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Abstract 
 
Motion data (captured motions, animated motions, and simulated motions) are 
widely used in different research fields in medical research, entertainment, and 
industry. However, most researches about motion analysis and synthesis using 
motion data have been carried out only in the time-domain. To deal with these 
complicated motion data (especially motion data collected from the real-world), there 
is a significant need to analyze and edit them in the instantaneous frequency domain. 
In order to overcome this problem. In the present dissertation, we present novel 
insights to motion analysis and synthesis in the instantaneous frequency domain 
using Hilbert-Huang transform (HHT). HHT can decompose a real-world signal into 
several pseudo monochromatic signals called intrinsic mode function (IMF) using 
empirical mode decomposition (EMD). HHT is used for various applications and 
researches such as blood pressure change measurement, arrhythmia detection, 
submarine detection, and earthquake countermeasure construction inspection. 

In this dissertation, we propose a framework in the instantaneous frequency 
domain of motion analysis and synthesis using HHT. We inputted motion capture 
data as multiple variable signals into EMD to get decomposed IMFs. After applying 
the Hilbert transform (HT) to each IMF, the instantaneous frequencies of motions 
were obtained. Our proposed research framework can be used in motion analysis for 
real-world motions that are nonlinear and non-stationary signals obtained from a 
motion capture system. Also, our framework can apply to the motion synthesis in 
computer graphics and to robot motion design in robotics. To show the applications 
of our proposed framework using HHT, we applied our framework to three different 
applications: (i) Dance motion analysis and editing; (ii) Bunraku (“文楽” in Japanese) 
puppet motion analysis; and (iii) Robot motion synthesis using Bunraku puppets. 

First, we applied our proposed framework to (i) dance motion analysis and editing. 
Dance motions consist of several choreographies. Using our framework, these 
choreographies can be analyzed in the instantaneous frequency domain to show the 
features of different dance styles. As an example, we discuss the feature differences 
between the dance styles of Japanese techno-pop group Perfume, salsa, waltz, and 
hip-hop using the spectrum analysis results. For dance editing, our framework 
decomposes dance motions into choreographies, which can be edited, extracted, 
blended, exaggerated and exchanged with other dance styles. In this dissertation, 
we extracted two different choreographies from Perfume dance and blended them 
separately into a salsa dance.  



 

 

Second, we used our proposed framework for (ii) Bunraku puppet motion analysis. 
“Ningyo Joruri Bunraku” (“人形浄瑠璃文楽” in Japanese) is one of intangible world 
cultural heritages selected by UNESCO (United Nations Educational, Scientific and 
Cultural Organization). The affective motions of Bunraku puppets attract audiences 
so deeply that they contribute to interactions between the audiences and puppets. 
We used three processes in this application: (1) We collected the affective motions of 
Bunraku using both optical and magnetic motion capture systems; (2)We used our 
framework using HHT to analyze the interactive mechanism of Bunraku motion 
called “Jo-Ha-Kyū” (“ 序破急 ” in Japanese), which is a Japanese traditional 
performing art principle; and (3) We verified the difference in mechanism of the 
interaction techniques between Bunraku and Western dance (Perfume dance) based 
on the previous Jo-Ha-Kyū researches of Noh and Bunraku using HHT. Thus, the 
mechanism extracted from Bunraku puppets can be applied to a Human-Robot 
interaction. 

Finally, we adapted our proposed framework to (iii) robot motion synthesis using 
Bunraku puppets. We present a robot motion design framework using HHT for 
sparsing motion that can fit the limitation of motor speed. As an example, we use 
Bunraku affective motions that are based on Jo-Ha-Kyū to create affective motions 
for a robot. We converted a few simple Bunraku motions into robot motions using 
deep learning methods. Our primitive experiments showed that Jo-Ha-Kyū can be 
incorporated smoothly into robot motion design, and some simple affective robot 
motions can be designed automatically by our proposed framework. Then, a robot or 
vocaloid (CG) can express affective motion synchronized with narration (story) based 
on Jo-Ha-Kyū. 

Using our proposed framework, complicated motion data (e.g., dance motions, 
Bunraku puppet motions) can be analyzed and edited in the instantaneous frequency 
domain. Our research framework can also be applied to Human-Robot interaction. 
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Chapter 1  
 

 

Introduction 
 

 

This chapter is an introduction to the background and motivation of this research. 

We discuss related researches of motion analysis and synthesis based on motion 

capture data. After reviewing related researches in motion capture systems, we 

suggest that Hilbert-Huang transform (HHT) can provide another view of motion 

processing in the instantaneous frequency domain. We carefully explain the 

difference between HHT and a short-time Fourier transform (STFT) by comparing 

their mathematical definitions in section 1.1. At the end of this chapter, we 

summarize the purpose of our research in section 1.2.  

 

1.1 Research background and motivation 

 

In recent years, human motions have been captured as digital data using cameras 

and motion capture systems. Particularly, for a motion capture system, it is possible 

to record joints position including the rotation angle by placing a mark at the joint 

position of a person. Therefore, when a person is moving, joint angle data can be 

obtained. There have been many researches on various motions, such as character 

animation, human and robot motion. Holden et al. [1] proposed a method to 

reconstruct and stylize human motion using deep learning methods. Choi et al. [2] 

presented an approach for the exaggerated editing of character motions. Aberman et 

al. [3] conducted research on motion retargeting with the learning of character-

agnostic motions. Kim et al. [4] conducted research about a motion editing method 

for interactive editing of users using constraints. By using motion beats, Kim et al. 

[5] presented a scheme for blending motions (e.g. dance motions) rhythmic patterns 

into other motions. PonsMoll et al. [6] used a 4D capture system and 3D scan to 

propose a method for modifying the deformations of a character’s motions. Kwon et 

al. [7] presented a motion-labeling method using a learning-based classification for 

fighting interactive actions. However, most researches have been carried out only in 
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the space-time domain, because noisy and complicated motions like human 

kinematic motions are very difficult to analyze and edit in the frequency domain. 

Hilbert transform (HT) is used to transform a nonlinear real monochromatic signal 

into its imaginary part to obtain the instantaneous frequency and amplitude for 

analyzing signals in the instantaneous frequency domain [8]. The advantage of HT 

is that an instantaneous frequency and amplitude from a nonlinear chromatic signal 

can be obtained, and they can be visualized more clearly than by the STFT [9]. 

However, because most real-world data are not monochromatic signals, there are few 

data suitable for the HT. Huang et.al [10] proposed an empirical mode decomposition 

(EMD) first in 1998, which can decompose an original signal into several pseudo 

monochromatic waves so-called intrinsic mode function (IMF), and a residual so-

called trend. Decomposed IMFs are approximately multivariable monochromatic 

waves that can be applied to the HT. However, please note that no mathematical 

proof exists that chromatic signals can be always decomposed into chromatic signals 

using the EMD. The whole process is called HHT. As a result, we can get the 

instantaneous frequency and amplitude from a nonstationary and nonlinear real-

world chromatic signal. Compared with Fourier transform (FT), which decomposes 

the signal into a series of sine or cosine waves in a linear way, HHT decomposes the 

signal into finite IMFs and a Trend (residual), empirically and nonlinearly. There 

are also other decomposition methods such as Generalized Harmonic Analysis 

(GHA). GHA is minimizing residual energy from the original waveform within the 

observation interval to extract the monochromatic wave [11, 12]. The advantage of 

GHA is that this method can deal with frequency fluctuations in a short time interval 

than FT. However, GHA also decomposes a signal in a linear way as same as FT, 

different from EMD. Furthermore, many researches have been conducted to expand 

the EMD from one variable to multiple variables, i.e. bivariate EMD (BEMD), 

trivariate EMD (TEMD), multivariate EMD(MEMD) and noise-assisted 

Multivariate EMD(NA-MEMD) [13-16]. Besides, recent studies have reported that 

HHT is a useful tool for sparse coding in deep learning [17-22]. As a result, HHT is 

applied widely to various applications now, and its Hilbert spectral analysis (HSA) 

is getting more and more attention among researchers due to its advantages in the 

instantaneous frequency domain.  

Thus, for nonlinear, nonstationary, and multi-channel signals like motion capture 

data, HHT is more convenient than FT and can be considered as a powerful tool to 

analyze and synthesize motion capture data. 
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Meanwhile, the technology for voice-recognition AI (artificial intelligence) 

assistants has been explosively spreading. However, for most people, AI assistants 

are used only for a music player instead of a usual AI [23]. For example, the AI 

assistants such as Apple Siri, have been used for a voice recognition interface in 

practical, but few people use Siri regularly except for a music player. The reason for 

this limited use is not clearly understood, but one possible reason is a lack of the 

feelings associated with interpersonal conversations that can lead to a human 

discomfort.  

The UNESCO Intangible Cultural Heritage “Ningyo Joruri Bunraku (人形浄瑠璃

文楽” in Japanese)”, whose affective motion is regarded as “the most beautiful motion 

in the world” by UNESCO, and Bunraku play can create empathy among the 

audiences [24]. Thus, it may play an important role in resolving the AI assistant’s 

lack of relatability in interpersonal conversations with humans. There are still many 

unexplained aspects of how emotions are formed through human-machine 

interaction and communication. In the case of communications between humans and 

robots, the more robot resembles humans, the more uncomfortable interaction occurs 

between humans and vocaloids (CG) / robots, which is so-called “uncanny valley” [25]. 

Thus, analyzing the mechanism of emotional interaction techniques of the Bunraku 

play in the instantaneous frequency domain using HHT can be a novel solution to 

resolve the above problem. 

 

1.2 Research purpose 

 

In this dissertation, we use HHT to decompose these motions into several pseudo 

monochromatic waves, i. e., IMFs that are nonlinear monochromatic signals and can 

be analyzed in the instantaneous frequency domain [8]. First, we applied our 

proposed framework to dance motions. Next, we focused on traditional performing 

art techniques of Bunraku (“文楽” in Japanese) using our proposed framework with 

HHT. Following these, we took the motion data and extracted the Jo-Ha-Kyū (“序破

急” in Japanese) principle, the mechanism of Bunraku puppet interactive technique, 

that is usually the change of speeds in motions and music. Finally, we developed a 

framework using the Jo-Ha-Kyū principle extracted from Bunraku play music and 

puppet motions to overcome the communication discomfort uncanny valley. We use 

this framework for robot motion design to express emotions during human-robot 

interactions as showing in Figure 1.1.  
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Figure 1.1 A framework for the research work performed in this dissertation 

Thus, our researches include the design and development of a motion editing 

framework using HHT, and the applications of the framework to the Bunraku puppet 

analysis and robot motion synthesis. 

1.2.1 Dance motion analysis and editing using HHT 

There have been very few researches conducted on motion analysis and editing in 

the instantaneous frequency domain. We propose a motion analysis and editing 

framework using HHT for complicated dance motions. Using our framework, dance 

motions can be decomposed into each choreography in the instantaneous frequency 

domain. This allows dancers and animators to analyze dance motion clearly. For 

example, harmonic motions, and a Fibonacci sequences can be detected by our 

proposed framework in the instantaneous frequency domain. Furthermore, these 

decomposed choreographies can be edited, exchanged and blended into other dances 

to create new dance styles. This is useful for animators to analyze and design dance 

motions. 

1.2.2 Bunraku puppets motion analysis using HHT 

It is difficult to analyze the mechanism of Japanese traditional arts such as Bunraku 

puppets. Our proposed framework can verify the Jo-Ha-Kyū and “Ma” (“間” in 

Japanese) mechanism of Bunraku plays. Here, Ma is the intervals among Jo, Ha, 
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and Kyu, which is crucial in the Jo-Ha-Kyū principle. We decomposed Bunraku 

motions using our framework and showed that the motions of Bunraku puppets are 

divided into Jo-Ha-Kyū and Ma. These extracted mechanisms and unique techniques 

can be used for design performing art like actors and robots and CG characters. 

1.2.3 Applying HHT to robot motion synthesis using bunraku puppets 

“Uncanny Valley” is used to describe the phenomenon in which a human-robot 

interaction is becoming similar to that with a real human [25]. This makes humans 

uncomfortable and, thus, prohibits the prevalence of humanoids with AI assistants. 

We adapted the framework using deep learning and Jo-Ha-Kyū principle to create 

affective motions of a robot. Using our proposed framework, we can create affective 

motions to interact with humans. This can be considered as a tool to improve the 

interaction between humans and humanoids with AI assistants. 

 

In Chapter 2, we review the HHT. In Chapter 3, we introduce our proposed 

framework of dance motion analysis and synthesis using the HHT. In Chapter 4, we 

show the results of the Bunraku puppet motion analysis using the HHT. In Chapter 

5, we demonstrate the results of robot motion synthesis using HHT and Bunraku 

puppets. In Chapter 6, we summarize our contributions and discuss future research. 
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Chapter 2  
 

 

Hilbert-Huang transform 
 

 

In this chapter, we introduce the Hilbert-Huang transform (HHT). The key idea of 

HHT is using empirical mode decomposition (EMD) that decomposes a real-world 

signal into several intrinsic mode functions (IMFs) that are pseudo monochromatic 

waves. After decomposed signal into each IMF, their instantaneous frequency and 

amplitude were obtained with an analytical signal using Hilbert transform (HT). 

Thus, we first introduce the analytical signal in section 2.1 and HT in section 2.2. 

Next, we explain the definition and algorithm of EMD in section 2.3. There are 

different types of EMD, then we introduce one variable EMD and its algorithm to 

show the mechanism of decomposing nonlinear signals into pseudo monochromatic 

waves. Besides, we discuss multivariate EMD (MEMD) and noise-assisted 

multivariate EMD (NA-MEMD) for decomposing multivariate data such as motion 

capturing data. Because the EMD algorithm uses spline interpolation to extract 

envelop from the original signal, we discuss the spline implementation for EMD in 

section 2.4. In section 2.5, we show an example of Hilbert spectral analysis (HSA) for 

analyzing decomposed signals by EMD. Also, we introduce the weighted average 

frequency algorithm (WAFA), which is a method for HHT to get average frequencies 

of each IMF in section 2.6. 

 

2.1 Analytical signal 

 

The analytical signal is a signal analysis theory widely used in the signal processing 

field. An analytical signal (Figure 2.1) is defined as 𝑧ሺ𝑡ሻ ൌ 𝑧௥ሺ𝑡ሻ ൅ 𝑖𝑧௜ሺ𝑡ሻ, where  𝑧௥ሺ𝑡ሻ 

denotes the real part, 𝑧௜ሺ𝑡ሻ denotes the imaginary part.  
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Figure 2.1 Analytical Signal 

As shown in Figure 2.1 [9], the signal observed in the real world is a projection 

from the complex plane onto the real axis as time passed. Therefore, the 

instantaneous frequency 𝐴 and the instantaneous amplitude 𝜔଴ can be obtained 

from the analysis signal by the following formula [9]. 
 

Aሺtሻ ൌ ඥ𝑧௥
ଶሺ𝑡ሻ ൅ 𝑧௜

ଶሺ𝑡ሻ (1) 

 

𝜔଴ሺtሻ ൌ
𝑑
𝑑𝑡

tanିଵ 𝑧௜ሺ𝑡ሻ
𝑧௥ሺ𝑡ሻ

 (2) 

 

2.2 Hilbert transform 

 

Because signals observed in the real world only have the real part, it cannot be 

determined whether the changing of the signal is caused by amplitude or phase. To 

obtain the imaginary part of an observed signal, Hilbert transform (HT) converts the 

real part of the observed signal into its imaginary part. Thus, the real part  𝑧௥ሺ𝑡ሻ of 

the analytical signal can be observed in the real-world. The imaginary part 𝑧௜ሺ𝑡ሻ can 
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be obtained using HT.  

Hilbert transform assumes that observed signals are a monochromatic signal [9]. 

Thus, the real part of the analytical signal can be expressed as 𝑧௥ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ ൌ

𝐴ሺ𝑡ሻ𝑐𝑜𝑠ሺ𝜔ሺ𝑡ሻ𝑡ሻ. Its Fourier transform is: 

 

𝐹ሾ𝑥ሺ𝑡ሻሿ ൌ 𝐹ሾ𝐴ሺ𝑡ሻ𝑐𝑜𝑠ሺ𝜔ሺ𝑡ሻ𝑡ሻሿ ൌ F ቈ𝐴
𝑒௜ఠబ௧൅𝑒ି௜ఠబ௧

2
቉ ൌ A

𝛿ሺ𝜔 െ 𝜔଴ሻ ൅ 𝛿ሺ𝜔 ൅ 𝜔଴ሻ

2
 (3) 

 

On the other hand, the Fourier transform of the analytic signal 𝑧ሺ𝑡ሻ ൌ 𝑧௥ሺ𝑡ሻ ൅

𝑖𝑧௜ሺ𝑡ሻ ൌ 𝐴𝑒௜ఠబ௧ is 𝐹ሾ𝑧ሺ𝑡ሻሿ ൌ 𝐴𝛿ሺ𝜔 െ 𝜔଴ሻ. In order to obtain the analytic signal, it is 

necessary to remove the negative frequency component of the original signal, double 

the remaining signal, and perform an inverse FT. As a result, the analytical signal 

is as follows [9]:. 

 

𝑧ሺ𝑡ሻ ൌ 𝑥ሺtሻ ൅ 𝑖ሺ
1
𝜋

න
𝑥ሺ𝜏ሻ

𝑡 െ 𝜏
𝑑𝜏

ஶ

ିஶ
ሻ (4) 

   

Here, 𝑥ሺtሻ is the real part 𝑧௥ሺ𝑡ሻ  observed in the real world. Then, HT can be 

defined to obtain the imaginary part from the real part is as follows [9]: 

 

𝑧௜ሺ𝑡ሻ ൌ 𝑦ሺtሻ ൌ
1
𝜋

𝑃𝑉 න
𝑥ሺ𝜏ሻ

𝑡 െ 𝜏
𝑑𝜏

ஶ

ିஶ
ൌ

1
𝜋𝑡

∗ 𝑥ሺ𝑡ሻ (5) 

 

Here, PV denotes the Cauchy principal value [9]. 

 

Since an analytical signal can be obtained by transforming the observed signal in 

the real world to the imaginary part, the instantaneous frequency, and 

instantaneous amplitude can be obtained by equation (1,2). 

 

2.3 Empirical mode decomposition 

 

As we introduced in section 2.2, HT assumes signals are monochromatic wave 

𝐴ሺ𝑡ሻ𝑐𝑜𝑠ሺ𝜔ሺ𝑡ሻ𝑡ሻ  to obtain their instantaneous frequency and instantaneous 

amplitude. However, the real-world signals are almost chromatic waves that HT 

cannot be applied to.  
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As shown in Table 2.1, when assuming a signal as 𝑠ሺ𝑡ሻ ൌ 𝛽 ൅ cosሺ𝑡ሻ , there are 

three cases depending on the different values of 𝛽. 

Table 2.1 Three different cases of Beta 

Signal 𝜷 

𝑠ሺ𝑡ሻ ൌ cosሺ𝑡ሻ 𝛽 ൌ 0 

𝑠ሺ𝑡ሻ ൌ 0.5 ൅ cosሺ𝑡ሻ 1൐ 𝛽 ൐ 0 

𝑠ሺ𝑡ሻ ൌ 5 ൅ cosሺ𝑡ሻ 𝛽 ൐ 1 

 

Figure 2.2 shows the three different signals in the complex plane. The real axis 

signal is cosሺ𝜃ሻ , and the imaginary axis signal is sinሺ𝜃ሻ . Here, the phase 𝜃 

corresponds to 𝑡. As shown in Figure 2.2, when 𝛽 is nonzero, the signal rotates 

away from the origin as time passes.  

 

 

Figure 2.2 Signals in the complex plane 

Then, the phase of each signal is obtained as shown in Table 2.2. 
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Table 2.2 Signal phase 

Signal Phase 

𝑠ሺ𝑡ሻ ൌ cosሺ𝑡ሻ
 

𝜃 ൌ 𝑎𝑟𝑐𝑡𝑎𝑛 ൬
𝑠𝑖𝑛𝜃 
𝑐𝑜𝑠𝜃

൰ ൅ 𝑛𝜋ሺ𝑛 ൌ 0,1,2 … ሻ 

𝑠ሺ𝑡ሻ ൌ 0.5 ൅ cosሺ𝑡ሻ
 

𝜃 ൌ 𝑎𝑟𝑐𝑡𝑎𝑛 ൬
𝑠𝑖𝑛𝜃 

0.5 ൅ 𝑐𝑜𝑠𝜃
൰ ൅ 𝑛𝜋ሺ𝑛 ൌ 0,1,2 … ሻ 

𝑠ሺ𝑡ሻ ൌ 5 ൅ cosሺ𝑡ሻ
 

𝜃 ൌ 𝑎𝑟𝑐𝑡𝑎𝑛 ൬
𝑠𝑖𝑛𝜃 

5 ൅ 𝑐𝑜𝑠𝜃
൰ ൅ 𝑛𝜋ሺ𝑛 ൌ 0,1,2 … ሻ 

 

When 𝛽 is zero, the phase 𝜃 increases linearly. However, when 𝛽 is nonzero, the 

phase  𝜃 oscillates as shown in Figure 2.3. 

 

 

Figure 2.3 Instantaneous phase 

Figure 2.4 shows the instantaneous frequency calculated from the instantaneous 

phase shown in Figure 2.3. Since the phase has not been calculated correctly, the 

instantaneous frequency is also cannot be obtained correctly. As shown in Figure 2.4, 

even a negative frequency observed when 𝛽 ൌ 5. Because the negative frequency 

does not have any physical meaning, the instantaneous frequency cannot be 

calculated directly when 𝛽 is nonzero. 
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Figure 2.4 Instantaneous frequency 

Therefore, we cannot apply signals observed from the real world by HT because 

HT assumes the signal as 𝐴ሺ𝑡ሻ𝑐𝑜𝑠ሺ𝜔ሺ𝑡ሻ𝑡ሻ to calculate the instantaneous frequency. 

To solve this problem, empirical mode decomposition (EMD) was proposed by Huang 

[8, 10]. First, EMD decomposes the signal in an empirical way, which is removing 𝛽 

and return the signal back to the origin. Then, the decomposed signal can be 

considered as a pseudo monochromatic wave. Thus, we can apply HT to the 

decomposed signals to obtain instantaneous frequency correctly. However, since 

there is no mathematical proof to guarantee the chromatic signal can be always 

decomposed into monochromatic signals, the procedure for cutting 𝛽 is called EMD 

and the method is only “empirical.” 

2.3.1 Intrinsic mode functions and trend 

Here, EMD decomposes a chromatic signal into a set of pseudo monochromatic waves 

so-called the Intrinsic Mode Functions (IMFs) and a residual so-called “trend” [8, 10]. 

Thus, the real-world observed signal 𝑥ሺ𝑡ሻ can be defined as follows: 
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𝑥ሺ𝑡ሻ ൌ ෍ 𝑐௡ሺ𝑡ሻ
௡

൅ 𝑟ሺ𝑡ሻ (6) 

 

Here, 𝑐௜ሺ𝑡ሻ| 𝑖 ൌ 1, … . , 𝑛ሽ{ is the set of IMFs, 𝑟ሺ𝑡ሻ is the trend [8, 10]. The definition 

of Intrinsic mode function is as follows [8, 10]: 

 

 The number of signal extrema and the number of zero crossings points are equal, 

or their difference is 1; and 

 

 At any time, the average value of the envelope made by the maximum, and the 

envelope made by the minimum is zero. 

 

After a real-world data decomposed into several IMFs, their instantaneous 

frequency and instantaneous amplitude can be respectively obtained by HT. 

2.3.2 One-variable EMD 

Here, we introduce EMD that is the key process of decomposing real-world signals 

to nonlinear functions entitled IMFs [8, 10]. The algorithm of EMD for a one-variable 

signal is as follows [8, 10]: 

 

1. Calculate residual 𝑟ሺ𝑡ሻ (Let 𝑟ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ in the first time); 

 

𝑟ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ െ ෍ 𝑐௡ሺ𝑡ሻ
௡

 (7) 

 

2. Initialize 𝑐ሺ𝑡ሻ ൌ 𝑟ሺ𝑡ሻand extract the IMF 

a) Find maximum envelope 𝑢ሺ𝑡ሻ and minimum envelope 𝑙ሺ𝑡ሻ  of 𝑐ሺ𝑡ሻ  using 

cubic spline functions 

b) Subtract the average envelope from 𝑐ሺ𝑡ሻ 

 

𝑐௡௘௪ሺ𝑡ሻ ൌ 𝑐௢௟ௗሺ𝑡ሻ െ
𝑢ሺ𝑡ሻ ൅ 𝑙ሺ𝑡ሻ

2
 (8) 

 

c) If the convergence condition ሺ0.3 ൒  𝑆𝐷 ൒ 0.2ሻ is satisfied, add 𝑐ሺ𝑡ሻ into the 

IMF set; and 
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𝑆𝐷 ൌ ෍
ሺ𝑐௢௟ௗሺ𝑡ሻ െ 𝑐௡௘௪ሺ𝑡ሻሻଶ

𝑐௢௟ௗ
ଶሺ𝑡ሻ

௡

 (9) 

 

3. Repeat step 1 and 2 to extract all IMFs 

2.3.3 Multivariate EMD 

The multivariate EMD (MEMD) is proposed for multi-channel or multivariate 

signals [13]. MEMD uses Quaternion to create the 𝑛 dimensional sphere and project 

multivariate signals onto the sphere, to decomposes the signals in MEMD. By finding 

maximum and minimum envelope covering the 𝑛 dimensional sphere, we obtain the 

average envelope and subtract from the original multivariate signals. Using this 

algorithm, we can decompose multivariate signals like human motions. Here, 

MEMD Algorithm is as follows [13]: 

 

1. Perform a 𝑛 dimensional sphere projection properly; 

 

2. Make the projection ሼ𝑝ఏೖሺ𝑡ሻሽ௞ୀଵ
௄  of the input signal ሼ𝑣ሺ𝑡ሻሽ௧ୀଵ

்  for all of 𝑘 based 

on the directional vector 𝑋ఏೖ; 

 

3. Determine the maximum positions from the projection ሼ𝑝ఏೖሺ𝑡ሻሽ௞ୀଵ
௄ ; 

 

4. Create multi-dimensional envelopes ሼ𝑒ఏೖሺ𝑡ሻሽ௞ୀଵ
௄  from ሾሺ𝑡௜

ఏೖሻ, 𝑣ሺ𝑡௜
ఏೖሻሿ; 

 

5. Calculate the mean 𝑚ሺ𝑡ሻ from the directional vector of all 𝑘; 

 

𝑚ሺ𝑡ሻ ൌ
1
𝐾

෍ 𝑒ఏೖሺ𝑡ሻ

௄

௄ୀଵ

 (10) 

 

6. If the convergence condition of 𝑑ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ െ 𝑚ሺ𝑡ሻ is satisfied, add it into the 

IMF set; and 

 

7. Repeat steps 1-6 until extracts all IMFs. 
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2.3.4 Noise-assisted multivariate EMD 

Due to the Filter bank property of MEMD, we can improve the accuracy of 

decomposition using white noises. noise-assisted multivariate EMD uses this 

property by adding a gaussian white noise (GWN) into MEMD [16]. It is known that 

NA-MEMD is the most accurate decomposition method among various EMDs [16]. 

The algorithm can be expressed as follows: 

 

1. Add m-channel GWN to n-channel multivariate signals. According to the 

principle of thumb, the best amplitude of GWN is about 8% to 10% [16]; 

 

2. Decompose 𝑛 ൅ 𝑚 multiple signals using MEMD; and 

 

3. Remove m-channel GWN. 

 

Motion capturing data are multivariate signals. For example, the human skeleton 

has multiple joints with a root position. For multi-channel or multivariate analytical 

signals, it is impossible to use the univariate EMD to decompose multivariate 

“chromatic” signals. Then, we take all joint angles into NA-MEMD to decompose 

motion capturing data. 

 

2.4 Spline implementation for EMD 

 

All decomposed IMFs are determined by spline functions because local means are 

calculated by spline envelopes [8]. According to empirical statistics, it is found that 

higher-order splines need more subjective parameters, which violates the adaptive 

knowledge of the method. In addition, higher-order spline functions are also more 

time-consuming in the calculation. Therefore, the cubic spline is chosen to make the 

envelope. Furthermore, the convergence of EMD is also a key problem [8]. All 

intuitionistic reasoning and experience show that the process of IMF decomposition 

by EMD is convergent. But at present, there is no strict proof whether the envelope 

made by cubic spline can converge [8]. 

Although the research of Chen et al. [26] shows that the B-spline curve can be used 

to shift and reduce the extremum, which can solve some problems such as flat peaks, 

this method still needs to be proved clearly. Therefore, for the method of making an 
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envelope, at this stage, the cubic spline function is the most appropriate only based 

on experience [8]. Whether the higher-order spline function can play a more effective 

effect remains to be further studied. 

 

2.5 Hilbert spectral analysis 

 

After original signals are decomposed by EMD, we can apply HT to each IMF to 

obtain their instantaneous amplitudes and frequencies. Figure 2.5 shows an example 

of a Hilbert spectral analysis (HSA) using the instantaneous amplitudes and 

frequencies of all IMFs [8]. As shown in Figure 2.5, the results are displayed in time 

in the horizontal axis, frequency in the vertical axis, and the amplitude are presented 

by color. 

 

Figure 2.5 An example of HSA 

Figure 2.5 shows a signal xሺ𝑡ሻ ൌ cosሺ90𝜋ଶ𝑡 ൅ 20𝜋𝑡ሻ ൅ cos ሺെ90𝜋ଶ𝑡 ൅ 200𝜋𝑡ሻ 

composed of two monochromatic waves. As shown in the figure, the instantaneous 

frequency is obtained clearly in HSA. 
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Considering the spectral symmetry of frequency conversion, twice the maximum 

frequency is sufficient for the sampling frequency. However, since the instantaneous 

frequency of HHT includes calculation of derivative, the differential approximation 

method becomes a bottleneck in analyzing accuracy when the sampling frequency is 

too low. For example, when the fourth-order differential method is used in the HHT 

of the signal xሺ𝑡ሻ in Figure 2.5, it is necessary for convergences to use a sampling 

frequency about four times higher than the maximum frequency of this signal. 

 

2.6 Weighted average frequency algorithm  

 

Boashsah shows that smoothing is possible if the instantaneous frequency is 

changing slowly enough [27]. Thus, the instantaneous frequency of each IMF 

obtained by HT can be smoothed. Niu et al. [28] developed a weighted average 

frequency algorithm (WAFA) that performs a smoothing operation for each IMF. The 

algorithm uses the instantaneous amplitude and instantaneous frequency obtained 

for each IMF decomposed by EMD and smoothes the instantaneous frequency in 

three parts by the specified window length as shown in Table 2.3. 

  

Table 2.3 The equations corresponding to each window 

 𝒌 Average frequency equations 

1 ൑ 𝑘 ൑
ሺ𝑚 െ 1ሻ

2
 𝜔ഥ௝ሺ𝑘ሻ ൌ

∑ 𝜔௝ሺ𝑛ሻ𝐴௝ሺ𝑛ሻ௞ାሺ௠ିଵሻ/ଶ
௡ୀଵ

∑ 𝐴௝ሺ𝑛ሻ௞ାሺ௠ିଵሻ/ଶ
௡ୀଵ

 

ሺ𝑚 ൅ 1ሻ
2

൑ 𝑘 ൑
ሺ2𝑁 െ 1 െ 𝑚ሻ

2
 𝜔ഥ௝ሺ𝑘ሻ ൌ

∑ 𝜔௝ሺ𝑛ሻ𝐴௝ሺ𝑛ሻ௞ାሺ௠ିଵሻ/ଶ
௡ୀ௞ିሺ௠ିଵሻ/ଶ

∑ 𝐴௝ሺ𝑛ሻ௞ାሺ௠ିଵሻ/ଶ
௡ୀ௞ିሺ௠ିଵሻ/ଶ

 

ሺ2𝑁 െ 1 ൅ 𝑚ሻ
2

൑ 𝑘 ൑ 𝑁 𝜔ഥ௝ሺ𝑘ሻ ൌ
∑ 𝜔௝ሺ𝑛ሻ𝐴௝ሺ𝑛ሻே

௡ୀ௞ିሺ௠ିଵሻ/ଶ

∑ 𝐴௝ሺ𝑛ሻே
௡ୀ௞ିሺ௠ିଵሻ/ଶ

 

 

 Here, 𝑘 ൌ 1,2, … , 𝑁  (𝑁  is the number of data), 𝑛  indicates sampling data, 𝜔 

indicates the instantaneous frequency of the decomposed IMF, 𝐴  indicates the 

instantaneous amplitude of the decomposed IMF, and 𝑚 is the length of the window. 

 Because human motion is also treated as a signal, previous research has stated 
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that WAFA can also be applied to human motion data [28]. Thus, WAFA can be used 

for smoothing IMFs of motion capturing data decomposed by NA-MEMD. Therefore, 

in the analysis of dance motion, it is necessary to take an average frequency for a 

series of motions in beat units or keyframe units.   
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Chapter 3  
 

 

Dance motion analysis and editing using Hilbert-

Huang transform 
 

 

This chapter is organized as follows. Section 3.1 introduces the research background 

of motion analysis and editing regarding the problems faced in the instantaneous 

frequency domain. Section 3.2 describes the proposed framework of dance motion 

analysis using HHT. Section 3.3 shows the results of the proposed framework from 

section 3.2. Section 3.4 discusses the results shown in section 3.3. Section 3.5 

describes the proposed framework of dance motion editing using HHT. Section 3.6 

shows the results of the framework from section 3.5. Section 3.7 discusses the results 

shown in section 3.6. Section 3.8 explains the limitations of our proposed framework. 

Section 3.9 summarizes and concludes this chapter. 

 

3.1 Research background 

 

Recently, many motion analyses and syntheses researches have been performed 

because of developments in motion capture technology. Analyzing and editing dance 

motions is especially difficult, because its motions are complicated, and the dance 

data are very noisy due to the motion capture system. Meanwhile, the use of Hilbert-

Huang transform (HHT) is becoming more and more popular among researchers 

because HHT is suitable for multi-channel data. Therefore, HHT can be a very 

powerful tool to analyze and edit multi-channel data such as motion data in the 

instantaneous frequency domain.  

In this dissertation, we propose a framework using HHT with beat tracking in the 

instantaneous frequency domain. We propose two frameworks for analyzing and 

editing dance motions separately in the instantaneous frequency domain. As an 

example, first, we analyzed the dance motions of Japanese techno-pop group 

Perfume, salsa, waltz, and hip-hop using our proposed framework. Next, by our 
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proposed framework, we extracted two different Perfume choreographies and 

blended them separately into the salsa dance. Thus, our proposed framework can 

help dancers and animators to analyze and edit dance motion in the instantaneous 

frequency domain. 

 

3.2 Proposed dance motion analysis framework 

 

There have been many researches about analysis and synthesis of dance motions. Li 

et al. [29] suggested a motion texture method for synthesizing complicated dance 

motion techniques using a statistical model. Shiratori et al. [30] proposed a dance 

motion analysis framework based on a musical rhythm by splitting motion into each 

motion primitive. Shiratori et al. [31] also used the proposed analysis framework [30] 

to program the dance motions of humans into a humanoid robot. Chan et al. [32] 

proposed a dance training system with motion capture and virtual reality (VR) 

technologies. However, most dance motion researches have only been discussed in 

the time domain. To analyze features of different dance styles more clearly, we 

propose a dance motion analysis framework using HHT.  

3.2.1 Dance motion analysis framework using HHT 

In this section, we propose a method to calculate the instantaneous frequency from 

capture data of dance motion using HHT and beat tracking. Figure 3.1 shows the 

proposed framework of dance motion analysis.  
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Figure 3.1 The framework of dance motion analysis using HHT 

We briefly explain the proposed framework as follows: 

 

(1) Prepare 3 Euler angles 𝜃௫，𝜃௬，𝜃௭ of each joint obtained from the dancer's body. 

Here, the number of channels can be obtained by (number of dancers) ൈ 

(degrees of freedom) ൈ (number of joints) ൅ (Gaussian noises). For example, 

in the case of the Japanese dance group Perfume, there were 3 members, 3 
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degrees of freedom of each joint, 23 joints per person, and 1 Gaussian noise, 

giving 208 channels; 

 

(2) Apply NA-MEMD to all prepared data to obtain the N-mode IMFs covering the 

N-dimensional (N=208 for Perfume) sphere, and a trend;  

 

(3) Output these IMFs and the trend back as motion data, and confirm if the 

vibration components (choreographies) are completely separated; 

 

(4) Check whether the N-mode has been sequentially decomposed from high 

frequency to low frequency and whether there is any singularity. If the IMFs 

are not in a frequency order of decompositions, and a higher frequency than the 

previous one appears (this is the so-called “singular IMF” [33]), fix the singular 

IMF in sequence; 

 

(5) Apply HT to each IMF to obtain the instantaneous frequencies and amplitudes. 

 

(6) Apply WAFA to smooth the instantaneous frequencies of each IMF using the 

beat window calculated by beat tracking; and 

 

(7) Analyze dance motion using Hilbert spectrum plotted with smoothed 

instantaneous frequencies and instantaneous amplitudes, and perform HSA in 

both long team (whole dance) and short term (motion primitive) as necessary.  

3.2.2 Motion primitive extraction with beat tracking 

The motion primitive is the most basic motion unit of a dance. There have been many 

studies on the extraction and segmentation of motion primitives from dance motion 

capture data [30, 31, 34]. Dance motion is often synchronized with the rhythms of 

the music [35]. Therefore, it is possible to segment motion primitives by detecting 

the beats. Dan Ellis [36] proposed a beat tracking method by first assuming a certain 

fixed tempo, beats per minute (BPM), exists in the music. Second, using the present 

beat detected from music with the BPM, the next beat position is assumed. Third, 

the assumed beat position is verified and determined by calculating the relationship 

between the detected beat position and the assumed beat position [36]. This beat 

tracking method is suitable for extracting beats of western music with tempo 
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intervals [36]. In our research, we extracted motion primitives using this beat 

tracking algorithm. Then, the average frequencies of a set of motion primitives can 

be obtained by WAFA using beat positions and their time intervals. 

3.2.3 Dance motion weighted average frequency 

In this research, we used the beat interval obtain by beat tracking as the window 

size for WAFA to calculate the average frequencies of a dance motion. In dance 

motion analysis of HHT, all choreographies are periodically decomposed into 

nonlinear monochromatic waves 𝐴ሺ𝑡ሻ𝑐𝑜𝑠ሺ𝜔଴ሺ𝑡ሻ𝑡ሻ according to the beat. Thus, for 

some monochromatic waves which have no choreography performed, their amplitude 

𝐴ሺ𝑡ሻ of IMF is almost zero.  

3.2.4 Input data and joint angles 𝜃௫，𝜃௬，𝜃௭ 

As shown by the example elbow joint in Figure 3.2, each joint of the body moves with 

3 degrees of freedom 𝜃௫，𝜃௬，𝜃௭.  

 

Figure 3.2 Example of Euler angles of an elbow joint. 

In dance performing, each motion primitive is considered to move at an Euler 

angle 𝜃௫，𝜃௬，𝜃௭. Therefore, if only one motion primitive is measured, it is enough 

to analyze instantaneous frequencies only at one of degrees. However, a series of 

dance performances consist of multiple motion primitives. As a result, different 

degrees of each joint angle are used for different choreographies. Therefore, when 

decomposing the whole dance motion, even when a joint angle has a small amplitude, 
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it is necessary to decompose the joint angle with 3 degrees of freedom 𝜃௫，𝜃௬，𝜃௭ 

and analyze all angles. The results are shown in section 3.3. 

3.2.5 Intrinsic mode function and trend analysis 

A dance motion generally has a basic posture that maintains its style. For example, 

there is a comparative study of basic posture between oriental dance and western 

dance [37]. Therefore, by the definition of EMD, each IMF corresponds to dance 

choreographies as vibration components. Then, the trend (residual) without any 

vibration components corresponds to the basic posture of the dance. 

After decomposed all joints 3 Euler angles by NA-MEMD, we can write out each 

IMF and trend (residual: the basic posture of dance) according to skeleton structure 

(e.g. BVH) for analysis. Please notes that, in IMF motion analysis, it is necessary to 

add the trend to all IMFs to reconstruct each choreography. 

 

3.3 Dance motion analysis using the proposed framework 

 

In this section, we report the results of the dance motion analysis using the proposed 

framework in section 3.2. In subsections 3.3.1 and 3.3.2, Perfume dance motion was 

analyzed as an example in a short-term (about 3 seconds). In subsection 3.3.3, based 

on the results in subsections 3.3.1 and 3.3.2, we analyzed four types of dances, 

Perfume, waltz, hip-hop, and salsa dance in a long term (about 30-60 seconds). In 

subsection 3.3.4, we used Perfume dance to show the trend analysis by comparing 

the difference between the three members. 

3.3.1 The skeleton structure of Perfume motion data 

As a first example, we analyze BVH data for about 1 minute of the three female 

techno pop units named Perfume, from the internet [38] in Table 3.1. The reason for 

using this data is that there is motion capture data for three people in one dance, 

which is suitable for decomposed by NA-MEMD as a multi-channel data. Besides, 

music beats are relatively clear, and segmentation is simple. 

Table 3.1 shows the details of the motion and audio data. As a result of beat 

tracking, the music “Enter the Sphere” (composition: Yasutaka Nakata) has 64 

measures, and its BPM is 130 [39]. One measure is about 1 second, and the time 

interval between strong and weak beat is about 0.5 seconds. 



 

30 

 

Table 3.1 Perfume dance motion capture data 

 Motion (BVH) Audio (WAV) 

Time(s) 70.5 64.2 

Sampling rate (Hz) 40 44100 

Data number 2820*3 2833310*2 

Number of joints 23 － 

Beat number － 128 

 

Figure 3.3 shows the skeleton model of these BVH data.  

 

 

Figure 3.3 T-pose joint structure of Perfume BVH 
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The dance motion was recorded at 23 joints throughout the body. The figure shows 

the origin pose (T-pose) for which all joint angles 𝜃௫，𝜃௬，𝜃௭  are zero. Here, the 

skeleton model used a hierarchical recording method in which the root origin is 

placed on the hip.  

3.3.2 A Hilbert spectral analysis example of Perfume turning motion 

A dance turning motion is a large rotation/movement occurring within a short time, 

and it is difficult to detect the start and end positions of the movement. Therefore, 

we apply the proposed framework to the turning of Perfume dance for 3 seconds 

shown in 3.4. This analysis focused on the motion primitives by Ayaka Nishiwaki, 

the center dancer. 

 

 

Figure 3.4 The turning dance motion by Perfume 
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Figure 3.4 shows a dance turning motion from about 56 seconds to 59 seconds in 

this dance. All three dancers rotate for the same 1 second between T (2) and T (4). 

Here, NA-MEMD and HSA were performed on these motion data. 

In order to analyze the motion of Figure 3.4 [38] in units of motion primitive, we 

used beat tracking described in Section 3.2.2, to detect all beats from the music. 

Table 3.2 shows the time positions of strong and weak beats. Six beats were detected 

in about 3 seconds. 

 

Table 3.2 Positions of beats (55s～59s). 

Weak beat Strong beat 

56.28s（START） 56.74s 

57.21s 57.67s 

58.13s 58.59s（END） 

 

Figure 3.5 shows the corresponding x, y, and z-axis definitions for the hip joint 

angle 𝜃௫，𝜃௬，𝜃௭, which is the root of the hierarchical skeleton model in Figure 3.3.  

 

 

Figure 3.5 Euler angles of the Perfume hip joint 
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Here, 𝜃௫ indicates the rotation of the choreographies the body front and back, 𝜃௬ 

indicates the rotation that arounds the center axis of the body, and 𝜃௭ indicates the 

rotation that choreographies the body left and right. 

Figure 3.6 is a three-dimensional plot of the hip joint 𝜃௫，𝜃௬，𝜃௭ in the analysis 

interval. The green dots indicate the position of the strong beat, and the red dots 

indicate the position of the weak beat. The black dots indicate the start and end 

positions of the motions. Beats are located near the rotation point, which means that 

dance motions are switched in the beat positions. 

 

 

Figure 3.6 The 3-dimensional dance motion trajectories 𝜽𝒙, 𝜽𝒚, 𝜽𝒛 by Ayaka 

Nishiwaki (hip) 

Figure 3.7 shows the results of NA-MEMD decomposition of the Euler angles 𝜃௫，

𝜃௬，𝜃௭ from Figure 3.6. The three-dimensional signal of the hip was decomposed 

into IMF1-6 and one trend. The original signal was decomposed from high to low 

frequency. The main turning movements IMF1-3 were mainly composed of 𝜃௬，𝜃௭ 

directions. The major steps in the second half of the turning motion were IMF5 and 

6, which were composed of 𝜃௫，𝜃௭  directions. And IMF4 was the middle of both 
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movements. 

 

 

Figure 3.7 NA-MEMD decomposition of the dance turning motion. 
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Figures 3.6 and 3.7 show that the Perfume turning dance motion was decomposed 

into several different frequency IMFs. In order to understand this complicated 

motion, it is necessary to perform HSA. Because the movements are concentrated in 

the hips, we focused on the hip joint to analyze decomposed motion with Hilbert 

spectrum. 

Figure 3.8 shows the Hilbert spectrum of the dance motion from Figure 3.4. The 

white line represents strong beats, and the red line represents weak beats. From the 

results shown in Figure 3.8 (c), NA-MEMD decomposes a high-speed turning dance 

motions with IMF 1-3. For example, the high frequency turning IMF 2 and 3 were 

detected around 4.5 Hz for 57-57.5 seconds. The IMF of other, related motions were 

also decomposed clearly.  

 

 

Figure 3.8 The turning dance motion of Perfume. The hip joint spectrogram of (a) 

 𝜽𝒙 , (b) 𝜽𝒛 , (c) 𝜽𝒚 by HHT, and (d) 𝜽𝒚 by STFT 

Figure 3.8 (d) shows the STFT spectrum corresponding to (c), for comparison. In 
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Figure 3.8 (d), the STFT could not increase the time resolution and frequency 

resolution simultaneously due to the uncertainty principle. The Hilbert spectrum of 

Figure 3.8 (c) showed the decomposed signals of each motion are more clearly than 

the STFT spectrum. Thus, the HHT is more suitable than the STFT in motion 

analysis field. 

3.3.3 Comparison with other dance motions using Hilbert spectral 

analysis 

In this subsection, we use HSA to make a simple comparison of four dances of 

available data: Perfume, waltz, hip-hop, and salsa. We discuss how the 

characteristics of each dance can be visualized by our proposed framework using 

HHT. We do not discuss the four types of dance as a general remark but discuss the 

characteristics of each dance that can be clarified in the analysis of HHT and beat 

tracking proposed in this study. 

Table 3.3 shows the duration (excluding unrelated actions, such as bows), 

minimum frequency (1 / time length), and BPM of each dance. 

 

Table 3.3 Four sets of dance motion data for comparisons 

Dance motion Perfume Waltz Hip-hop Salsa 

Time(s) 57 63.3 75 27.3 

Minimum frequency (Hz)  0.017 0.016 0.013 0.037 

BPM 128 80 90 130 

 

The waltz dance motion data was a C3D data converted to BVH from the motion 

capture database [40]. For hip-hop, we used data published on a website from [41]. 

The type of dance is not mentioned on the website, but the data was determined to 

be hip-hop from the opinions of a dance expert (private communication). The salsa 

BVH data was obtained from the Internet [42]. The BPM of each dance was 

calculated by beat tracking using the corresponding music. The BPM of the dance 

without music data was estimated from the average tempo of their music [43-45]. In 

this comparison, we use the whole dance motion shown in Table 3.3 to HSA. In order 

to compare results under the same conditions, we unified the frame rate to 30Hz, 

and reconstruct the hierarchical skeleton model to the same number of joints. 
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Figure 3.9 shows the HSA results of the four dance motions listed in Table 3.3.  

 

Figure 3.9 NA-MEMD Hilbert spectrum of each dance style (hip 𝜽𝒚)．(a) Perfume 

(b) waltz (c) hip-hop (d) salsa 
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In this comparison, we analyzed the Hilbert spectrum of the rotation angle 𝜃௬ of 

the hip joint (subsection 3.3.2), which contains the turning motion, for example. 

Because the turning motion spectrum intensity was relatively large, the spectrum 

amplitude was normalized to a range of 0-1 by taking the natural logarithm. This 

allowed other motions to be visualized. Also, the beats were too many to be plotted, 

so they were not displayed in the Hilbert spectrums. The average frequency of each 

IMF is displayed on the right side of the spectrums. In IMF1-9, the frequencies are 

rounded to the first decimal place. For IMF 10 and larger, the frequencies are 

rounded to the third decimal place. The blue arrows at the top of Figures 3.9 (a)-(d) 

indicate the turning motion described in Section 3.3.2. The red box in the figure 

shows the main motion (BPM / 60 ± 0.5Hz) synchronizes to the beats of each dance. 

The spectrum (light blue to 0.4) indicated by the two red arrows in Figure 3.9 (a) 

shows a stepping motion in which the knees and toes of Perfume are alternately 

turned in and out. 

Figure 3.9 (a) is a Hilbert spectrum of Ayaka Nishiwaki, the center dancer. There 

are 10 high-frequency peaks associated with intense turning motion of the body. 

Compared with other dances, the Perfume dance clearly shows a spectrum intensity 

of 0.4-0.6 in a frequency range of 0.1-6 Hz. Even in the main motion part (2.1 ± 0.5Hz, 

red box in the figure), the strong spectral intensity of 0.4-0.6 appears to be 

significantly different compared to the other dances. Figure 3.9 (b) is the waltz 

Hilbert spectrum. Seven spike-like turning motions had peak values of only about 4 

Hz compared to the other dance styles. The overall frequency was concentrated in 

the range of 0.1-1.0 Hz. This because the BPM (80) of waltz was the lowest of the 

four dances. The hip-hop in Figure 3.9 (c) had 14 spike-like turning motions, which 

shows that hip-hop choreographer incorporates more turning motions than other 

dances. In the salsa Hilbert spectrum in Figure 3.9 (d), there were 8 spike-like high-

frequency peaks. The top frequency has reached 6 Hz indicating that its turning 

motion is in higher speed than other dances. In addition, in the main motion part 

(2.1 ± 0.5Hz, red square frame in the figure), which corresponds to the beats, the 

spectrum intensity of 0.4-0.6 Hz was remarkable. As with Perfume, the overall 

frequency was higher than waltz and hip-hop. In addition, the IMF spectrum 

intensity of 0.5-1.5 Hz, which seems to be a low-frequency step, was as strong as 0.7-

0.8 Hz. 

What should be noted here is the relationship between the average frequency of 

each IMF on the right-hand side of Figure 3.9. The IMF frequency 𝑓௜ in red observed 

the relation 𝑓௜ାଵ ൌ 𝑓௜ ൅ 𝑓௜ିଵ, which is the Fibonacci sequence (the error was about ± 
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5%). This is not a coincidence because all four dances were observed at the average 

frequency of the major IMFs. In the analysis of the four dances, the Perfume dance 

had the most numerous Fibonacci sequence relation between IMF 1-9 with more 

IMFs than the other dances.  

The number of IMFs that made up the Fibonacci sequence (9), is same as the 

maximum number of the hierarchical levels (9) shown in Figure 3.3. Then, it can be 

inferred that the Fibonacci relation of the IMF average frequency was related to the 

skeleton hierarchy of the human body model. The hip is the joint in which human 

movements are most concentrated. Thus, we can observe the Fibonacci relation from 

the hip joint, because the motions of other joints are easily added to the hip joint as 

noise. In subsection 3.5.2, we discuss in-depth the relationship between the 

Fibonacci sequence and the human body and use this relationship for dance editing. 

3.3.4 Trend analysis example of the Perfume dance 

Figure 3.10 shows the result of a trend analysis for three Perfume dancers of whole 

dance motions (about 60s). By outputting the trend back to BVH data according to 

skeleton structure. The trends of three dancers are moving very slowly. This means 

that all dance motion choreographies were decomposed as IMFs, which are nonlinear 

vibrations, and the basic posture of dance (Figure 3.10) was decomposed as the trend.  

By comparing the three trends, Ayaka Nishiwaki, the center dancer, rotates in the 

right-hand direction, while the other two members rotate in the left-hand direction. 

This because the choreographer Mikiko designed different dance basic postures 

between the center dancer and others. 
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Figure 3.10 Perfume dance trend analysis (a) Nishiwaki (b) Omoto (c) Kashino 

3.4 Discussion of dance motion analysis 
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By our proposed framework, dance motion can be decomposed into IMFs with a trend 

(dance posture). In so doing, the dance choreographies are segmented into several 

IMFs corresponding to the joints in the instantaneous frequency domain. Our 

framework can be a useful tool to analyze dance motions. 

In section 3.3, we propose a dance motion analysis framework. First, we apply the 

HHT to dance motion data, propose a framework shown in Figure 3.1. Second, the 

results show that using beat tracking, motion primitives can be captured and 

segmented with Hilbert spectrum. Third, segmented motion primitives are 

smoothed by WAFA and the Hilbert spectrum was denoised. Fourth, as shown in 

Figure 3.7 (c), the proposed framework shows that complicated human dance 

motions like turning motion can be visualized clearly as several IMFs by NA-MEMD 

in spectrums than STFT. In addition, the Hilbert spectrum shows that the turning 

motion can be detected and segmented into about three rapidly changing peak IMFs 

synchronized with the beat as shown in Figure 3.7 (c). Fifth, in Perfume, waltz, hip-

hop, and salsa dance, we found that the IMF average frequencies of 70-80% form a 

Fibonacci sequence. Sixth, the Hilbert spectrum of the four dances was compared, 

and the characteristics of each dance and their differences were shown in angle 𝜃௬ 

of the hip joint. Perfume's dance has Fibonacci relations in almost all IMFs. The 

waltz is composed of low-speed steps and high-speed rotation. The hip-hop has high-

speed turning motion. The salsa was found that the high-speed motions and the low-

speed steps were mixed. In the next section, we show the proposed framework and 

results of dance motion editing using HHT. 

 

3.5 Proposed dance motion editing method 

 

Numerous researches have been performed on motion synthesis and editing. Yamane 

et al. [46] presented a computational technique for generating whole-body human 

character motions using a constraining and de-constraining method. Fragkiadaki et 

al. [47] proposed an encoder-recurrent-decoder model for recognizing and predicting 

the posture of the human body for video and motion capture data. Holden et al. [48] 

proposed the use of an auto-encoder to extract motion manifold that is the correct 

motion posture of the human body structure. After extracting the motion manifold, 

the model can be trained to generate a target motion by training a neural network 

[1]. 

However, these previous researches depended on massive training data whose 
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features were previously known. For example, deep learning [1] has been used for 

simple motion editings such as walking and jumping. However, for some applications, 

it is difficult to analyze motions such as dance motion choreographies, because the 

training data of dance motion cannot be classified easily. 

Dong et al. [49, 50] proposed a framework for dance motions analysis and editing 

using HHT. Dance motion can be decomposed into several choreographies that can 

be used as the training data for deep learning. However, the decomposed dance 

motions need to be reconstructed and combined to choreographies manually. To 

resolve the problem, we propose a framework for dance motion choreographic editing 

using HHT and the Fibonacci sequence to extract complicated dance choreographies 

automatically. After this extraction, these extracted choreographies can be 

exchanged, blended and edited into another dance. Also, these choreographies can 

be considered as sparsified training data for deep learning. 

3.5.1 Dance motion choreographic editing framework 

Figure 3.11 shows our proposed dance motion editing framework based on previous 

research using HHT [49, 50]. In the following subsection, first, we introduce a flow 

chart of each part of the framework. Then, we discuss in detail the relationship 

between IMFs and choreographies.  
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Figure 3.11 Proposed dance motion choreographic editing framework 

Our dance motion choreographic editing framework can be summarized as follows: 

 

1. Put dance motion capture data, all of joints Euler angles 𝜃௫, 𝜃௬, 𝜃௭  and root 

position into NA-MEMD as introduced in section 3.2;  

 

2. Apply Hilbert transform to each IMF to obtain the instantaneous frequency and 

amplitude;  

 

3. Smooth the instantaneous frequency by WAFA using the beat interval as the 

window length, and obtain the average frequency of each IMF.  
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4. Use the Fibonacci sequence to reconstruct and combine the high-frequency IMFs 

to the several correct choreographies, which can be edited; and 

 

5. Extract target dance basic motion from the low-frequency IMF and the trend. 

Thus, after skeleton and beat adjustment, choreographs extracted in step 4 can 

be deleted, added, replaced, or blended into the target basic dance motion 

automatically. 

3.5.2 Fibonacci sequence in human joint systems 

As we discussed in subsection 3.3.3, the Fibonacci sequence can be observed from 

the average frequencies of each joint as shown in Figure 3.9. Let the Fibonacci 

sequence is represented by 𝑖 െ 1 as the joint to be observed, 𝑖  as another joint 

connected to 𝑖 െ 1 , and 𝑖 ൅ 1  as the joint connected to it. Let the IMFs vector 

angular velocities of the joints be constant 𝜔௜,  𝜔௜ାଵ as shown in Figure 3.12. 

 

 

Figure 3.12 Link structure that composes the Fibonacci sequence relation 

Thus, the average vector angular velocity of the skeletal element connected to joint 

𝑖 ൅ 1  viewed from joint 𝑖 െ 1  is 𝜔௜ାଵ ൌ 𝜔௜ ൅ 𝜔௜ିଵ  from the link structure. The 

angular frequency vector 𝜔௜ାଵ is the sum of the previous two angular frequency 

vectors as equation (11). 

 

𝜔௜ାଵ ൌ 𝜔௜ ൅ 𝜔௜ିଵ (11) 
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The NA-MEMD decomposes the dance motion into several IMFs corresponding to 

joints and a posture of the dance as a trend. Thus, the IMF relationship shown in 

Figure 3.12 can also be assumed from toe to finger in the whole body due to its link-

dynamical structure in Figure 3.13. 

 

 

Figure 3.13 Human body link-dynamic system of Perfume 
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The reason for this Fibonacci relation is simple and is due to the hierarchical 

human body joint or link dynamical system as shown in Figure 3.13. The human 

body has a hierarchical joint system from the toes and passes through the hip (root) 

to the fingers. Figure 3.13 shows the skeletal structure connecting the joints. This 

body skeletal joint structure can be thought of as a complex network existing in the 

natural world [51], with each joint as a node and each skeleton element as an edge. 

In this case, each graph assumes a unit length 1. As shown in Figure 3.13, there are 

13 nodes and 12 graphs passing from the foot or hand (START in the figure) to the 

other hand or foot (END in the figure). In the structure, the number of nodes passing 

through the path from START to END is 13-2 = 11, excluding the first and last nodes. 

The graphs connected to these nodes represent the respective dance motion 

(vibration) elements in the link structure. This structure is composed of the IMFs 

shown in the Hilbert-spectrum in Figure 3.9 (a). 

The average of the angular velocities of IMFs is averaged in time, so that dance 

moves are long enough to cancel the phase difference between the rotational angular 

velocities of each decomposed joint IMF. This is the reason why the Fibonacci 

sequence in average angular frequencies is observed in human dance motions. If this 

relationship is correct, then the further away a joint is from the observation point, 

the greater the angular velocity will be from the base position obtained due to the 

above Fibonacci sequence relationship. Then, when a dancer performs different 

choreographies, the average of the angular velocities of IMFs will change into 

different pseudo-Fibonacci sequences. Thus, the different pseudo-Fibonacci 

sequences can be considered as different choreographies. For example, in the 

Perfume Hilbert spectrum of Figure 3.9(a), the Fibonacci sequence relationship was 

established approximately from IMF1-3 and IMF4-6. This indicates that Perfume 

performs two different choreographies, and each joint rotation speed is relatively 

constant and synchronized. Because the choreography composed of IMF7-11 and the 

trend was the basic motion of step and position from the hip joint, the human body 

of high-frequency IMFs (choreographies) can be considered as a motion blended into 

the low-frequency IMFs (basic motion) and the trend, as shown in Figure 3.14. The 

further an IMF is from the origin, the higher the average frequency. Figure 3.15 

shows the flow of motion blending using the Fibonacci sequence. For example, Figure 

3.14 (a) shows choreographies extracted from the Perfume dance as an example. 

Here, IMF4-6 is the shoulder and knee motions, and IMF1-3 is the wrist and ankle 

motions. Figure 3.14 (b) is the basic motion extracted from the target dance. We can 

exchange, blend, and add decomposed choreographies into the basic motions of the 
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target dance of (b). 

 

 

 

Figure 3.14 (a) Two choreographies decomposed by NA-MEMD (b) Blending two 

choreographies by Perfume into the basic motion target dance 

Thus, if we assume the dancer is synchronized with the music and moving all 

joints with almost the same frequency (rhythm), the average IMF instantaneous 

frequencies must follow the Fibonacci sequence corresponding to different 

choreographies. Therefore, we can distinguish which frequency the specific IMF 

should belong to and associate the specific IMF with its corresponding joints that 

play a part in the choreographies. Once all the IMFs are classified, we can 

reconstruct and combine the corresponding IMFs into one dancer’s choreography. 

3.5.3 Dance choreographic reconstruction using the Fibonacci 

sequence 

Using IMFs associated with each Fibonacci sequence corresponding to the link 

hierarchical structure showing in Figure 3.13, we can reconstruct and combine each 

dance choreography that consists of a few joint motions and their corresponding 

IMFs. For example, the human body skeleton of Perfume motion data has (23 joints) 

× (3 Euler angles) channels. We chose only one of the Euler angles of the root (hip) 

joint IMF to explain the way the dance choreographic motions are segmented. The 

same procedure can be applied to all other channels to decompose the motion. Thus, 

the decomposed IMFs from the original dance motion can be defined as follows: 

(a) Perfume (b) Target Dance 
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෍ 𝐼𝑀𝐹௞ሺ𝑡ሻ
௞

 ൌ ෍ 𝐶௡ሺ𝑡ሻ
௡

൅ 𝐵ሺ𝑡ሻ (12) 

 

Here, 𝐼𝑀𝐹௞ሺ𝑡ሻ is the IMF set decomposed from the original dance motion using 

NA-MEMD, and 𝐶௡ሺ𝑡ሻ is a dance choreography set reconstructed from several IMFs 

whose average frequencies 𝐹௞ሺ𝑡ሻ  are approximately the Fibonacci sequence 

frequency. Here,  𝐵ሺ𝑡ሻ  is the basic dance motion including dance positions and 

postures, reconstructed and combined by several IMFs whose average frequencies 

𝐹௞ሺ𝑡ሻ are lower than the root joint (hip joint) frequency. 𝐹௞ሺ𝑡ሻ can be calculated using 

WAFA [28]. 

In the present research, we focused on one of the Euler angles of the root joint (hip 

joint) to reconstruct the choreographies. The decomposed average frequency of one 

IMF, the Euler angles of the root joint (hip), is denoted by 𝐹௜ሺ𝑡ሻ. A flowchart of our 

algorithm is outlined in Figure 3.15 and our algorithm is summarized as follows: 

 

1. Obtain the 𝐼𝑀𝐹௞ሺ𝑡ሻ set as the input from NA-MEMD; 

 

2. Extract the basic motion 𝐵ሺ𝑡ሻ by combining the IMFs with an average frequency 

lower than the root (hip) (frequency threshold); 

 

3. Reconstruct and combine choreographies 

a) Set 𝐼𝑀𝐹௜ሺ𝑡ሻ as the root joint and 𝐼𝑀𝐹௜ାଵሺ𝑡ሻ as a Fibonacci sequence 𝐼𝑀𝐹ሺ𝑡ሻ 

set.  

b) If the average frequency of the IMFs satisfies 𝐹௜ାଶ~𝐹௜ ൅ 𝐹௜ାଵ, add 𝐹௜ାଶ to the 

𝐼𝑀𝐹ሺ𝑡ሻ set, and check the next IMF average frequency 𝐹௜ାଷ.  

c) Combine the 𝐼𝑀𝐹ሺ𝑡ሻ set (𝐴௜ ൐ ε) as one choreography 𝐶௝ሺ𝑡ሻ by adding into 

the choreographies set 𝐶௡ሺ𝑡ሻ for all joints. Here,  𝐴௜  denotes the average 

amplitude of 𝐼𝑀𝐹௜ሺ𝑡ሻ , and ε  is the amplitude threshold that can be 

considered as a parameter to control the sparsity of the choreography; and 

 

4. Repeat step 3 until all dance choreographies are composed. 
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Figure 3.15 Flowchart of the proposed algorithm using the Fibonacci sequence 
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As we can see from the proposed algorithm, the extracted high-frequency IMFs 

can be reconstructed and combined into several choreographies 𝐶௡ሺ𝑡ሻ for blending 

and editing. The extracted low-frequency IMFs are the basic motion 𝐵ሺ𝑡ሻ including 

dance positions and postures, which can be considered as a basis for adding high-

frequency choreography with the trend. 

3.5.4 Dance beat adjustment and rescaling, and skeleton rescaling 

The extracted choreographies need to be rescaled before they are blended into 

another dance motion. Because the dance motion is synchronized with a dance music 

tempo or beat, the extracted choreographic speed needs to be adjusted and rescaled 

to the targeted music. 

We use beat tracking to calculate BPM in dance music, proposed by Dan Ellis [36] 

introduced in section 3.2.2. Using BPM, we can adjust the extracted choreography's 

speed to the targeted dance motion speed. 

In addition, because motion-captured data often include inputs from different 

dancers using different capture systems, the motion data need to be rescaled to the 

targeted dancer’s skeleton structure. After these adjustments, dance choreographies 

can be blended into another dance motion consistently. 

 

3.6 Dance motion editing using the proposed framework 

In this section, we show the results of the dance motion editing method proposed in 

Section 3.5.  

3.6.1 Dance choreographic IMF reconstruction 

In the Perfume dance, IMF1-3 and IMF4-6 consist of two sets of Fibonacci sequences, 

as shown in Figure 3.14 (a). First, we used the Fibonacci sequence in section 3.5.2 to 

reconstruct and combine IMF1-3 and IMF4-6 into two different dance 

choreographies, separately. Figure 3.16 shows the two Perfume dance 

choreographies extracted by our proposed framework. In the figure, two different 

perfume choreographies have been extracted, separately. The IMF4-6 

choreographies consisted mainly of both the shoulder and knee motions, and the 

IMF1-3 choreographies consisted mainly of both the wrist and ankle motions. After 

beat adjustment and rescaling, and bone rescaling, these choreographies were 
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blended into the basic motion of a target dance, as shown in Figure 3.14 (b).  

 

 

Figure 3.16 Perfume dance choreographies extraction 

3.6.2 Target dance basic motion extraction 

Figure 3.17 shows the salsa basic motion extracted by using 𝐹௜ ൐ 𝐹௥௢௢௧  (the hip 

average frequency threshold that was the lowest frequency). Salsa basic dance 

motions (dance step) have a root position synchronized with the beat frame. This 

indicates that IMF 7-11 and trend was a basic dance motion that is not exchangeable. 

This basic motion was considered as a target for blending other high-frequency 
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choreographies, as in Figure 3.14 (a). Then, except for the salsa dance step, the two 

different high-frequency choreographies of the Perfume dance in Figure 3.16 were 

blended separately into the extracted Salsa basic dance motion shown in Figure 3.17, 

to create two novel dances.  

 

 

Figure 3.17 Salsa dance basic motion extraction 

3.6.3 Blending extracted dance choreography 

In Figure 3.18, after adjusting the beat from 2.0Hz (Perfume beat frequency) to 
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2.5Hz (salsa beat frequency), a piece of Perfume dance choreography was blended 

into the salsa basic motion (Figure 3.18). As shown in the figure, the different 

Perfume choreographies were blended into the salsa basic motion. This can create a 

new salsa dance with a different style. The dance choreography 1 (IMF4-6) is the set 

of Perfume’s shoulder and knee motions that were blended into the salsa basic 

motion (IMF7-11 + trend). The dance choreography 2 (IMF1-3) is the set of Perfume’s 

wrist and ankle motions, which were blended into the salsa basic motion. Using this 

proposed framework, animators can easily extract and edit dance choreographies 

using different IMFs reconstructed from the IMF sets that consist of Fibonacci 

sequences. 

 

 

Figure 3.18 Perfume dance choreographies blended into the salsa dance 
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3.7 Discussion of dance motion editing 

Human motions such as dance motions are very noisy and extremely difficult to edit. 

It is known that using NA-MEMD can clearly decompose noisy dance motions into 

distinct pseudo “monochromatic” IMFs. The human joint or link-dynamical system 

in dance often results in a Fibonacci sequence frequency relation. Using this 

Fibonacci sequence relation, the dance choreographies can be clearly reconstructed. 

Our framework is a powerful and useful tool to decompose, blend, and edit dance 

motions for animators.  

In section 3.6, we use our proposed a framework for dance motion editing and 

blending. The main results of our research can be summarized as follows. First, we 

proposed a framework for dance choreographic editing using HHT and the Fibonacci 

sequence. Second, the low-frequency IMFs can be reconstructed and combined with 

the trend as a basic motion. Third, the high-frequency IMFs can be reconstructed 

and combined with several different choreographies. These choreographies can be 

exchanged, blended and edited into the basic motion of different dance styles. Fourth, 

beat adjustment and bone rescaling must be done before choreographies blending. 

Fifth, human dance motion editing and blending using the decomposed nonlinear 

signals as the instantaneous frequency in time-frequency space can give new 

insights into motion editing and blending techniques. 

 

3.8 Limitations of the proposed framework 

The following points are the limitations of the proposed framework. 

 

 Singular IMF 

The EMD used in our framework usually decomposes a signal from highest to 

lowest frequency [8]. However, frequency is not necessarily decomposed from highest 

to lowest. Singular IMF exists that is specifically decomposed at a higher frequency 

than that of the previous IMF [33]. Previous research has shown that a singular IMF 

may occur while the decomposing human motion data [49, 50]. As a result, the 

average frequencies of the IMFs cannot be calculated correctly. Therefore, our 

proposed algorithm based on Fibonacci frequency could not be used to extract the 

choreographies directly. To resolve this problem, we applied basis pursuit denoising 

(BPD) [52] as a pre-processing step to remove singular IMFs that can cause mode 

mixing and IMF singularities. 



 

55 

 

 Body collision 

Our proposed dance choreography editing framework use NA-MEMD to 

decompose motion data into several choreographies (high-frequency IMFs) and a 

basic motion (low-frequency IMFs) with a trend. The trend can be considered as the 

posture of the whole dance. Thus, body collision will not occur in blending only one 

dance choreographies into another basic motion (low-frequency IMFs + trend). 

However, if we blend multiple choreographies extracted from two or more different 

dance motion into other basic motions into another basic motion in the same frame, 

body collision may occur due to the motions from different joints. For example, if we 

want to blend Perfume choreography extracted from the right-hand joint, and hip-

hop choreography extracted from the left-hand joint into the salsa basic motion, body 

collision detection such as [53, 54] should be applied to verify whether two different 

dance choreographies can be blended at the same time. 

 

3.9 Summary and conclusions 

 

In this chapter, we explained the process of our proposed method from the input 

motion capture data to the output generated motions. First, we demonstrated the 

proposed framework of dance motion analysis using HHT. Second, as an example, 

we analyzed Japanese techno-pop unit Perfumes’ dance motions, salsa, waltz, and 

hip-hop motions by our proposed framework. Third, we introduced the proposed 

framework of dance motion editing using HHT. Fourth, we used Perfume dance and 

salsa dance to show the results of our proposed dance motion editing framework. 

Fifth, we discussed the performance and limitations of our framework. Then, the 

conclusions of this chapter are as follows:  

 

1. We proposed a framework for dance analysis using HHT. Using this framework, 

we can decompose different dance motions into several nonlinear modes that are 

pseudo monochromatic waves so-called IMFs. After applying HT to each IMF, 

their instantaneous frequency and amplitude can be obtained. Thus, the dance 

motions can be analyzed in the instantaneous frequency domain with the Hilbert 

spectrum; and 
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2. We proposed a framework for dance editing using HHT with a Fibonacci sequence 

based on the structure of the human body. Using our proposed framework, we 

can decompose dance motions of different styles into several choreographies and 

one basic motion. The choreographies can be edited separately and can be also 

blended into the basic motion of other styles of dance. Thus, a new dance motion 

can be created without motion capturing again. 

 

Overall, our method can reveal novel features from decomposed IMFs such as a 

Fibonacci sequence that can be observed in human motion. Also, these IMFs can be 

scaled, combined, subtracted, exchanged, and modified, and can be blended into new 

dance motions. Thus, our proposed framework helps choreographers to analyze 

dance motions in the primitive unit. And it also provides a method for animators to 

edit dance motions for creating a new dance from different dance styles. 
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Chapter 4  
 

 

Bunraku puppet motion analysis using Hilbert-

Huang transform 
 

 

This chapter is organized as follows. Section 4.1 introduces the research background 

and the problem of the analysis of Bunraku puppets. Section 4.2 demonstrates the 

Bunraku puppet and its manipulation. Section 4.3 introduces the Jo-Ha-Kyū, a 

traditional Japanese art principle, and unique interaction techniques of Bunraku 

puppets. Section 4.4 shows the results of Bunraku puppet motion analysis based on 

Jo-Ha-Kyū. Section 4.5 discusses the results in section 4.4. Section 4.6 summarizes 

this chapter. 

 

4.1 Research background 

 

The affective motions of the Intangible Cultural Heritage “Ningyo Joruri Bunraku”, 

is evaluated by UNESCO as “the most beautiful motion in the world”. Bunraku is 

the oldest mechanical structure of puppets in Japan and began in the Heian period 

(AC 794-1185). Creating affective motions to interact with humans is extremely 

complicated because emotional expressions have different elements such as the story 

of the whole play, the chant of Tayu, the music of Shamisen, and the motion of 

Bunraku puppets. In this dissertation, to analyze these complicated emotional 

expressions in Bunraku play, we only focus on the mechanism of how puppeteers 

manipulate Bunraku puppets to express their affective motions. Manipulation of 

Bunraku puppets requires sophisticated techniques. These techniques create 

empathy for audiences using a traditional Japanese art principle called “Jo 

(beginning)-Ha(breaking)-Kyū(rapid)” [55-58]. There have been several studies on 

Bunraku puppets in different areas. Because three puppeteers manipulate one 

puppet, some studies have focused on puppeteers’ non-verbal communication, so-

called “Zu” (“ず” in Japanese) [59]. Hattori et al. [60-63] analyzed the emotional 
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motion patterns of Bunraku puppets and investigated robot motion designs based on 

them. Chen et al. proposed a method to generate Jo-Ha-Kyū motions for robots using 

a neural network [64]. However, no research has analyzed the Jo-Ha-Kyū 

mechanism by focusing on the Bunraku performing art techniques themselves. 

  In this chapter, we present the Bunraku motions using the famous concept Jo-Ha-

Kyū [55-58], which is used in expressing emotional changes synthesizing with stories. 

The concept of “Jo-Ha-Kyū” is widely used in Noh, Ningyo Joruri Bunraku, and 

Kabuki, which are all recognized by UNESCO as intangible cultural heritages. 

Previous researches showed that all of these art forms express emotions mainly 

based on Jo-Ha-Kyū [55-58]. 

In Japan, Jo-Ha-Kyū is a very broad concept that can apply to numerous fields 

and concepts [55-58]. Typically, Jo-Ha-Kyū changes the rhythmic speeds in three 

stages: "Jo (beginning)"; "Ha (breaking)"; and "Kyū (rapid)". However, sometimes, 

Jo-Ha-Kyū can be only “Jo” or only “Jo-Ha” depending on the play stories. This has 

been intensively studied in Noh. Jo-Ha-Kyū also differs slightly according to 

different Noh schools. Furthermore, Jo-Ha-Kyū in Bunraku is also somewhat 

different from that of Noh. Therefore, Jo-Ha-Kyū is considered to be an ambiguous 

concept that depends on its art form. Thus, in this dissertation, we simply limit or 

define the Jo-Ha-Kyū as changes and breakings of rhythmic speeds (i. e., pace or 

tempo) in music, which will be described in detail later. 

 

4.2 Bunraku puppets 

 

Ningyō jōruri Bunraku is a traditional Japanese performing art in a puppet theatre. 

It started at the beginning of the 17th century in Osaka. In the Bunraku theater, 

three different types of performers (puppeteers, narrator, and musician) play in one 

show. Three puppeteers manipulating one Bunraku puppet. The narrator (Tayū) 

tells the story, and the musician (Shamisen) plays the music. The motions of the 

Bunraku puppet are led by the chants of the Tayū, who controls the Jo-Ha-Kyū with 

breaking rhythms so-called “Ma” (“間” in Japanese). 

As displayed in Figure 4.1, the puppet master manipulates only the head and right 

hand, the left sub-master manipulates only the left hand, and the other sub-master 

manipulates the two legs only. It is well-known that puppet gestures and motions 

are very affective and sophisticated. On the one hand, humans express their 

affections using facial expressions, eye movements, and gestures at the same time. 
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On the other hand, the puppet masters use a unique technique (Jo-Ha-Kyū) mainly 

involving gestures to express emotions without any facial expressions. 

 

 

Figure 4.1 Manipulation of Bunraku puppet 

As shown in Figure 4.2, the puppet masters use sophisticated link-dynamics of the 

head joint to control delicate head (eye) motions and express various affections. 

When you see the puppet in its holder, it is just a puppet. However, when the puppet 

master begins to control the head, it looks like a real human expressing his/her 

affections.  

 

 

Figure 4.2 Structure of Bunraku puppet 
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It is known that the famous and beautiful puppet motions can be classified into 

about 50 types, “Kata” (“型” in Japanese) [24]. In this chapter, we introduce these 

unique techniques with Jo-Ha-Kyū and capture these sophisticated puppet motions 

using motion capture. Using our proposed framework of motion analysis introduced 

in chapter 3, we identified the mechanism of Jo-Ha-Kyū with these affective motions 

of the Bunraku puppets using HHT. 

 

4.3 Jo-Ha-Kyū  

 

Jo-Ha-Kyū is the concept of rhythmic or tempo modulations with special breaks in 

Japanese traditional art. Western classical music creates emotions mainly based on 

a change of key. However, Japanese traditional music has no pitch standard (i.e., “Do” 

is 440Hz). Thus, Japanese traditional music uses a change of tempo (Jo-Ha-Kyū) 

instead of a change of key to create emotions. Jo-Ha-Kyū is derived from Japanese 

“Gagaku” (“雅楽” in Japanese) and is a term used in Japanese traditional arts. It has 

been traditionally used in Japan since the middle ages. Jo-Ha-Kyū has been studied 

mainly in the Noh [55-58]. Thus, in this section, we first introduce Jo-Ha-Kyū in Noh 

and give the definitions of Jo-ha-kyu in this dissertation. Next, we introduce Jo-Ha-

Kyū in Bunraku and Puppet Principles. 

4.3.1 Jo-Ha-Kyū in Noh 

Noh is a field of Japanese traditional performing arts. Until the Edo era, it was called 

“Sarugaku”, and after the Meiji restoration, it was called Noh. In the Edo era (1603-

1868), the Tokugawa government had absolute power, and Noh became popular 

among the ruling military class. This cultural and social unrest stimulated the 

development of entertainment. 

Usually, Jo-Ha-Kyū means only a series of dramatic changes of speed following the 

stories. We use this definition in this dissertation. From previous studies [55-58], it 

has been verified that the rhythms of the Noh performance gradually rise in time, 

as shown in Figure 4.3 for the schematic and typical pattern of Jo-Ha-Kyū [55-58].  
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Figure 4.3 A schematic picture to explain Jo-Ha-Kyū 

Please note that Figure 4.3 is only conceptual and is one of the Noh examples. It 

is only schematic, and the patterns differ according to the stories. In addition, "Jo 

(beginning)", "Ha (breaking)" and "Kyū (rapid) " can have “Jo", "Ha" and "Kyū" 

structures in themselves that are recursive, self-similar, or fractal. The small 

intervals between the rhythmic changes are Ma, breaking rhythms. The tempos or 

rhythmic changes and breaks are generated from the story. Thus, Jo, ha Ha and Kyū 

patterns vary according to the stories. For the real Jo-Ha-Kyū patterns, please see 

[57, 58]. 

4.3.2 Jo-Ha-Kyū in Bunraku puppets 

Jo-Ha-Kyū in Noh plays is somewhat different from that of Bunraku. On the one 

hand, according to the previous researches [57, 58], Noh is composed of formal 

rhythms consisting of a nine-step structure (Figure 4.3). On the other hand, Bunraku 

play abandons this formal nine-step structure to establish in Noh. In so doing, 

Bunraku established modern dramatic structures that are more flexible and 

correspond to more complicated stories [57, 58]. 

Jo-ha-kyū in Bunraku puppets can be roughly translated as "beginning, break, 

rapid", as shown in Figure 4.3. It means that like in Noh, all actions or efforts of 
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Bunraku should begin slowly, speed up, and then end swiftly. In the Bunraku plays, 

the puppets display the emotional expressions in accordance with the narrator’s 

(Tayū’s) chants and Shamisen’s music, etc. Bunraku puppets have unique changes 

and breaks of tempo (Jo-Ha-Kyū) in their motions to express emotions according to 

the Joruri storyline [65].  

However, Bunraku does not have any fixed score, and the Syamisen(music), Tayū 

(narrator), Puppeteers (motion) perform continuously throughout the whole story. 

Thus, to perform a Bunraku play, Tayū uses his or her own tonal center and changes 

tempo based on Jo-Ha-Kyū according to the Jōruri (storyline). This leads the whole 

performance (Bunraku puppet and music), as shown in Figure 4.3. The master 

puppeteer creates the puppet affective motions that are synchronized and 

desynchronized with the Tayū’s chant based on the Jo-Ha-Kyū tempo. It is a unique 

interaction technique that is not apparent in Western music.  

4.3.3 Bunraku puppet principles in Jo-ha-kyu 

To analyze the emotional expression techniques of the Bunraku puppet, we used 12 

animation principles published by Disney animators Lasseter et al. [66] Based on 

Disney animations since the 1930s. Animation principles can make characters 

extremely lifelike in a 3D virtual world. Similarly, puppet principles can make 

puppets extremely lifelike in the real world. Although almost all 12 animation 

principles are used in the Bunraku puppet, in this dissertation, we show only the 

puppet principles most related to Jo-Ha-Kyū (Table 4.1). For the original 12 

animation principles, please see [66-68]. 

Table 4.1 shows 4 Bunraku puppet principles in Jo-Ha-Kyū based on 12 animation 

principles. Bunraku puppets use these techniques to form the short-term Jo-Ha-Kyū, 

and finally form the long-term Jo-Ha-Kyū of the whole story. In the next section, we 

use motion capture to show the mechanism of Jo-Ha-Kyū and puppet principles in 

Bunraku play. 
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Table 4.1 Bunraku puppet principles in Jo-Ha-Kyū 

Principles Definitions 

Arcs In Bunraku, most “Kata” use arcs such as circles 

and lines to make motion expressions. Soft 

motions are represented by circles, and hard 

motions are represented by lines. Jo-Ha-Kyū 

(the change of motion strength) can be created by 

these arcs. 

Anticipation Anticipation is considered as "Ma"(Breaking 

rhythms) and is a link among Jo, Ha, and Kyū. 

Anticipation motions can also be performed by 

such as drawing a circle of head motions and 

standing up motions.  

Pose-to-pose action According to reference [24], these famous and 

beautiful puppet motions can be classified into 

about 50 kata. Pose-to-pose action refers to one 

Kata from another Kata in the case of Bunraku 

puppets. There are many cases where Kata is 

connected to another Kata by a circle, and the 

emphasis motion performed by Ma (Breaking 

rhythms). 

Timing Timing expresses different emotions using 

different lengths of "Ma" for the same motions. 

 

4.4 Motion data capturing and analysis of Bunraku puppet 

motions using HHT 

In order to analyze the Jo-Ha-Kyū in Bunraku and its emotional expression 

mechanisms, we collected Bunraku motions and music data (Tayū and shamisen) 

simultaneously at the Bunraku theater. We used our proposed framework in chapter 

3, to analyze Bunraku motions related to Jo-Ha-Kyū using HHT. 
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4.4.1 Motion data capturing of Bunraku puppet motions  

In this subsection, we focused on Bunraku puppet motions and analyzed the 

mechanisms of Jo-Ha-Kyū. Figure 4.4 shows one of the Bunraku play scenes 

performed by the Bunraku performers (Tayū: Tsukoma Takemoto, Shamisen: Sosuke 

Takezawa, Puppeteers: Kanjuro Kiritake and 2 others), for which we captured 

puppet motions and recorded the Bunraku music and chant. In order to obtain high 

accuracy motion data, we use both optical and magnetic mocap systems as shown in 

Figure 4.4.  

 

Figure 4.4 Bunraku motion capturing using both optical and magnetic mocap 

measurements 

We selected a scene named “Sugisakaya”  ("杉酒屋の段" in Japanese) from a 

famous Johruri story, "Imoseyama Onna Teikin” ("妹背山婦女庭訓" in Japanese). 

This scene is composed of the Jo-Ha-Kyū stories, and, thus, the changes of motion 

speed should follow Jo-Ha-Kyū. 

4.4.2 Analysis of Bunraku puppet motions focusing on Jo-Ha-Kyū in 

long-term 

To show the Jo-Ha-Kyū of Bunraku puppets motions in the “Sugisakaya” scene, we 

plotted angular velocities of four main joints of the puppet as shown in Figure 4.5 (a). 

The joint angle velocities were averaged using a 4-second window for smoothing. As 

shown in Figure 4.5 (a), the tempos of the angular velocities of the neck and hip joints, 

which should represent the motion speed of the puppet, can be divided into three Jo-Ha-
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Kyū parts in time, correspondingly. To analyze Jo-Ha-Kyū in detail, we also used our 

proposed framework in chapter 3 to plot a Hilbert spectrum of head joint as shown in 

Figure 4.5 (b). Head motions are most relevant with emotion expression, such as 

drawing a circle of head motion as an anticipation in Ma (breaking rhythms), which 

introduced in table 4.1. As shown in Figure 4.5 (b), the three Jo-Ha-Kyū parts are 

clearer, and small Ma can be detected and decomposed in the Kyū part by our proposed 

framework using HHT. 

 

 

 

 

Figure 4.5 Data from the Sugisakaya (a) Time sequence of the angular velocities of 

upper body joints. (b) The Hilbert spectrum of the dead 𝜽𝒛  

(a)  

(b)  
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Figure 4.5 shows real Jo-Ha-Kyū changes of motion speed according to the Tayu’s 

chant. Please note that Figure 4.3 is only a schematic, and we assumed Jo-Ha-Kyū 

if the motion speeds changed significantly according to the chants or stories, as 

shown in Figure 4.5. The question here is whether such significant and complex 

changes of motion speed exist in our modern dances. We tried to answer this question 

by showing one modern dance example. Therefore, Figure 4.6 compares that one of 

the most famous modern dances by Perfume dance data used in chapter 3 before. We 

use Perfume dance to compare to the changes of joint speeds of Bunraku puppet 

motions. As shown in the Figure 4.6, the Perfume dance is a typical western dance 

and has no significant changes of speed in this example. Motion data in Figure 4.6 

(a) were averaged by a window of 0.5 seconds (beat interval). The strong sharp peaks 

are the dancer’s rotational motions, which were insignificant on average in the 

changes of speed. 

As can be seen from Figure 4.6, the Perfume dance is a modern pop dance. 

Therefore, the performers dance at a constant rhythmic speed with no significant 

changes of tempo. Thus, it is apparent that the Figure 4.6 cannot be decomposed into 

three “Jo-Ha-Kyū” parts. By comparing Figure 4.5 with Figure 4.6, it can be seen 

that “Perfume” does not use Jo-Ha-Kyū or changes of motion speeds in this dance 

example. In a Bunraku play, the tempos of Tayū’s chants are always changing 

because Japanese plays and music express their emotions mainly by changes and 

breaks of tempo or speed of rhythm [65]. It is expected these puppet motions will 

follow the changes and breaks of tempo or speed of Tayū’s chants. Thus, it can be 

safely assumed that Bunraku puppet motions use the Jo-Ha-Kyū principles, which 

are the changes and breaks of the motions speed according to the Tayū’s chant speed. 

In contrast, we know that the “Perfume” dancers’ motions are kept almost at a 

constant tempo.  
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Figure 4.6 Perfume dance entitled “Enter the Sphere.” (a) The time sequence of 

angular velocities of the neck, right, left arm, and hip joints. (b) The Hilbert 

spectrum of head 𝜽𝒛 using HHT 

To confirm bunraku motions are led by Tayū to form the Jo-Ha-Kyū, we convert 

the narration of Tayū and the music of shamisen to a music score. Because Japanese 

traditional music has different principles from western music, so algorithms for 

western music like beat tracking cannot be applied. Therefore, in our study, we ask 

the musician Dr. Tomonari Higaki, a guest professor in Osaka university of arts, to 

perform a qualitative musical analysis (scoring by staff notation) of the scene where 

motion capture was performed. 

Figure 4.7 shows an example of the music notation, for which we were able to score 

(b)  

(a)  
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the narration (Tayū) and the music(shamisen). The point to note here is the part 

where the tempo of Tayū constantly changes. As the score shows, the tempo changes 

rapidly even from one Japanese character to another Japanese character. This kind 

of musical expression is totally different from Western music [65]. In the Japanese 

performing arts, emotions are created by changing the tempo in this way [65]. 

 

 

Figure 4.7 An example (Sugisakaya) music score by musician 

Figure 4.8 (a) shows the musical score of the Sugisakaya scene we analyzed in 

Figure 4.5. Figure 4.8 (b) is the same plot as Figure 4.5(a). 

 

 

 

Figure 4.8 Sugisakaya scene from Imoseyama Onna Teikin. (a) The change of tempo of 

Tayū chant. (b)The average speed change of the puppet head motion smoothing by 

measure average unit (4s) 

(b)  

(a)  
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As shown in Figure 4.8, using the musical score, we can get the same Jo-Ha-Kyū 

with motion data. Thus, the Bunraku puppet motions are following the Tayū 

narration to form the Jo-Ha-Kyū that follows the storyline. 

4.4.3 Analysis of Bunraku puppet motions focusing on Ma with puppet 

principles in short-term 

Anticipation and Timing are described in table 4.1, and they play an important role 

to make“Ma” (Breaking rhythm) among each Jo, Ha and Kyū in the short-term. 

The content expressed by the word “Ma” is very wide. Originally, Ma indicates a 

spatial separation. However, when Ma is expanded to the concept of time, it is 

forming a metaphysical world that transcends time and space in an empty space. In 

this subsection, Ma we discuss here is during the Jo-Ha-Kyū. The result of the 

Anticipation and Timing with Ma is as Figure 4.9. 

The "Anticipation" in "Animation principles [66]" is confirmed in Bunraku by our 

research. As an example, Figure 4.9 shows an example of “Anticipation” (ma) 

selected from the Kyū part shown in Figure 4.5(b), using our proposed framework 

with HHT. The “Anticipation” is completely decomposed as a nonlinear mode at the 

turning point where the narrative tempo of Tayū is changing faster (BPM 82 → 88).  

 

 

Figure 4.9 Extraction of Ma (breaking rhythm) using HHT 

As shown in the Figure 4.9, Bunraku puppeteers cooperate with the shamisen and 

Tayū, and give the audience a chance to recognize the next action. In this way, by 

Ma 
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making full use of puppet principles to create different short-term Jo-Ha-Kyū, 

bunraku play can be finally formed in the long-term Jo-Ha-Kyū as one performing 

art. Therefore, it became clear that Bunraku has a stage composition based on 

completely different principles from Western dance. 

 

4.5 Discussions 

 

Using our proposed framework, the Jo-Ha-Kyū and Ma of the Bunraku puppet can 

be decomposed into nonlinear signals (IMFs) by HHT. Then, by extracting and 

analyzing the motion capture data of Bunraku based on Jo-Ha-Kyū, we show the 

mechanism of affective motion in both long term Jo-Ha-Kyū and shot term Jo-Ha-

Kyū.  

Our research reveals the results as follows. First, Section 4.2 shows a Jo-Ha-Kyū 

(change of tempo) in Tayū's narrative and Bunraku puppet motions. Our research 

reveals that there was a correlation between the narrative tempos and the puppet's 

motions. This means that Bunraku puppet is led by Tayu's narrative to make Jo-ha-

kyu with the story. Second, the motion of Ma (breaking rhythm) can be decomposed 

and detected from the puppet head joint as movements of 0.2 to 0.3 seconds (3-5 Hz). 

These motions among the Jo, ha, and kyu where the puppet and the shamisen are 

synchronized. It reveals a relationship with Jo-Ha-Kyū and Ma that is the key to 

creating Jo-Ha-Kyū. Third, the Jo-Ha-Kyū pattern like Bunraku is not confirmed in 

Perfume, a Western dance. By summarizing the above, we can use the Jo-ha-kyu 

mechanism for motion design in preforming arts.  

 

4.6 Summary and conclusions 

 

In this chapter, we showed the results of Bunraku puppet motion analysis using 

HHT. First, we used both the optical and magnetic mocap system to capture the 

Bunraku puppet emotional motions from the “Sugisakaya” scene selected from the 

famous Johruri “Imoseyama Onna Teikin”. Second, using our proposed method in 

chapter 3, our research revealed the anticipation occurs in “ma”, which plays an 

important role in a Japanese traditional art principle, Jo-Ha-Kyū. Using the 

proposed method in chapter 3, we observed the Jo-Ha-Kyū and Ma in the spectrum 

from emotional expression motions of a Bunraku puppet. We compared Bunraku 
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puppet spectrum with those of the typical western modern dance motions of 

“Perfume” to show the mechanism of Bunraku affective motion design techniques, 

which can be used in performing arts design. Thus, in this chapter, we analyzed the 

Jo-Ha-Kyū mechanism of Japanese traditional art (Bunraku) and the conclusions 

are as follows: 

 

1. Unlike Western dance motions (Perfume), Bunraku puppets use Jo-Ha-Kyū 

(Change of speed) to express emotions. 

 

2. Bunraku puppets change their motion speed in accordance with the Jo-Ha-Kyū 

(change of tempo) of the Tayū (story) and Shamisen (music). 

 

3. Bunraku expresses the emotional expression of Bunraku's unique puppets using 

puppet principles, arcs, anticipation, timing, and pose to pose actions similar to 

the animation principles. 

 

4. Bunraku puppeteers make long term Jo-Ha-Kyū while making short term Jo-Ha-

Kyū using the puppet principles. 

 

Overall, our research showed that the Jo-Ha-Kyū mechanism of Bunraku motions 

is completely different from the Western. It can be used in performing arts like actors, 

robots and CG characters to create emotional expression motions interacting with 

humans. In the next chapter, as an example, we use this Jo-ha-kyu mechanism to 

develop a framework that can generate emotional expression motion using Jo-ha-

kyu in robot motion design. 
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Chapter 5  
 

 

Applying Hilbert-Huang transform to robot 

motion synthesis using Bunraku puppets with 

Jo-Ha-Kyū 
 

 

This chapter is organized as follows. Section 5.1 introduces the research background 

and the problem of human-robot interactions. Section 5.2 is the proposed framework 

using Jo-Ha-Kyū principle extracted from Bunraku in chapter 4. Section 5.3 shows 

the results of the proposed framework using Jo-Ha-Kyū principle of Bunraku 

puppets. Section 5.4 discusses the results shown in section 5.3. Section 5.5 

summarizes this chapter. 

 

5.1 Research background 

 

Home robots are expected to spread in the future due to the development of Artificial 

Intelligence technology. However, the movement of robot eyes that cannot 

communicate with humans causes an “Uncanny Valley” phenomenon [25], which 

leads to human discomfort. To solve this interaction problem between humans and 

robots, numerous researches on robot verbal interaction have been performed [69]. 

For instance, Valin et al. [70] used the microphone to develop a sound localization 

and tracking system. Nakamura et al. [71] conducted a research on localization 

proposing a system for robot interactive sound. However, very few studies focusing 

on human senses affected by the sounds and motions in human-robot interaction. 

The mechanisms that control the human senses affected by the sounds and motions 

by multiple robots need to be understood. Nakagawa [72] proposed that, in the design 

of humanoid service robots, the appearances, motions, and voices of robots produce 

discomfort or a negative feeling if they do not satisfy people’s expectations. Especially, 

it is essential that autonomous robot designs have to be comprehensive and 
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integrated designs, which integrates all sounds, motions, stories in a balanced and 

harmonic manner. 

As we discussed in chapter 4, Ningyo Joruri Bunraku has no eye movement and 

expresses emotions with motions of the head and shoulders. Its beautiful emotional 

expression behavior attracts audiences deeply. By using Bunraku's affective motion, 

it is considered to reveal an interactive motion design technique that makes a robot 

to overcome the “Uncanny Valley” phenomenon. 

In this chapter, we use the results of traditional Bunraku plays obtained in chapter 

4 and apply them to robot motion designs. Our hypotheses are shown in Figure 5.1. 

As we introduced in chapter 4, Multiple Bunraku puppets play interactively on the 

stage following the chant by Tayu (Chanter and Narrator), and music by Shamisen 

players. Each puppet is operated by three puppeteers in the Bunraku theaters. Thus, 

our proposed concept is that multiple robots can create an attractive “Bunraku 

stages,” and coexist in human life with appropriate designed sounds, motions, and 

stories by robots. In this dissertation, we mainly focus on using Jo-Ha-Kyū 

mechanism analyzed in chapter 4 and use it to robot motion design. 

 

 

Figure 5.1 Schematics views of Bunraku plays with motions and sounds applied to 

“robot plays” in real lives 

Jo-ha-kyu 
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In our study, we propose a new robot motion design framework based on Bunraku 

puppet motions and the concept of Jo-Ha-Kyū. Using our framework, it is possible to 

generate affective robot motions using the beat tracking, deep neural network, and 

HHT from Bunraku puppets.  

 

5.2 Proposed framework 

 

In this dissertation, we present a robot motion design framework using Bunraku 

affective motions that are based on “Jo-Ha-Kyū,” and convert a few simple Bunraku 

motions into a robot motions using one of deep learning methods. Our primitive 

experiments show that Jo-Ha-Kyū can be incorporated into robot motion design 

smoothly, and some simple affective robot motions can be designed using our 

proposed framework. 

5.2.1 Related works and proposed robot motion design framework 

Numerous motion synthesis and modifications studies on robotics have been 

conducted. Somani et al. [73] proposed a framework for cup grasping in 6 to 7 DOF 

robot arms using the prioritized nonlinear inequality constraints. To ensure the 

stability of a robot arm, Karami et al. [74] presented a new algorithm in redundant 

robot manipulators for control of multiple tasks. For humanoid robots, Posa et al. 

[75] conducted research on whole-body robot dynamic motions. They reported an 

approach to generate robot motion for completing tasks of walking and climbing 

based on constrained dynamical systems. Kanehiro et al. [76] also proposed a 

reaching motion planning method for a 30 DOF humanoid robot using the inverse 

kinematics. These researches are mainly aimed at the tasks that are analyzed in 

advance, while the Bunraku motions are interactive and different in every play [57, 

58]. 

Thus, we propose a motion design framework illustrated in Figure 5.2 to develop 

communication robot motions using Jo-Ha-Kyū. This framework does not necessarily 

reproduce the motion of Bunraku puppet itself. The robots only follow the Jo-Ha-Kyū 

principle in their motions just to be “natural.” The rhythms and tempos of Jo-Ha-

Kyū can only be determined by the stories in Bunraku chants and narrations. These 

musical factors are out of scope in this dissertation, and we assume Jo-Ha-Kyū of 

the plays are already known in the proposed framework. 
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Figure 5.2 General schemes of Bunraku robot motion design using the Jo-Ha-Kyū 

principle, retargeting deep learning and HHT 
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5.2.2 Motion editing using Jo-Ha-Kyū principle and beats tracking 

As we discussed in chapter 4, Jo-Ha-Kyū motion speeds of Bunraku increase and 

break the tempos following the play stories. Therefore, it is necessary to edit and 

change the motion speed following the play stories. As mentioned in the previous 

chapter, the Jo-Ha-Kyū structure is recursive. It is also necessary to edit and change 

the motion's speed in a unit length based on their Jo-Ha-Kyū recursive levels. The 

smallest unit length in the lowest recursive level is “motion primitives.” The motion 

primitive is the minimum unit of motions and it can be segmented following the 

beats or tempos of music [35]. Using the beat tracking method we discussed in the 

previous chapter [36], as shown in Figure 5.3 (a), we propose a motion segmentation 

method to create Jo-ha-kyu using the beat positions and extracts the minimum 

action or motion primitives [35]. Indeed, the Bunraku puppeteers change and break 

the motion speeds in each motion primitive. Thus, motion segmentation is essential 

in our proposed framework. The real Jo-Ha-Kyū patterns have to follow the stories. 

The way how the motion speeds or tempos increase has to be decided manually 

according to the stories in our proposed motion design framework. 

After the input motions have been segmented, the speed of motions can be edited 

and adjusted manually according to the stories. Figure 5.3 (b) shows edited sample 

motions using a simple Jo-Ha-Kyū principle. The increasing red lines represent the 

slope of peak joint velocities. The tempos or speeds both increase and break 9 times 

in total in time. Using this method, Jo-Ha-Kyū motions can be created by gradually 

increasing the angular velocities of each joint as shown in Figure 5.3 (b). Please note 

Figure 5.3 is only schematic. The real Jo-Ha-Kyū has to follow the stories. Careful 

manual designs according to the stories are essential. 
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Figure 5.3 (a) Our motion segmentation using beat tracking method (b) Edited 

segmented motions following the Jo-Ha-Kyū principles 

5.2.3 Jo-Ha-Kyū design principle based on Weber-Fechner Law 

To design a Jo-Ha-Kyū robot motion, the designer has to decide the number of the 

Jo-Ha-Kyū recursive levels and its Jo, Ha, Kyū cell structures in each recursive level 

based on the stories. In this dissertation, for simplicity, we only focus on the two-

level recursive structure, and the minimum unit is the motion primitives.   

After we determine the time structure or the Jo, Ha, and Kyū cell structures of a 

robot motion as shown in Figure 5.3 (b), the question here is how we increase and 

break the angular velocities of each joint motions. For this purpose, we use the 

Weber-Fechner law to determine the changes in the motion speed in each Jo, Ha, 

and Kyū cell structures [57, 58]. The Weber-Fechner law is first proposed in 1860  

(a) 

(b) 
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[77] and relates to human perception, more specifically, the relationship between the 

actual change in a physical stimulus and the perceived change. The Weber–Fechner 

law can be written as below [78]: 

 

𝑆 ൌ 𝑐 𝑙𝑜𝑔௘𝐼 ൅ 𝐾 (13) 

 

Here, S is the magnitude of sensation, I is the intensity of the exciting cause, K is 

the former stimulus, c is a constant [78]. 

Using Equation (13), once the motion speed R୧ at the time 𝑖 is obtained, the next 

motion speed R୧ାଵ can be determined following Weber–Fechner law as [57, 58]: 

 

𝑅௜ାଵ ൌ 𝐾 𝑙𝑜𝑔2𝑅௜ ൅ 𝑅௜  (14) 

 

Here, R୧ାଵ are the magnitudes of the sensation of the Jo, Ha, and Kyū at 𝑖, R୧ is 

the magnitude of the sensation before R୧ାଵ, the number 𝑖 corresponds to time, and 

K is a constant that is defined for the play [78]. Some typical values of K are 

introduced in [57, 58] for Noh play. If K is larger, the audiences feel the plays or 

motions are moving faster.  

After we set the average “Ha” motion speed in “Jo” as the original average motion 

to be edited, we use the Weber–Fechner law to determine the increases or decreases 

of the motion speeds. 

5.2.4 Robot motion retargeting deep neural learning 

After segmenting, editing, modifying the motions following the Jo-Ha-Kyū principle, 

the motion-captured data must be retargeted to the real robot motion data because 

the robots usually have less degree of freedom in kinematics. In order to retarget 

and implement motions to real robots, we have to rewrite the motion data changing 

and reducing the degree of freedom (DOF) of the motions.  

This is simply because the DOFs of the captured motion data from human beings, 

or in our case, Bunraku puppets are not the same as those of the robots. In reality, 

this retargeting process needs special skills, thus, is very difficult to do this. Table 

5.1 shows the difference between the degrees of freedoms of the Bunraku puppet [79] 

and the dancing robot named “PremaidAI ™” developed and sold by DMM [80], 

which is used in this dissertation. 
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Table 5.1 The Degrees of freedoms of each joint of the Bunraku puppet and the 

dancing robot PremaidAI™ developed by DMM. 

 Bunraku Puppet PremaidAI 

Head 1 3 

Chest 3 0 

Left Shoulder  3 2 

Left Elbow 3 2 

Left Hand 1 1 

Right Shoulder 3 2 

Right Elbow 3 2 

Right Hand 1 1 

Hip 3 0 

Left Hip 3 3 

Left Knee 1 1 

Left feet 0 2 

Right Hip 3 3 

Right Knee 1 1 

Right feet 0 2 

Total 29 25 

 

In order to reduce the DOFs of Bunraku puppet to those of PremaidAI™, in this 

dissertation, we use a retargeting neural network with deep learnings [1, 48, 64]. 

Poses of robots are usually described by the joint angles of the motor. This 

representation is suitable for data processing, but valid retargeted motion only exists 

in a small subspace of this whole representation set. Motion manifold is a subspace 

of valid motions [48]. It can be considered as the probability distribution of all valid 

robot motion data here. Using the retargeting neural network shown in Figure 5.4, 

we can extract an affective robot motion manifold of the Bunraku puppet [1, 48, 64]. 

After inputting a set of motion capture data into this neural network, a Bunraku-

style robot motion can be retargeted. Here, the term B and R in Figure 5.4 refer to 

the DOFs of the Bunraku puppet (m = 29) and those of the robot (n = 25), and m> n 

in Figure 5.4. 
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Figure 5.4 Robot motion retargeting using a deep learning network 

The convolutional neural network performs a one-dimensional convolution over 

the temporal domain, independently, for each filter. The dimensional decreasing 

filters consist of three one-dimensional convolution layers. The dimensional 

increasing filters also consist of three one-dimensional convolution layers. This 

network provides a forward (dimensional decreasing) operation 𝛷 and a backward 

(dimensional increasing) operation 𝛷ற. The forward operation is:  

 

𝛷ሺ𝐵ሻ ൌ 𝑅𝑒𝐿𝑈ሺ𝐵 ∗ 𝑊 ൅ 𝑏ሻ  (15) 

The backward operation is: 

𝛷றሺ𝑅ሻ ൌ ሺ𝑅 െ 𝑏ሻ ∗ 𝑊෩   ሺ16ሻ 

 

Here, B represents Bunraku motion capture data as the input, R represents Robot 

affective motions as the output, W is the weights of dimensional decreasing network 

filter, 𝑊෩  is the weights of dimensional increasing network filter, b is a bias for each 

network, 𝛷 and 𝛷ற use the max-pooling and up-sampling operation. The values of 

𝑊 and 𝑊෩  are usually initialized to small and random values. The values of b are 

usually initialized as zero. 

The input layer is 29 DOFs (Bunraku puppet) and the output layer is 25 DOFs 

(PremaidAI™). The learning rate is set to 0.001 and we choose the adaptive moment 

estimation (ADAM) as the optimizer. The cost function of dimensional increasing is 
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given and is minimized with respect to the corresponding network parameters as 

follows: 

𝐶𝑜𝑠𝑡ሺ𝑅ሻ ൌ ‖𝑅 െ 𝛷ሺ𝐵ሻ‖ଶ
ଶ ሺ17ሻ 

 

After appropriate pieces of training, a robot affective motion manifold is found. By 

minimizing the cost function Equation (17), an output of Bunraku style robot 

retargeting is obtained. 

In addition, in order to train the neural network in Figure 5.4, the motion capture 

data of the Bunraku puppet, and the retargeted robot motion data are required as a 

set. We capture 40 minutes Bunraku puppet data set as shown in chapter 4 and 

prepared the same 40 minutes robot motion created manually. These are used for 

direct teachings as shown in Figure 5.5. 

 

 

Figure 5.5 (a) Capturing Bunraku motion data. (b) Retargeting robot motion data 

by direct teachings 

The training data include 3 scene (20 minutes) selected from “Imoseyama Onna 

Teikin” introduced in chapter 4, 2 scene (20 minutes) selected from “Keisei Awa no 

Naruto” (“傾城阿波の鳴門” in Japanese). Their frame rate is 60Hz including 141550 

motion data.  

5.2.5 Filtering high-frequency motions using HHT 

First, the speeds of Bunraku motions are changing rapidly based on Jo-Ha-Kyū. 

Second, the robot motions generated from the neural network also contain high-

frequency noises that exceed the robot motor maximum speed. Thus, motions whose 

(a) (b) 
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frequencies are higher than the robot motor speed has to be filtered. 

We use the HHT to decompose the motions from high to low angular speeds [8, 49, 

50]. We delete all decomposed motions that have higher angular speeds than the 

motor speed as shown in Figure 5.6 [81]. In the figure, all 5 higher angular velocity 

IMF motions are filtered or deleted. Thus, the generated motions from our deep 

learning neural network can well be retargeted to the robot motions.  

 

 

 
Figure 5.6 (a) The head joint Hilbert spectrum of motions generated from deep 

learning neural network. (b) The Hilbert spectrum deleted the 5 higher frequency 

exceed the motor speed 

 

 

(b) 

(a) 
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5.3 Result 

 

In this dissertation, our framework uses a deep learning method proposed by Holden 

et al. [1, 48, 64]. They used 10 hours of motion training data to achieve high-quality 

complicated motion syntheses or stylizations. However, the purpose of our research 

is only to retarget simple filtered and edited Bunraku puppet motions to robot 

motions. As we discussed in chapter 4, Bunraku puppets have approximately 50 

beautiful basic motion primitives so-called “Kata” [24]. In the present research, we 

focus mainly on several basic motions from “Omiwa” (“三輪 ” in Japanese) of 

"Imoseyama Onna Teikin”, for example, “walk”, “kneel up”, “stand”, and “sit” [24]. 

Thus, we use only 40-minute training data that are enough to retarget a few basic 

motions in the present research. Please note that, in our deep learning network, we 

do not aim for the deep neural network to obtain the ability to synthesize or stylize 

the motions.    

5.3.1 Basic motion example 

In this subsection, we use the retargeting method in section 5.2 to retarget a short 

basic Bunraku puppet motion to robot motion. Because the original Bunraku puppet 

motions have Jo-Ha-Kyū in themselves, we do not need to incorporate the Jo-Ha-

Kyū rhythms into the original motions using the Jo-Ha-Kyū design method in section 

5.2.  

Figure 5.7 shows the result of the Bunraku robot's basic motions using our 

proposed framework. We use about 20-second motion capture data of bunraku 

puppet selected from “Sugisakaya” part in the lowest recursive level of Jo-Ha-Kyū, 

which is composed of roughly 17 motion primitives. In the figure, the red lines are 

the slope of the average joint angular velocities. As evidenced in the figure, the 

original input data have Jo-Ha-Kyū in themselves. The Bunraku puppet motions are 

retargeted successfully to the robot motions, smoothly. The robot motions are 

synchronizing with Tayu’s chant that is one of the significant keys to creating 

affective motions. 
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Figure 5.7 (a)-(d) Capturing Bunraku puppet motion data. (e)-(h) Retargeted robot 

motion generated from deep learning neural network. (i) The upper body joints 

speeds of Bunraku puppet motion. (j) The retargeted upper body joints speeds of 

the robot using the deep learning neural network 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) 

(j) 



 

85 

Here, Figure 5.7 (i) shows the upper body joints speeds of (a)-(d), which have Jo-

Ha-Kyū in themselves, and (j) shows the retargeted robot upper body joints speeds 

of (e)-(h). Thus, Bunraku and robot motion have similar Jo-Ha-Kyū patterns. As can 

be seen from Figure 5.7, the 40-minute training is enough to retarget the basic 

bunraku motion.  

Using Equation (14), we obtain the coefficient K that controls the impression of 

plays or motion speeds in Figure 5.7 (i-j). For the original head Bunraku motion of 

Figure 5.7 (i), we obtain K=2.6±0.3. For the retargeted head Bunraku motion of 

Figure 5.7(j), we obtain K=2.2±0.3. The retargeted K value is 0.4±0.3 smaller. This 

is because the high-frequency modes are filtered using the HHT due to the limit of 

motor speed. However, the changes of motions (Jo-Ha-Kyū) are preserved. 

5.3.2 Advanced motion example 

Next, we use 1-minute “Perfume” dance data introduced in section 3.3 as the input 

data for retargeting. Here, Figure 5.8 (a) shows the upper body angular speeds of the 

original Perfume motion data. The time variations of data are relatively flat. In the 

figure, the speeds are smoothed over 2 seconds. First, we edit manually Perfume 

dance motion data into the “Jo-Ha-Kyū” style using the beat tracking method as 

introduced in section 5.2.2. Figure 5.8 (b) shows the edited or modified joint angular 

speed using the Jo-Ha-Kyū principle mentioned in chapter 4. Perfume motions are 

divided into 3-part or Jo-Ha-Kyū. These results show that the speeds of joint motions 

change (increase) and break (down) three times. Second, we input the edited motion 

shown in Figure 5.8 (b) to retarget robot motion using the deep learning neural 

network of Figure 5.4. Figure 5.8 (c) shows the joint angular velocity of robot motions. 

Thus, the top speeds of robot motion increase following Jo-Ha-Kyū in chapter 4. 

 



 

86 

 

 

Figure 5.8 (a) The upper body joints speeds of “Perfume” original dance motion 

data. (b) The modified upper body joints speeds of Perfume dance motion modified 

manually following Jo-Ha-Kyū principle. (c) The retargeted upper body joints 

speeds of the robot using the deep learning neural network 

Here, Figure 5.9 (a-d) shows the original Perfume dance motion and Figure 5.9 (e-

h) shows the retargeted robot motion corresponding to the input data of “Perfume” 

in Figure 5.8 (b). As shown in Figure 5.8, the input motions are edited into three-

part at different speeds. Thus, the output robot motion data has different speed 

variations, so-called Jo-Ha-Kyū as shown in Figure 5.9. As a result, thus, the modern 

“Perfume” dance motions are retargeted into the motions that follow Jo-Ha-Kyū 

principle, which can hopefully express the robot emotion more naturally and 

comfortably overcoming “Uncanny Valley.” 

(a) 

(b) 

(c) 
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Figure 5.9 (a)-(d) Input motions (Perfume original dance motion). (e)-(h) Retargeted 

motions (Bunraku robot motion using Jo-Ha-Kyū principle) 

Using Equation (14), we can obtain the coefficient K that controls the impression 

of dances or motion speeds in Figure 5.8(b, c). For the original hand Perfume motions 

of Figure 5.8(b), we get K ൌ 1.6 േ 0.2. For the retargeted head Bunraku motion of 

Fig. 5.8(c), we get K ൌ 1.4 േ 0.2. The retargeted K value is slightly smaller. This is 

because the high-frequency modes are filtered using the HHT due to the limitations 

of the motor speed. However, the characteristics of Jo-Ha-Kyū is preserved. 

 

5.4 Discussions 

 

In this chapter, we try to apply sound and motion mechanisms of Bunraku plays, Jo-

Ha-Kyū, to affective robot motion designs. In order to do so, first, we propose a 

general scheme of Bunraku robot motion design using the Jo-Ha-Kyū principle and 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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retargeting deep learning method. Second, we detail a motion editing and morphing 

method using both the Jo-Ha-Kyū principle and the beat tracking method to segment 

the motions. Third, we propose to segment a story into three “Jo,” “Ha”, and “Kyū” 

cell structures, recursively. We propose to use the Weber–Fechner law to control the 

increase of motion speeds in each cell structure [57, 58] shown in chapter 4. Fourth, 

we introduce a motion retargeting deep learning neural network that reduces the 

Bunraku motion DOFs to the robot motion DOFs. Fifth, after the robot motions are 

retargeted, we propose to use HHT to filter the high-frequency motions to obtain 

smoothed motions. Sixth, to evaluate our proposed framework, we give two motion 

examples to edit and retarget from both the puppet and human motions into robot 

motions. Then, the main contributions of our works can be summarized as follows.  

First, using both Jo-Ha-Kyū principles and Weber-Fechner law, we proposed a 

unique and new affective robot motion design method. The new method can be 

summarized as follows: (i) The motions are segmented into the motion primitives 

using the beat tracking method; (ii) Using the Weber–Fechner law, the segmented 

motion speeds are modified to Jo-Ha-Kyū cell structures following the stories or can 

be adopted from some Bunraku puppet motions that intrinsically have Jo-Ha-Kyū in 

themselves. (iii) Using the retargeting deep learning neural network, the Jo-Ha-Kyū 

motions including the detailed emotional expressions are retargeted to the robot 

motions; (iv) Using HHT, the motions are decomposed into different modes or IMFs 

from fast to slow motions, and those IMF motions faster than the robot motor speeds 

are canceled or filtered; (v) The final output robot motions are adjusted manually to 

balance robot inertia forces. Thus, the robot emotional motions based on Jo-Ha-Kyū 

can be generated, easily. Robot motion designers can create affective Jo-Ha-Kyū 

motions without special knowledge and techniques. 

Second, we use only 40-minute training data to retarget a few basic motions, while 

Holden et al. [1, 48] used 10 hours of motion training data to achieve high-quality 

complicated motion syntheses or stylizations. We evidence the 40-minute training is 

enough to retarget the basic bunraku motion. And using our proposed neural 

network, detailed emotional expressions of Bunraku motion can be retargeted 

automatically, while a 3 minutes Bunraku motion needs 30 hours to retarget 

manually. 
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5.5 Summary and conclusions 

 

As discussed in chapter 4, the affective robot motions have to be accompanied by 

sounds and narrations and cannot be generated only by the motion generation 

system. After analyzing the mechanism of Jo-Ha-Kyū in the instantaneous 

frequency domain in chapter 4, in this chapter, we try to convert these emotional 

motions into robot affective motions so that robots can interact with human beings 

more comfortable. As shown in the results, we can automatically design the Jo-Ha-

Kyū tempos or rhythms using the Weber-Fechner law after the play motions are 

organized to be Jo-Ha-Kyū cell structures. To show the results, we convert a few simple 

Bunraku motions into a robot motion. Our experiments reveal that Jo-Ha-Kyū can be 

incorporated into robot motion design smoothly, and some simple affective robot motions 

can be designed using our proposed framework. Thus, in this chapter, our conclusions 

can be summarized as follows: 

 

1. Because Jo-ha-kyu is used in both long term and short-term with Bunraku 

puppet principles, in our proposed framework, we used beat tracking to segment 

motion for Jo-Ha-Kyū editing. As shown in the results, Jo-Ha-Kyū can be created 

by changing the motion speed of each segmented motions by beat tracking; 

 

2. In our present framework, we use the Weber-Fechner law to create affective robot 

motion based on previous research of Jo-Ha-Kyū [57, 58]. By editing the motion 

speed of each segmented motion by beat racking, affective robot motions can be 

synthesized automatically; 

 

3. We use deep learning to retarget Bunraku affective motion for a robot. By using 

the motion synthesis framework of previous researches [57, 58], retargeted robot 

motion can be generated from input Bunraku puppet motions. The generated 

motion can also represent the Jo-Ha-Kyū pattern; and 

 

4. To fit affective Jo-Ha-Kyū motion into a robot, we use HHT to sparsify motion to 

fit the motor speed of the robot. By using our proposed framework, the generated 

affective Jo-Ha-Kyū motion can be expressed correctly by the robot. 

 

In this chapter, we only focused on the affective motion designs, and we manually 
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edited the input motions to be Jo-Ha-Kyū. However, once the robot sounds and 

narrative AI systems are developed, our proposed scheme can easily be incorporated 

into them, and the affective motions can easily be generated automatically using our 

method. 
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Chapter 6  
 

 

Conclusions and future works 
 

 

In this chapter, we summarize the main contributions of this dissertation and 

discuss possible future works. 

 

6.1 Conclusions 

 

Traditional methods of data analysis are based on linear and smooth hypotheses. 

Recently, new methods have been introduced to analyze non-stationary and non-linear 

data. In addition, some nonlinear time series analysis methods have been designed for 

nonlinear but stationary deterministic systems. However, in most practical systems, 

whether natural or artificial, the data are likely to be nonlinear and unstable. To solve 

this problem, Hilbert-Huang Transform (HHT) uses Empirical Mode Decomposition to 

decompose a real-world signal into a set of Intrinsic Mode Functions (IMFs) and a 

residual (trend). The IMF is a decomposed pseudo monochromatic signal. Thus, we can 

apply the Hilbert transform (HT) to each IMF to get instantaneous frequency and 

amplitude of the original signal correctly. This transform is suitable for the analysis of 

non-linear and non-stationary data in an empirical way. In all cases, the results of HHT 

in time-frequency energy representation are much clearer than those of any traditional 

analysis method.  

Although HHT has been applied in a wide range of researches, there are few relevant 

researches on motion analysis and editing for signals collected from the real world. 

Therefore, we carried out the experiments and analyses around this issue, proposed an 

analysis and the editing framework and applied them to CG character and robot motion 

synthesis. To show the results of our proposed framework, we applied our framework to 

three different problems: (i) Dance motion analysis and editing; (ii) Bunraku puppet 

motion analysis; and (iii) Robot motion synthesis using Bunraku puppets. The 

conclusions of this dissertation can be summarized in three parts. 
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6.1.1 Dance motion analysis and editing 

We proposed a framework for dance motion analysis and editing using HHT. As an 

example, Japanese techno-pop unit Perfumes’ dance motions, salsa, waltz, and hip-

hop motions were analyzed and edited. In addition, some of their interesting and 

unique features and editing results were discussed with regard to Hilbert spectrums. 

The conclusions of this research can be summarized as follows:  

 

1. Hilbert-Huang Transform can be considered as a powerful tool for dance motion 

analysis and editing. By using NA-MEMD to decompose dance motions into a set 

of IMFs, we can extract dance choreographies from dance motions in the 

instantaneous frequency domain. Thus, our proposed framework helps 

choreographers to analyze dance motions in the choreography units. Thus, 

animators can edit dance motion not just for editing whole dance motion, but 

also can edit each choreography separately in the instantaneous frequency 

domain for creating novel different dances; and 

 

2. Hilbert-Huang Transform can reveal new insights in motion analysis. For 

example, our research reveals the Fibonacci sequence in human dance motions 

is corresponding to each joint. Also, the Fibonacci sequence is associated with 

the golden principle, which is one of the important ruling factors for aesthetics. 

Thus, there is a possibility that this relationship may have some connections 

with the aesthetic elements of dances. 

6.1.2 Bunraku puppet motion analysis 

We first collected Bunraku motion using motion capture. Next, we analyzed the Jo-

Ha-Kyū mechanism of Bunraku puppet motions with puppet principles using HHT 

in both long term and short term. The conclusions of this part of the research can be 

summarized as follows:  

 

1. Hilbert-Huang Transform can decompose Bunraku puppet affective motions into 

several IMFs. These decomposed motions can be analyzed in the instantaneous 

frequency domain. By analyzing Bunraku motion with their Hilbert spectrum, 

the Jo-Ha-Kyū of Bunraku motion was confirmed in our research. We also 

showed the difference in motion features between Bunraku and Western dance 

(Perfume dance) using HHT; and 
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2. Hilbert-Huang Transform can extract delicate and complicated motion of 

Bunraku puppet motions, like Ma between the Jo, Ha, and Kyū. The extracted 

Ma can be considered as “Anticipation”, one of the puppet principles, that plays 

an important role in interaction with humans. These complicated motions 

extracted by HHT can be used in affective motion synthesis. 

6.1.3 Robot motion synthesis using Bunraku puppets 

We developed a new robot motion design method that retargets the beautiful 

affective Bunraku motions to the android robot motions using Jo-Ha-Kyū. Then, we 

presented a framework using deep learning to generate emotional motions. These 

emotional motions were synchronized with the concept of Jo-Ha-Kyū (序破急). By 

our proposed framework, a robot can express affective motion synchronized with 

narration (story) based on Jo-Ha-Kyū (序破急). The conclusions of this research can 

be summarized as follows: 

 

1. Hilbert-Huang Transform can be considered as a great tool for motion sparsity. 

We used HHT to remove complicated high-frequency motions. These motions 

cannot be represented by the robot because of the motor speed limitation; and 

 

2. These decomposed motions can be considered for use in deep learning methods 

for interaction motion synthesis between humans and robots. By using HHT, 

unnecessary high-frequency IMFs can be removed. Thus, it is possible to easily 

sparsify motion data by removing the IMFs with t small spectrum energy in each 

channel and remove the unnecessary IMFs. These can be used for sparse coding 

to generate efficient training data in deep learning. 

 

6.2 Future works 

 

Our research reveals that HHT can be a useful tool for motion analysis and editing 

for different areas like CG characters, Bunraku puppets, and robots. However, for 

the three different problems we explored in this dissertation, there are also three 

future works regarding our works regarding motion analysis and editing using HHT.  
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6.2.1 Dance motion analysis and editing 

We used HHT for dance motion analysis and editing. Our research revealed the 

Fibonacci sequence in human dance motions corresponding to each joint. The 

Fibonacci sequence is associated with the golden principle, which is one of the 

important ruling factors for aesthetics. Thus, there is a possibility that this 

relationship may have some connections with the aesthetic elements of dances. 

However, the relationship between the Fibonacci sequence and the beauty of dance 

motions is unclear. Also, other motions, like motions in a normal scene or battle scene, 

are also considered can be used with our proposed framework. We would like to leave 

these topics for future work.   

6.2.2 Bunraku puppet motion analysis 

Jo-Ha-Kyū motion patterns are one of the effective ways to express emotions. We 

used HHT to analyze and extract Bunraku puppets Jo-Ha-Kyū motion like 

“Anticipation”, one of the Bunraku puppet principles, by our proposed framework. 

There are also other puppet principles like “slow in slow out” and “squash and 

stretch”. These principles are also considered to be very effective for expressing 

emotions to overcome the “Uncanny Valley.” However, Jo-Ha-Kyū principles can also 

be easily incorporated into these other methods. The Bunraku masters only teach 

their students by direct teaching. They never use textbooks and many other details 

of Jo-Ha-Kyū remain unknown to us. It is essential to reveal these unknown details 

for the deep neural network training to generate emotional motions in the future. 

6.2.3 Robot motion synthesis using Bunraku puppets 

Using our proposed framework using deep learning and HHT with Jo-ha-kyu can 

make robots interact with humans automatically. We believe that our proposed 

framework can contribute to the automatic generation of robot emotional motions 

using Jo-Ha-Kyū in the future. However, our research is still at an early stage, and 

a large number of training datasets, with Tayū’s narrations that should contain 

natural emotions following the Joruri stories, are essential. This is because the Jo-

Ha-Kyū motion patterns should be created following the stories automatically by the 

deep learning neural network. However, large data acquisition from Bunraku 

puppeteers, Tayū and Shamisen players is not easy. In addition, some objective 

emotional evaluation metrics in accordance with the emotional motions following the 
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stories are required to train the deep neural network. The generated emotional robot 

motions also have to be objectively evaluated. We would like to address these issues 

in future work.   
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