
OpenCL-based design methodologies for
FPGA implementation

March 2020

IMAN FIRMANSYAH

OpenCL-based design methodologies for
FPGA implementation

Graduate School of Systems and Information Engineering

University of Tsukuba

March 2020

IMAN FIRMANSYAH

Abstract

FPGA, or Field Programmable Gate Array, has been widely used in many engineer-
ing applications such as in medical, automotive, communications, big data and artificial
intelligence (AI). Traditionally, hardware description language (HDL) is required to
program an FPGA. HDL programming provides an efficient logic resource with low la-
tency. However, it is time-consuming for designs that are more complex. The user may
struggle to write sophisticated programs that are performed effectively on FPGAs using
HDL program. Currently, OpenCL is implemented for FPGA programming. OpenCL
reduces the FPGA development time because it increases the abstraction level of the
code. OpenCL implementation on FPGAs yields high-performance results for the com-
putation process. OpenCL is an open and royalty-free framework for accelerating the
algorithm executed on a heterogeneous system such as a GPU, CPU, DSP, or FPGA.
Recently, FPGAs have also been applied in high-performance computing applications
because of their reusability, reliability, high performance, and low power consumption.
A new trend continues to grow by implementing CPU, GPU, and FPGA as an acceler-
ator. FPGAs provide an alternative solution due to its capability to communicate with
each other, or between FPGA and GPU with low latency. This study focuses on the
implementation of OpenCL programming as a type of HLS design on FPGA boards
both for HPC applications and engineering applications. Therefore, the study evaluates
the capability of FPGA in OpenCL design by conducting the experiments according
to external memory bandwidth capability, computational capability, and input/output
(I/O) capability. For HPC applications, matrix multiplication is chosen to evaluate
the computational capability of FPGA, and Himeno benchmark is chosen as a type of
memory-intensive application. To evaluate the I/O capability of FPGA using OpenCL
design, a signal generation and measurement is demonstrated using OpenCL program
for engineering fields. Because the OpenCL SDK standard does not provide a particu-
lar function to access the FPGA’s I/O hardware directly, new OpenCL components are
developed inside the FPGA Board Support Package (BSP) that can interact with the
FPGA hardware directly through an OpenCL I/O channel extension. This component
allows an OpenCL kernel on FPGA to read data from and write data to the FPGA
I/O. The study shows that OpenCL can be used for high-performance applications and
engineering applications.

2

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor Prof.
Taisuke Boku and Associate. Prof. Yoshiki Yamaguchi for their dedicated support
and guidance in completing the research during my study at the Department of Com-
puter Science, Graduate School of Systems and Information Engineering, University of
Tsukuba. I would like also to thank the rest of the thesis committees: Prof. Koichi
Wada, Prof. Tsutomu Maruyama, Associate. Prof. Toshihiro Hanawa and Prof. Mori-
toshi Yasunaga for their insightful comments and correction. Further, I am also thank-
ful to all members of the FPGA research group for their collaborative effort during the
study.

In this opportunity, I owe my deepest gratitude to the Ministry of Research, Tech-
nology and Higher Education (RISTEK-DIKTI) of the Republic of Indonesia for sup-
porting the Program Research and Innovation in Science and Technology (RISET-Pro)
scholarship. Finally, I must express my very profound gratitude to my family for con-
tinuous encouragement and support throughout my years of study at the University of
Tsukuba and through the process of writing this thesis.

Iman Firmansyah

Tsukuba, January 2020

3

Contents

Abstract 2

Acknowledgements 3

1 Introduction 11
1.1 Motivation . 12
1.2 Contributions . 13
1.3 Thesis organization . 14

2 Field Programmable Gate Array design with OpenCL 15
2.1 Introduction to FPGA . 15
2.2 OpenCL for FPGA . 15
2.3 OpenCL memory architecture . 18
2.4 FPGA pipeline parallelism . 18
2.5 OpenCL channel extension . 20

3 FPGA-based Implementation of Memory-Intensive Application using
OpenCL 21
3.1 Introduction . 21
3.2 Himeno benchmark . 21
3.3 System implementation . 24

3.3.1 Stratix V DE5-Net FPGA overview 24
3.3.2 Arria 10 A10PL4 FPGA overview 25

3.4 Experimental Results . 25
3.5 Baseline implementation . 25

3.5.1 Näıve kernel . 26
3.5.2 Loop Unrolling kernel . 27

3.6 Optimized implementation . 29
3.6.1 Temporal blocking kernel . 29
3.6.2 Shift-register kernel . 30
3.6.3 Temporal blocking combined with shift register kernel 32
3.6.4 Performance of Himeno benchmark on heterogeneous system . . 34

3.7 Conclusions . 35

4 Capability Assessment of a Multiple-FPGA System in General Matrix
Multiplication (GEMM) Application using OpenCL 36
4.1 Introduction . 36
4.2 General Matrix Multiplication (GEMM) 37

4.2.1 A brief overview of General Approach 37

4

4.2.2 Implementation of matrix multiplication by using Intel SDK for
OpenCL . 37

4.3 System Implementation . 38
4.3.1 Hardware architecture overview 38
4.3.2 PCIe throughput and DDR3 memory access 40

4.4 Matrix multiplication using global memory 40
4.4.1 Performance with cache . 41
4.4.2 Performance without cache implementation 43

4.5 Matrix multiplication using local memory 44
4.5.1 Performance of multiple Stratix V DE5-Net FPGA boards 45
4.5.2 Performance per power efficiency 47

4.6 Conclusions . 48

5 OpenCL Implementation of FPGA-based Signal Generation and Mea-
surement 49
5.1 Introduction . 49
5.2 OpenCL for SoC FPGA . 50
5.3 Customizing the board hardware for OpenCL components 51

5.3.1 Developing OpenCL’s ADC and DAC components 53
5.3.2 Setting OpenCL component parameters 54
5.3.3 Accessing OpenCL’s ADC and DAC components using an I/O

channel extension . 55
5.4 System implementation . 56
5.5 Signal measurement . 56

5.5.1 Experimental design . 57
5.5.2 Implementation and result . 57

5.6 Signal generation . 60
5.6.1 Experimental design . 60
5.6.2 Implementation and results . 61

5.7 Signal measurement and generation . 64
5.7.1 Experimental design . 64
5.7.2 Implementation and result . 64

5.8 Conclusions . 67

6 Conclusions 68

5

List of Figures

1.1 Relationship between OpenCL and HDL implementation for FPGA design. 12

2.1 FPGA architecture. 16
2.2 OpenCL overview and system implementation. 17
2.3 OpenCL platform for FPGA implementation. 17
2.4 OpenCL memory architecture by Altera FPGA. 18
2.5 Pipeline data path for single work item. 19
2.6 Pipeline data path for loop iteration. 19
2.7 Kernel-to-kernel communication (a) without channel through global mem-

ory (b) with channel implementation. 20

3.1 3D stencil of p as a pressure array in Himeno benchmark. 22
3.2 Predicted peak performance of the Himeno benchmark according to ex-

ternal memory access and memory bandwidth. 24
3.3 Memory bandwidth for Stratix V DE5-Net and Arria 10 A10PL4 FPGA. 24
3.4 Performance estimation of Himeno benchmark for Stratix V DE5-Net

and Arria 10 A10PL4 FPGA. 25
3.5 Performance estimation in 2D model. 26
3.6 Performance for näıve implementation. 26
3.7 Performance for unrolling implementation. 27
3.8 Optimization using temporal blocking implementation. 29
3.9 Performance for temporal blocking implementation. 29
3.10 Optimization using shift-register implementation. 31
3.11 Shift-register implementation using OpenCL. 31
3.12 Performance for shift-register implementation. 32
3.13 Optimization using temporal blocking combined with shift register im-

plementation. 34
3.14 Performance for temporal blocking combined with shift-register imple-

mentation. 34
3.15 Performance of Himeno benchmark on heterogeneous system. 35

4.1 Experimental environment: Altera Stratix V DE5-Net FPGA boards
and OpenCL programming. 40

4.2 Performance of matrix multiplication using different SIMD number. . . 42
4.3 Performance of matrix multiplication using different CU number. 42
4.4 Performance of matrix multiplication on global memory without burst-

coalesced cached LSUs. 43
4.5 Performance of matrix multiplication using local memory. 45
4.6 Multiple FPGAs approach. 46

6

4.7 Kernel execution in multiple-FPGAs implementation using Intel dy-
namic profiler for OpenCL. 46

4.8 Performance of matrix multiplication (16 SIMD, 1 CU) using global
memory in single precision. 47

4.9 Performance of matrix multiplication using local memory. 47
4.10 Peak performance, and performance per watt of FPGAs relative to single

FPGA for single precision data type. 48

5.1 OpenCL system with a host CPU and FPGAs (a) data communication
through a PCIe, (b) using the internal bus. 51

5.2 A method to develop the new OpenCL component modules. 52
5.3 System Qsys of a customized board support package (BSP) by adding

new ADC and DAC components. 52
5.4 (a) ADC component using Avalon-ST source, (b) DAC component using

Avalon-ST sink. 53
5.5 System Qsys of a customized board support package (BSP) by adding

new ADC and DAC components. 54
5.6 I/O channel implementation for signal measurement from ADC to global

memory of an FPGA. 56
5.7 Measured input signal by the FPGA from an arbitrary signal generator. 58
5.8 Kernel execution time for signal measurement. 58
5.9 Measured frequency using global memory for a 20 MHz frequency input

signal. 59
5.10 Measured frequency using on-chip RAM for a 20 MHz frequency input

signal. 59
5.11 I/O channel implementation for signal generation. 60
5.12 One cycle of a sine wave for a dataset of length m. 61
5.13 Output analog signal (a) with global memory, (b) without global memory

implementation. 62
5.14 Output frequency for dataset length m. 63
5.15 Frequency of the output signal for different data lengths: (a) m = 24,

(b) m = 12, (c) m = 8, and (d) m = 4. 63
5.16 I/O channel implementation for measuring a signal, passing data, and

generating a copy of the signal. 64
5.17 Comparison between (a) input sine wave and (b) output sine wave. . . . 66
5.18 Comparison between (a) input frequency and (b) output frequency. . . . 66

7

List of Tables

3.1 Predicted peak performance of Himeno benchmark for CPU, GPUs, and
FPGAs. 23

3.2 Kernel compilation reports for Stratix V DE5-Net FPGA. 27
3.3 Kernel compilation reports for Arria 10 A10PL4 FPGA. 27

4.1 OpenCL kernel compilation reports for global memory access with dif-
ferent SIMD size. 41

4.2 OpenCL kernel compilation reports for global memory access with dif-
ferent CU size. 41

4.3 OpenCL kernel compilation reports for global memory access without
burst-coalesced cached LSUs. 44

4.4 OpenCL kernel compilation reports for local memory access. 45

5.1 OpenCL component attributes. 54
5.2 OpenCL kernel compilation report. 62

8

List of Algorithms

1 Optimized kernel using temporal blocking. 30
2 Optimized kernel using shift-register implementation. 33
3 Optimized kernel using temporal blocking combined with shift-register

implementation. 33

9

Listings

3.1 C code snippet for Himeno benchmark. 23
3.2 Näıve code for the Himeno benchmark using Intel SDK for OpenCL. . . 28
3.3 Code snippet for the shift-register implementation using OpenCL. . . . 32
4.1 Näıve GEMM using global memory. 38
4.2 GEMM using local memory. 39
5.1 The content of board spec.xml file of FPGA’s Board Support Package

(BSP). 55
5.2 Writing and reading a data using OpenCL channel extension. 56
5.3 OpenCL kernel for signal measurement. 57
5.4 OpenCL kernel for signal generation. 61
5.5 OpenCL kernel for signal measurement and generation. 65

10

Chapter 1

Introduction

In recent years, High-Performance Computing (HPC) infrastructures have been
used for computation-intensive or data-intensive applications in government institu-
tions, academic institutions, and industry organizations. GPU provides a highly paral-
lel computation process due to its many-core processors with very high memory band-
width [1]. It also can be combined along with CPU into hybrid CPU/GPU computing
architecture system which has been successfully employed to solve the computation in
many different research topics such as high-energy physics, weather prediction, data
mining, bioinformatics and so forth. However, not only difficulties in programming for
hybrid cluster system need to be overcome due to different hardware and software used
for CPU and GPU [2], but also in power consumption requirements. Since the total
number of cores inside GPU chip has increased drastically in recent GPUs, the power
required for it has grown significantly as well [3]. In HPC applications, a new trend
continues to growth by implementing CPU, GPU and FPGA as accelerator. FPGAs
provide alternative solution due to its capability to communicate each other, or between
FPGA and GPU with low latency [4] [5].

FPGAs, which stands for Field Programmable Gate Arrays, consist of a matrix
of configurable logic blocks (CLBs) that are connected through programmable inter-
connects. FPGAs have been widely implemented in many engineering and scientific
applications because of their reusability, reliability, high performance, and low power
consumption. FPGAs are used in medical, automotive, and military applications [6],
in communications [7], and in nuclear facilities [8]. Recently, FPGAs have also been
applied in artificial intelligence (AI) [9] and internet of things (IoT) solutions [10].

In general, FPGA is designed by using HDL such as Verilog HDL and VHDL, which
is targeted for logical-level hardware design. These programming languages synthesize
logical-level functions, gate-level processing, and physical-level layouts [11]. However,
FPGA programming using HDL is time-consuming and becoming difficult to take care
of all FPGA design by using HDL because the amount of FPGA circuits is increasing
rapidly; for instance, current FPGAs can implement multi-core CPUs, and the design
complexity is beyond the range of HDL-based design. Moreover, to develop a complex
design using HDL, an FPGA programmer needs to have detailed knowledge of the
hardware and software of an FPGA, particularly its programming, simulation, and
debugging process.

Currently, high-level synthesis (HLS) is implemented on FPGAs. HLS provides an
alternative solution to reduce the development time for FPGA programming. HLS im-
proves the FPGA design efficiency by increasing the abstraction level of the code [12].
HLS also reduces the gap between the FPGA design and the programming process.

11

HDL-based
 design

OpenCL-based
 design

Advantage of OpenCL and
 HDL implementations

Figure 1.1: Relationship between OpenCL and HDL implementation for FPGA design.

Consequently, the FPGA development time can be reduced. Thus, high-level language
design is immensely popular, and FPGA vendors start to introduce High-Level Synthe-
sis (HLS) to their CAD tools. OpenCL, which stands for Open Computing Language,
is the open standard for cross-platform, parallel programming for different processors
found in personal computers, servers, mobile devices and embedded platforms [13].
OpenCL provides a solution to these problems since the FPGA programmer can em-
ploy C syntax in their FPGA projects rather than VHDL/Verilog code. In addition,
it can be executed across different platforms consisting of not only FPGAs but also
CPUs, GPUs, and DSPs.

1.1 Motivation

Many studies show the implementation of OpenCL design for FPGA, specifically in
high-performance computing applications, such as for molecular dynamics simulation,
tsunami simulations, data mining, artificial intelligence, big data, and stencil computa-
tion. Compared to HDL programming, OpenCL usage for FPGA increases productivity
and reduces development time. It is because the OpenCL programming increases the
abstraction level of the code. OpenCL for FPGA also provides software libraries, an
application programming interface (API), and a communication interface between the
host and the FPGA.

Unlike CPU and GPU, FPGA provides connectivity and capability to integrate with
external devices such as for interfacing with processors, sensors, external memories, and
various components through the FPGA I/O. However, current OpenCL implementation
for FPGAs is limited to high-performance computing purposes only. In contrast to an
HDL programming, standard OpenCL programming for FPGA does not provide direct
access to the FPGA’s I/O pin. It is still difficult to employ OpenCL for accessing the
FPGA I/O pin to interface with an external component. Therefore, this study aims to
obtain the advantage of OpenCL implementation and HDL implementation for FPGA
design, as shown in Fig.1.1. The main motivation behind carrying out this study is to
open the way for using OpenCL programming for writing parallel programs that can be
used not only for high-performance computing purposes but also useful for engineering
applications.

12

1.2 Contributions

This thesis focuses on the implementation of FPGA programming using OpenCL
which is motivated by the ease of use in contrast to HDL programming to reduce the de-
velopment time. The implementation of FPGA-based design both for high-performance
computing and engineering applications using OpenCL are presented. To evaluate the
capability of OpenCL design for high-performance computing purposes, both external
memory bandwidth and computational capability of FPGA are evaluated. Because
FPGA is well known for its high bandwidth I/O capabilities such as for communicating
or interfacing with external components, the I/O capability of FPGA is also evaluated
using OpenCL specifically for engineering applications. This technique opens the way
for using OpenCL for writing parallel programs on FPGA to access the FPGA’s I/O
directly from the OpenCL environment. Therefore, the main study of this thesis is
focused on three categories as follow:

• external memory bandwidth, where it is evaluated by performing the memory-
intensive application.

• computational capability, where it is evaluated by conducting the compute-intensive
application.

• I/O capability, where it is evaluated by measuring and generating a signal through
FPGA’s I/O using OpenCL. Here, it is shown new OpenCL components that allow
the OpenCL kernel to stream data to and from the FPGA’s I/O directly.

In the high-performance computing application, first, the performance of the Hi-
meno benchmark as an implementation of the memory-intensive application is evalu-
ated. To increase performance, several kernels are optimized. According to the num-
ber of external memory accesses, kernel implementations are mainly divided into two
groups: baseline implementation and optimized implementation. For baseline imple-
mentation, the OpenCL kernel is directly ported from the sequential C code. Compared
to the baseline implementation, the optimized kernel increases the performance signifi-
cantly by demonstrating the implementation of temporal blocking combined with shift
register implementation simultaneously. Second, to evaluate the computational capa-
bility of FPGA using OpenCL, a matrix-to-matrix multiplication (GEMM), where it
is as an example of compute-intensive application, is choosen to analyze the capability
of FPGAs for HPC purposes. The performance-power ratio of multiple FPGAs is also
measured. This performance-power ratio of FPGA is useful, particularly when imple-
menting FPGA in an HPC application owing to many current applications that require
FPGAs and take advantage of the benefits of FPGAs to achieve high performance with
low power consumption.

To show the capability of OpenCL for accessing the FPGAs I/O, an experiment
is conducted by developing the OpenCL kernel for signal measurement and generation
which is divided into three categories. The first implementation is for signal measure-
ment where the OpenCL kernel measures the input signal and stores the data in global
memory of FPGA so that the host can read the data for further analysis. The second
implementation is for signal generation, here, the host writes the data to global mem-
ory, and then the OpenCL kernel generates an output signal by reading the data from
global memory. Finally, the third implementation is for signal measurement and gen-
eration. In this implementation, the first kernel reads a signal and writes it to an I/O
channel. The second kernel reads the data from the I/O channel and generates a signal
simultaneously. Here, data transfer is performed without accessing global memory.

13

1.3 Thesis organization

The rest of this thesis is organized as follows. First, the OpenCL for the Intel FPGA
design is introduced in chapter 2. In chapter 3, the Himeno benchmark is performed
as an example implementation of memory-intensive applications on FPGA. In chap-
ter 4, matrix multiplication on a multiple FPGA system is explained as an example
of compute-intensive applications. Chapter 5 shows the OpenCL implementation for
signal measurement and generation on FPGA. Finally, this is followed by conclusions
as presented in chapter 6.

14

Chapter 2

Field Programmable Gate Array
design with OpenCL

2.1 Introduction to FPGA

FPGA, or Field-programmable gate array, is an integrated circuit that can be con-
figured to perform any operation according to the desired application. FPGA consists
of registers, lookup tables (LUTs), on-chip memories or Block RAMs (BRAMs), dig-
ital signal processor (DSP) blocks, and some hardware interconnects such as external
memory controller and PCIe controller, as shown in Fig.2.1. These components are
connected via a network of programmable or reconfigurable interconnects. LUTs are
used to implement logic functions. To store a large amount of data inside an FPGA,
BRAMs are used that serve as data storage for FPGA. For example, Stratix V FPGA
consists of 50 Mbits of M20K memory blocks. Meanwhile, Arria 10 FPGA consists of
54 Mbits of M20K memory blocks as BRAMs.

In high-performance computing application, FPGA needs to perform either fixed or
floating-point operations. To accommodate this purpose, a specially dedicated circuitry
is necessary to perform the computation process on an FPGA. Instead of leveraging
the FPGA resource such as LUTs and registers to implement mathematical operations,
current FPGAs have been equipped with hardened DSP blocks to achieve high per-
formance by applying the pipeline stage. For example, Intel Arria 10 FPGA has the
variable-precision DSP block that delivers the maximum floating-point performance of
up to 1.5 TFLOPs. Each DSP block supports either two 18 x 19 multipliers or one 27
x 27 multiplier that can be cascaded to perform a complex multiplication.

2.2 OpenCL for FPGA

In the last decade, FPGAs have the rapid increase in the circuit resources and
the improvement of high-speed serial I/O interfaces, and it has helped FPGA-based
acceleration to be accepted in various applications. Although Hardware Description
Language (HDL) allows us to program FPGAs handily from low-level design such as
Register-Transfer-Level (RTL) design, this common practice starts to break because
current target applications are much more complicated and larger than the coverage of
HDL. FPGA vendors have the interest to introduce High-Level Synthesis to their own
FPGA CADs, and FPGAs with HLS become more widely adopted as an acceleration
approach from embedded computing to HPC.

15

Figure 2.1: FPGA architecture.

OpenCL is one of the good high-level languages which has been spread as a het-
erogeneous computing framework this decade. Two major FPGA vendors, Xilinx and
Intel, provide their OpenCL libraries in their CAD. As for Xilinx FPGA, SDAccel sup-
ports high-level FPGA designs by not only C/C++ but also OpenCL, which aims to
alleviate the integration between software and hardware [14]. As for Intel FPGA, Intel
Software Development Kit (SDK) in Quartus Prime supports OpenCL programming.
It can grasp parallel programming algorithm written by the higher level of abstraction
than HDL, and then a low-level design will be created for an FPGA [15]. Thus, the
expected merits of HLS is not only to enable high-level design but also to create paral-
lelization and to pipeline the circuit design automatically from a sequential processing
design.

In other words, an FPGA-based accelerator with HLS will achieve a sufficient per-
formance without the detailed circuit design. Then, interconnects among user logics,
IPs, and interfaces on FPGA will be automatically generated, and the modules re-
lated to interfaces such as DDR memories and PCIe controllers will also be created
automatically or used from prepared HLS libraries. This is just the beginning of the
next generation design, and the current situation should be stated by the evaluation
of OpenCL design. The summary of OpenCL on FPGA is shown in Fig.2.2 [15]. This
figure illustrates units for loading and storing the data for each pipeline which are
connected to DDR external memory via a global interconnect. For the local memory
access, OpenCL generates an interconnect structure to on-chip M9K RAMs as well [16].

The positive impact of the introduction of OpenCL is to reduce the semantic gap
between FPGA design and programming. It means FPGA users can focus only on
high-level design such as architecture-level and system-level design. It helps to imple-
ment parallel programming applications and will reduce development time. In addition,
OpenCL enables the reuse of developed modules on different platforms more easily com-
pared to HDL. The negative prediction is that the FPGA design by the use of OpenCL
cannot achieve sufficient performance since it is so difficult for OpenCL to optimize
all circuit allocation on an FPGA. But, FPGA vendors start to steer the development
environment to OpenCL because they believe OpenCL makes FPGA achieve a certain
computing performance. Although the performance must be lower than that by HDL,

16

Figure 2.2: OpenCL overview and system implementation.

FPGA vendors think the next discussion will begin on not only performance but also
testability, reliability, and development time.

OpenCL platform, particularly in Intel SDK for OpenCL, consists of a host PC and
at least one FPGA device. In high-performance computing applications, the platform
usually has more FPGA devices attached to PCIe connected to a host, where each
FPGA device consists of multiple compute units to execute the OpenCL kernel. For a
compute unit, it consists of multiple work-items or processing elements. To execute an
OpenCL kernel on one or more FPGA devices, the host creates an OpenCL context so
that the host can interact with the FPGA devices such as for managing the memory
for the computation and controlling the FPGA for executing the kernel. The host also
creates a command queue that provides the communication mechanism between host
and FPGA devices [17]. For example, a host encapsulates the command in a command
queue for reading and writing the data to FPGA and for executing the OpenCL kernel
on FPGA. This execution model can be seen in Fig.2.3.

clEnqueWriteBuffer

clEnqueTask

clEnqueReadBuffer

Command queue Kernel arguments

clSetKernelArg

PE

Compute unit

Host PC

CPU CPU

CPU CPU

OpenCL context

OpenCL platform

FPGAs

PE PE

PE

Compute unit

PE PE

PE

Compute unit

PE PE

clSetKernelArg

clSetKernelArg

Figure 2.3: OpenCL platform for FPGA implementation.

17

Figure 2.4: OpenCL memory architecture by Altera FPGA.

2.3 OpenCL memory architecture

To implement the OpenCL program on an Altera FPGA, several tasks are executed
by host PC. The host is in charge of managing the data transfer from/to FPGA memory,
invoking the kernel code to FPGA, handling the communication process and reading the
final result from FPGA memory. OpenCL libraries handle these steps so that the users
can concentrate on kernel programming code instead of designing the communication
protocol between host and FPGA. During the process, each FPGA device can receive
multiple command queues sent by the host PC and execute independent commands
concurrently [18].

On FPGA, memory size and type need to be allocated beforehand in order to receive
the data from the host. Like OpenCL, the Intel SDK for OpenCL defines several types
of memory such as global/constant memory, local memory, and private memory [19].
The Intel Offline Compiler for OpenCL (AOC) can use DDR memory on FPGA board
as global memory which is configured in a burst interleaved configuration by default.
In this memory, constant memory resides as well. Local memory has a smaller size than
global memory and has higher throughput with lower latency. Only work items on the
same workgroup can access and share this memory. The last type, private memory,
is implemented by using FPGA registers. The purpose of private memory is to store
single variables or small arrays. This memory provides more bandwidth than other
memories [20]. The location of memory types is illustrated in Fig.2.4. In this paper,
the computation was implemented on DDR3 global memory, local memory and private
memory of each FPGA board. In the rest of this article, we also defined host global
memory as host memory, and DDR3 global memory of FPGA was defined as global
memory.

2.4 FPGA pipeline parallelism

In OpenCL programming, GPU and FPGA share the same programming model
particularly in kernel code which is a set of functions executed by OpenCL device.
However, the kernels which are code portable across GPU and FPGA, are not portable

18

Figure 2.5: Pipeline data path for single work item.

in the performance results, meaning that the implementation of the same kernel yields
different performance due to their underlying parallelism mechanism. In addition, they
handle the parallelism in a different way. For GPU, where the hardware is composed of
cores, the kernels are compiled into a sequence of instructions. These instructions will
be executed on hardware cores that are specialized for different functions. In contrast,
FPGA exploits the pipeline parallelism where the kernels are compiled into different
stages of the instructions. These instructions are then applied to different cores or work
items at the same time. As a result, FPGA often delivers better performance per watt
than GPU [21].

Intel SDK for OpenCL provides the pipeline parallelism capability in executing
the kernels in multi-threaded mode concurrently. It will also construct the FPGA as
a parallel device consisting of multiple pipelining execution units. To enhance the
performance, some compute units (CU) in a kernel will be multiplied within FPGA
circuit resources. This is a spatial parallelism as same as GPUs parallelism and allows
to execute multiple workgroups simultaneously. However, the bigger the number of
compute units is, the larger the FPGA resource is required. It may cause the working
frequency of multiple compute units may be lower than that of the single compute
unit [22].

There are two types of kernel execution in Intel SDK for OpenCL, NDRange kernels
and single work-item kernels or task kernels. NDRange kernels, where it consists of
many work-items that are processed in parallel, share the data during the computation
process among many work-items by leveraging local memory which is identified by a

Figure 2.6: Pipeline data path for loop iteration.

19

Figure 2.7: Kernel-to-kernel communication (a) without channel through global mem-
ory (b) with channel implementation.

local work-item ID. Meanwhile, for the single work-item kernel, the data are shared
among multiple loop-iterations using register or private memory. In terms of kernel
execution, an NDRange kernel launches work-items in a pipeline manner one after
another one as shown in Fig.2.5. On the other hand, because a single work-item
kernel has multiple loop-iterations. The kernel executes these multiple loop-iterations
simultaneously in different pipeline stages [17], as shown in Fig.2.6.

2.5 OpenCL channel extension

In OpenCL design, particularly for Intel SDK for OpenCL, a kernel needs to com-
municate with global memory to read and write data for the computation process.
When two or more kernels are executed to solve computational problems, more com-
munications and data transfers are performed between the kernels and global memory.
Compared to a GPU that supports a high-bandwidth global memory, most FPGA
boards are equipped with DDR3 or DDR4 as the global memory. As a result, this
causes a reduction in performance owing to the global memory bandwidth bottleneck,
as shown in Fig.2.7(a). To overcome this constraint, an OpenCL channel extension
is employed to transfer data among the kernels without accessing global memory, as
shown in Fig.2.7(b). The channel extension is a first-in-first-out (FIFO) buffer. The
channel is implemented using RAM blocks and registers [23] [17]. In this study, the
OpenCL channel extension is employed to stream data between the OpenCL kernel and
the FPGA’s I/O directly from the OpenCL environment.

20

Chapter 3

FPGA-based Implementation of
Memory-Intensive Application
using OpenCL

3.1 Introduction

Scientific applications in high-performance computing can be divided into computation-
intensive and memory-intensive, or data-intensive operations. The memory-intensive
application has a high ratio of memory accesses to instructions. One of the barriers
in memory-intensive applications is that the memory bandwidth does not increase at
the same rate as the computational performance [24]. The application-development
roadmap, which was summarized in Japan in 2012, showed that many scientific and
engineering applications in high-performance computing were memory-intensive. The
ratio of memory throughput to computing performance for memory-intensive applica-
tions, or B/FLOP (B/F), is greater than or equal to 0.5 B/F [25]. Several examples of
the memory-intensive applications include live migration techniques for resource consol-
idation and fault tolerance [26], database management and multimedia processing [27],
genome-scale computational [28] and Himeno benchmark.

The Himeno benchmark has been widely implemented on the GPU cluster owing
to the high memory bandwidth. However, few studies show the evaluation of the
Himeno benchmark on FPGA using high-level synthesis, particularly OpenCL. This is
because current FPGA boards are still used DDR memory in their designs. This study
focuses on the evaluation of the Himeno benchmark as a memory-intensive application
on FPGA using OpenCL by implementing the temporal blocking combined with shift-
register implementation for optimization. During the computation, the kernel requires
a large amount of data to be read from and written to the global memory of FPGA.
Therefore, the performance depends on the memory bandwidth.

3.2 Himeno benchmark

The Himeno benchmark, which was developed by Dr. Ryutaro Himeno, was de-
signed to evaluate the performance of analysis in the incompressible fluid. This bench-
mark measures the processing speed in the main loops, whereas the Poisson equation
is solved by the Point–Jacobi iteration method [29]. The equation of the Point–Jacobi
method can be seen in Equation 3.1. This equation is a linear solver for the 3D pres-
sure Poisson equation. It also appears in an incompressible Navier–Stokes solver [30].

21

The performance is shown in the units of single-precision floating-point operations per
second (FLOPS).

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
+ α

∂2p

∂xy
+ β

∂2p

∂xz
+ γ

∂2p

∂yz
= ρ (3.1)

The original version of sequential C code for the Himeno benchmark is shown in
Listing 3.1. It contains the 3D arrays, such as arrays a0 to a3, b0 to b2, c0 to c2, wrk1,
wrk2, bnd, and p as a pressure array. According to the code, the p array can also be
accessed using the stencil pattern, as depicted in Fig.3.1. In the main compute kernel,
there are 34 floating-point operations, 31 read accesses from the external memory, and
1 write access to the external memory. For the näıve implementation, the ideal B/F
ratio can be calculated by (31 + 1)× 4B/34FLOP = 3.764B/FLOP . However, when
the cache blocking technique for the p array is applied, the number of reading accesses
from the external memory can be reduced to 13. Therefore, the B/F value will improve
to (13 + 1) × 4B/34 FLOP = 1.647B/FLOP . Because the B/F ratio is greater than
or equal to 0.5, the above computation is a memory-intensive application.

To measure the peak performance related to the memory bandwidth, the F/B ratio
is required. Therefore, the peak performance of the Himeno benchmark without and
with optimization can be calculated by Equations 3.2 and 3.3, as follows:

performancewo/opt =
34[FLOP] × bandwidth[B/s]

128[B]
(3.2)

when cache blocking is applied, the equation is changed to

performancew/opt =
34[FLOP] × bandwidth[B/s]

56[B]
(3.3)

These equations simplify the peak performance prediction of the Himeno benchmark
as the external memory bandwidth is the only defining parameter. The example of the
predicted peak performance for FPGAs, CPUs, and GPUs can be seen in Figure 3.2
and Table 3.1 . It can be seen that the larger the memory bandwidth, the higher the
performance. From the table, the peak performance can be obtained by implementing
the on-chip caches for the computation.

Figure 3.1: 3D stencil of p as a pressure array in Himeno benchmark.

22

Listing 3.1: C code snippet for Himeno benchmark.

1

2 float jacobi(int nn)

3 {

4 int i,j,k,n;

5 float gosa, s0, ss;

6
7 for(n=0;n<nn;++n){

8 gosa = 0.0;

9
10 for(i=1 ; i<imax-1 ; ++i)

11 for(j=1 ; j<jmax-1 ; ++j)

12 for(k=1 ; k<kmax-1 ; ++k){

13 s0 = a[i][j][k][0] * p[i+1][j][k]

14 + a[i][j][k][1] * p[i][j+1][k]

15 + a[i][j][k][2] * p[i][j][k+1]

16 + b[i][j][k][0] * (p[i+1][j+1][k] - p[i+1][j-1][k]

17 - p[i-1][j+1][k] + p[i-1][j-1][k])

18 + b[i][j][k][1] * (p[i][j+1][k+1] - p[i][j-1][k+1]

19 - p[i][j+1][k-1] + p[i][j-1][k-1])

20 + b[i][j][k][2] * (p[i+1][j][k+1] - p[i-1][j][k+1]

21 - p[i+1][j][k-1] + p[i-1][j][k-1])

22 + c[i][j][k][0] * p[i-1][j][k]

23 + c[i][j][k][1] * p[i][j-1][k]

24 + c[i][j][k][2] * p[i][j][k-1]

25 + wrk1[i][j][k];

26 ss = (s0 * a[i][j][k][3] - p[i][j][k]) * bnd[i][j][k];

27 gosa = gosa + ss*ss;

28 wrk2[i][j][k] = p[i][j][k] + omega * ss;

29 }

30
31 for(i=1 ; i<imax-1 ; ++i)

32 for(j=1 ; j<jmax-1 ; ++j)

33 for(k=1 ; k<kmax-1 ; ++k)

34 p[i][j][k] = wrk2[i][j][k];

35 } /* end loop */

36 }

37

Table 3.1: Predicted peak performance of Himeno benchmark for CPU, GPUs, and
FPGAs.

Devices Memory types Bandwidth Wo/ opt W/ opt
(GB/s) (GFlops) (GFlops)

Stratix V DE5-Net FPGA [31] DDR3-1600 (2 Banks) 23.8 6.32 14.45
Arria 10 DE5a-Net FPGA [32] DDR4-1200 (2 Banks) 38.4 10.2 23.31
Intel Xeon E5-1650 CPU DDR4-2133 34.2 9.07 20.74
NVidia GTX1080 GPU [33] GDDR5 (8 GB) 320 85 194.29
Xilinx Ultrascale+ FPGA [34] HBM (8 GB) 460 122.19 279.28
Intel Stratix 10 MX FPGA [35] HBM2 (8 GB) 512 136 310.86
NVidia P100 GPU [33] HBM2 (32 GB) 549 145.8 333.32
NVidia V100 GPU [33] HBM2 (32 GB) 900 239.06 546.43

23

NVidia V100Arria 10 FPGA

5 10 15

0
2

20

4

External memory access

Perform
ance (TFlops)

6
8

10

80025 600

Memory bandwidth (GB/s)30 40035 20040

Figure 3.2: Predicted peak performance of the Himeno benchmark according to external
memory access and memory bandwidth.

3.3 System implementation

In this study, a single task OpenCL kernel is developed to test the performance
of the Himeno benchmark. Compared to the NDRange kernel type, a kernel that is
executed by many work-items, the single-task kernel consists of one work item. This
type of kernel is also similar to that of sequential C code. However, to employ pipeline-
level parallelism in the single task kernel, many loop-iterations are computed using a
different pipeline stage or loop-pipelining inside the loops [36].

3.3.1 Stratix V DE5-Net FPGA overview

The implementation of the Himeno benchmark on Altera Stratix V DE5-Net FPGA
[31] is demonstrated. The host PC consists of Intel Xeon E5-1650 CPU, 64 GB DDR4-
2133, Centos 7.0 Linux 64-bit operating system, gcc version 4.4.7, Altera Quartus 16.1
64-bit and Altera SDK for OpenCL 16.1.0 Build 196. In the OpenCL implementa-
tion, the FPGA Board Support Package (BSP) supports the Gen 2x8 lanes. By using
OpenCL, the maximum throughput was 2.9 GB/s. The maximum memory bandwidth

Bank 2Bank 1

15.0315.02

11.9

Stratix-V DE5-Net
Arria-10 A10PL4

11.6

M
em

or
y

ba
nd

w
id

th
 (G

B
/s

)

0

5

10

15

20

Memory bank
0 1 2 3 4 5 6

Figure 3.3: Memory bandwidth for Stratix V DE5-Net and Arria 10 A10PL4 FPGA.

24

Arria 10 A10PL4
Stratix V DE5-Net

32.5
30

0
5

27.5
10

5
Pe

rf
or

m
an

ce
 (G

Fl
op

s)
15

20
25

10

Memory bandwidth (GB/s)
30

2515 20External memory access (4 Bytes)

22.525 30 2035 40

Figure 3.4: Performance estimation of Himeno benchmark for Stratix V DE5-Net and
Arria 10 A10PL4 FPGA.

between the two external DDR3 memories and the Stratix V DE5-Net FPGA was also
measured. This test was performed using a memory stream kernel. The maximum
memory bandwidths achieved 11.6 GB/s and 11.9 GB/s for memory bank 1 and 2,
respectively as shown in Figure 3.3.

3.3.2 Arria 10 A10PL4 FPGA overview

The performance of the Himeno benchmark is also evaluated on Arria 10 A10PL4
FPGA with the following specifications: Intel Arria 10 GX FPGA, two banks DDR4
with ECC, and PCIe Gen3x8 [37]. The host PC consists of Intel Xeon CPU E5-2660
v4, Linux Red Hat 4.8.5-28, and Intel SDK for OpenCL version 17.1.2.304. From the
experiment, by using OpenCL Board Support Package (BSP), the maximum memory
bandwidth for each bank is 15.02 GB/s and 15.03 GB/s for bank 1 and bank 2, respec-
tively as shown in Figure 3.3. Meanwhile, for PCIe throughput, the maximum data
transfer between the host and the FPGA is 6.42 GB/s.

3.4 Experimental Results

The peak performance of the Himeno benchmark can be estimated based on the
external memory accesses and memory bandwidth. By using Equations 3.2 and 3.3,
a 3D model to estimate the performance for Stratix V DE5-Net FPGA and Arria 10
A10PL4 FPGA is developed, as shown in Fig.3.4. In this experiment, the Himeno
benchmark for 128 × 64 × 64, 256 × 128 × 128, and 512 × 256 × 256 single-precision
floating-point data sizes was performed. According to the size of the external memory
accesses, the kernels are divided into two main groups: baseline implementation and
optimized implementation.

3.5 Baseline implementation

In this implementation, there are 34 floating-point operations, 31 read accesses from
external memory, and 1 write access to the external memory of the FPGA. According to
the Equation 3.2, the F/B ratio can be calculated as 0.266. Because the total memory

25

18.24 GFlops

14.26 GFlops

7.99 GFlops
6.25 GFlops

Stratix V DE5-Net FPGA
Arria 10 A10PL4 FPGA

optimized implementation

baseline implementation

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

0

5

10

15

20

25

External memory access (4 Bytes)
0 5 10 15 20 25 30 35

Figure 3.5: Performance estimation in 2D model.

bandwidth is 23.5 GB/s and 30.5 GB/s for Stratix V FPGA and Arria 10 FPGA, respec-
tively, the theoretical performance can be calculated by 23.5[GB/s]× 0.266[FLOP/B]
= 6.25[GFLOPS] for Stratix V DE5-Net. Meanwhile for Arria 10 A10PL4 FPGA,
the theoretical performance can be calculated by 30.05[GB/s] × 0.266[FLOP/B] =
7.99[GFLOPS], as presented in in Fig.3.5.

In this implementation, the näıve kernel is first evaluated, which is ported from
sequential C code to OpenCL kernel code directly without any optimizations, as pre-
sented in Listing 3.2. The second kernel is the loop unrolling kernel, where the loop
unrolling directive is applied to increase the performance.

3.5.1 Näıve kernel

Here, the original sequential C code is ported to the OpenCL kernel as shown in
Listing 3.2. The main difference is the use of a global declaration to store the variable
from the host. Additionally, to inform the offline compiler that the type of the kernel
is a single task kernel, the attribute ((task)) is declared. This declaration invokes the
compiler to generate the pipeline stage inside loop-iterations. From the experiment, the
peak performance for Stratix V DE5-Net is 2.63 GFLOPS, or 42% of the theoretical
performance. On the other hand, Arria 10 A10PL4 achieves 2.43 GFLOPS, or 30% of

512x256x256256x128x128128x64x64

2.362.392.43

Stratix V DE5-Net
Arria 10 A10PL4

2.31 2.382.63Pe
rf

or
m

an
ce

 (G
Fl

op
s)

0

2.5

5

7.5

10

12.5

15

Data size
2 4 6 8 10

Figure 3.6: Performance for näıve implementation.

26

Table 3.2: Kernel compilation reports for Stratix V DE5-Net FPGA.
Kernel Logic RAM blocks Memory (Mbits) DSP blocks Clock (MHz)
kernel 1 63K(27%) 1,034(40%) 13(25%) 12 (5%) 243.8
kernel 2 83K(36%) 1,075(42%) 12.7(24%) 24 (9%) 255.6
kernel 3 94K(40%) 1,473(58%) 17.4(33%) 24 (9%) 249.8
kernel 4 115K(49%) 990(39%) 11.6(22%) 96 (38%) 252.4
kernel 5 176K(75%) 1,544(60%) 11.7(22%) 192 (75%) 235.2

Table 3.3: Kernel compilation reports for Arria 10 A10PL4 FPGA.
Kernel Logic RAM blocks Memory (Mbits) DSP blocks Clock (MHz)
kernel 1 65K(15%) 975(36%) 13(24%) 21 (1%) 198.8
kernel 2 99K(23%) 1,075(40%) 14.5(26%) 84 (6%) 204.2
kernel 3 99K(23%) 1,845(68%) 23.1(42%) 84 (6%) 194.2
kernel 4 79K(19%) 902(33%) 14(26%) 168 (11%) 205.2
kernel 5 107K(25%) 942(35%) 14(26%) 336 (22%) 205.5

the theoretical performance for the 128× 64× 64 data size, as shown in Fig.3.6. In this
kernel, FPGAs consume 12 and 21 DSP blocks for Stratix V and Arria 10, respectively,
as presented as kernel 1 in Table 3.2 and Table 3.3. In this kernel, the Stratix V has a
higher performance than that of Arria 10 FPGA owing to the higher working frequency.

3.5.2 Loop Unrolling kernel

In a single work-item kernel type, loop unrolling can be used to boost the perfor-
mance by applying the #pragma unroll < N > directive. Loop unrolling increases
the degree of parallelism and allows the kernel to process more data within one FPGA
clock cycle [17]. By implementing loop unrolling, the peak performance of the Himeno
benchmark on Stratix V increases to 5.79 GFLOPS, or 92% of the theoretical perfor-
mance. For Arria 10 FPGA, the performance increases to 7.18 GFLOPS, or 90% of the
theoretical performance for the 128 × 64 × 64 data size, as shown in Fig.3.7. Table 3.2
and Table 3.3 show the kernel compilation reports for kernel 2. According to the ta-
bles, loop unrolling increases the logic resources and the number of DSP blocks. In this
kernel, FPGAs require 24 and 84 DSP blocks for Stratix V and Arria 10, respectively.

512x256x256256x128x128128x64x64

7.096.947.18

Stratix V DE5-Net
Arria 10 A10PL4

5.05
5.545.79

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

0

2.5

5

7.5

10

12.5

15

Data size
2 4 6 8 10

Figure 3.7: Performance for unrolling implementation.

27

Listing 3.2: Näıve code for the Himeno benchmark using Intel SDK for OpenCL.

1 #define IMAX 256

2 #define JMAX 128

3 #define KMAX 128

4
5 __kernel __attribute__((task))

6 void himeno_benchmark(

7 __global const float *restrict a1, __global const float *restrict a2,

8 __global const float *restrict a3, __global const float *restrict a4,

9 __global const float *restrict b1, __global const float *restrict b2,

10 __global const float *restrict b3, __global const float *restrict c1,

11 __global const float *restrict c2, __global const float *restrict c3,

12 __global const float *restrict bnd,__global const float *restrict wrk1,

13 __global float *restrict p, __global float *restrict wrk2,

14 __global float *restrict gosa_out, float omega, int nn)

15 {

16 #define idxz(i,j,k) (k+(JMAX)*(j+(KMAX)*i))

17 int i,j,k,l,n;

18 float s0, ss, gosa;

19
20 for(n=0; n<nn; n++){

21 gosa = 0.0f;

22 for(i=1; i<IMAX-1; i++){

23 for(j=1; j<JMAX-1; j++){

24 for(k=1; k<KMAX-1; k++){

25 s0 = a1[idxz(i,j,k)] * p[idxz(i+1,j,k)]

26 + a2[idxz(i,j,k)] * p[idxz(i,j+1,k)]

27 + a3[idxz(i,j,k)] * p[idxz(i,j,k+1)]

28 + b1[idxz(i,j,k)] *(p[idxz(i+1,j+1,k)] - p[idxz(i+1,j-1,k)]

29 - p[idxz(i-1,j+1,k)] + p[idxz(i-1,j-1,k)])

30 + b2[idxz(i,j,k)] * (p[idxz(i,j+1,k+1)] - p[idxz(i,j-1,k+1)]

31 - p[idxz(i,j+1,k-1)] + p[idxz(i,j-1,k-1)])

32 + b3[idxz(i,j,k)] * (p[idxz(i+1,j,k+1)] - p[idxz(i-1,j,k+1)]

33 - p[idxz(i+1,j,k-1)] + p[idxz(i-1,j,k-1)])

34 + c1[idxz(i,j,k)] * p[idxz(i-1,j,k)]

35 + c2[idxz(i,j,k)] * p[idxz(i,j-1,k)]

36 + c3[idxz(i,j,k)] * p[idxz(i,j,k-1)]

37 + wrk1[idxz(i,j,k)];

38 ss = (s0 * a4[idxz(i,j,k)] - p[idxz(i,j,k)]) * bnd[idxz(i,j,k)];

39 gosa = gosa + ss*ss;

40 wrk2[idxz(i,j,k)] = p[idxz(i,j,k)] + omega*ss;

41 }}}

42
43 for(i=1; i<IMAX-1; i++){

44 for(j=1; j<JMAX-1; j++){

45 for(k=1; k<KMAX-1; k++){

46 p[idxz(i,j,k)] = wrk2[idxz(i,j,k)];

47 }}}

48 }}

28

Figure 3.8: Optimization using temporal blocking implementation.

3.6 Optimized implementation

According to the C code for the Himeno benchmark, which is shown in Listing
3.1, the pressure p array is the most frequently accessed array from global memory.
Therefore, in this optimized implementation, the array p is cached into the on-chip RAM
of the FPGA. Compared to the baseline implementation, the optimized implementation
has a higher F/B ratio owing to reductions in external memory accesses. The number
of reading accesses from the external memory is reduced to 13. According to the
Equation 3.3, the F/B ratio is 0.607. Therefore, the theoretical peak performance
can be calculated by 23.5[GB/s] × 0.607[FLOP/B] = 14.26[GFLOPS] for Stratix V
FPGA, and 30.05[GB/s]×0.607[FLOP/B] = 18.24[GFLOPS] for Arria 10 FPGA, as
shown in Fig.3.5.

In this optimized implementation, three kernels are developed as follows: temporal
blocking kernel, shift register kernel, and temporal blocking combined with shift register
kernel.

3.6.1 Temporal blocking kernel

First, the optimization is performed by implementing temporal blocking as shown
in Fig.3.8. Three layers of a 2D array are created, namely p1[j][k], p2[j][k], and p3[j][k],
by using on-chip RAM of the FPGA that are swapped in the Z-direction for caching

512x256x256256x128x128128x64x64

7.428.067.59

Stratix V DE5-Net
Arria 10 A10PL4

6.78
7.107.21

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

0

2.5

5

7.5

10

12.5

15

Data size
2 4 6 8 10

Figure 3.9: Performance for temporal blocking implementation.

29

Algorithm 1: Optimized kernel using temporal blocking.

Input : a1..a4, b1..b3, c1..c3, bnd, p, wrk1, wrk2
1 p1[jmax][jmax];p2[jmax][jmax];p3[jmax][jmax]; // p1, p2, p3 as local memory

2 data initialization();
3 for i = 1 to i = (imax− 1) do
4 for j = 1 to j = (jmax) do
5 for k = 1 to k = (kmax) do
6 p1[j][k]=p2[j][k];
7 p2[j][k]=p3[j][k];
8 p3[j][k]=p(i+1, j, k); // read p array from global to local memory

9 end

10 end
11 for j, k = 1 to j, k = (jmax− 1) do
12 main computation(); // main computation is here

13 end

14 end

the p array. At the initialization, the kernel copies p(0, j, k) from global memory to
p2[j][k] arrays on the on-chip RAM and copies from p(1, j, k) to p3[j][k]. After reading
the p array p(1, j, k) from global memory to the first layer of variables, the content of
the data in second layer was copied to the third layer. For the next iteration, the kernel
reads the p(1 + i, j, k) data from global memory and copies it to p3[j][k]. Before that,
the content of data on p2[j][k] was copied to p1[j][k], and previous data on p3[j][k]
was copied to p2[j][k]. This process was executed inside the inner loop, as shown in
Algorithm 1.

In the experiment, the peak performance increases to 7.21 GFLOPS, or 50.5% of
the theoretical performance for Stratix V FPGA. For Arria 10 FPGA, the performance
increases to 8.06 GFLOPS, or 44.2% of the theoretical performance, as shown in Fig.3.9.
From the kernel compilation report, it is observed that temporal blocking increases the
usage of RAM blocks, as described as kernel 3 in Table 3.2 and Table 3.3. The RAM
block usage increases to 1,473 (58%) and 1,845 (68%) for Stratix V and Arria 10 FPGA,
respectively. The compilation report also shows that the copy operation in the temporal
blocking kernel produces data dependency among the variables on the on-chip RAM.
Consequently, some iterations are executed serially and the performance is not fully
optimized. In the following optimization, it is demonstrated how to avoid the data
dependency caused by a copy operation to increase the performance.

3.6.2 Shift-register kernel

Second, the kernel is optimized to remove the data dependency by implementing
a shift register pattern as shown in Fig.3.10. The implementation of a shift-register
yields a more efficient result compared to the on-chip RAMs accesses [38]. The shift-
register also improves the efficiency of external memory accesses via the use of temporal
locality, which reduces global memory accesses [39]. In OpenCL design, a shift-register
implementation can be seen in Listing 3.3. In this kernel, one element of p(i− 1, j, k),
p(i, j, k), and p(i + 1, j, k) is shifted from global memory to the p1[], p2[], and p3[]
registers, respectively, for every iteration t as shown in Algorithm 2.

To reduce the size of the register, the data is stored on the register for a period of
(2×arraywidth+4) cycles, as shown in Fig.3.11. This is called the period of the lifetime
of the data [40]. For example, to evaluate the performance for the (128× 64× 64) data

30

Figure 3.10: Optimization using shift-register implementation.

Figure 3.11: Shift-register implementation using OpenCL.

31

512x256x256256x128x128128x64x64

8.97

11.6911.81

Stratix V DE5-Net
Arria 10 A10PL4

7.22 7.437.78

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

0

2.5

5

7.5

10

12.5

15

Data size
2 4 6 8 10

Figure 3.12: Performance for shift-register implementation.

Listing 3.3: Code snippet for the shift-register implementation using OpenCL.

1

2 #define kmax 64

3
4 for (int s = (2*kmax)+4; s > 0; s--)

5 {

6 shiftreg[s] = shiftreg[s-1];

7 }

8 shiftreg[0] = p[(i,j,k)];

9

size, the length of the shift register is (2 × 64 + 4).
From the experiment, the peak performance increases to 7.78 GFLOPS, or 55% of

the theoretical performance for the Stratix V FPGA. Meanwhile, for Arria 10 FPGA,
the peak performance increases to 11.81 GFLOPS, or 65% of the theoretical perfor-
mance, as shown in Fig.3.12. By analyzing the RAM block usage, it is shown that the
resource usage decreases to 990 and 902 for Stratix V and Arria 10 FPGA, respectively,
as shown as kernel 4 in Table 3.2 and Table 3.3. From the tables, the increase in the
number of DSP blocks for both FPGAs is due to the increase in the value of loop
unrolling constant. From the experiments, FPGAs consume 96 and 168 DSP blocks for
Stratix V and Arria 10, respectively.

3.6.3 Temporal blocking combined with shift register kernel

Third, the kernel is optimized to remove the data dependency and reduce the num-
ber of global memory accesses by implementing temporal blocking combined with a
shift register pattern simultaneously, as depicted in Fig.3.13. In the temporal block-
ing implementation, this produces memory dependency, particularly on the on-chip
RAM, owing to the copy operation. In contrast, shift register implementation results
in memory access efficiency owing to temporal locality. In this kernel, the computation
processes are similar to those in the temporal blocking technique. However, the kernel
fetches the data from global memory by shifting the data to the shift register, as shown
in Algorithm 3.

From the experimental results, the peak performance increases to 10.62 GFLOPS,

32

Algorithm 2: Optimized kernel using shift-register implementation.

Input : a1..a4, b1..b3, c1..c3, bnd, p, wrk1, wrk2
1 p1[2∗ jmax+ 4];p2[2∗ jmax+ 4];p3[2∗ jmax+ 4]; // p1, p2, p3 as private memory

2 data initialization();
3 for i = 1 to i = (imax− 1) do
4 for j = 1 to j = (jmax− 1) do
5 for k = 1 to k = (kmax− 1) do
6 for m = (2 ∗ jmax+ 4) to m > 0 do
7 p1[m]=p1[m-1]; // shift register implementation

8 p2[m]=p2[m-1];
9 p3[m]=p3[m-1];

10 end
11 p1[0]=p(i-1, j, k); // shift register implementation

12 p2[0]=p(i, j, k);
13 p3[0]=p(i+1, j, k);
14 main computation(); // main computation is here

15 end

16 end

17 end

Algorithm 3: Optimized kernel using temporal blocking combined with shift-
register implementation.

Input : a1..a4, b1..b3, c1..c3, bnd, p, wrk1, wrk2
1 shift p1;shift p2;shift p3; // private memory with [2*jmax+4] length

2 p1;p2; // local memory with [jmax][kmax] size

3 data initialization();
4 for i = 1 to i = (imax− 1) do
5 for j = 1 to j = (jmax− 1) do
6 for k = 1 to k = (jmax− 1) do
7 for m = (2 ∗ jmax+ 4) to m > 0 do
8 shift p1[m]=shift p1[m-1]; // shift register implementation

9 shift p2[m]=shift p2[m-1];
10 shift p3[m]=shift p3[m-1];

11 end
12 shift p3[0]=p(i+1, j, k); // read p array from global

13 shift p2[0]=p2[j][k]; // shift data from global to private

14 shift p1[0]=p1[j][k];
15 main computation(); // main computation is here

16 p1[j][k] = p2[j][k]; // copy from p2 to p1

17 p2[j][k] = shift p3[0]; // copy from register to p2

18 end

19 end

20 end

33

Figure 3.13: Optimization using temporal blocking combined with shift register imple-
mentation.

or 74% of the theoretical performance for Stratix V FPGA. For Arria 10 FPGA, the
peak performance increases to 13.95 GFLOPS, or 76% of the theoretical performance,
as shown in Fig.3.14. We also analyzed the kernel compilation report. From the
report, it is observed that the iterations in the execution are launched every cycle and
pipelined well. Consequently, the performance increases significantly. Moreover, the
data dependency caused by temporal blocking can be omitted. Because of this, in
this implementation, the value of the loop unrolling factor was increased to boost the
performance. Thus, the logic resources and the number of DSP blocks increases, as
shown as kernel 5 in Table 3.2 and Table 3.3. In this kernel, FPGAs consume 192 and
336 DSP blocks for Stratix V and Arria 10, respectively.

3.6.4 Performance of Himeno benchmark on heterogeneous system

To compare the peak performance of the Himeno benchmark on FPGAs, it is pre-
sented the performance for CPU and GPU as shown in Fig.3.15. For CPU evaluation,
the benchmark was performed on Intel Xeon CPU E5-1650 v3 and 64 GB DDR4-2133
with Centos 7 using gcc version 4.8.5. The peak performance achieved 4.71 GFLOPS.

512x256x256256x128x128128x64x64

13.95
13.2313.45

Stratix V DE5-Net
Arria 10 A10PL4

10.29 10.6210.57

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

0

2.5

5

7.5

10

12.5

15

Data size
2 4 6 8 10

Figure 3.14: Performance for temporal blocking combined with shift-register implemen-
tation.

34

Tesl
a C

106
0 G

PU

Arria
 10

 FPGA

Strat
ix-

V FPGA

Virte
x-6

 FPGA

E5-1
650

 CPU

Int
el X

eon

82
7674

58

52

Pe
rf

or
m

an
ce

 e
ff

ic
ie

nc
y

(%
)

0

20

40

60

80

100

51.20

13.95
8.33

peak performance
performance efficiency

10.62
4.71

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

0

20

40

60

80

100

0 2.5 5 7.5 10 12.5 15 17.5

Figure 3.15: Performance of Himeno benchmark on heterogeneous system.

In [41], it is demonstrated the evaluation of the Himeno benchmark using MaxCompiler
version 2012.1 on a MAX3 acceleration card that contains a Virtex-6 SX475T FPGA,
DDR3 memory, and PCIe gen2x8. The peak performance achieves 8.33 GFLOPS that
is obtained by the stream communication via PCIe between the FPGA and the host
PC. Our implementations show that the peak performance reaches 10.62 GFLOPS
and 13.95 GFLOPS for Stratix V and Arria 10 FPGA respectively. These peak perfor-
mances outperform the Intel Xeon E5 CPU and Virtex-6 FPGA’s performance. In [42],
the performance on a single NVidia C1060 GPU is shown, where the peak performance
reaches 51.20 GFLOPS. Here, the C1060 GPU outperforms the FPGA’s performance
owing to the higher memory bandwidth (102 GB/s).

3.7 Conclusions

The optimization in the OpenCL kernel has been demonstrated to increase the per-
formance of Himeno benchmark. In the temporal blocking kernel, it is observed that
the usage of RAM blocks increases. Temporal blocking optimization also produces
data dependency among the variables on the on-chip RAM due to a copy operation.
Consequently, some iterations are executed serially and the performance is not fully
optimized. To avoid the data dependency caused by a copy operation in the temporal
blocking kernel, a shift-register kernel is implemented. The shift-register improves the
efficiency of external memory accesses via the use of temporal locality. This implemen-
tation also decreases the RAM block usage and removes data dependency caused by
the temporal blocking method. By combining the temporal blocking technique with a
shift-register kernel, it is found that the implementation of the shift register effectively
removes the memory dependency that is caused by the temporal blocking implemen-
tation in the memory-intensive application. Experimental results show that the peak
performance of Himeno benchmark for the Stratix V FPGA is 10.62 GFlops, or 74%
of the theoretical performance. Meanwhile, the peak performance for the Arria 10
A10PL4 FPGA is 13.95 GFlops, or 76% of the theoretical performance.

35

Chapter 4

Capability Assessment of a
Multiple-FPGA System in
General Matrix Multiplication
(GEMM) Application using
OpenCL

4.1 Introduction

In recent years, High-Performance Computing (HPC) infrastructures have been
used by implementing the GPU as an accelerator for computation-intensive and data-
intensive applications in government, academic, and industry organizations such as for
high-energy physics, weather prediction, data mining, artificial intelligent, and bioinfor-
matics. However, there are problems with regard to power consumption requirements.
Since the total number of cores inside a GPU chip has increased drastically in recent
models, the power required has grown significantly [3]. The energy-efficient of HPC is
the latest trend; the crux of the matter is that computing power limits the performance
of many applications such as data streams, big data analysis, and sensor networks [43].

Matrix multiplication has been widely implemented on GPUs, FPGAs, and some-
times both. Currently, matrix multiplication is widely used in machine learning ap-
plications specifically for training the algorithm. Previous studies showed the imple-
mentation of matrix multiplication using the NVidia Kepler architecture [44], Fermi
GPU [45], Cypress GPU [46], and even many different types of GPUs and CPUs by
using OpenCL [47]. Matrix multiplication algorithms have been evaluated on various
FPGAs as well. For example, moderate success was achieved in the following studies.
In [48], a 64-bit ANSI/IEEE Standard 754-1985 matrix multiplication was implemented
on a Xilinx Virtex-II Pro FPGA. In [49], the Altera Stratix-V D5 FPGA was used to
compute a sparse matrix multiplication. In [50], a hybrid approach on a PC cluster
with Xilinx Virtex-5 and Stratix-III FPGAs was introduced using a Message Passing
Interface (MPI). In [51], it is shown the implementation of matrix multiplication to
accelerate the learning process of Conditional Restricted Boltzmann Machine (CRBM)
with Intel FPGAs using OpenCL SDK for OpenCL.

This study evaluates the performance of an FPGA system by using OpenCL.
OpenCL usage is motivated by its ease of use in contrast to HDL programming. A

36

matrix-to-matrix multiplication (GEMM) kernel is chosen as a case study to mea-
sure and analyze the computational capability of FPGAs for HPC purposes. The
performance-power ratio of FPGA is also measured when execuiting the GEMM ker-
nel. This performance-power ratio is useful, particularly when implementing an FPGA
in an HPC application owing to many current applications that require FPGAs and
take advantage of the benefits of FPGAs to achieve high performance with low power
consumption.

4.2 General Matrix Multiplication (GEMM)

In this section, a matrix multiplication is introduced that is implemented on an
FPGA by using Intel SDK for OpenCL. Two matrix multiplication algorithms are
explored both for global memory and local memory implementation.

4.2.1 A brief overview of General Approach

This study focuses on the GEMM implementation, which is a matrix-to-matrix mul-
tiplication routine in Basic Linear Algebra Subprograms (BLAS). This was chosen as
a good performance index in HPC applications owing to its high computational inten-
sity and regularity [47]. In the experiment, matrices AM,K and BK,N were multiplied,
where A was an M-by-K input matrix and B was a K-by-N input matrix. According
to the BLAS libraries, general matrix multiplication performs the subroutine as shown
in Equation 4.1:

C := α ∗A ∗B + β ∗ C, (4.1)

where A and B are the input matrices, C is the output matrix, and α and β are
floating-point constants. In this experiment, α and β are equal to 1.

4.2.2 Implementation of matrix multiplication by using Intel SDK for
OpenCL

This section describes a matrix multiplication algorithm using OpenCL for the GPU
and FPGA. The focus is on the code structure for the OpenCL kernels. There are
many algorithms related to matrix multiplication implementation, including the näıve
algorithm and the block algorithm. The näıve algorithm, as explained in Listing 4.1,
utilizes global memory access to load and store the data. The global work item IDs for
the x and y directions are indicated by get global id (0) and get global id (1). While
the näıve algorithm is straightforward and has slow performance, the block algorithm
can achieve better throughput owing to dividing a set of the matrix into several blocks
during the execution process.

As explained in Listing 4.2, the block algorithm allows work items inside the same
workgroup to calculate a smaller block of the matrix using local memory. The similar
matrix multiplication algorithm using OpenCL can also be found in [52]. To implement
the block algorithm in OpenCL kernel, the work item ID in local memory is required.
This code allows the kernel to access the variable indicated by get local id (0) and
get local id (1) in local memory instead. This technique also yields an increase in the
ratio of data reuse in the multilevel memory hierarchy of the current processors [47].

37

Listing 4.1: Näıve GEMM using global memory.

1 #define BLOCK_SIZE 64

2 #define SIMD 4

3 #define CU 1

4
5 __kernel

6 __attribute((reqd_work_group_size(BLOCK_SIZE,BLOCK_SIZE,1)))

7 __attribute((num_simd_work_items(SIMD)))

8 __attribute((num_compute_units(CU)))

9 void matrixMult_global(__global float *restrict A,

10 __global float *restrict B,

11 __global float *restrict C,

12 int A_width, int B_width)

13 {

14 const int globalRow = get_global_id(0);

15 const int globalCol = get_global_id(1);

16
17 float Cvalue = 0.0f;

18 for (int k=0; k<A_width; k++)

19 {

20 Cvalue += A[globalCol*A_width + k] * B[k*B_width + globalRow];

21 }

22 C[globalCol*A_width + globalRow] = Cvalue;

23 }

4.3 System Implementation

In order to perform the high-performance computation based on FPGA boards
using Intel SDK for OpenCL, a system is constructed by combining a host PC and four
FPGA boards as illustrated in Figure.4.1. The host communicates with the FPGA
device through a PCIe bus. In the experiment, the performance of a single Stratix
V DE5-Net FPGA board was investigated by measuring the performance of matrix
multiplication on global memory and local memory. The next experiment was followed
by employing multiple Stratix V DE5-Net FPGA boards to execute the computation
kernels simultaneously.

4.3.1 Hardware architecture overview

In this study, the main components of the system are the host PC and Altera Stratix
V DE5-Net FPGA boards. The host PC consists of an Intel Xeon E5-1650 CPU, 64 GB
DDR4-2133, Centos 7.5 Linux 64-bit operating system, gcc version 4.8.5, Intel Quartus
16.1 64-bit, and Intel SDK for OpenCL 16.1.0 Build 196. For the FPGA devices,
the Altera Stratix V DE5-Net FPGA boards are operated to run the computation
process. The boards were developed by Terasic with specifications as follows: equipped
with one Altera Stratix V GX FPGA (5SGXEA7N2F45C2), 2-GB DDR-1600 SDRAM,
PCIe Gen3 slave edge connector, and 32-MB QDR II+ SRAM [31]. In more detail, the
Altera Stratix 5SGXEA7N2F45C2 FPGA offers 622k logic elements (LEs), 50 Mbits of
embedded memory, 48 transceivers (12.5 Gbps), 256 27-bit x 27-bit DSP blocks, and 2
PCIe hard IP blocks [53].

38

Listing 4.2: GEMM using local memory.

1 #define BLOCK_SIZE 64

2 #define SIMD 4

3 #define CU 1

4
5 __kernel

6 __attribute((reqd_work_group_size(BLOCK_SIZE,BLOCK_SIZE,1)))

7 __attribute((num_simd_work_items(SIMD)))

8 __attribute((num_compute_units(CU)))

9 void matrixMult_local(__global float *restrict A,

10 __global float *restrict B,

11 __global float *restrict C,

12 int A_width, int B_width)

13 {

14
15 __local float localA[BLOCK_SIZE][BLOCK_SIZE];

16 __local float localB[BLOCK_SIZE][BLOCK_SIZE];

17
18 int gr_i = get_group_id(0);

19 int gr_j = get_group_id(1);

20
21 int i = get_local_id(0);

22 int j = get_local_id(1);

23
24 int num_blk = A_width/BLOCK_SIZE;

25
26 int Astart = gr_j * A_width * BLOCK_SIZE;

27 int Aincr = BLOCK_SIZE;

28 int Bstart = gr_i * BLOCK_SIZE;

29 int Bincr = BLOCK_SIZE * A_width;

30
31 float Cvalue=0.0f;

32
33 for (int blk = 0; blk<num_blk; blk++)

34 {

35 localA[j][i] = A[Astart+j*A_width+i];

36 localB[j][i] = B[Bstart+j*A_width+i];

37
38 barrier(CLK_LOCAL_MEM_FENCE);

39
40 #pragma unroll

41 for(int k=0; k<BLOCK_SIZE; k++)

42 {

43 Cvalue += localA[j][k] * localB[k][i];

44 }

45
46 barrier(CLK_LOCAL_MEM_FENCE);

47 Astart += Aincr;

48 Bstart += Bincr;

49 }

50
51 C[get_global_id(1)*get_global_size(0) + get_global_id(0)] = Cvalue;

52 }

39

Figure 4.1: Experimental environment: Altera Stratix V DE5-Net FPGA boards and
OpenCL programming.

4.3.2 PCIe throughput and DDR3 memory access

An Altera Stratix V DE5-Net FPGA board consists of two internal PCIe hard IP
blocks. It is compliant with PCIe Base Gen 1.1, 2.0, or 3.0 for 1, 2, 4, and 8 lanes.
Theoretically, the maximum data transfer bandwidths through PCIe are 2.5 GB/s for
Gen 1.1, 5.0 GB/s for Gen 2.0, and 8.0 GB/s for Gen 3.0 [54]. However, in the OpenCL
application, the Stratix V DE5-Net FPGA board supports the PCIe Gen2×8 lane only
in its Board Support Package (BSP). The experiment showed that the PCIe throughput
for writing and reading 8192 KB of data using Intel SDK for OpenCL was 2.154 GB/s
and 2.903 GB/s.

The Stratix V DE5-Net FPGA board consists of two DDR3 memory banks. The-
oretically, the peak performance is 25.6 GB/s (12.8 GB/s ∗ 2 Banks). Since GEMM
is a typical memory bandwidth bottleneck, the total memory bandwidth between the
Stratix V FPGA and the DDR3 memory is evaluated. To do so, a test was performed
using an OpenCL memory stream kernel that transfers the data directly to and from
the external DDR3 memory from and to the FPGA. The maximum memory bandwidth
for each bank was 11.9 GB/s and 11.6 GB/s for Bank 1 and Bank 2, respectively.

4.4 Matrix multiplication using global memory

The kernel presented in Listing 4.1 is executed on the global memory of the FPGA
board. Matrix A is accessed in row-major order using A [y ∗ width+ k], while matrix
B is accessed in column-major order using B [k ∗ width+ x], where x and y are de-
fined as get global id (0) and get global id (1), respectively. In the experiment, first,
the standard compilation was performed in burst-interleaved mode. Second, the ker-
nel was compiled by employing the compilation option to disable the memory cache
implementation in global memory access.

The basic matrix multiplication kernel, which is considered as a single computation
unit, comprises two operators (one multiplier and one adder) that perform the matrix

40

Table 4.1: OpenCL kernel compilation reports for global memory access with different
SIMD size.

Logic RAM DSP Clock Estimation
blocks blocks (MHz) (GFlops)

1 SIMD, 1 CU 45,098 (19%) 437 (17%) 5 (2%) 271.01 0.542

4 SIMD, 1 CU 48,632 (21%) 499 (18%) 8 (3%) 273.29 2.186

8 SIMD, 1 CU 52,111 (22%) 464 (18%) 12 (5%) 279.79 4.476

16 SIMD, 1 CU 58,033 (25%) 521 (20%) 20 (8%) 276.16 8.837

multiplication process as described in Listing 4.1. We propose an equation to estimate
the performance of matrix multiplication with Stratix V FPGA, as follow:

Pest =

2 [Flop]×n×k−way×f,

(
Pest <

BW
4[Bytes/F lop]

)
BW

4[Bytes/F lop] , (otherwise)

(4.2)

where, the performance estimation is P in Flops, n is the number of compute units (CU)
attribute, the k-way SIMD performs k vectorization, BW is the maximum memory
bandwidth, and f is the actual frequency of the FPGA in Hz. Equation 4.2 shows the
performance estimation for single-precision point since the value of [Bytes/Flop] is a
constant value.

4.4.1 Performance with cache

The compilation reports for the Naive kernel implementation using burst-interleave
mode are presented in Table 4.1 and Table 4.2 for different numbers of SIMD attributes
and CU attributes. The experimental results for different numbers of SIMD attributes
are shown in Figure.4.2. The peak performances are 0.542 GFlops, 2.179 GFlops, 4.455
GFlops, and 8.668 GFlops for 1 SIMD, 4 SIMD, 8 SIMD, and 16 SIMD, respectively,
in a single-precision data type. This result is similar to the performance estimation, as
shown in Table 4.1. For different numbers of CU attributes, the peak performances are
0.542 GFlops, 2.236 GFlops, 3.715 GFlops, and 7.511 GFlops for 1 CU, 4 CU, 8 CU,
and 16 CU in a single-precision data type, as shown in Figure.4.3. These performances
are also similar to the performance estimation, as presented in Table 4.2.

Interestingly, the number of DSP blocks is not proportional to the number of SIMD

Table 4.2: OpenCL kernel compilation reports for global memory access with different
CU size.

Logic RAM DSP Clock Estimation
blocks blocks (MHz) (GFlops)

1 CU, 1 SIMD 45,098 (19%) 437 (17%) 5 (2%) 271.01 0.542

4 CU, 1 SIMD 61,238 (26%) 716 (28%) 20 (8%) 281.52 2.252

8 CU, 1 SIMD 83,791 (36%) 1088 (43%) 40 (16%) 268.88 4.302

16 CU, 1 SIMD 128,768 (55%) 1832 (72%) 80 (31%) 268.24 8.583

41

nl ����r n K

s ����r n K

G ����r n K

n ����r n K

��

��
��

��
��

 8
�

�
��

�
�4

a

c

G

l

s

na

M�� �!" �!#� 8�t%t&4

a caaa Gaaa laaa saaa

Figure 4.2: Performance of matrix multiplication using different SIMD number.

nl K�r n ��	

s K�r n ��	

G K�r n ��	

n K�r n ��	

��

��
��

��
��

 8
�

�
��

�
�4

a

c

G

l

s

na

,	� �!" �!#� 8	t%t&4

a caaa Gaaa laaa saaa

Figure 4.3: Performance of matrix multiplication using different CU number.

attributes. In Table 4.1, the kernel with the 1CU+1SIMD attribute comprises 5 DSP
blocks, while the kernel with the 1CU+16SIMD attribute requires 20 DSP blocks.
According to the actual mapping of the compiled AOCL project by utilizing the RTL
viewer, there are two main component instances inside high-level modules of the kernel.
Because of the kernel vectorization, the Intel SDK for OpenCL compiler duplicates the
data path only within the compute unit. As a result, the first instance consists of the
same number of DSPs regardless of the number of SIMD attributes. In this case, 2 DSPs
are required inside the first instance for both kernels. For a kernel with the 1CU+1SIMD
attribute, 3 DSPs are required for the computation of the second instance (the total
is 5 DSPs). Kernels with the 1CU+4SIMD and 1CU+8SIMD attributes consist of 6
DSPs and 10 DSPs, respectively, for the computation in the second instance (the total
is 8 DSPs and 12 DSPs). Last, the kernel with the 1CU+16SIMD attribute consists of
18 DSPs for the computation process (the total is 20 DSPs).

From Table 4.2, increasing the number of CUs replicates the number of kernels
in the FPGA. This effects a significant increase in hardware resource utilization such
as in the logic, RAM blocks, memory usage, and particularly in the number of DSP
blocks. The increase in the number of DSP blocks is proportional to the number of CU

42

Figure 4.4: Performance of matrix multiplication on global memory without burst-
coalesced cached LSUs.

attributes. The number of DSP blocks is 5 DSP blocks for a single CU attribute, 20
DSP blocks for 4 CUs, 40 DSP blocks for 8 CUs, and 80 DSP blocks for 16 CUs.

From the experimental results, both the SIMD attribute and CU attribute increase
the peak performance. However, implementing the SIMD attribute achieves a higher
performance than the CU attribute. The SIMD attribute generates more efficient
hardware by duplicating the data path only and by coalescing the memory accesses.
Meanwhile, the CU attribute modifies the number of compute units by replicating the
kernel so that it increases the number of times for the kernel to access the global memory
as well. This affects the undesired memory access patterns, as shown in Figure.4.3.

4.4.2 Performance without cache implementation

Näıve matrix multiplication is bounded by the DDR3 memory bandwidth of the
FPGA. The theoretical peak performance of matrix multiplication for the 2×M×N×K
flops of computations can be calculated based on the maximum memory bandwidth [55].
According to section 4.3, the total memory bandwidth for both Bank 1 and Bank 2 is
23.5 GB/s. As a result, the peak performance is limited to 5.9 GFlops.

The peak performances in Figure.4.2 and Figure.4.3 were investigated using the
Intel dynamic profiler for OpenCL. For the 16SIMD+1CU attribute, it showed 99.2%
cache hits, coalesced memory access, and 100% of memory bandwidth efficiency. For
the 16CU+1SIMD attribute, the dynamic profiler yielded 97.9% cache hits, unaligned
memory access, and 16.7% of memory bandwidth efficiency. This evidence indicates
that the default compilation process still employs the memory cache. The high rate
of cache hits (99.2% and 97.9%) increases the peak performance to higher than 5.9
GFlops.

In Intel SDK for OpenCL, a burst-coalesced cached LSU is created when the com-
piler assumes that the memory access pattern is data-dependent or appears to be
repetitive [20]. In this study, matrix multiplication requires the repetitive memory ac-
cess. Therefore, there is a possibility that a burst-coalesced cached LSU is created. To
disable this memory cache, a compilation for the kernel was conducted by making the
pointer as ”volatile”. This implementation created non-cached LSUs. The peak perfor-

43

Table 4.3: OpenCL kernel compilation reports for global memory access without burst-
coalesced cached LSUs.

Logic RAM Memory DSP Clock
blocks (Mbits) blocks (MHz)

16 SIMD, 1 CU 55,047 (23%) 417 (16%) 2.65 (5%) 20 (8%) 271.88

1 SIMD, 16 CU 127,082 (54%) 943 (37%) 7.725 (15%) 80 (31%) 269.02

mances of global memory without burst-coalesced cached LSU are shown in Figure.4.4.
This shows that the peak performance decreased to 5.78 GFlops and 1.51 GFlops for
the 16SIMD+1CU attribute and 16CU+1SIMD attribute.

Again, the Intel dynamic profiler was employed to investigate the performance of
matrix multiplication in global memory without burst-coalesced cached LSUs. For
the 16SIMD+1CU attribute, it showed 0% cache hits, coalesced memory access, and
100% of memory bandwidth efficiency. For the 16CU+1SIMD attribute, the Intel
dynamic profiler produced the same 0% of cache hits but different memory access and
memory bandwidth. The low performance of the 16CU+1SIMD attribute resulted from
unaligned memory access and 10.9% of memory bandwidth efficiency. The compilation
reports for both the 16SIMD+1CU attribute and 16CU+1SIMD attribute without
burst-coalesced cached LSU are presented in Table 4.3.

4.5 Matrix multiplication using local memory

In this section, the computation kernel using local memory is composed of a single
computation unit (CU) from this viewpoint of memory access. In Algorithm 4.2, the
CU is much more complicated than the kernels in the previous section because the
computational circuits, namely, spatial parallelism, are different. On top of that, some
optimizations such as loop unrolling, kernel vectorization, and memory coalescing are
implemented. Then, the SIMD parallelism was tested by various parameters to achieve
a higher performance based on one CU implementation. In our experiments, the limita-
tion was the number of DSP blocks. Therefore, four-SIMD and one-SIMD implementa-
tions were chosen for the computation kernels on single-precision and double-precision
floating point, respectively.

In the Stratix V FPGA, a single-precision floating-point multiplier is implemented
by using logic, a DSP, and registers, while a single-precision floating point adder is
constructed with logic and registers. A double-precision floating-point multiplier is im-
plemented by using four 27-bit DSPs because the multiplication of significands requires
wider multipliers [56]. To calculate the performance estimation in the computation
kernel where each CU has a Fused Multiply-Add (FMA) with one multiplier and one
adder, and by assuming that almost all DSPs and adders work in parallel, the value of
n × k−way in Equation 5.2 is equal to the number of multiplications that is obtained
from the number of DSP blocks for a single-precision data type. For double precision,
the number of n × k−way is almost equal to the number of DSPs/4. In this kernel
implementation, the communication of global memory is ignored.

In the experiment, matrix A was accessed from global memory to local memory
in row-major order, while matrix B was accessed in column-major order, as shown
in Listing 4.2. In this study, the size of the local memory was Alocal [64 × 64] and
Blocal [64 × 64]. The obtained parameters and the performance estimation are shown

44

Single precision
Double precision

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

0

25

50

75

100

125

150

#Matrix size (M=N=K)
0 2000 4000 6000 8000

Figure 4.5: Performance of matrix multiplication using local memory.

Table 4.4: OpenCL kernel compilation reports for local memory access.
Logic RAM DSP Clock Estimation

blocks blocks (MHz) (GFlops)

Single precision 120,853 (51%) 936 (37%) 256 (100%) 283.4 145.10

Double precision 90,212 (38%) 1,085 (42%) 256 (100%) 245.1 31.37

in Table 4.4. As illustrated in Figure.4.5, the performance of matrix multiplication
in local memory increases drastically to 144.95 GFlops for single precision. This real
performance is similar to the 145.1 GFlops of the performance estimation. For the
double-precision data type, the peak performance is 31.3 GFlops, while the performance
estimation is 31.37 GFlops.

4.5.1 Performance of multiple Stratix V DE5-Net FPGA boards

To test the performance of multiple FPGAs, the experiment was conducted using
four FPGA boards. Unlike a single FPGA, multiple FPGAs perform matrix multipli-
cation by executing the data that is distributed by the host PC to each FPGA board.
In this case, the data sent by the host is distributed to the four FPGA boards equally.
In the following example, the size of the matrix was [4352 × 4352] for both matrix A
and matrix B. Before the host invoked each FPGA to execute the kernel, the data was
distributed to each global memory of the FPGAs, as shown in Figure.4.6. The host
dispatched the matrix A [1088 × 4352] and the matrix B [4352 × 4352] to each FPGA
board.

In the experiments, the kernel execution time indicated by the red dotted line was
measured as shown in Figure.4.7. After invoking the clEnque NDRangeKernel()
command to start the multiplication process, the host waits for all FPGAs to send
their kernel events. These events inform the host that the kernels have been executed
successfully. Because the execution time is different for each FPGA, the host waits
for all kernels to finish. The total execution time is measured after executing the
clWaitForEvents() command. This procedure is followed by reading the buffer using
the clEnqueReadBuffer() command to read the calculation results. In this process,

45

Figure 4.6: Multiple FPGAs approach.

the data transfers from each FPGA memory to host memory are read sequentially.
First, the host reads the buffer in FPGA #1. This is followed by FPGA #2, FPGA
#3, and finally FPGA #4.

The peak performance for different numbers of FPGA boards is shown in Figure.4.8
and Figure.4.9. These graphs show an increase in performance by employing the FPGA
from one board to four boards simultaneously. For the single-precision data type,
the performance was measured by executing the kernel in global memory and local
memory. The kernel with a configuration of 16 SIMDs and 1 CU was chosen owing to
the high peak performance for the global memory access. The performance increases
proportionally from 5.795 GFlops to 11.565 GFlops, 17.351 GFlops, and 23.117 GFlops
for a single FPGA until four FPGA boards are used, as shown in Figure.4.8.

Figure 4.7: Kernel execution in multiple-FPGAs implementation using Intel dynamic
profiler for OpenCL.

46

4 FPGAs

3 FPGAs

2 FPGAs

1 FPGA

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

0

5

10

15

20

25

#Matrix size (M=N=K)
0 2000 4000 6000 8000

Figure 4.8: Performance of matrix multiplication (16 SIMD, 1 CU) using global memory
in single precision.

(b) Double precision(a) Single precision

4 FPGAs

3 FPGAs

2 FPGAs

1 FPGA

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

0

100

200

300

400

500

600

#Matrix size (M=N=K)
0 2000 4000 6000 8000

1 FPGA
2 FPGAs
3 FPGAs
4 FPGAs

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

0

100

200

300

400

500

600

#Matrix size (M=N=K)
0 2000 4000 6000 8000

Figure 4.9: Performance of matrix multiplication using local memory.

For local memory access, the performance improves drastically from 144.95 GFlops
to 289.61 GFlops, 434.78 GFlops, and 579.41 GFlops from one FPGA to four FPGAs,
as illustrated in Figure.4.9(a). For the double-precision data type, it can be observed
that the performance increases proportionally from 31.31 GFlops to 62.72 GFlops,
94.08 GFlops, and 125.44 GFlops, as shown in Figure.4.9(b). Even though Stratix V
FPGA supports PCIe Gen3x8, this FPGA only supports PCIe Gen2x8 for the OpenCL
implementation. Therefore, the kernel execution time was measured without taking into
account the data transfer from the host to each FPGA memory.

4.5.2 Performance per power efficiency

In the experiment, the total power including the host PC and FPGA was measured.
The HIOKI 3332 Power HiTester was employed to measure the total input power.
When testing the system, the voltage was 104 V as measured by the HIOKI 3332
Power HiTester simultaneously. The total power for the host PC and a single Stratix V
DE5-Net FPGA required power 103.6 W. For four Stratix V FPGA boards required a

47

4 FPGAs3 FPGAs2 FPGAs1 FPGA

579.4

434.8

289.6

144.9

performance per watt
peak performance

Pe
rf

or
m

an
ce

 p
er

 w
at

t

0

1

2

3

4

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

0

100

200

300

400

500

600

700

Figure 4.10: Peak performance, and performance per watt of FPGAs relative to single
FPGA for single precision data type.

maximum of 180.5 W. The performance per watt of multiple FPGAs relative to single
FPGA can be seen in Figure.4.10. The figure shows that the performance efficiency
increases to 1.61x, 1.99x, and 2.29x for two, three and four FPGAs respectively.

4.6 Conclusions

The implementation of the GEMM in the global memory and local memory was
demonstrated using multiple Stratix V FPGAs. For global memory usage, the peak
performance achieved 23.117 GFlops for four FPGA boards. For the local memory
implementation, a peak performance of 579.41 GFlops was achieved in a single-precision
data type. Meanwhile, for the double-precision data type, the system achieved 125.44
GFlops for four Stratix V DE5-Net FPGAs. In this study, the equation for estimating
the performance was introduced. The results show that the peak performances were
similar to the performance estimation which is calculated from the OpenCL kernel
compilation report. In term of performance per power ratio, the performance efficiency
relative to single FPGA increases to 1.61x, 1.99x, and 2.29x for two, three and four
Stratix V DE5-Net FPGAs respectively. These results show that the performance of
multiple FPGAs increases linearly, also the multiple FPGA implementations consume
less power.

48

Chapter 5

OpenCL Implementation of
FPGA-based Signal Generation
and Measurement

5.1 Introduction

FPGA has been well known for its high bandwidth capability to access the general
purpose I/O with low latency. As a result, FPGA is used in many engineering fields
and applications. For example, FPGA implementations can be found in digital signal
processing [57], data acquisition [58], communication [59], software-defined radio [60],
automotive radar [61], and quantum computing [62]. To program an FPGA, a hardware
description language (HDL) is used to generate hardware implementation from the
source code onto a register transfer level (RTL). However, FPGA programming using
HDL becomes time-consuming due to an increase in design complexity and an increase
in FPGA resources. Currently, high-level synthesis (HLS) is implemented on FPGAs
as an alternative solution to reduce the development time for FPGA programming.
HLS improves the FPGA design efficiency by increasing the abstraction level of the
code [12]. HLS also reduces the gap between the FPGA design and the programming
process. Consequently, the FPGA development time can be reduced.

This study focuses on the implementation of FPGAs for signal generation and
measurement. Therefore, an FPGA needs to access external devices such as an analog-
to-digital converter (ADC) and a digital-to-analog converter (DAC) for measuring and
generating a signal. To reduce the development time, OpenCL was selected to program
the FPGA because OpenCL exploits the concept of parallelism that enables us to de-
velop a parallel program application for FPGAs using high-level language. In addition
to this, OpenCL avoids creating complex HDL codes, particularly for the libraries as
well as platform-specific tools [63]. However, compared to the HDL program, OpenCL
does not provide direct access to the FPGA’s I/O, particularly for reading data from
an ADC and writing data to a DAC.

To overcome these limitations, ADC and DAC component modules are developed
on the system.qsys of the FPGA’s board support package (BSP), which allows an
OpenCL kernel to access the FPGA’s I/O. To enable the kernel to communicate with
the ADC and DAC components, an OpenCL I/O channel extension was employed. This
channel extension allowed the OpenCL kernel to stream data to and from the FPGA’s
I/O. Therefore, this study demonstrates the capability of the OpenCL program for
accessing the FPGA’s I/O directly, particularly for signal measurement and generation

49

applications. It is expected that this research will contribute to the use of the OpenCL
program not only for FPGA-based parallel computations, but also for signal and video
processing, data acquisition, and control systems through the FPGA’s I/O.

The following are several advantages of using OpenCL implementation for the
FPGA-based signal generation and measurement compared to using HDL-based design.
In HDL implementation, to generate a signal, a ROM-based lookup-table is required to
store data to generate a signal. The size of data is also limited by the size of the FPGA’s
ROM. In some cases, the FPGA needs to be reprogrammed when different signals need
to be modified. However, for an OpenCL implementation, the signal data can be stored
on global memory (external DDR memory) instead of the FPGA’s ROM because the
OpenCL framework provides an interfaces and access to the global memory. In this im-
plementation, large data can be stored on global memory where this data is limited by
the size of the external memory. Different signals can also be updated quickly without
reprogramming the FPGA by invoking the host to transmit the data to the FPGA’s
global memory. Similarly, the measured signal can also be stored on global memory.
Consequently, this allows the host to read the data from the FPGA directly for further
processing and analysis. In HDL-based design, these implementations require detailed
specifications of the double data rate (DDR) interface for the configuration for the DDR
memory controller to access external memory. Moreover, the FPGA simulation and de-
bugging process needs to be performed. To enable communication or to transmit and
receive the data between the FPGA and the host, hardware configuration and a device
driver for a PCIe hard IP or a 10 Gbps Ethernet controller is required in the HDL-based
design. However, for an OpenCL implementation, the PCIe and Ethernet controller are
generated automatically. This is because the OpenCL framework consists of firmware,
software and device driver between FPGA and the host for connecting, controlling and
transferring data [64]. In term of development time, OpenCL implementation takes two
weeks of programming the FPGA, particularly for signal measurement and generation,
where the most considerable portion involves developing the ADC and DAC compo-
nent modules using Avalon-ST source and Avalon-ST sink on the FPGA’s BSP. Thus,
OpenCL implementation reduces the development time and increases productivity.

This chapter presents OpenCL kernel implementation for signal measurement and
generation. Experiments are conducted by developing the kernel into three categories
to evaluate the OpenCL kernel implementation, as follow:

• signal measurement: The objective of this kernel is to measure the input signal
and store the data in global memory of the FPGA. This allows the host PC to
analyze the data for further analysis.

• signal generation: OpenCL kernel generates an output signal by reading the
data from global memory.

• signal measurement and generation: In this implementation, the first OpenCL
kernel reads a signal and writes the received signal to an I/O channel. The
second OpenCL kernel reads the data from the I/O channel and generates a
signal simultaneously where the data transfer is performed without accessing
global memory.

5.2 OpenCL for SoC FPGA

In OpenCL programming of a SoC FPGA, the kernel code for the FPGA is also
compiled into a different sequence of instructions that are executed by different work

50

Figure 5.1: OpenCL system with a host CPU and FPGAs (a) data communication
through a PCIe, (b) using the internal bus.

items simultaneously. This is because an FPGA exploits pipeline parallelism to exe-
cute the kernel. Compared to FPGA for high-performance computing purposes that
allows the host to communicate with the FPGA through a PCIe bus, OpenCL for SoC
FPGA also provides an application program interface (API) to communicate through
an internal bus that is used for data transfer and communication between an FPGA
and the advanced RISC machine (ARM) processors, as shown in Fig.5.1.

OpenCL for SoC FPGAs also shares the same memory types for the computation
process. The memory types are defined as global/constant memory, local memory,
and private memory. The offline compiler for OpenCL employs DDR3 memory on
an FPGA board as global memory. The memory type that has higher throughput
with lower latency is local memory. During the kernel compilation, local memory is
implemented by the block RAMs. This memory is dedicated to work items in the
same workgroup. The last type of memory that has faster throughput and smaller size
than the others is the private memory. Depending on data size, private memory is
implemented by either block RAMs or registers [65].

5.3 Customizing the board hardware for OpenCL compo-
nents

To allow the OpenCL kernel to access the FPGA’s I/O directly, the procedures
are divided into three steps as shown in Fig.5.2. First, the ADC and DAC component
modules are developed on the FPGA’s board support package (BSP) using Qsys system
design. Qsys, or currently known as the Platform Designer, is a system-integration tool
that improves productivity by automatically generating interconnect logic to connect
intellectual property (IP) and subsystems for Intel FPGA. Second, the ADC and DAC
component attributes are defined in the channel interface of the board spec.xml file
that describes the hardware interfaces to the Intel FPGA SDK for OpenCL. Third,
OpenCL I/O channel extension is used for streaming data to and from an FPGA’s I/O
through the ADC and DAC components.

51

Develop new OpenCL's component
on the FPGA's BSP

Define the component attributes
in the channel interface

Employ the OpenCL I/O channel API
for streaming data

1

2

3

Qsys system
integration tool

board_spec.xml
file

OpenCL kernel
on FPGA

Figure 5.2: A method to develop the new OpenCL component modules.

Figure 5.3: System Qsys of a customized board support package (BSP) by adding new
ADC and DAC components.

52

5.3.1 Developing OpenCL’s ADC and DAC components

In Fig.5.3, it is shown a system.qsys diagram of the FPGA’s BSP where the
OpenCL ADC and DAC components have been developed. The BSP, which is pro-
vided by the FPGA vendor for OpenCL programming, simplifies FPGA programming
because it provides an external DDR memory controller for writing and reading data
to global memory, and provides a data interface for communications between the host
and FPGA.

The first component is the ADC component. This component is created by imple-
menting an Avalon-ST source for streaming data from the external ADC board to the
OpenCL kernel. The OpenCL kernel receives the data from this component through
an Avalon-ST sink. The block diagram of the ADC component is shown in Fig.5.4(a).
The ADC component receives two input signals, the clock (kernel clk) and the reset
(kernel rst) from the kernel, has a port for reading the data from the ADC board
(adc read), produces two signals for handshaking with the kernel: (kernel ready) and
(kernel valid), and includes a port for streaming the data to the kernel (kernel out).

The second component is the DAC component, where it is created by implementing
an Avalon-ST sink for streaming data from the OpenCL kernel to the external DAC
board. The OpenCL kernel streams the data through an Avalon-ST source to the DAC
component. As shown in Fig.5.4(b), this component also has the same signals as the
ADC; however, the two signals for handshaking, (kernel ready) and (kernel valid),
are in the opposite directions. This component also has a port for receiving streamed
data from the kernel (kernel in) and a port for writing data to the external DAC board
(data out).

In the Qsys system design, the data ports of the ADC and DAC components need to
be exported so that the kernel can read from and write data to the external ADC/DAC
board. The adc read port of the ADC component is exported and connected to the
data port of the ADC controller, while the dac write port of the DAC component is
exported and connected to the data port of the DAC controller. The ADC and DAC
controllers are written in HDL and are located inside the root partition (top.v) of the
BSP to control the ADC/DAC board. The ADC chip on the ADC/DAC board converts
an analog signal to a 14-bit digital signal. In contrast, the DAC chip converts a 14-bit
digital signal to an analog signal. The system Qsys including OpenCL’s ADC and DAC
components can be seen in Fig.5.5

Figure 5.4: (a) ADC component using Avalon-ST source, (b) DAC component using
Avalon-ST sink.

53

OpenCL kernel
interface

ADC
component

DAC
component

Figure 5.5: System Qsys of a customized board support package (BSP) by adding new
ADC and DAC components.

Table 5.1: OpenCL component attributes.
Component attributes ADC component DAC component

name adc in 0 dac out 0
port adc read dac write
type streamsource streamsink
width 14 14
chan id ch adc read ch dac write

5.3.2 Setting OpenCL component parameters

To allow the OpenCL kernel to access these components, the component attributes
need to be declared in the board spec.xml file of the BSP. The board spec.xml file is
an extensible markup language (XML) file that provides the board description, such
as the hardware interface and the component interface, to the Intel SDK for OpenCL.
According to the content of the board spec.xml file, a custom circuit for an FPGA is
generated by the SDK compiler for OpenCL. Then, this custom circuit is incorporated
with the OpenCL kernel [66].

According to the ADC and DAC components, as shown in Fig.5.4(a) and Fig.5.4(b),
the component attributes such as name, port, type, width, and chan id on the channel
interface of the board spec.xml file are specified, as shown in Table.5.1. The name
attribute specifies the names of the ADC and DAC components. The port attribute
specifies the data ports of the ADC and DAC components where data are read from
and written to the FPGA’s I/O. The type attribute specifies the type of Avalon-ST bus
being used, as shown in Listing 5.1. Because the ADC component reads data from the

54

Listing 5.1: The content of board spec.xml file of FPGA’s Board Support Package
(BSP).

1 <?xml version="1.0"?>

2 <board version=" " name=" ">

3

4

5 <interfaces>

6 <interface name="acl_iface" port="kernel_cra" type="master" width="64" misc="0"/>

7 <interface name="acl_iface" port="kernel_irq" type="irq" width="1"/>

8 <kernel_clk_reset clk="acl_iface.kernel_clk" clk2x="acl_iface.kernel_clk2x"

reset="acl_iface.kernel_reset"/>

9 </interfaces>

10
11 <channels>

12 <interface name="adc_in_0" port="adc_in" type="streamsource" width="14"

chan_id="ch_data_adc_read"/>

13 <interface name="dac_out_0" port="dac_out" type="streamsink" width="14"

chan_id="ch_data_dac_write"/>

14 </channels>

15
16 </board>

ADC board and streams this data to the OpenCL kernel, a stream source is employed.
On the other hand, the DAC component receives streamed data from the OpenCL
kernel and writes the data to the DAC board; therefore, a stream sink is used. The
chan id attribute is a unique name for the I/O interface on the FPGA board and will
be associated to the io(”chan id”) attribute in the OpenCL kernel. The value of 14 in
the width attribute specifies the 14-bit resolution of the ADC and DAC board. In the
experiments, the data type for this channel is specified as ushort.

5.3.3 Accessing OpenCL’s ADC and DAC components using an I/O
channel extension

In the Intel SDK for OpenCL, a write channel intel(ch 0, input buf) API call is
used to write data to the input buf variable of a channel ch 0. To read data from the
ch 1 channel to an output buf variable, a output buf = read channel intel(ch 1) API
call is used, as shown in Listing 5.2. Previous study has shown the implementation of
an OpenCL channel extension for data communication. In [67], an implementation of
the OpenCL I/O channel extension for data communication using a high-speed FPGA
network through the QSFP+ port was demonstrated.

In this study, the OpenCL I/O channel extension is employed to stream data be-
tween the OpenCL kernel and the FPGA’s I/O through the ADC and DAC compo-
nents. To read a signal from the ADC board, the channel attribute in the kernel must
point to the chan id name of the ADC component. Here, the chan id attribute is
specified as ch adc read. Therefore, the channel attribute in the kernel is declared
as io(”ch adc read”). A similar method is applied to write data to the DAC board.
However, the channel attribute in the kernel is declared as io(”ch dac write”) so that
it points to the DAC component.

55

Listing 5.2: Writing and reading a data using OpenCL channel extension.

1

2 // to write the data in input_buf variable to a channel ch_0

3 write_channel_intel(ch_0, input_buf);

4

5
6

7 // to read the data from a channel ch_1 to output_buf variable

8 output_buf = read_channel_intel(ch_1);

9

Figure 5.6: I/O channel implementation for signal measurement from ADC to global
memory of an FPGA.

5.4 System implementation

This study evaluates the OpenCL kernel using a Cyclone V SoC FPGA board from
Terasic. This board consists of the Cyclone V SoC 5CSEMA5F31C6 FPGA, dual-core
ARM Cortex-A9 (HPS), 85K programmable logic elements, 4,450 Kbits embedded
memory, two 40-pin expansion headers, and two hard memory controllers [68]. For the
ADC and DAC chip, we utilized the analog-to-digital/digital-to-analog (AD/DA) board
from Terasic. This AD/DA board consists of dual AD channels with 14-bit resolution
and dual DA channels with 14-bit resolution [69]. In the experiments, the AD/DA
board was connected to the GPIO JP1 and JP2 pins of the Cyclone V DE1-SoC FPGA
board. The analog input signal was connected to AD channel A, while the analog
output signal was generated from DA channel A. To execute an OpenCL project, Intel
SDK for OpenCL version 17.0 was used to compile the kernel. The ARM part of the
SoC FPGA executed the host program, which was cross-compiled by Intel’s SoC EDS.

5.5 Signal measurement

In this experiment, the OpenCL kernel for signal measurements using the OpenCL
ADC component and a channel extension are demonstrated as follow.

56

Listing 5.3: OpenCL kernel for signal measurement.

1 // adc_channel_read.cl

2 #pragma OPENCL EXTENSION cl_intel_channels : enable

3
4 channel ushort ch_data_read

5 __attribute__((depth(0)))

6 __attribute__((io("ch_adc_read")));

7 __attribute__((max_global_work_dim(0)))

8
9 __kernel void adc_channel(__global ushort *restrict datain, int length)

10 {

11 for(int i=0; i<length; i++){

12 datain[i] = read_channel_intel(ch_data_read);

13 }

14 }

5.5.1 Experimental design

Fig.5.6 shows the FPGA-based system design for signal measurement using OpenCL.
The analog signal, which is converted to digital by the ADC chip, passes through an
I/O channel extension. Then, the OpenCL kernel reads and stores the data in the
global memory of the FPGA. The global memory is also accessible by the host, which
allows the host to read the data for further analysis. To measure the signal, the kernel
attributes are declared according to the content of the board spec.xml file. In the exper-
iment, the name for the chan id attribute was specified as ”ch adc read”. Therefore,
the channel attribute in the kernel was declared as attribute ((io(“ch adc read′))).
The max global work dim(0) attribute was used to inform the OpenCL offline com-
piler that the kernel type was the single work item kernel.

To read the signal from the channel, the data in[i] = read channel intel (ch data read)
API call was used, where the ch data read was the name of the channel variable. The
results were stored in a datain buffer on the global memory of the FPGA. To execute
this kernel, the host invoked the clEnqueueTask() function in the host code. Mean-
while, the clEnqueuereadBuffer() function was called to read the data in data in
global memory. The OpenCL kernel for the signal measurement is shown in Listing
5.3.

5.5.2 Implementation and result

In this first experiment, an arbitrary signal generator is employed to generate differ-
ent signal types, such as sine, triangle, and square wave signals. Fig.5.7 shows examples
of the measured input signal types by the OpenCL kernel (sine wave, triangle wave,
and square wave) by leveraging the I/O channel extension in the OpenCL kernel. To
evaluate the frequency of the signal, the kernel sampling rate for the measured signal
(T) is required. This sampling rate can be calculated from the kernel execution time
(tkernel) divided by the length of the data (n), as defined by Equation 5.1. Fig.5.8
shows the signal, which is sampled every T seconds over length n of the dataset.

T =
tkernel
n

(5.1)

57

Figure 5.7: Measured input signal by the FPGA from an arbitrary signal generator.

Figure 5.8: Kernel execution time for signal measurement.

In the experiment, the signal generator was set to generate a sine wave (fin) with
frequency of 20 MHz. The kernel was programmed to read and store the data to
global memory with different lengths (n) as follows: 50K, 60K, and 75K. From the
experimental results, the kernel execution time was tkernel 1 = 0.686 s, tkernel 2 = 0.801
s, and tkernel 3 = 0.974 s for n = 50K, n = 60K, and n = 75K, respectively. By applying
the fast Fourier transform (FFT) function, the frequency of the measured signals for
different lengths (n) of the dataset are shown in Fig.5.9. The measured frequencies for
the 20 MHz input frequency were 16.85 MHz, 17.31 MHz, and 17.8 MHz for n = 50K,
n = 60K, and n = 75K, respectively. The results show that the measured frequency
is lower than the input frequency. This is because of the slow kernel execution time
owing to the use of global memory for storing the measured signal.

To avoid the global memory constraint, the experiment was carried out by storing
the data temporarily in the on-chip RAM of the FPGA instead of writing directly to
global memory. The kernel execution time decreased to tkernel3 = 0.871 s for n = 75K.
The result indicates that the use of an on-chip RAM achieves faster execution time.

58

Figure 5.9: Measured frequency using global memory for a 20 MHz frequency input
signal.

Figure 5.10: Measured frequency using on-chip RAM for a 20 MHz frequency input
signal.

59

Figure 5.11: I/O channel implementation for signal generation.

By using Equation 1 to calculate the kernel sampling rate, the measured frequency
input can be evaluated using an FFT function, with the result shown in Fig.5.10. The
measured frequency of 19.9 MHz is closer to the 20 MHz frequency of the input signal
than the 17.8 MHz signal measured using global memory access.

5.6 Signal generation

In the following experiment, the OpenCL kernel implementation for signal gener-
ation using the OpenCL DAC component and a channel extension is demonstrated.
The example implementation of this kernel applies to signal generation for wireless
communication or for a radar transmitter.

5.6.1 Experimental design

To generate an output signal, first the host writes one cycle of a sine wave to the
global memory of the FPGA by calling the clEnqueueWriteBuffer() function. Sec-
ond, the host invokes the clEnqueueTask() function to execute the OpenCL kernel. On
the FPGA side, the kernel reads the data from global memory and passes it to the DAC
board through an I/O channel extension. This process is depicted in Fig.5.11. Accord-
ing to the content of the board sprec.xml file, because the chan id value was specified as
”ch dac write”, then the kernel attribute was declared as attribute ((io(”ch dac write))).
To read the data from global memory and to pass it to the DAC board, a write channel intel
(ch data write, sine[i]) API call was executed, where ch data write was the name of
the channel variable, and sine represented variable arrays containing one cycle of a
sine wave. The OpenCL kernel for generating the signal is given in Listing 5.4. In the
kernel, the length variable is defined as the length of the data in one cycle. Fig.5.12
shows how one cycle of a sine wave with length m and amplitude from 0 to 214 is stored
in the global memory of the FPGA.

60

Listing 5.4: OpenCL kernel for signal generation.

1 // dac_channel_write.cl

2 #pragma OPENCL EXTENSION cl_intel_channels : enable

3
4 channel ushort ch_data_write

5 __attribute__((depth(0)))

6 __attribute__((io("ch_dac_write")));

7 __attribute__((max_global_work_dim(0)))

8
9 __kernel void dac_channel(__global ushort *restrict sine, int length)

10 {

11 while(1){

12 for (int i=0; i< length; i++){

13 write_channel_intel(ch_data_write, sine[i]);}

14 }

15 }

Figure 5.12: One cycle of a sine wave for a dataset of length m.

5.6.2 Implementation and results

To evaluate the kernel, an oscilloscope was employed to measure the output signal
from the DAC chip. After executing the kernel, the analog output signal was generated
as shown in Fig.5.13. As can be seen, there is a delay after one cycle of the generated
signal (red circle), as shown in Fig.5.13(a). This delay is owing to the long latency
involved in global memory usage. After one period of the signal, the kernel accesses
the non-contiguous memory allocation in the global memory and generates the same
signal repeatedly. To overcome this limitation, global memory usage is omitted by
copying the data from global memory to the on-chip RAM of the FPGA. Fig.5.13(b)
shows the result when the kernel employs the on-chip RAM, indicating that the signal
is generated without delay.

To generate the signal at a specific frequency, a formula which is similar to the
direct digital synthesis (DDS) architecture is proposed. The DDS technique is used
to generate a sinusoidal signal or arbitrary waveform with a programmable frequency.
DDS enables us to control the frequency of the signal accurately and to adjust the
frequency quickly [70]. A typical DDS architecture consists of a phase accumulator
(M), a reference clock fc, and a DAC. The phase accumulator specifies the phase angle
of the output signal. This phase accumulator has N -bit resolution, with a range from
1 to 2N . The DAC converts the digital value to an analog signal [71] [72], as shown in
Fig.5.12.

61

Figure 5.13: Output analog signal (a) with global memory, (b) without global memory
implementation.

Table 5.2: OpenCL kernel compilation report.
FPGA resources Usage

logic utilization 2,434 (8%)
DSP blocks 0 (0%)
memory bits 536K (13%)
RAM blocks 86 (22%)
kernel clock 145.07 MHz

In the experiment, the dataset for one cycle of the sine wave is represented by the
data from 0 to 214 because the ADC and DAC have 14-bit resolution. To generate a
signal with a specific frequency, the host writes one cycle of a sine wave with the length
of the data (m) to global memory, as shown in Fig.5.12. In DDS implementation, the
frequency of the signal with N − bit resolution can be calculated using Equation 5.2.

fo = M × fc
2N

(5.2)

because m is equal to 2N divided by M , the frequency of the output signal can be
estimated using Equation 5.3 as follows:

Festimation =
fkernel
m

(5.3)

Here, fkernel is the working frequency of the kernel. This working frequency can
be obtained from the OpenCL kernel compilation reports as shown in Table 5.2. From
the table, the working frequency of the kernel for this implementation is 145.07 MHz.
Fig.5.14 shows the comparison between the frequency estimation and the actual fre-
quency of the signal using a spectrum analyzer. The results show that the frequency
estimation is similar to the actual frequency of the signal. The larger the value of m
is, the lower the frequency of the output signal. Fig.5.15 shows examples of the output
frequency for different m data lengths.

62

Figure 5.14: Output frequency for dataset length m.

Figure 5.15: Frequency of the output signal for different data lengths: (a) m = 24, (b)
m = 12, (c) m = 8, and (d) m = 4.

63

Figure 5.16: I/O channel implementation for measuring a signal, passing data, and
generating a copy of the signal.

5.7 Signal measurement and generation

In the third experiment, signal measurement and signal generation are demonstrated
using OpenCL ADC and DAC components that are executed simultaneously. Kernel-
to-kernel data passing using a channel extension without global memory usage is also
presented.

5.7.1 Experimental design

In Fig.5.16, it is shown a simultaneous signal measurement and generation execu-
tion. The measured signal is passed through an I/O channel extension and is generated
directly without accessing global memory. To measure and to generate a signal simul-
taneously, three OpenCL kernels are developed in a single OpenCL file, as shown in
Listing 5.5. An efficient kernel-to-kernel data communication is demonstrated through
a channel extension without accessing global memory for storing and reading data. In
the adc channel kernel, the signal from the ADC is read and stored in the chan input
channel. In the opposite direction, the dac channel kernel reads the data from the
chan output channel and sends the data to the DAC to generate a signal. To pass data
between the adc channel kernel and the dac channel kernel, the in out kernel performs
a data copy from the chan input channel to the chan output channel. In this imple-
mentation, the autorun attribute is declared for the in out kernel so that the kernel is
automatically executed without a host invocation.

5.7.2 Implementation and result

To evaluate the OpenCL kernel for this implementation, an experiment was con-
ducted by sending an analog input signal generated by an arbitrary signal generator
through the ADC chip on the FPGA board. To measure the output signal from the
DAC chip, an oscilloscope and a spectrum analyzer were used. Fig.5.17 shows the
comparison between the analog input signal and the analog output signal. It can be
seen that the input signal is similar to the output signal. The signal measured by

64

Listing 5.5: OpenCL kernel for signal measurement and generation.

1 // adc_dac_channel.cl

2 #pragma OPENCL EXTENSION cl_intel_channels : enable

3
4 channel ushort ch_data_write

5 __attribute__((depth(0)))

6 __attribute__((io("ch_dac_write")));

7
8 channel ushort ch_data_read

9 __attribute__((depth(0)))

10 __attribute__((io("ch_adc_read")));

11
12 channel ushort chan_input;

13 channel ushort chan_output;

14
15 __attribute__((max_global_work_dim(0)))

16 __kernel void adc_channel() {

17 while(1)

18 {

19 write_channel_intel(chan_input, read_channel_intel(ch_data_read));

20 }

21 }

22
23
24 __attribute__((max_global_work_dim(0)))

25 __attribute__((autorun))

26 __kernel void in_out() {

27 while(1)

28 {

29 ushort input = read_channel_intel(chan_input);

30 write_channel_intel(chan_output, input);

31 }

32 }

33
34
35 __attribute__((max_global_work_dim(0)))

36 __kernel void dac_channel () {

37 while(1)

38 {

39 write_channel_intel(ch_data_write, read_channel_intel(chan_output));

40 }

41 }

65

Figure 5.17: Comparison between (a) input sine wave and (b) output sine wave.

Figure 5.18: Comparison between (a) input frequency and (b) output frequency.

66

the adc channel kernel is passed through a channel extension and generated by the
dac channel kernel. The frequency for both input and output signals were also inves-
tigated. Fig.5.18 shows the frequency comparison between the input and the output
signals. It can be seen that the frequencies for both signals are the same.

5.8 Conclusions

The implementation of FPGA-based signal measurement and signal generation us-
ing OpenCL is demonstrated by using OpenCL ADC and DAC components that can
access an FPGA’s I/O directly. To allow the OpenCL kernel to stream data to the
FPGA’s I/O, OpenCL I/O channel extensions are employed for both reading and writ-
ing data. In the signal measurement experiment, the measured signal is demonstrated
to be similar to the input signal. For signal generation, the frequency of the gen-
erated signal is similar to the estimation frequency. The implementation of the I/O
channel extension for data transmission between two kernels is also demonstrated. In
the experiment, the measured signal is passed to a channel extension and is generated
simultaneously without having to access global memory. It can be observed that the
frequency of the input signal is similar to the frequency of the output signal. This study
has shown that the OpenCL can be used for accessing an FPGA’s I/O, particularly for
signal measurement and signal generation.

67

Chapter 6

Conclusions

The implementation of FPGA-based design using OpenCL for both high-performance
computing applications and engineering applications has been demonstrated. The ex-
periments were conducted according to the external memory bandwidth, computational
capability, and I/O capability. For the high-performance computing applications, the
Himeno benchmark was chosen as an example of the memory-intensive use that re-
quires high bandwidth of the external memory. The OpenCL kernels were evaluated
under two directions according to the number of external memory access: straightfor-
ward implementation and optimized implementation. The former implementation with
loop-unrolling achieves 5.79 GFlops and 7.18 GFlops on a Stratix V GX FPGA and an
Arria 10 A10PL4 FPGA, respectively. Loop unrolling helped the degree of parallelism
to increases and allowed the kernel to process more data within one FPGA clock cycle.
On the other hand, the peak performances for the optimized implementation are 10.62
GFlops and 13.95 GFlops for the Stratix V FPGA and the Arria 10 FPGA, respec-
tively, by combining the temporal-blocking kernel with shift-register implementation.
It makes the performance increase compared to the straight forward approach. But,
the usage of RAM blocks increased in the temporal-blocking kernel because it produces
data dependency among the variables on the on-chip RAM due to a copy operation.
Consequently, some iterations are executed serially, and the performance is not fully
optimized. To avoid the data dependency caused by a copy operation in the temporal-
blocking kernel, a shift-register kernel is implemented. The shift-register improves the
efficiency of external memory accesses via the use of temporal locality. This implemen-
tation also decreases the RAM block usage and removes data dependency caused by
the temporal-blocking method. By combining the temporal-blocking technique with a
shift-register kernel, it is found that the implementation of the shift register effectively
removes the memory dependency that is caused by the temporal-blocking implementa-
tion in the memory-intensive application.

The evaluation of the GEMM implementation as an example of compute-intensive
applications using global memory and local memory was demonstrated using Stratix
V FPGA. For global memory usage, the peak performance achieved 5.78 GFlops by
omitting cache usage. For the local memory implementation, a peak performance of
144.95 GFlops was achieved in a single-precision data type. In this study, the equa-
tion for estimating the performance was introduced. The results show that the peak
performances were similar to the performance estimation, which is calculated from the
OpenCL kernel compilation report. In this GEMM implementation, the kernel code
also shares similarities with the OpenCL code for GPU. Therefore, the development
time in FPGA programming can be reduced by porting the code from the GPU’s code.

68

In multiple FPGA implementations, a peak performance of 579.41 GFlops was achieved
in a single-precision data type. For the double-precision data type, the system achieved
125.44 GFlops for four Stratix V DE5-Net FPGAs. These results show that the per-
formance of multiple FPGAs increases linearly. In terms of the performance-power
ratio, the performance efficiency of multiple FPGAs relative to single FPGA increases
to 1.61x, 1.99x, and 2.29x for two, three, and four Stratix V DE5-Net FPGAs respec-
tively. The results show that multiple FPGA implementations consume less power.
This evidence shows that multiple FPGA implementations provide an alternative solu-
tion for high-performance computing applications with low power consumption.

To demonstrate the capability of FPGA to access the I/O using OpenCL design, the
implementation of FPGA-based design for signal measurement and signal generation
is presented. The experiments were performed by developing new OpenCL ADC and
DAC components that can access an FPGA’s I/O directly. To allow the OpenCL ker-
nel to stream data to the FPGA’s I/O, OpenCL channel extensions were employed for
both reading and writing data. In the signal measurement experiment, the measured
signal was demonstrated to be similar to the input signal. For a signal generation, the
frequency of the generated signal was similar to the estimation frequency. To transfer
the data between two kernels, the implementation of the I/O channel extension was
also demonstrated. In the experiment, the measured signal was passed to a channel
extension and was generated simultaneously without having to access global memory.
The results showed that the frequency of the input signal was similar to the frequency
of the output signal. This study has shown that the OpenCL programming language
can be used for accessing an FPGA’s I/O, specifically for the signal measurement and
signal generation. Because FPGA is well known for its high bandwidth I/O capa-
bilities with low latency, this approach opens the way for using OpenCL not only for
high-performance computing applications but also for the engineering applications that
need access to the external devices such as for signal processing, image or video process-
ing, software-defined radio, high-speed data acquisitions, and so on. By implementing
OpenCL in the FPGA design, it increases productivity and reduces the development
time.

69

Bibliography

[1] Yukihiro Komura. Gpu-based cluster-labeling algorithm without the use of con-
ventional iteration: Application to the swendsen–wang multi-cluster spin flip al-
gorithm. Computer Physics Communications, 194, 04 2015.

[2] Tyng-Yeu Liang, Hung-Fu Li, Yu-Jie Lin, and Bi-Shing Chen. A distributed ptx
virtual machine on hybrid cpu/gpu clusters. Journal of Systems Architecture, 62,
10 2015.

[3] Sunpyo Hong and Hyesoon Kim. An integrated gpu power and performance model.
In Proceedings of the 37th Annual International Symposium on Computer Archi-
tecture, ISCA ’10, page 280–289, New York, NY, USA, 2010. Association for Com-
puting Machinery.

[4] R. Kobayashi, N. Fujita, Y. Yamaguchi, A. Nakamichi, and T. Boku. Gpu-fpga
heterogeneous computing with opencl-enabled direct memory access. In 2019
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 489–498, May 2019.

[5] N. Fujita, R. Kobayashi, Y. Yamaguchi, and T. Boku. Parallel processing on
fpga combining computation and communication in opencl programming. In 2019
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 479–488, May 2019.

[6] Martin Herbordt, Tom Vancourt, Yongfeng Gu, Bharat Sukhwani, Al Conti, Josh
Model, and Doug Disabello. Achieving high performance with fpga-based comput-
ing. Computer, 40:50–57, 03 2007.

[7] Ruben Ricart-Sanchez, Pedro Malagon, Pablo Salva, Enrique Chirivella Pérez,
Qi Wang, and Jose Calero. Towards an fpga-accelerated programmable data path
for edge-to-core communications in 5g networks. Journal of Network and Computer
Applications, 124, 09 2018.

[8] W. Zheng, Rocky Liu, Mudi Zhang, Gao Zhuang, and T. Yuan. Design of fpga
based high-speed data acquisition and real-time data processing system on j-text
tokamak. Fusion Engineering and Design, 89, 02 2014.

[9] Yufei Ma, Naveen Suda, Yu Cao, Sarma B. K. Vrudhula, and Jae sun Seo. Alamo:
Fpga acceleration of deep learning algorithms with a modularized rtl compiler.
Integration, 62:14–23, 2018.

[10] N. Fujii and N. Koike. Iot remote group experiments in the cyber laboratory: A
fpga-based remote laboratory in the hybrid cloud. In 2017 International Confer-
ence on Cyberworlds (CW), pages 162–165, Sep. 2017.

70

[11] Sejin Jung, Eui-Sub Kim, Junbeom Yoo, Jang-Yeol Kim, and Jong Choi. An eval-
uation and acceptance of cots software for fpga-based controllers in npps. Annals
of Nuclear Energy, 94:338–349, 08 2016.

[12] M. Pelcat, C. Bourrasset, L. Maggiani, and F. Berry. Design productivity of a
high level synthesis compiler versus hdl. In 2016 International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS),
pages 140–147, July 2016.

[13] Khronos Group. The open standard for parallel programming of heterogeneous
systems. available online at https://www.khronos.org/opencl/, accessed in May
2016, 2016.

[14] G. Guidi, E. Reggiani, L. D. Tucci, G. Durelli, M. Blott, and M. D. Santambro-
gio. On how to improve fpga-based systems design productivity via sdaccel. In
2016 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pages 247–252, May 2016.

[15] Intel Corporation. Implementing fpga design with the opencl standard. 2013.

[16] D. Chen and D. Singh. Invited paper: Using opencl to evaluate the efficiency of
cpus, gpus and fpgas for information filtering. In 22nd International Conference
on Field Programmable Logic and Applications (FPL), pages 5–12, Aug 2012.

[17] Hasitha Waidyasooriya, Masanori Hariyama, and Kunio Uchiyama. Design of
FPGA-based computing systems with openCL. 11 2017.

[18] E. Rucci, C. Garćıa, G. Botella, A. D. Giusti, M. Naiouf, and M. Prieto-Matias.
Smith-waterman protein search with opencl on an fpga. In 2015 IEEE Trust-
com/BigDataSE/ISPA, volume 3, pages 208–213, Aug 2015.

[19] John Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in science engineering,
12:66–72, 05 2010.

[20] Intel FPGA. Intel sdk for opencl: Best practices guide. available online at
https://www.intel.com, 2018.

[21] Acceleware. Opencl on fpgas for gpu programmers. available online at
https://www.intel.com, 2018.

[22] Ze-ke Wang, Shuhao Zhang, Bingsheng He, and Wei Zhang. Melia: A mapreduce
framework on opencl-based fpgas. IEEE Transactions on Parallel and Distributed
Systems, 27:1–1, 12 2016.

[23] S.O. Settle. High-performance dynamic programming on fpgas with opencl. IEEE
Proc. High Perform. Extr. Comp. Conf (HPEC), 2013.

[24] M. Korch, T. Rauber, and C. Scholtes. Memory-intensive applications on a many-
core processor. In 2011 IEEE International Conference on High Performance
Computing and Communications, pages 126–134, Sep. 2011.

[25] Ken’ichi Itakura, Akihiro Yamashita, Koji Satake, Hitoshi Uehara, Atsuya Uno,
and Mitsuo Yokokawa. Feasibility Study of a Future HPC System for Memory
Intensive Applications: Conceptual Design of Storage System, pages 81–88. 11
2015.

71

[26] Khaled Z. Ibrahim, Steven Hofmeyr, Costin Iancu, and Eric Roman. Optimized
pre-copy live migration for memory intensive applications. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 40:1–40:11, New York, NY, USA, 2011. ACM.

[27] Chao Huang, Srivaths Ravi, Anand Raghunathan, and N.K. Jha. Generation of
heterogeneous distributed architectures for memory-intensive applications through
high-level synthesis. Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on, 15:1191 – 1204, 12 2007.

[28] Yun Zhang, Faisal N. Abu-Khzam, Nicole E. Baldwin, Elissa J. Chesler, Michael A.
Langston, and Nagiza F. Samatova. Genome-scale computational approaches to
memory-intensive applications in systems biology. In Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, SC ’05, page 12, USA, 2005. IEEE
Computer Society.

[29] Himeno benchmark. http://accc.riken.jp/.

[30] Yukinori Sato, Y. Inoguchi, Wayne Luk, and Tadao Nakamura. Evaluating recon-
figurable dataflow computing using the himeno benchmark. In 2012 International
Conference on Reconfigurable Computing and FPGAs, ReConFig 2012, pages 1–7,
12 2012.

[31] Terasic. De5-net fpga development kit user manual. available online at
http://www.terasic.com.tw/en/, 2017.

[32] Terasic. Arria 10 de5a-net fpga development kit user manual.
http://www.terasic.com.tw/en/, 2017.

[33] NVidia. http://www.nvidia.com.

[34] M. Wissolik, D. Zacher, A. Torza, and B. Day. Virtex ultrascale+ hbm fpga: A
revolutionary increase in memory performance. available: http://www.xilinx.com,
2018.

[35] M. Deo, J. Schulz, and J.L. Brown. Intel stratix 10 mx devices solve the memory
bandwidth challenge. http://www.intel.com/, 2018.

[36] Hasitha Waidyasooriya, Masanori Hariyama, and Kunio Uchiyama. Design of
FPGA-based computing systems with openCL. 11 2017.

[37] Bittware. Arria 10 gx low profile pcie board with dual qsfp and ddr4. available:
http://www.bittware.com/, 2018.

[38] Intel FPGA. Intel sdk for opencl programming guide. https://www.intel.com, 2018.

[39] Qi Jia and Huiyang Zhou. Tuning stencil codes in opencl for fpgas. 2016 IEEE
34th International Conference on Computer Design (ICCD), pages 249–256, 2016.

[40] Hasitha Muthumala Waidyasooriya, Yasuhiro Takei, Shunsuke Tatsumi, and
Masanori Hariyama. Opencl-based fpga-platform for stencil computation and its
optimization methodology. IEEE Trans. Parallel Distrib. Syst., 28(5):1390–1402,
May 2017.

72

[41] N. Sato, T. Chigira, K. Toyoda, Y. Iijima, and Y. Yuminaka. Multi-valued sig-
nal generation and measurement for pam-4 serial-link test. In 2018 IEEE 48th
International Symposium on Multiple-Valued Logic (ISMVL), pages 210–214, May
2018.

[42] E. H. Phillips and M. Fatica. Implementing the himeno benchmark with cuda on
gpu clusters. In 2010 IEEE International Symposium on Parallel Distributed Pro-
cessing (IPDPS), pages 1–10, Los Alamitos, CA, USA, apr 2010. IEEE Computer
Society.

[43] Bocheng Liu, Chen Qingkui, Jinjing Li, and Liping Gao. Ai bcs: A gpu cluster
scheduling optimization based on ske model. Microprocessors and Microsystems,
47, 05 2016.

[44] Jakub Kurzak, Pitor Luszczek, Stanimire Tomov, and Jack Dongarra. Preliminary
results of autotuning gemm kernels for the nvidia kepler architecture- geforce gtx
680.

[45] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang Bao, and
Ninghui Sun. Fast implementation of dgemm on fermi gpu. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, New York, NY, USA, 2011. Association for Computing
Machinery.

[46] Naohito Nakasato. A fast gemm implementation on the cypress gpu. SIGMET-
RICS Performance Evaluation Review, 38:50–55, 03 2011.

[47] K. Matsumoto, N. Nakasato, and S. G. Sedukhin. Performance tuning of matrix
multiplication in opencl on different gpus and cpus. In 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis, pages 396–405, Nov
2012.

[48] Yong Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev. 64-bit floating-
point fpga matrix multiplication. In Proceedings of the 2005 ACM/SIGDA 13th
International Symposium on Field-Programmable Gate Arrays, FPGA ’05, page
86–95, New York, NY, USA, 2005. Association for Computing Machinery.

[49] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S. Chung, and Greg Stitt. A
high memory bandwidth fpga accelerator for sparse matrix-vector multiplication.
In FCCM, pages 36–43. IEEE Computer Society, 2014.

[50] B. Holanda, R. Pimentel, J. Barbosa, R. Camarotti, A. Silva-Filho, L. Joao,
V. Souza, J. Ferraz, and M. Lima. An fpga-based accelerator to speed-up matrix
multiplication of floating point operations. In 2011 IEEE International Symposium
on Parallel and Distributed Processing Workshops and Phd Forum, pages 306–309,
May 2011.

[51] Zoran Jakšić, Nicola Cadenelli, David Buchaca Prats, Jordà Polo, Josep
Llúıs Berral Garcia, and David Carrera Perez. A highly parameterizable frame-
work for conditional restricted boltzmann machine based workloads accelerated
with fpgas and opencl. Future Generation Computer Systems, 104:201 – 211,
2020.

73

[52] Intel FPGA. Matrix multiplication design example.
https://www.intel.com/content/www/us/en/programmable/support/support-
resources/design-examples/design-software/opencl/matrix-multiplication.html,
2019.

[53] Intel FPGA. Stratix v device overview. available online at https://www.intel.com/,
2017.

[54] Intel FPGA. Stratix v avalon-mm interface for pcie solutions user guide. available
online at http://www.intel.com, 2017.

[55] X. Cui, Y. Chen, and H. Mei. Improving performance of matrix multiplication
and fft on gpu. In 2009 15th International Conference on Parallel and Distributed
Systems, pages 42–48, Dec 2009.

[56] Intel FPGA. Stratix v device handbook, volume 1: Device interfaces and integra-
tion. available online at https://www.intel.com, 2017.

[57] Pilsoo Lee, C. Lee, and Ju Lee. Development of fpga-based digital signal processing
system for radiation spectroscopy. Radiation Measurements, 48:12–17, 01 2013.

[58] Aboli Audumbar Khedkar and R.H. Khade. High speed fpga-based data acquisition
system. Microprocess. Microsyst., 49(C):87–94, March 2017.

[59] K. Venkatraman, Moorthi Sridharan, M. Selvan, and Raja Pitchaimuthu. A com-
prehensive embedded solution for data acquisition and communication using fpga.
Journal of Applied Research and Technology, 15, 02 2017.

[60] Liu Qing, Cao Kai, and Lai Ying-yong. Fpga software architecture for software
defined radio. Procedia Engineering, 29:2133–2139, 12 2012.

[61] Sabrina Zereen, Sundeep Lal, Mohammed Khalid, and Sazzadur Chowdhury. An
fpga-based controller for a 77 ghz mems tri-mode automotive radar. Microproces-
sors and Microsystems, 58, 02 2018.

[62] Colm A Ryan, Blake R. Johnson, Diego Ristè, Brian Donovan, and T A Ohki.
Hardware for dynamic quantum computing. The Review of scientific instruments,
88 10:104703, 2017.

[63] K. Hill, S. Craciun, A. George, and H. Lam. Comparative analysis of opencl vs. hdl
with image-processing kernels on stratix-v fpga. In 2015 IEEE 26th International
Conference on Application-specific Systems, Architectures and Processors (ASAP),
pages 189–193, July 2015.

[64] Hasitha Waidyasooriya, Yasuhiro Takei, Shunsuke Tatsumi, and Masanori
Hariyama. Opencl-based fpga-platform for stencil computation and its optimiza-
tion methodology. IEEE Transactions on Parallel and Distributed Systems, PP,
10 2016.

[65] Intel. Intel fpga sdk for opencl, programming guide. 2018.

[66] Intel. Intel fpga sdk for opencl pro edition custom platform toolkit user guide.
2018.

74

[67] Ryohei Kobayashi, Yuma Oobata, Norihisa Fujita, Yoshiki Yamaguchi, and
Taisuke Boku. Opencl-ready high speed fpga network for reconfigurable high per-
formance computing. In Proceedings of the International Conference on High Per-
formance Computing in Asia-Pacific Region, HPC Asia 2018, pages 192–201, New
York, NY, USA, 2018. ACM.

[68] Terasic. De1-soc opencl user manual. available online at http://www.terasic.com,
2018.

[69] Terasic. Thdb-ada user manual. available online at http://www.terasic.com, 2018.

[70] Stefan Leitner, Haibo Wang, and Spyros Tragoudas. Design techniques for direct
digital synthesis circuits with improved frequency accuracy over wide frequency
ranges. Journal of Circuits System and Computers, 26, 01 2016.

[71] B. Cronin. Dds devices generate highquality waveforms simply, efficiently, and
flexibly. http://www.analog.com, 2018.

[72] Fundamentals of direct digital synthesis (dds). http://www.analog.com, 2018.

75

List of publications

Reviewed journal

1. Iman Firmansyah and Yoshiki Yamaguchi. “OpenCL Implementation of FPGA-
Based Signal Generation and Measurement”. IEEE Access, vol. 7, pp: 48849-
48859, DOI: 10.1109/ACCESS.2019.2910391, 2019.

Reviewed conferences

1. Iman Firmansyah, Du Changdao, Norihisa Fujita, Yoshiki Yamaguchi, and Taisuke
Boku. ”FPGA-based Implementation of Memory-Intensive Application using
OpenCL”. In Proceeding of the 10th International Symposium on Highly-Efficient
Accelerators and Reconfigurable Technologies, ACM International Conference
Proceeding (ICPS), Article No.16, DOI: 10.1145/3337801.3337806, 2019.

2. Iman Firmansyah, Yusuf N. Wijayanto, and Yoshiki Yamaguchi, ”2D Stencil
Computation on Cyclone V SoC FPGA using OpenCL”. In Proceeding of IEEE
International Conference on Radar, Antenna, Microwave, Electronics, and Telecom-
munications (ICRAMET), pp. 121-124, DOI: 10.1109/ICRAMET.2018.8683924,
2018.

3. Iman Firmansyah, Yoshiki Yamaguchi, and Taisuke Boku, ”Performance evalu-
ation of Stratix V DE5-Net FPGA board for high performance computing”. In
Proceeding of IEEE International Conference on Computer, Control, Informatics
and its Applications (IC3INA), pp. 23-27, DOI: 10.1109/IC3INA.2016.7863017,
2016.

Poster presentations

1. Iman Firmansyah, Yoshiki Yamaguchi, and Taisuke Boku. ”Capability assess-
ment of a multiple-FPGA system for high-performance computing”. ISC High
Performance, Frankfurt, 2016.

2. Iman Firmansyah and Yoshiki Yamaguchi, ”A flexible high-performance com-
puting on an FPGA cluster”. JSPS 8th HOPE Meeting with Nobel laureates,
Tsukuba, 2016.

76

