categories with less than 100 documents, resulting
in 8 categories of 7,612 documents. The second dataset is WebKB consisting of 4
categories, including 10,780 documents. The third dataset is 20 newsgroups dataset
consisting of 20 categories, including 15,404 documents. The number of words for
a dictionary is 5,000. After removing the stop words and stemming, the top of the
most frequent words are selected. To evaluate perplexity, we separate the datasets
into training documents and test documents in the ratio of 7:3.

As the comparative methods, we employ frobenius norm based NMF [5], gener-
alized KL-divergence based NMF [5] and Latent Dirichlet Allocation (LDA) [30].
As for LDA, we used gensim 3.5.0 implementation of Python 3.6.3.

The experiments were performed on a PC with an Intel Core i7 (3.3 GHz) CPU
with 16 GB RAM running macOS. The parameters for Dirichlet regularization are
determined by Optuna [103].
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3.6.2 Perplexity Evaluation

We examined the quality of topic modeling by various methods. As an evaluation
metric, we employed perplexity. Models are trained by using training documents,
and by fitting topics for test documents, we calculate the perplexity in test docu-
ments. The definition of perplexity is follows:

Definition 3.6.1 (Perplexity).

perplexity(Dtest) = exp

{
−
∑

d∈Dtest

∑
w log p(w|d)∑

d∈Dtest
Nd

}
, (3.65)

where Dtest is the test dataset, Nd is the number of words in a document d, p(w|d)
is prediction probability for word appearance in test dataset by the model.

Perplexity measures the log-likelihood of prediction probability for the words in
the test dataset. The lower perplexity indicates better generalization performance.

How to Calculate Perplexity for Test Data

To calculate the perplexity in the test data, it is necessary to calculate the topic
distribution in each test document while fixing the word distribution on each topic
learned from the training data. The optimization problem to realize that is described
as follows:

U test =arg min
U

D(X test||UV train) +R(U), (3.66)

subject to Probability Constraints.

X test is a probability matrix of which elements represent the probability between
test documents and words, and V train is a probability matrix learned from training
data. To optimize the problem, we iteratively applied updating rules corresponding
to the probability constraint for U .

To calculate the perplexity of PMF, we derive the predictive probability for test
data p(w|d) for each mode of PMF. As for PMFmode1, the probability p(w|d) =
U testV train

dw is directly used to make prediction. As for PMFmode2, the probabilistic
interpretation of multiplication of the output matrices is p(d|w). So that, by letting
p(w) = 1

M
, following the Bayes rule, the prediction probability p(w|d) is calculated

as follows:
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p(w|d) = p(d|w)p(w)∑
w p(d|w)p(w)

=
(U test V train)dw∑
w′ (U test V train)dw

. (3.67)

As for PMFmode3,4, the multiplication of the output matrices represents the proba-
bility p(w, d). Therefore the prediction probability p(w|d) is calculated as follows:

p(w|d) = p(w, d)∑
w′ p(w′, d)

=
(U test V train)dw∑
w′ (U test V train)dw

. (3.68)

Results: Perplexity

Table 3.1 are the perplexity scores for Reuters dataset. These tables show that our
PMF under generalized KL-divergence of mode 1 and 3 achieve the highest per-
plexity than the baselines.

3.6.3 Document Clustering Evaluation

In this section, we describe the accuracy of topic-based document clustering. Clus-
tering was performed, having obtained the topic model learned by training data, we
assign for each test document the topic with the highest probability through fitting
the test document to the model.

Evaluation Metrics: ACC and NMI

To measure the performance of clustering, we use two popular metrics namely clus-
tering accuracy (ACC) and normalized mutual information (NMI) [6].

Definition 3.6.2 (ACC). Given a set S of elements, for each element n ∈ S, the
true label and the cluster label generated by a method are denoted by sn and rn,
respectively. Then, the ACC is defined as:

ACC =

∑
n∈S δ(sn,map(rn))

|S|
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where | · | is the cardinality of a set; δ(x, y) is a delta function which returns 1
if x = y, otherwise 0; and map(rn) is a mapping function that maps rn to the
equivalent label in the dataset. The best mapping can be found by Kuhn-Munkres
algorithm [104].

NMI is normalization of the mutual information (MI) to scale the result between
0 and 1. The definition of MI is as follows:

Definition 3.6.3 (MI). Given the two sets of clusters C, C ′, their mutual information
MI(C, C ′) is

MI(C, C ′) =
∑

ci∈C,c′jC′

p(ci, c
′
j) log2

p(ci, c
′
j)

p(ci)p(c′j)
,

where p(ci) and p(c′j) are the probabilities that arbitrarily selected document from
dataset belongs to the clusters ci and c′j , respectively, and p(ci, cj) is the probability
that arbitrarily selected document from dataset belongs to the clusters ci as well as
c′j at the same time.

Based on that, NMI is defined as follows:

Definition 3.6.4 (NMI). Given the two sets of clusters C, C ′, their normalized mu-
tual information NMI(C, C ′) is

NMI(C, C ′) = MI(C, C ′)
max(H(C), H(C ′))

,

where H(C) and H(C ′) are the entropies of C and C ′, respectively.

How to Calculate Cluster Assignment for Test Data

To calculate cluster assignment p(z|d) for test data, we optimize the problem 3.67.
As for PMFmode1, the probability U test = p(z|d) is directly used to assign the
document to cluster. As for PMFmode2, the probabilistic interpretation of U test is
p(d|z). So that, by letting p(z) = 1

K
, following the Bayes rule, the cluster assign-

ment p(z|d) is calculated as follows:

p(z|d) = p(d|z)p(z)∑
z′ p(d|z′)p(z′)

=
U test
dz∑

z′ U
test
dz′

. (3.69)
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As for PMFmode3,4, the probabilistic interpretation of Utest is p(d, z). Therefore,
the cluster assignment p(z|d) is calculated as follows:

p(z|d) = p(d, z)∑
z′ p(d, z

′)
=

U test
dz∑

z′ U
test
dz′

. (3.70)

Results: Clustering Accuracy

The results are summarized in Table 3.5. These results show that PMF under gen-
eralized KL-divergence of mode2, 3, and 1 achieved higher NMI and ACC in all
datasets. This indicates that PMF detects clusters more accurately than clustering
based on ordinary NMF and LDA.

3.6.4 Convergence speed of optimization

In this section, we examine the convergence and learning efficiency of the pro-
posed optimization scheme. In this experiment, we set the number of topics to 8
for Reuters dataset. In Figures 3.4, we plotted the loss function value in each itera-
tion step for the ordinary NMF and the proposed PMF. These figures show that our
optimization scheme monotonically decreases the loss function. Moreover, PMF
converges as fast as the ordinary NMF. The running times of ordinary NMF on the
Reuters (20 newsgroups) dataset are 0.425 ± 0.015s (3.12 ± 0.16s) and PMF are
0.585 ± 0.030s (3.64 ± 0.19). These results imply that our optimization scheme
does not incur extra cost and can be practically used as ordinary NMF.

3.7 Conclusion

In this chapter, we have proposed a novel matrix factorization technique called prob-
ability matrix factorization (PMF). PMF factorizes the input probability matrix into
two probability matrices. We have exploited topic modeling as an example of PMF
and derived an iterative optimization algorithm for it. We derived iterative updating
rules for the output matrices based on KKT conditions of non-negativity and equal-
ity constraints for probability interpretation of the output matrices. For the method,
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we have given theoretical supports for the validity of update rules: (1) our optimiza-
tion scheme monotonically decrease the objective function; (2) the output matrices
always meet the probability constraints; (3)the time complexity of the proposed op-
timization scheme remains the same as the ordinary NMF; and (4) our optimization
scheme can apply to many kind of differentiable loss-function. For more general
use of PMF, we extended PMF to a more flexible formulation. Specifically, we
derived 4 variety of PMFs, which the probability interpretation of the input matrix
and the product of the output matrices are consistent, and proposed Dirichlet regu-
larization term, which enables us to control the probability distribution of the output
matrices. Moreover, theoretical analysis for the loss-function of PMF revealed that
KL-divergence based PMFmode3 is equivalent to pLSA, and KL-divergence based
PMFmode1 with Dirichlet regularization term is equivalent to extension of LDA.
The experimental results have shown that, when applying it to topic modeling un-
der PMF, the model optimized by our optimization scheme is more accurate than
the ordinary NMF regarding clustering and topic detection without sacrificing effi-
ciency compared with ordinary NMF and LDA.

47



0 50 100 150 200 250 300 350 400
# of itertion

580000

590000

600000

610000

620000

630000

640000

Lo
ss

 fu
nc

tio
n 

Va
lu

e

NMF

(a) NMF Reuters

0 50 100 150 200 250 300 350 400
# of itertion

0.0000050

0.0000052

0.0000054

0.0000056

0.0000058

0.0000060

0.0000062

0.0000064

0.0000066

Lo
ss

 fu
nc

tio
n 

Va
lu

e

probNMF

(b) PMF Reuters

0 50 100 150 200 250 300 350 400
# of itertion

4400000

4600000

4800000

5000000

5200000

5400000

5600000

5800000

6000000

Lo
ss

 fu
nc

tio
n 

Va
lu

e

NMF

(c) NMF 20 Newsgroups

0 50 100 150 200 250 300 350 400
# of itertion

0.0000015

0.0000020

0.0000025

0.0000030

0.0000035
Lo

ss
 fu

nc
tio

n 
Va

lu
e

probNMF

(d) PMF 20 Newsgroups

Figure 3.4: Loss function value under iterations. The convergence speed of NMF
and PMF is comparable.
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Table 3.1: Perplexity on Reuter dataset.

Number of Topics
Methods 5 10 25 50 100
LDA 1041 922 779 674 582

NMFFro 2466 2175 1721 1432 1188

NMFKL 1420 1351 1376 1248 1006

mode1 1346 1154 995 854 730

mode2 2.84× 105 2.08× 106 4.98× 106 1.03× 107 1.28× 107

PMFFro mode3 4952 4679 4447 4330 4237

mode4 4976 4705 4484 4373 4284

mode1 966 808 625 505 396

mode2 3009 2481 1918 1557 1212

PMFKL mode3 959 830 697 597 479

mode4 951 830 696 611 519

Table 3.2: Perplexity of 20 Newsgroups dataset.

Number of Topics
Methods 5 10 25 50 100
LDA 1880 1686 1475 1305 1128

NMFFro 2595 2274 1771 1549 1340

NMFKL 2143 2071 1857 1622 1315

mode1 2274 2112 1859 1656 1408

mode2 5.24× 106 2.54× 107 8.1× 107 9.8× 107 8.01× 107

PMFFro mode3 5029 4834 4685 4603 4542

mode4 5033 4835 4672 4578 4502

mode1 1846 1629 1366 1166 959

mode2 3508 3023 2487 2135 1785

PMFKL mode3 1920 1735 1524 1400 1231

mode4 1915 1736 1537 1464 1379
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Table 3.3: Perplexity of Webkb dataset.

Number of Topics
Methods 5 10 25 50 100
LDA 1542 1456 1346 1253 1139

NMFFro 2032 1837 1605 1419 1201

NMFKL 2080 2062 2189 2004 1679

mode1 1581 1485 1355 1199 1034

mode2 6.49× 106 2.65× 107 7.35× 107 8.88× 107 7.1× 107

PMFFro mode3 5061 4891 4780 4699 4653

mode4 5083 4895 4736 4641 4564

mode1 1401 1259 1085 940 797

mode2 3797 3414 2943 2551 2187

PMFKL mode3 1438 1352 1254 1167 1058

mode4 1444 1362 1285 1242 1169

Table 3.4: Perplexity of DBLP dataset.

Number of Topics
Methods 5 10 25 50 100
LDA 678 548 370 254 168

NMFFro 3.32× 1019 3.39× 1019 2.31× 1019 1.01× 1019 4.25× 1018

NMFKL 1.78× 106 2.46× 108 1.48× 106 6.0× 104 423

mode1 854 693 467 322 188

mode2 7715 1.12× 104 2.76× 104 5.55× 104 9.46× 104

PMFFro mode3 4249 3875 3558 3393 3262

mode4 4266 3892 3573 3409 3278

mode1 669 455 225 124 66

mode2 2002 1350 675 378 209

PMFKL mode3 1048 698 341 186 101

mode4 1044 698 344 188 102
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Chapter 4

Multi-tasking Probability Matrix
Factorization

In this chapter, we explore the scheme for collaboratively solve multiple problems
via multiple probability matrix factorizations (PMF). Especially, we propose a novel
clustering scheme for multi-attributed graphs which consists of three tasks, com-
munity detection, attribute clusters and relationships between communities and at-
tributes. The proposed method solves the tasks in a cooperative manner via multiple
PMFs and optimizing the multiple loss functions simultaneously. In the following
sections, we describe the background of the research, problem definition, model
descriptions and the experiments.

4.1 Introduction

Community detection is a task to detect densely connected subgraphs as commu-
nities. Nodes in a community tend to share same or similar properties, such phe-
nomenon is called homophily effect [18, 105], meaning that nodes having similar
properties tend to link together. Because diverse applications are derived from the
nature of real communities, community detection is important in graph/network
analyses. Examples include node property estimations [47, 53, 106], community-
wise information recommendations [107], and semantic reasoning for nodes/edges [108].

Moreover, using the attributes in a graph is advantageous to realize high-quality
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community detection as well as to understand the characteristics of communities.
Multi-attributed graphs are reasonable models of real-world networks such as so-
cial networks, co-author networks, protein-protein interaction networks, etc. In
fact, several works have proposed algorithms that employ attribute information (i.e.,
shared interests or functional behaviors of each community) to detect not only com-
munities but also their semantic meanings [57–59, 63].

However, community detection and extraction of semantics in multi-attributed
graphs remain challenging due to difficulties on integrating graph structures and
multiple attributes of different types. Community detection and extraction of se-
mantics involve multiple steps. First, useful information from each attribute must
be extracted because certain node attributes describe different aspects. Second, all
extracted information must be exploited to enhance community detection by effec-
tively integrating heterogeneous information. Notice that the previous works [57–
59, 63] do not differentiate multiple attributes, that is, they consider multiple at-
tributes equally. Moreover, real-world graphs are often incomplete and noisy. That
is, some edges or nodes may be missing or attribute values may contain incorrect
values, leading to inappropriate results.

To overcome these difficulties, we propose a novel clustering scheme based on
the following two assumptions:

(1) Relevant attribute values form clusters by attribute type. This is based on the
observation that an attribute reflects a node’s interests in a network. Hence, an
attribute tends to be associated to a specific group of values related to an interest.
For example, in a co-author network where the nodes correspond to the authors
(researchers), each author typically has specific research interests (e.g., AI, data
mining, and database). Thus, attributes (e.g., paper title and conference) present
biased values according to interests. Consequently, it is possible to identify clusters
of attributes values (attribute-value clusters) reflecting a node’s interests.

(2) Communities are strongly correlated with attribute-value clusters. This is re-
lated to the previous assumption. Consider the example above. The nodes in a
community share similar interests (e.g., research interests) and consequently, sim-
ilar attribute-value clusters (e.g., research topics, and conferences). Conversely, if
some nodes (researchers) have similar attribute values, they should share similar
interests and can be grouped in the same community.

Exploiting the correlation between communities and multiple attributes should
improve the quality of community detection as well as attribute-value clustering.
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Using the information from different sources (attributes) to alleviate the effect of
noise (e.g., missing values and errors), we simultaneously implement community
detection and attribute-value clustering.

Based on the aforementioned ideas, we study a novel clustering scheme for
multi-attributed graphs, called CAR-clustering. CAR includes Community de-
tection, Attribute-value clustering, and deriving Relationships between communi-
ties and attribute-value clusters for multi-attributed graphs. The image of CAR-
clustering is Figure. 4.1. Additionally, we develop a novel clustering algorithm
called CARPMF, which employs probability matrix factorizations.

The contributions of this paper are summarized as follows:

• We propose a novel clustering scheme CAR-clustering to address two tech-
nical questions. (i) Given a multi-attributed graph, how can community
detection and attribute-value clustering be performed for different types of
attributes in a cooperative manner? (ii) How should reasonable relation-
ships be determined between communities and attribute-value clusters for
each type of attribute?

• We develop a novel algorithm CARPMF, which achieves CAR-clustering.
Specifically, a dedicated loss function is designed to perform multiple PMFs
simultaneously.

• We conduct experiments using real-world datasets (DBLP computer science
bibliography and arXiv physics bibliography). The accuracy of CARPMF
with respect to community detection and attribute-value clustering and a
comparison to other methods are examined. Relative to comparative meth-
ods, CARPMF achieves a better accuracy of up to 19% for community de-
tection and up to 25% for attribute-value clustering. Furthermore, CARPMF
detects informative communities and their rich semantic descriptions by cor-
relating multiple types of attribute-value clusters.

In Section 2, we summarize the related works. We provide formal definitions of
input graph model and our research objectives in Section 3. We propose our method
CARPMF in Section 4. We examine CARPMF in several experiments in Section 5
and conclude the article in Section 6.
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Figure 4.1: Overview of CAR-clustering. Given a multi-attributed graph, we try
to detect communities, attribute-clusters, and the relationships between them. By
detecting them, the communities are characterized by attributed clusters, and the
relationships between communities are characterized.

4.2 Problem Statement

In this work, we deal with multi-attributed graphs, where each node is characterized
by two or more attributes. Given such a graph, CAR-clustering is used to solve the
following three sub-problems: community detection, attribute-value clustering, and
derivation of relationships between communities and attribute-value clusters, which
have been independently studied. Below, we provide the formal definitions which
are necessary to define the clustering scheme.
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4.2.1 Multi-Attributed Graph

Multi-attributed graph G is defined by extending weighted graph G′ with several
attributed graphs Gt for attribute t ∈ T. The following are formal definitions.
Definition 4.2.1 (Weighted graph). Weighted graph G′ is defined by a triplet, ⟨V,E,W⟩,
where V is a set of nodes, E(⊆ V×V) is a set of edges, and W : E→ R+ is a map
of edge weights. □
Definition 4.2.2 (Attributed graph). Attributed graph Gt = ⟨V ∪ Xt,Et,Wt⟩ of
attribute t ∈ T is a bipartite graph consisting of set V of nodes, set Xt of attribute-
values, a set of edges Et ⊆ V × Xt, and Wt : Et → R+ is a map of edge weights.
□
Definition 4.2.3 (Multi-attributed graph). Given weighted graph G′ = ⟨V,E,W⟩
and a set of attributed graphs {Gt}t∈T where Gt = ⟨V ∪ Xt,Et,Wt⟩, multi-attributed
graph
G = ⟨G′, {Gt}t∈T⟩ is a union of these graphs. □

4.2.2 CAR-clustering

Given a multi-attributed graph, information can be extracted from different per-
spectives. In this work, we extract communities, attribute-value clusters, and the
relationship between them.

Community. For a multi-attributed graph, a set of nodes with the following
properties is regarded as a community. (1) Nodes in a community are densely con-
nected with each other and sparsely connected with other nodes. (2) Nodes in a
community tend to share common values in distinct attributes. This study assumes
that communities can overlap. That is, each node belongs to more than one com-
munity. This assumption is reasonable for real applications. Formally, given the
number of communities ℓ, node n ∈ V belonging to community c ∈ C is described
by probability distribution p(n | c), where |C| = ℓ.

Attribute-value cluster. For attribute t ∈ T in a multi-attributed graph, similar
or highly correlated attribute values can be grouped into attribute-value clusters.
Herein, we assume overlapping clusters. That is, each attribute-value belongs to
more than one cluster. Formally, given the number of clusters kt of attribute t ∈ T,
cluster member x ∈ Xt for attribute-value cluster st ∈ St is described by probability
distribution p(x | st), where |St| = kt.
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Relationship between a community and an attribute-value cluster. Nodes in
a community often share common attribute-value clusters. Detecting such relation-
ship is useful in many applications. Given community c ∈ C and attribute-value
cluster st ∈ St of attribute t ∈ T, the probability that c is related to st is described
as the relationship between c and st. In this work, a community may be related
to more than one attribute-value cluster. Formally, this is described by probability
distribution p(st | c).

CAR-clustering. CAR-clustering is formally defined by Definition 4.
Definition 4.2.4 (CAR-clustering). Given a multi-attributed graph G, CAR-clustering
is to perform community detection, attribute-value clustering, and detection of the
relationship between the communities and the attribute-value clusters simultaneously.□

Solving these sub-problems simultaneously is more beneficial than evaluating
each one independently because, in many cases, communities and attribute-value
clusters are mutually correlated. Solving the problems simultaneously exploits this
correlation, leading to improved results.

4.3 CARPMF – Algorithm for CAR-clustering

In this section, we propose an NMF (non-negative matrix factorization)-based al-
gorithm, called CARPMF, for CAR-clustering. CARPMF models communities and
attribute-value clusters. Additionally, we introduce an auxiliary matrix to maintain
the relationship between the communities and the attribute-value clusters. A unified
loss function is used to solve the different NMFs in a unified manner. It is assumed
that the user gives the number ℓ of communities and the number kt of clusters for
each attribute t ∈ T.

4.3.1 Matrix representation

We represent a multi-attributed graph by two sorts of matrices: an adjacency matrix
A ∈ R|V|×|V| and attribute matricesX(t) ∈ R|V|×|Xt| for t ∈ T. An elementAu,v ofA
corresponds to an edge eu,v = (u, v) ∈ E. Au,v = W(eu,v)/

∑
ei,j∈EW(ei,j), indi-

cating the joint probability for the presence of edge eu,v. Similarly, for t ∈ T, an ele-
mentX(t)

u,x inX(t) corresponds to an edge e(t)u,x ∈ Et. X(t)
u,x = Wt(e

(t)
u,x)/

∑
v,y∈Et

Wt(e
(t)
v,y),
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indicating the joint probability of the presence of edge e(t)u,x.

4.3.2 Loss Function

We achieve CAR-clustering in terms of several NMFs, which correspond to the
aforementioned sub-problems. To achieve CAR-clustering, we introduce loss func-
tions for the sub-problems followed by a unified loss function.

Loss function for community detection. In CARPMF, communities C are
denoted by a matrix U∗ ∈ R|V|×ℓ, where each row and column correspond to a node
u ∈ V and a community c ∈ C, respectively. A cell U∗

u,c represents joint probability
of node u and community c p(u, c). In probability p(u, v, c), u and v are connected
through community c, and is represented by U∗

u,cU
∗
v,c. Moreover, joint probability

p(u, v), or the existence of edge eu,v ∈ E, is expressed as
∑

c∈C U
∗
u,cU

∗
v,c. Therefore,

when U∗ minimizes the following loss function, U∗ is the best approximation of the
edges in the graph.

arg min
U∗≥0

∥∥A− U∗(U∗)⊤
∥∥2
F
, (4.1)

subject to
∑
i,j

U∗
ij = 1,

where ∥·∥2F represents the Frobenius norm.

Loss function for attribute-value clustering. In CARPMF, attribute-value
clusters St of attribute t ∈ T are represented as a matrix V (t) ∈ R|Xt|×kt , where
each row and column correspond to an attribute x ∈ Xt and an attribute cluster
st ∈ St, respectively. A cell V (t)

x,st represents probability p(x | st).

To derive V (t) from X(t), we introduce a matrix U (t) ∈ R|V|×kt , which denotes
the relationships between the nodes and attribute-value clusters with probability
p(u, st). Using both matrices U (t) and V (t), probability p(u, x, st), which is the
existence of edge e(t)u,x ∈ Et in terms of attribute-value cluster st, is calculated as
U

(t)
u,stV

(t)
x,st . Moreover, probability p(u, x) is derived as

∑
st∈St U

(t)
u,stV

(t)
x,st . Therefore,

when U (t), V (t) minimize loss function, U (t), V (t) represent the best approximation
of the edges in the graph.
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arg min
U(t),V (t)≥0

∥∥X(t) − U (t)(V (t))⊤
∥∥2
F

(4.2)

subject to
∑
i,j

U
(t)
ij = 1,∑

i

V
(t)
ir = 1, ∀1 ≤ r ≤ kt.

Loss function for relationship detection. In CARPMF, the relationships be-
tween communities and attribute-value clusters of attribute t ∈ T are represented
as a matrix R(t) ∈ Rℓ×kt , where each row and column corresponds to a commu-
nity c ∈ C and an attribute-value cluster st ∈ St, respectively. The cell contains
the probability p(st | c). We assume R(t) is a linear transformation that maps U∗

into U (t), where U∗ and U (t) derived by Equation 4.1 and Equation 4.2, respec-
tively. Moreover, the joint probability p(u, st) = U

(t)
u,st can also be calculated as∑

c p(u, c)p(st | c) =
∑

c U
∗
u,cR

(t)
c,st Therefore, when R(t) minimizes the loss func-

tion, R(t) represents the relationships between the communities and the attribute-
value clusters.

arg min
U(t),U∗,R(t)≥0

∥∥U (t) − U∗R(t)
∥∥2
F

(4.3)

subject to
∑
i,j

U∗
ij = 1,

∑
i,j

U
(t)
ij = 1,∑

j

R
(t)
pj = 1, ∀1 ≤ p ≤ ℓ.

Equation 4.3 can be regarded as an NMF that decomposes the matrix of the node-by-
attribute value cluster into node-by-community and community-by-attribute value
cluster matrices. In other words, Equation 4.3 indicates the effect of the relationship
between nodes and attribute-value clusters against communities.

The overview of each task is described in Figures 4.2
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(c) Probability matrix factorization for relationship detection.

Figure 4.2: Probability matrix factorizations for CARNMF. Each of the figures
corresponds to the PMF for each task.
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Unified loss function. To achieve CAR-clustering, the aforementioned three
sub-problems must be solved. In this work, we attempt to solve them simultane-
ously by introducing a unified loss function, which is expressed as

U∗,
{
U (t), V (t), R(t)

}
t∈T = arg min

U∗, {U(t), V (t), R(t)}
t∈T

∥∥A− U∗(U∗)⊤
∥∥2
F

+
∑
t∈T

{∥∥X(t) − U (t)(V (t))⊤
∥∥2
F
+ λt

∥∥U (t) − U∗R(t)
∥∥2
F

}
,

(4.4)

s.t. ∀1 ≤ r ≤ kt,∀1 ≤ p ≤ ℓ, ∀t ∈ T,∑
i,j

U∗
ij = 1,

∑
i,j

U
(t)
ij = 1,

∑
i

V
(t)
ir = 1,

∑
j

R
(t)
pj = 1,

where λt for attribute t ∈ T is a user-defined parameter to control the effect of
attribute-value clusters for community detection. Higher λt yields a stronger effect
of the attribute-value clusters in community detection.

4.3.3 Optimization

To optimize the loss function in Eq. 4.4, we derive the updating rules for each of the
output matrix, based on the optimization framework for PMF. The updating rules
corresponding to the variables are as follows:

U∗′
ij ← U∗

ij

[
∂U∗

ij
L
]−

+ ξ−[
∂U∗

ij
L
]+

+ ξ+
, (4.5)

ξ− =

1−
∑

i,j

U∗
ij

[
∂U∗

ij
L

]−
[
∂U∗

ij
L

]+
+ξ+∑

i,j

U∗
ij[

∂U∗
ij
L

]+
+ξ+

,

ξ+ = max
(
max

(
−∂U∗

·,·L
)
, 0
)
,
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U
(t)′
ij ← U

(t)
ij

[
∂
U

(t)
ij
L
]−

+ η−[
∂
U

(t)
ij
L
]+

+ η+
, (4.6)

η− =

1−
∑

i,j

U
(t)
ij

[
∂
U
(t)
ij

L

]−

[
∂
U
(t)
ij

L

]+

+η+∑
i,j

U
(t)
ij[

∂
U
(t)
ij

L

]+

+η+

,

η+ = max
(
max

(
−∂

U
(t)
·,·
L
)
, 0
)
,

V
(t)′
ij ← V

(t)
ij

[
∂
V

(t)
ij
L
]−

+ ϕ−
i[

∂
V

(t)
ij
L
]+

+ ϕ+
i

, (4.7)

ϕ−
i =

1−
∑

j

V
(t)
ij

[
∂
V
(t)
ij

L

]−

[
∂
V
(t)
ij

L

]+

+ϕ+i∑
j

V
(t)
ij[

∂
V
(t)
ij

L

]+

+ϕ+i

,

ϕ+
i = max

(
max

(
−∂Si,·L

)
, 0
)
,

R
(t)′
ij ← R

(t)
ij

[
∂
R

(t)
ij
L
]−

+ ζ−i[
∂
R

(t)
ij
L
]+

+ ζ+i

, (4.8)

ζ−i =

1−
∑

j

R
(t)
ij

[
∂
R
(t)
ij

L

]−

[
∂
R
(t)
ij

L

]+

+ζ+i∑
j

R
(t)
ij[

∂
R
(t)
ij

L

]+

+ζ+i

,

ζ+i = max
(
max

(
−∂

R
(t)
i,·
L
)
, 0
)
,
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where

[∂U∗L]+ =2U∗(U∗)⊤U∗ +
∑
t∈T

λtU
∗R(t)(R(t))⊤, (4.9)

[∂U∗L]− =2A⊤RU∗ +
∑
t∈T

U (t)(R(t))⊤, (4.10)

[∂U(t)L]+ =U (t)(V (t))⊤V (t) + λtU
(t), (4.11)

[∂U(t)L]− =X(t)V (t) + λtU
∗R(t), (4.12)

[∂V (t)L]+ =(V (t))⊤(U (t))⊤U (t), (4.13)

[∂V (t)L]− =(X(t))⊤U (t), (4.14)

[∂Ri
L]+ =(U∗)⊤U∗R(t), (4.15)

[∂Ri
L]− =(U∗)⊤U (t). (4.16)

The detailed explanations for the derivation of update rules are described in Ap-
pendix 6.3,6.4,6.5, 6.6. The aforementioned update rules monotonically decrease
the unified loss function (Eq. 4.4).

4.3.4 Complexity Analysis

Here, we analyze the computational complexity of the proposed algorithm. The
equations in our algorithm have the following complexities:

• Updating U∗ needs O(|E|ℓ+ |V|ℓ2
∑

t kt).

• Updating U (t) and V (t) needs O ((|V|+ |Xt|)k2t + |Et|kt).

• Updating R(t) needs O (|V|(ℓkt + ℓ2)).

In summary, the time complexity of our algorithm is follows, where iter is the
number of outer iterations (lines 3–16 in our algorithm).

O

(
iter

∑
t

(
|V|(ℓ2kt + k2t ) + |Xt|k2t + |E|ℓ+ |Et|kt

))
. (4.17)
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Table 4.1: Selected conferences on four research areas.

DB DM ML IR
SIGMOD, VLDB KDD, ICDM NIPS, ICML SIGIR, ECIR

PODS, EDBT PKDD, SDM ECML, UAI JCDL, ECDL
ICDT PAKDD COLT TREC

4.4 Experimental Evaluations

To demonstrate the applicability and effectiveness of CARPMF, we conducted a
set of experiments using real-world datasets. Specifically, the performance of the
proposed scheme was compared to simple baseline and the state-of-the-art methods.

The experiments were performed on a PC with an Intel Core i7 (3.3 GHz) CPU
with 16 GB RAM running Ubuntu14.04. CARPMF was implemented by Python
2.7.6 with Numpy 1.9.0.

4.4.1 Datasets

We used two datasets: DBLP and arXiv.

• DBLP: Digital Bibliography Project1 is a bibliographic database in the com-
puter science area. DBLP contains publication information, such as authors
and conferences. We used a part of the dataset by extracting conferences
similar to [109]. We extracted four research areas: data mining, databases,
machine learning, and information retrieval, and five major conferences for
each area. Consequently, 10,491 papers in 20 conferences (shown in Ta-
ble 4.1) were selected.

• arXiv: arXiv2 is a repository of electronic preprints in various scientific
fields. Similar to above, we chose four research areas: mathematical physics
(math-ph), nuclear (nucl-th), astrophysics (astro-ph), and materials (part of
cond-mat), and four major journals for each area. Consequently, 12,547
papers in 16 journals (shown in Table 4.2) were selected.

1http://dblp.uni-trier.de/
2https://arxiv.org
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Table 4.2: Selected journals on four research areas.

math-ph
Communications in Mathematical Physics

Reviews in Mathematical Physics
Letters in Mathematical Physics
Journal of Mathematical Physics

nucl-th
Annual Review of Nuclear and Particle Science

Progress in Particle and Nuclear Physics
Atomic Data and Nuclear Data Tables

Journal of Nuclear Materials
astro-ph

Research in Astronomy and Astrophysics
Annual Review of Astronomy and Astrophysics

New Astronomy Reviews
Space Science Review

cond-mat
Nature Nanotechnology

Nature Materials
Nano Letters

Journal of Materials Science

Multi-attributed graphs were constructed from the datasets as follows: The
nodes correspond to the authors. If two authors co-author a paper, we placed a
weighted edge between the authors. The weighting denotes the number of co-
authored papers. Each author has attributes term, paper, and conference/journal,
which are defined below:

• term: Each term is regarded as a node. An edge is generated between an
author and a term if the author uses the term in the titles of at least one
paper. The edge weight denotes the term frequency for each author. As a
preprocessing, we applied stop-word elimination and stemming.

• paper: Each paper is regarded as a node. An edge is generated if the author
publishes the paper. The edge weight is always 1.0 because each paper can
only be published once.

• conference/journal: Each conference or journal corresponds with a node.
An edge is created between an author and a conference/journal if the author
publishes at least one paper at the conference/journal. The edge weight is
the total number of publications at the conference/journal.
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4.4.2 Results of CAR-clustering

Figure 4.3 shows examples of the detected communities and their associated attribute-
value clusters in DBLP. The number of communities and the number of term clus-
ters were each 50, whereas the number of conference clusters and the number paper
clusters were each 4. The red, blue and gray rectangles correspond to communi-
ties, term clusters, and conference clusters, respectively. Each rectangle shows the
top contributing nodes in the community/cluster, and the edge weights show the
strength of the relationship between the community and the corresponding clus-
ter. We chose famous researchers in different research domains (i.e., Jiawei Han,
Michael Stonebraker, and Michael I. Jordan).

Figure 4.3(a) show the community and the correlated attribute-value clusters of
Jiawei Han, who is a leading researcher in data mining and database areas. The
results show that (1) he collaborates with Chinese researchers, (2) he publishes
many papers related to data mining conferences (i.e., KDD, ICDM, SDM, PAKDD
and PKDD) and database conferences (i.e., SIGMOD, VLDB, PODS, EDBT and
ICDT), and (3) his researches are highly correlated with topics in data mining, such
as frequent pattern mining and high dimensional data.

Similarly, Figure 4.3(b) shows the result for Michael Stonebraker, a renowned
database researcher. His community is strongly related to conferences in databases
(SIGMOD, VLDB, PODS, EDBT and ICDT). Topics such as view maintenance, and
digital library are detected. Figure 4.3(c) shows the result for Michael I. Jordan,
an expert in machine learning research. This community is strongly related to the
conferences of machine learning, (NIPS, ICML, UAI, COLT, and ECML) and the
topics like bayesian inference, reinforce learning, and support vector machine.

The proposed scheme is compared to a baseline method as well as the state-of-
the-art methods to quantitatively evaluate the performance of community detection
and attribute-value clustering. In this experiment, we find the hyper parameters
which bring the highest accuracy for each method using grid search. The compari-
son methods include:

• NMF [5]: Baseline approaches that apply NMF for binary relationships
between graph components, including author-term (A-T), author-paper (A-
P), author-conference (A-C), term-paper (T-P), and term-conference (T-C)3.

3Because NMF assumes the co-occurrences of binary relationships, paper-conference (one-to-
one relationship) is excluded.

67



• LCTA [63]: A probabilistic generative model for communities, topics of
textual attributes, and their relationships. We set hyper parameter λ to 0.0
for all dataset.

• SCI [58]: An NMF based method for detecting communities as well as their
semantic descriptions via node’s attribute values. We set hyper parameters
α and β to 80 for DBLP dataset, and 80 and 0.05 for arXiv dataset, respec-
tively.

• HINMF [11]: A model that clusters objects and attributes simultaneously
and takes the consensus among the binary NMFs. This work is the most
similar to our proposal. We set hyper parameter α to 0.01 for all dataset.

Note that, LCTA and SCI deal with a single concatenated feature of multiple
attributes. Therefore, we prepare concatenated feature consisting of term, docu-
ment and conference/journal, and apply these approaches on the feature. As for
CARPMF, we set parameters λt to all 1.

To evaluate the qualities of these methods, we compared the accuracy [63] of
community and attribute-value clustering w.r.t. paper and conference/journal. We
designed a ground truth to measure the accuracy. To derive the ground truth, each
author is labeled based on research areas of their papers, in other words, if the
author mostly published papers for the specific area, the author is labeled as that
area. Similarly, the labels for conference/journal and paper were manually given
by referring to the conference categories.

Definition 4.4.1 (Accuracy). Given a set S of elements, for each element n ∈ S, the
true label and the cluster label generated by a method are denoted by sn and rn,
respectively. Then, the accuracy is defined as:

Accuracy =

∑
n∈S δ(sn,map(rn))

|S|

where | · | is the cardinality of a set; δ(x, y) is a delta function which returns 1
if x = y, otherwise 0; and map(rn) is a mapping function that maps rn to the
equivalent label in the dataset. The best mapping can be found by Kuhn-Munkres
algorithm [104]. □

Table 4.4 summarizes the evaluation results. The number of communities and
the number of attribute-value clusters for each attribute are each four. Each cell
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shows the mean and the standard deviation of the accuracies for 20 trials. N/A
denotes that the method does not support the category. Values in bold indicate a
significant improvement using the Student-t test, where p < 0.05.

CARPMF achieved the best performance for community detection (author) and
attribute-value clustering (paper and conference/journal) with significant gaps for
DBLP dataset (respectively 19%, 25% and 10%) and for arXiv dataset (respectively
9%, 8%) relative to the comparative methods. In particular, CARPMF has an im-
proved clustering quality compared to NMF by taking the relationships between
communities and attribute-value clusters into account.

Table 4.3 lists the detected topics from DBLP using CARPMF when the num-
ber of topics is set to four. Our method successfully detects the four major research
topics. Specifically, Topic 1 containing retriev, inform, search, queri and web seems
to correspond to information retrieval, and Topic 2 containing mine, pattern, clus-
ter, graph and frequent correspond to data mining. Topic3 contains words “learn,
network, kernel, bayesian, reinforc”, which are typical words of machine learning.
Topic4 is a topic of database containing words “query, databas, optim, xml, manag”,
which are popular topics on database researches.

Table 4.3: Detected topics via CARPMF from DBLP.

Topic 1 Topic 2 Topic 3 Topic 4
(Information Retrieval) (Data Mining) (Machine Learning) (Database)

retriev 0.063 mine 0.069 learn 0.049 queri 0.039
trec 0.042 data 0.038 model 0.027 databas 0.038

inform 0.031 cluster 0.033 network 0.015 data 0.035
model 0.025 pattern 0.029 algorithm 0.013 optim 0.014

document 0.024 base 0.022 kernel 0.011 effici 0.013
track 0.023 graph 0.020 bayesian 0.010 xml 0.012
queri 0.023 frequent 0.016 reinforc 0.010 manag 0.012

search 0.021 larg 0.014 infer 0.010 base 0.011
text 0.017 effici 0.014 process 0.009 object 0.011
web 0.017 rule 0.014 decis 0.009 system 0.010
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Figure 4.3: Example communities with attribute-value clusters. The red, blue
and gray rectangles correspond to communities, term clusters, and conference clus-
ters, respectively.
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4.4.3 Insights on Parameters

This section discusses the effect of parameter λt for each attribute. The larger the
λt value, the greater the influence of the attribute-value cluster for t ∈ T is on the
community. Therefore, optimal parameter settings should result in better results.
Figures 4.4 shows the behavior of the accuracy with different values with respect
to different attributes. For each evaluation, λs (s ̸= t) of the other attributes were
fixed. In most cases, the accuracy shows a convex form and the peak is around 100.
More importantly, the accuracy is insensitive to the setting, making tuning easier.

4.4.4 How to Determine Parameters

In this section, we discuss about how to determine the user defined parameters (i.e.,
ℓ, kt and λt). As for the number of communities/clusters (i.e., ℓ, kt), the larger com-
munity/cluster size brings the finer grained communities/clusters (e.g. laboratory,
research topic) and the smaller community/cluster size brings the coarse grained
communities/clusters (e.g. research society, research area). In the data analysis
task, the required granularity of the communities/clusters varies depending on the
purpose of the data analysis. Therefore, when applying CARPMF, the number of
communities/clusters should be adjusted so as to obtain the target size by repeatedly
applying our method. As for λt, as we discussed in the previous section, by setting
the λt to around 1.0, our method achieves highest accuracy. Thus, in the practical
use of our method, it is better to set λt to 1.0.

4.4.5 Convergence Analysis

In this section, we experimentally provide convergence analysis to optimize the
proposed loss function in Equation 4.4. Figures 4.5(a) and (b) show the conver-
gence curve of the loss function for DBLP and arXiv, respectively. In addition, the
accuracy of each iteration is plotted. The black line shows the value of the loss func-
tion. The red, green, and blue lines show the accuracy of community detection and
attribute-value clustering for author, paper, and conference/journal, respectively. As
the number of iterations increases, the loss function decreases while the accuracy
improves.
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4.4.6 Efficiency Analysis

This section analyzes computational efficiency in terms of the numbers of commu-
nities and attribute clusters. When the numbers are fixed to four as experiments
above, the running times of CARPMF on the DBLP (arXiv) dataset are 15.86 ±
1.153s (5.163 ± 0.217s). When changing the numbers of communities and term
clusters to 50, while those of paper and conference remain four, the running times
increases to 35.05 ± 0.660s (DBLP) and 70.94 ± 1.625s (arXiv). These values are
still reasonable for various applications.

Moreover, we examine the running time of our method by changing the number
of nodes in an input graph. Theoretically, as discussed in Section 4.3.4, the com-
putational complexity is dependent on the number of vertices, that of edges, and
that of distinct values of each attribute. As most of real-world graphs are modeled
as scale-free networks, edges in a graph are very sparse, therefore, we examine the
sensitivity of processing time on the proposed method in terms of the number of
nodes. In this experiment, we selected all of the papers on DBLP, and construct
the multi-attributed graph as same manner as described in Section 4.4.1. We set
the number of communities and clusters are four. Figure 4.6 shows that the time
complexity of our method is almost linear to the number of nodes. From the figure,
we ensure that the time complexity of our method is linear to the numbers of nodes
and edges (as shown on Equation 4.17). Therefore, when the input graph is sparse,
our method is highly efficient.

4.5 Conclusion

In this paper we have proposed CAR-clustering, which includes community detec-
tion, attribute-value clustering, and extraction of their relationships, for clustering
over multi-attributed graphs. We have also proposed a novel algorithm CARPMF
based on NMF. CARPMF employs a unified loss function to simultaneously solve
different PMFs. This approach is better than the state-of-the-art methods in that it
can exploit the correlation between communities and attribute-value clusters for en-
hancing the quality of the result. Our experiments have demonstrated that CARPMF
successfully achieves CAR-clustering. CARPMF has detected reasonable commu-
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nities with meaningful semantic descriptions via the relationship between commu-
nities and attribute-value clusters for real-world datasets. These results are useful
for many applications such as node property estimations [47, 53, 106], community-
wise information recommendations [107], and semantic reasoning for nodes/edges [108].
Additionally, CARPMF has achieved higher accuracy than comparative methods,
including a baseline and the state-of-the-art methods.
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Figure 4.4: Accuracy for different λt values. CARPMF performs better at all of
the parameters are λt = 1.
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Figure 4.5: Convergence analysis. Loss function value under iteration and the
corresponding accuracy curve. The loss function is decreased monotonically while
the accuracy curves are increased.
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77





Chapter 5

Conclusion and Future Work
This thesis explores non-negative matrix factorization under probability constraints
which is named probability matrix factorization (PMF).

Chapter 3 proposed a framework for PMF. PMF is formulated as an optimization
problem which consists of loss measure and probability constraints. The loss mea-
sure measures a difference between an input probability matrix and a multiplication
of output matrices. The probability constraints consist of non-negativity constraint
and equality constraint that the sum of the elements in the output matrix is 1. We
derived an optimization scheme for PMF that minimizes the loss function while
satisfying the constraints, which widely applicable to differentiable loss functions.
For more general use of PMF, we extended the PMF to more general loss measure
and the variety of probability constraints. To control the probability distribution of
the output matrices, we proposed Dirichlet regularization term, which is a negative
log-likelihood of the Dirichlet distribution. Experiments using benchmark docu-
ment datasets showed that PMF outperformed the ordinary NMF and LDA in the
viewpoint of the perplexity in the test dataset, and accuracy of document clustering.

Chapter 4 investigates the effectiveness of multi-tasking PMF. In this chapter, a
novel clustering scheme for multi-attributed graphs named CAR-clustering is pro-
posed. CAR-clustering includes three tasks, community detection, attribute-value
clustering, and relationship detection between the communities and the attribute-
value clusters. For CAR-clustering, we proposed CARPMF which consists of mul-
tiple PMFs for multiple tasks to mutually complement each other tasks. Experi-
ments using real-world bibliographic databases showed that CARPMF outperforms
ordinary NMF and the related works for community detection and clustering.
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5.1 Summary of Contributions

Contributions of this thesis are summarized as follows:

• We propose a novel matrix factorization scheme, probability matrix factor-
ization (PMF), which factorized the input probability matrix into two prob-
ability matrices (Chapter 3).

• We propose a novel optimization method for optimizing PMF. For the method,
we give theoretical supports for the validity of update rules: (1) our opti-
mization scheme monotonically decrease the objective function; (2) the out-
put matrices always meet the probability constraints; (3) the time complex-
ity of the proposed optimization scheme remains the same as the ordinary
NMF; (4) our optimization scheme can apply to many kind of differentiable
loss-functions (Chapter 3).

• We propose a novel regularization term for the output matrices, Dirichlet
regularization term, which enables us to control the probability distribution
of the output matrix (Chapter 3).

• The theoretical analysis for loss-function of PMF revealed that PMF strongly
relates to probabilistic topic models, namely pLSA [29] and LDA [30] (Chap-
ter 3).

• The experimental results show that PMF is more accurate than the ordi-
nary NMF regarding clustering and perplexity without sacrificing efficiency
compared with ordinary NMF (Chapter 3).

• We propose a novel clustering scheme CAR-clustering to address two tech-
nical questions. (i) Given a multi-attributed graph, how can community
detection and attribute-value clustering be performed for different types of
attributes in a cooperative manner? (ii) How should reasonable relation-
ships be determined between communities and attribute-value clusters for
each type of attribute? (Chapter 4)

• We develop a novel algorithm CARPMF, which achieves CAR-clustering.
Specifically, a dedicated loss function is designed to perform multiple PMFs
simultaneously (Chapter 4).
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• We conduct experiments using real-world datasets (DBLP computer science
bibliography and arXiv physics bibliography). The accuracy of CARPMF
with respect to community detection and attribute-value clustering and a
comparison to other methods are examined. Relative to comparative meth-
ods, CARPMF achieves a better accuracy of up to 19% for community de-
tection and up to 25% for attribute-value clustering. Furthermore, CARPMF
detects informative communities and their rich semantic descriptions by cor-
relating multiple types of attribute-value clusters (Chapter 4).

5.2 Future Work

We state our future work for each chapter and that of long-term view.

Future works for the work in Chapter 3 are considered as follows. First, we
consider our optimization schemes for NMF under any other kind of distance met-
rics such as Itakura-Saito (IS) divergence [110], Bregman divergence [111], ℓ2,1
norms [112], and Wassersterin distance [113]. Second, we are planning to extend
PMF to the non-parametric model by considering the prior distribution of the output
matrices as the Dirichlet process [114].

Future works for the work in Chapter 4 are considered as follows. First, we are
considering to extend the proposed method for chronological analysis over tempo-
ral multi-attributed graphs. For example, who immigrates what community, what
attribute changes to what cluster, what community changes the relationships be-
tween attribute-clusters. Second, we plan to automate the parameter tuning (e.g.,
the numbers of communities/clusters, λt , etc.).

We present the long-term goal. We are considering to extend the PMF to multi-
layered PMF, which factorizes the output matrix to more low-rank matrices. The
model would explain the hierarchical representation of the latent variables [115,
116] and considered that the model would represent as similar to the deep auto-
encoder [117]. The hierarchical feature of latent variables explain global features
and local features of input datasets. Because of PMF have probability value, the
hidden variables in auto-encoder can be also recognized as probability values. This
property may lead to a more interpretable deep auto-encoder model by which the
posterior distribution is calculated by the multiplication of the elements.
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Chapter 6

Appendix

6.1 Proof of Theorem 5

Proof: At convergence, U (∞)
ij = U

(t+1)
ij = U

(t)
ij = Uij , V

(∞)
kl = V

(t+1)
kl = V

(t)
kl =

Vkl, where t denotes the t-th iteration, i.e.,

Uij = Uij

[
∂Uij

L
]−

+ λ−[
∂Uij

L
]+

+ λ+
,

Vkl = Vkl
[∂VklL]

− + ψ−
k

[∂VklL]
+ + ψ+

k

,

which are equivalent to

Uij

([
∂Uij

L
]+ − [∂Uij

L
]−

+ λ+ − λ−
)
= 0,

Vkl
(
[∂VklL]

+ − [∂VklL]
− + ψ+

k − ψ
−
k

)
= 0,

which are equivalent to Eq. 3.17 and Eq. 3.18, respectively. □

6.2 Proofs of Theorem 6

In this section, we give a proof of Theorem 6. Due to the space limitation, we
only prove that the update rule of U does not increase the loss function L. We can
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prove for V as the similar fashion. We will follow the similar aproach described
in [118] which utilize the property of the auxiliary function. We let L(Uij) be the
loss function L with Uij as a variable.
Definition 6.2.1. G(Uij, U ′

ij) is an auxiliary function for L(Uij) if the conditions

G(Uij, U
′
ij) ≥ L (Uij) , G(Uij, Uij) = L(Uij)

are satisfied.
Lemma 6.2.1. If G is an auxiliary function of F , then F is non-increasing under
the update

U ′
ij = arg min

Uij

G
(
Uij, U

(t)
ij

)
. (6.1)

Proof:

L
(
U ′
ij

)
≤ G

(
U ′
ij, U

(t)
ij

)
≤ G

(
U

(t)
ij , U

(t)
ij

)
= L

(
U

(t)
ij

)
. □

Lemma 6.2.2. Function

G
(
Uij, U

(t)
ij

)
= L

(
U

(t)
ij

)
+ ∂Uij

L
(
U

(t)
ij

)
(Uij − U (t)

ij )

+
[∂Uij

L]
+
+λ+

U
(t)
ij

(Uij − U (t)
ij )

2
(6.2)

is an auxiliary function for L.

Proof: G(Uij, Uij) = L(Uij) is obvious. We need to show that G(Uij, U
(t)
ij ) ≥

L (Uij). To do this, we compare the Taylor series expansion of L (Uij)

L (Uij) = L
(
U

(t)
ij

)
+ ∂Uij

L
(
U

(t)
ij

)
(Uij − U (t)

ij )

+(∂Uij
)2L

(
U

(t)
ij

)
(Uij − U (t)

ij )
2

(6.3)

with Eq. 6.2 to find that G(Uij, U ′
ij) ≥ L (Uij) is equivalent to[

∂Uij
L
]+

+ λ+

U
(t)
ij

≥ (∂Uij
)2L. (6.4)

We have [
∂Uij

L
]+

+ λ+ ≥
[
∂Uij

L
]+

= (UV ⊤V )ij =
∑
k

U
(t)
ik (V

⊤V )kj

≥ U
(t)
ij (V

⊤V )jj = U
(t)
ij (∂Uij

)2L.
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Therefore, inequality 6.4 holds and G(Uij, U
(t)
ij ) ≥ L (Uij). □

Proof of Theorem1: Replacing G
(
Uij, U

(t)
ij

)
in equation 6.1 by equation 6.2

results in the update rule:

U ′
ij = U

(t)
ij −

U
(t)
ij[

∂Uij
L
]+

+ λ+
(∂Uij

L+ λ)

= U
(t)
ij

[
∂Uij

L
]−

+ λ−[
∂Uij

L
]+

+ λ+
. (6.5)

Since equation 6.2 is an auxiliary function, L is non increasing under this update
rule. □

6.3 Fixing U (t), V (t), R(t), optimize L, over U ∗

When update U∗ with U (t), V (t) and R(t) fixed, we need to solve the following
problem:

U∗ =arg min
U∗≥0

L(U∗)

= arg min
U∗≥0

∥∥A− U∗(U∗)⊤
∥∥2
F
+
∑
t∈T

{
λt
∥∥U (t) − U∗R(t)

∥∥2
F

}
. (6.6)

subject to
∑
i,j

U∗
ij = 1,

L(U∗) is equivalent to following equation:

L(U∗) = tr
(
A⊤A

)
− 2tr

(
A⊤U∗(U∗)⊤

)
+ tr

(
(U∗)⊤U∗U∗(U∗)⊤

)
+
∑
t∈T

λt
(
tr
(
(U (t))⊤U (t)

)
− 2tr

(
(R(t))⊤(U∗)⊤U (t)

)
+ tr

(
(R(t))⊤U∗⊤U∗R(t)

)
. (6.7)

The derivative ∂U∗L is

∂U∗L =− 2A⊤RU∗ + 2U∗(U∗)⊤U∗

+
∑
t∈T

λt(−U (t)(R(t))⊤ + U∗R(t)(R(t))⊤). (6.8)
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So that, [∂U∗L]+ and [∂U∗L]− are

[∂U∗L]+ =2U∗(U∗)⊤U∗ +
∑
t∈T

λtU
∗R(t)(R(t))⊤, (6.9)

[∂U∗L]− =2A⊤RU∗ +
∑
t∈T

U (t)(R(t))⊤. (6.10)

6.4 Fixing U ∗, V (t), R(t), optimize L, over U (t)

When update U (t) with U∗, V (t) and R(t) fixed, we need to solve the following
problem:

U (t) =arg min
U(t)≥0

L(U (t))

= arg min
U(t)≥0

∥∥X(t) − U (t)(V (t))⊤
∥∥2
F
+ λt

∥∥U (t) − U∗R(t)
∥∥2
F
,

subject to
∑
i,j

U
(t)
ij = 1. (6.11)

L(U (t)) is equivalent to following equation:

L(U (t)) = tr
(
(X(t))⊤X(t)

)
− 2tr

(
(X(t))⊤V (t)(U (t))⊤

)
+ tr

(
U (t)(V (t))⊤U (t)(V (t))⊤

)
+ λttr

(
(U (t))⊤U (t)

)
− 2λttr

(
(R(t))⊤(U∗)⊤U (t)

)
+ λttr

(
(R(t))⊤U∗⊤U∗R(t)

)
. (6.12)

The derivative ∂U(t)L is

∂U(t)L =−X(t)V (t) + U (t)(V (t))⊤V (t)

+ λt(U
(t) − U∗R(t)). (6.13)

So that, [∂U(t)L]+ and [∂U(t)L]− are:

[∂U(t)L]+ =U (t)(V (t))⊤V (t) + λtU
(t), (6.14)

[∂U(t)L]− =X(t)V (t) + λtU
∗R(t). (6.15)
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6.5 Fixing U ∗, U (t), R(t), optimize L, over V (t)

When update V (t) with U∗, U (t) and R(t) fixed, we need to solve the following
problem:

V (t) = arg min
V (t)≥0

L(V (t))

= arg min
V (t)≥0

∥∥X(t) − U (t)(V (t))⊤
∥∥2
F
,

subject to
∑
i

V
(t)
ir = 1, ∀1 ≤ r ≤ kt.

L(V (t)) is equivalent to following equation:

L(V (t)) =tr
(
(X(t))⊤X(t)

)
− 2tr

(
(X(t))⊤V (t)(U (t))⊤

)
+ tr

(
U (t)(V (t))⊤U (t)(V (t))⊤

)
. (6.16)

The derivative ∂V (t)L is

∂V (t)L = −2(X(t))⊤U (t) + 2(V (t))⊤(U (t))⊤U (t). (6.17)

So that, [∂V (t)L]+ and [∂V (t)L]− are

[∂V (t)L]+ =(V (t))⊤(U (t))⊤U (t), (6.18)

[∂V (t)L]− =(X(t))⊤U (t). (6.19)

6.6 Fixing U ∗, U (t), V (t), optimize L, over R(t)

When update R(t) with U∗, U (t) and V (t) fixed, we need to solve the following
problem:

R(t) = arg min
R(t)≥0

L(R(t))

= arg min
R(t)≥0

∥∥U (t) − U∗R(t)
∥∥2
F
, (6.20)

subject to
∑
j

R
(t)
pj = 1, ∀1 ≤ p ≤ ℓ.
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L(R(t)) is equivalent to following equation:

L(R(t)) =tr
(
(U (t))⊤U (t)

)
− 2tr

(
(R(t))⊤(U∗)⊤U (t)

)
+ tr

(
(R(t))⊤U∗⊤U∗R(t)

)
. (6.21)

The derivative ∂R(t)L is

∂R(t)L = −(U∗)⊤U (t) + (U∗)⊤U∗R(t). (6.22)

So that, [∂Ri
L]+ and [∂Ri

L]− are:

[∂Ri
L]+ =(U∗)⊤U∗R(t), (6.23)

[∂Ri
L]− =(U∗)⊤U (t). (6.24)
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[2] Hervé Abdi. The eigen-decomposition: Eigenvalues and eigenvectors. En-
cyclopedia of measurement and statistics, pages 304–308, 2007.

[3] Gene H Golub and Christian Reinsch. Singular value decomposition and
least squares solutions. In Linear Algebra, pages 134–151. Springer, 1971.

[4] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791, 1999.

[5] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix
factorization. In Advances in neural information processing systems, pages
556–562, 2001.

[6] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-
negative matrix factorization. In SIGIR 2003: Proceedings of the 26th An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Toronto, Canada, pages 267–273, 2003.

[7] Tian Shi, Kyeongpil Kang, Jaegul Choo, and Chandan K Reddy. Short-
text topic modeling via non-negative matrix factorization enriched with local
word-context correlations. In Proceedings of the 2018 World Wide Web Con-
ference on World Wide Web, pages 1105–1114. International World Wide
Web Conferences Steering Committee, 2018.

[8] Jaewon Yang and Jure Leskovec. Overlapping community detection at scale:
a nonnegative matrix factorization approach. In Proceedings of the sixth
ACM international conference on Web search and data mining, pages 587–
596. ACM, 2013.

90



[9] Paris Smaragdis. Non-negative matrix factor deconvolution; extraction of
multiple sound sources from monophonic inputs. In Independent Component
Analysis and Blind Signal Separation, pages 494–499. Springer, 2004.

[10] Xiao Wang, Di Jin, Xiaochun Cao, Liang Yang, and Weixiong Zhang. Se-
mantic community identification in large attribute networks. In AAAI, pages
265–271, 2016.

[11] Jialu Liu and Jiawei Han. Hinmf: A matrix factorization method for cluster-
ing in heterogeneous information networks. In Proceedings of the interna-
tional joint conference on artificial intelligence workshop, 2013.

[12] Jialu Liu, Chi Wang, Jing Gao, and Jiawei Han. Multi-view clustering via
joint nonnegative matrix factorization. In Proceedings of the 2013 SIAM
International Conference on Data Mining, pages 252–260. SIAM, 2013.

[13] Hiroyoshi Ito, Takahiro Komamizu, Toshiyuki Amagasa, and Hiroyuki Kita-
gawa. Community detection and correlated attribute cluster analysis on
multi-attributed graphs. In Proceedings of the Workshops of the EDBT/ICDT
2018 Joint Conference (EDBT/ICDT 2018), Vienna, Austria, March 26,
2018., pages 2–9, 2018.

[14] Chris Ding, Tao Li, and Wei Peng. Nonnegative matrix factorization and
probabilistic latent semantic indexing: Equivalence chi-square statistic, and
a hybrid method. In AAAI, volume 42, pages 137–143, 2006.

[15] Chris Ding, Tao Li, and Wei Peng. On the equivalence between non-negative
matrix factorization and probabilistic latent semantic indexing. Computa-
tional Statistics & Data Analysis, 52(8):3913–3927, 2008.

[16] Minnan Luo, Feiping Nie, Xiaojun Chang, Yi Yang, Alexander G Haupt-
mann, and Qinghua Zheng. Probabilistic non-negative matrix factorization
and its robust extensions for topic modeling. In AAAI, pages 2308–2314,
2017.

[17] Mikkel N Schmidt, Ole Winther, and Lars Kai Hansen. Bayesian non-
negative matrix factorization. In International Conference on Independent
Component Analysis and Signal Separation, pages 540–547. Springer, 2009.

[18] Denise B Kandel. Homophily, selection, and socialization in adolescent
friendships. American journal of Sociology, 84(2):427–436, 1978.

91



[19] Shinji Umeyama. An eigendecomposition approach to weighted graph
matching problems. IEEE transactions on pattern analysis and machine in-
telligence, 10(5):695–703, 1988.

[20] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. In Advances in neural information processing
systems, pages 849–856, 2002.

[21] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral
clustering and normalized cuts. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
551–556. ACM, 2004.

[22] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[23] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer,
and Richard Harshman. Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6):391–407, 1990.

[24] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Incremen-
tal singular value decomposition algorithms for highly scalable recommender
systems. In Fifth international conference on computer and information sci-
ence, volume 27, page 28. Citeseer, 2002.

[25] Arkadiusz Paterek. Improving regularized singular value decomposition for
collaborative filtering. In Proceedings of KDD cup and workshop, volume
2007, pages 5–8, 2007.

[26] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang.
Network embedding as matrix factorization: Unifying deepwalk, line, pte,
and node2vec. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, pages 459–467. ACM, 2018.

[27] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asym-
metric transitivity preserving graph embedding. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1105–1114. ACM, 2016.

[28] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In Advances in neural information processing systems, pages
2177–2185, 2014.

92



[29] Thomas Hofmann. Probabilistic latent semantic indexing. In SIGIR ’99: Pro-
ceedings of the 22nd Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, Berkeley, CA, USA, pages
50–57, 1999.

[30] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allo-
cation. Journal of Machine Learning Research, 3:993–1022, 2003.

[31] Todd K Moon. The expectation-maximization algorithm. IEEE Signal pro-
cessing magazine, 13(6):47–60, 1996.

[32] Yee W Teh, David Newman, and Max Welling. A collapsed variational
bayesian inference algorithm for latent dirichlet allocation. In Advances in
neural information processing systems, pages 1353–1360, 2007.

[33] Tom Griffiths. Gibbs sampling in the generative model of latent dirichlet
allocation. 2002.

[34] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic
Smyth, and Max Welling. Fast collapsed gibbs sampling for latent dirichlet
allocation. In Proceedings of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 569–577. ACM, 2008.

[35] David Blei and John Lafferty. Correlated topic models. Advances in neural
information processing systems, 18:147, 2006.

[36] David M Blei and John D Lafferty. Dynamic topic models. In Proceedings
of the 23rd international conference on Machine learning, pages 113–120.
ACM, 2006.

[37] Yee W Teh, Michael I Jordan, Matthew J Beal, and David M Blei. Sharing
clusters among related groups: Hierarchical dirichlet processes. In Advances
in neural information processing systems, pages 1385–1392, 2005.

[38] Yu Wang, Eugene Agichtein, and Michele Benzi. Tm-lda: efficient online
modeling of latent topic transitions in social media. In Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 123–131. ACM, 2012.

[39] Farial Shahnaz, Michael W Berry, V Paul Pauca, and Robert J Plemmons.
Document clustering using nonnegative matrix factorization. Information
Processing & Management, 42(2):373–386, 2006.

93



[40] Ju-Hong Lee, Sun Park, Chan-Min Ahn, and Daeho Kim. Automatic generic
document summarization based on non-negative matrix factorization. Infor-
mation Processing & Management, 45(1):20–34, 2009.

[41] Bin Cao, Dou Shen, Jian-Tao Sun, Xuanhui Wang, Qiang Yang, and Zheng
Chen. Detect and track latent factors with online nonnegative matrix factor-
ization. In IJCAI, volume 7, pages 2689–2694, 2007.

[42] Shiva Prasad Kasiviswanathan, Prem Melville, Arindam Banerjee, and Vikas
Sindhwani. Emerging topic detection using dictionary learning. In Proceed-
ings of the 20th ACM international conference on Information and knowl-
edge management, pages 745–754. ACM, 2011.

[43] Carmen K Vaca, Amin Mantrach, Alejandro Jaimes, and Marco Saerens.
A time-based collective factorization for topic discovery and monitoring in
news. In Proceedings of the 23rd international conference on World wide
web, pages 527–538. ACM, 2014.

[44] Jaegul Choo, Changhyun Lee, Chandan K Reddy, and Haesun Park. Utopian:
User-driven topic modeling based on interactive nonnegative matrix fac-
torization. IEEE transactions on visualization and computer graphics,
19(12):1992–2001, 2013.

[45] Ankan Saha and Vikas Sindhwani. Learning evolving and emerging topics
in social media: a dynamic nmf approach with temporal regularization. In
Proceedings of the fifth ACM international conference on Web search and
data mining, pages 693–702. ACM, 2012.

[46] Hannah Kim, Jaegul Choo, Jingu Kim, Chandan K Reddy, and Haesun Park.
Simultaneous discovery of common and discriminative topics via joint non-
negative matrix factorization. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
567–576. ACM, 2015.

[47] Michelle Girvan and Mark EJ Newman. Community structure in social
and biological networks. Proceedings of the national academy of sciences,
99(12):7821–7826, 2002.

[48] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
IEEE Transactions on pattern analysis and machine intelligence, 22(8):888–
905, 2000.

94



[49] Haizheng Zhang, Baojun Qiu, C Lee Giles, Henry C Foley, and John Yen.
An lda-based community structure discovery approach for large-scale social
networks. ISI, 200, 2007.

[50] Peter Chin, Anup Rao, and Van Vu. Stochastic block model and commu-
nity detection in sparse graphs: A spectral algorithm with optimal rate of
recovery. In Conference on Learning Theory, pages 391–423, 2015.

[51] Yunpeng Zhao, Elizaveta Levina, Ji Zhu, et al. Consistency of community
detection in networks under degree-corrected stochastic block models. The
Annals of Statistics, 40(4):2266–2292, 2012.

[52] Da Kuang, Chris Ding, and Haesun Park. Symmetric nonnegative matrix
factorization for graph clustering. In Proceedings of the 2012 SIAM Interna-
tional Conference on Data Mining, pages 106–117. SIAM, 2012.

[53] Jaewon Yang and Jure Leskovec. Overlapping community detection at scale:
a nonnegative matrix factorization approach. In Proceedings of the sixth
ACM international conference on Web search and data mining, pages 587–
596. ACM, 2013.

[54] Ioannis Psorakis, Stephen Roberts, Mark Ebden, and Ben Sheldon. Overlap-
ping community detection using bayesian non-negative matrix factorization.
Physical Review E, 83(6):066114, 2011.

[55] Santo Fortunato. Community detection in graphs. Physics reports,
486(3):75–174, 2010.

[56] Lei Tang and Huan Liu. Community detection and mining in social media.
Synthesis Lectures on Data Mining and Knowledge Discovery, 2(1):1–137,
2010.

[57] Jaewon Yang, Julian McAuley, and Jure Leskovec. Community detection in
networks with node attributes. In 2013 IEEE 13th International Conference
on Data Mining, pages 1151–1156. IEEE, 2013.

[58] Xiao Wang, Di Jin, Xiaochun Cao, Liang Yang, and Weixiong Zhang. Se-
mantic community identification in large attribute networks. In AAAI, pages
265–271, 2016.

[59] Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth.
The author-topic model for authors and documents. In Proceedings of the

95



20th conference on Uncertainty in artificial intelligence, pages 487–494.
AUAI Press, 2004.

[60] Martin Atzmueller, Stephan Doerfel, and Folke Mitzlaff. Description-
oriented community detection using exhaustive subgroup discovery. Infor-
mation Sciences, 329:965–984, 2016.

[61] Simon Pool, Francesco Bonchi, and Matthijs van Leeuwen. Description-
driven community detection. ACM Transactions on Intelligent Systems and
Technology (TIST), 5(2):28, 2014.

[62] Hongyun Cai, Vincent W Zheng, Fanwei Zhu, Kevin Chen-Chuan Chang,
and Zi Huang. From community detection to community profiling. Proceed-
ings of the VLDB Endowment, 10(7):817–828, 2017.

[63] Zhijun Yin, Liangliang Cao, Quanquan Gu, and Jiawei Han. Latent commu-
nity topic analysis: integration of community discovery with topic modeling.
ACM Transactions on Intelligent Systems and Technology (TIST), 3(4):63,
2012.

[64] Cecile Bothorel, Juan David Cruz, Matteo Magnani, and Barbora Micenkova.
Clustering attributed graphs: models, measures and methods. Network Sci-
ence, 3(3):408–444, 2015.

[65] Michele Berlingerio, Michele Coscia, and Fosca Giannotti. Finding and char-
acterizing communities in multidimensional networks. In Advances in Social
Networks Analysis and Mining (ASONAM), 2011 International Conference
on, pages 490–494. IEEE, 2011.
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