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Abstract 

The aim of this thesis is to consider how computer vision technologies can be 

applied to perform geometric projector calibration for large-scale spatial augmented 

reality (SAR) systems. Specifically, how to use the projector-camera system 

(PROCAMS), which is an active stereo system for 3D sensing, to estimate the crucial 

information to achieve geometrically correct projection result on a projection surface. 

Indeed, over the past decade, a number of new methods and technologies that apply 

PROCAMS to geometric projector calibration have been proposed, and some of them are 

for SAR. These works have proven their effectiveness in desktop scale, or at most living 

room scale scenes. In recent years, SAR has shown its value in many fields like exhibition, 

art, education, and advertising, where it is used to display contents in large-scale spaces. 

Despite this, the feasibility of PROCAMS-based geometric projector calibration methods 

in large-scale spaces is rarely discussed or mentioned, and manual calibration is still a 

common approach on site. Given the fact that PROCAMS-based method can simplify the 

calibration process, this thesis addresses the research question of what issues lowered the 

feasibility of PROCAMS-based projector calibration method as the scale increases, and 

how to solve them. 

 This thesis gives a brief introduction to the SAR, followed by a description of 

two common calibration scenarios (known planar surface and unknown surface) and the 

corresponding calibration problems. Three unsolved issues that arise as the scale of the 



 

ix 

 

calibration scene increases are discussed in this thesis: working distance, lens distortion, 

and the tradeoff between depth accuracy and scene completeness. Why these issues 

significantly affect the calibration process in large-scale space and why they are unsolved 

are also explained. An online projector calibration method using a laser line pointer is 

proposed to address the issues in the planar surface scenario. It applies “straight lines 

have to be straight” method to estimate the lens distortions by optimizing the straightness 

of lines on the surface. An evaluation criterion is designed and according to which the 

proposed method outperformed a typical self-calibration method in a real-word, large-

scale SAR scene. Furthermore, a method that uses a mobile camera to calibrate the 

projector is proposed to address the issues in the unknown surface scenario. The camera’s 

mobility, which makes the method unique among other existing methods, allows the use 

of multiview images without introducing extra cameras. The experiment results showed 

that the method achieved high-quality calibration results in several different scenes. It is 

also shown that the method solved the problem of tradeoff depth accuracy and scene 

completeness despite the long working distance thanks to the multiview image. 
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Chapter 1  
Introduction 

This thesis discusses the research on projector calibration methods for large-scale 

Spatial Augmented Reality (SAR) systems. In particular, it discusses several unsolved 

issues arise in the calibration process as the scale of the SAR scene increases and proposes 

corresponding solutions to address them using computer vision technologies. 

In recent years, a concept named Augmented Reality, or AR, has been getting 

more and more popular in both research and application fields. Different from another 

concept with a similar name called Virtual Reality or VR, which displays visual 

information that is entirely artificial, AR extents human’s vision by overlapping extra 

artificial information onto the real world, thus augments reality. 

According to how artificial visual information is displayed, AR technologies can 

be divided into HMD-based and projection-based. The latter is also known as SAR. It 

displays artificial visual information by directly projecting images onto the surfaces in 

the real world. Some typical applications of SAR have been developed: Shader Lamps 

[1] allows virtual painting on real 3D objects. Deformation Lamp [2] makes static printed 

images perceptually moving by adding motion information. Some applications like [3] 

can change the perceived physical proprieties of the projection surface. Also, there are 

several large-scale immersive SAR systems like Large Space [4].  
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The significant advantages of SAR over HMD-based AR are: first, it puts no 

burden on the users as it does not require any wearable device; second, the projected 

information is shared by every user in the scene; and third, it is relatively simple to display 

large content in a wide space. These advantages make SAR a rather good choice for large-

scale, public application in fields like exhibition, art, education and advertising. 

However, the disadvantages of SAR are also obvious. As the display devices (i.e., 

the projectors) and the display surfaces are typically stationary, SAR applications are 

usually required to be run in a spatialized space where the display system has been 

installed in advance. Consequently, deploying a projection system for SAR can be 

extremely cumbersome. First, users have to measure the geometry of the projection 

surface, and then run geometric calibration for all the projectors in the system so that the 

projection results are geometrically correct. Moreover, color and luminance calibrations 

are also required in many situations, such as when multi-projector alignment and blending 

is involved, or the physical properties of the surface like color and albedo significantly 

affect the projection results. Apart from that, users also need to deal with many other tasks 

and challenges, including but not limited to projector installation, projector control, and 

frame synchronization. As the scale of the space increases, it increases the deployment 

difficulty and raises new issues that may not be significant in a small-scale scenario. 

Therefore, research on new technologies that simplify the deployment process as well as 

investigate and resolve issues that arise as the scale increases is of great value. 

This thesis focused on the topic of projector geometric calibration in large-scale 

SAR. Traditionally this can be achieved by manual methods. In short, the user needs to 
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deform the projector image manually while observing the projection until an acceptable 

result is obtained. This method is time-consuming and laborious. To simplify the process, 

one can use projector-camera systems (PROCAMS), which is an active stereo system. In 

PROCAMS, the camera is used to capture the projection results. In order to calibrate the 

projector, correspondences between the camera image and the projector image are 

required. The correspondences are usually generated by structured light (SL) projection. 

Although there has been much research on PROCAMS in the last decade, they mostly 

assume a close-range scenario. The issues when using it to calibrate the projector in a 

large-scale space were, unfortunately, rarely mentioned and discussed.   

The contributions of this work lie in proposing new PROCAMS based projector 

calibration methods to solve the issues in large-scale SAR scenarios. In particular, this 

research focuses on the following issues: 

 In a large-scale space, the working distance of the projector is usually too large to 

apply conventional offline and online calibration methods. The reason is that these 

methods usually require a calibration board. However, as the working distance 

increases, the size of the required calibration board also increases to an impractical 

level. To solve this issue, methods that do not require any calibration board in this 

research.   

 The long working distance and large projection area also enlarge the effect of lens 

distortion on a planar projection surface when the users watch the projected images 

in a relatively close range, or projector stitching is required in subsequent processing, 

or both. Therefore, it needs to be calibrated more accurately. In this research, the high 
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accuracy is achieved by using line straightness, which is more viewer-oriented, as an 

objective function to be optimized. 

 The typical setup of PROCAMS, where the camera is installed very close to the 

projector, causes higher triangulation error in large-scale space as the baseline 

between the projector and camera is too short comparing to the distance between the 

target object and the projector. The triangulation error significantly affects the 

calibration accuracy. Merely increasing the baseline length, however, potentially 

causes occlusions and thereby affect scene completeness. In this research, this 

tradeoff is solved by using a mobile camera and take advantage of multiview images.   

By solving the above problems, this study makes PROCAMS a more feasible method for 

projector calibration in large-scale SAR, thereby helping to simplify the calibration 

process. These three issues are explained in further detail in Section 2.3. 

Depending on the SAR scenario, two evaluation methods are used in this research. 

For a known planar projection surface, the pixel misalignment in real-world scale is 

calculated. Then it is compared to the desired calibration accuracy calculated from 

viewing distance, projector resolution, projection area, and visual acuity. For more 

complex unknown surfaces, the effectiveness of the proposed method is evaluated by 3D 

reconstruction accuracy, scene completeness, and reprojection error.   

In Chapter 2, the common scenarios of projector geometric calibration are 

introduced at first. This chapter then shows some conventional camera-based projector 

calibration methods and discuss their limitations when applied to SAR in large-scale 
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space. Chapter 3 introduces an online calibration method using a camera and laser line 

pointer. This method was proposed to calibrate a large-scale projection system for a planar 

surface. The calibration process is also described in detail, and the calibration accuracy 

the method achieved is shown in the experiments. Chapter 4 introduces an innovative 

method that allows calibrating a projector using a mobile camera. This method shows 

how projector calibration in large-scale space can benefit from multiview images taken 

by the camera. Chapter 5 makes a conclusion to this research. 
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Chapter 2  
Projector Calibration for Spatial 
Augmented Reality and Related Works 

2.1 Geometric Calibration of Projector 

Usually, the projector projection is regarded as an inverse projection of a pin-hole 

camera, and therefore, it is the perspective projection similar to the camera models 

Two scenarios for projector calibration in SAR are considered in this research. 

The first is that the projection target is planar, and its coordinate system has been defined. 

In this case, we need to estimate the 3×3 homography H that satisfies: 

𝒙𝒙~𝐻𝐻𝑿𝑿 (2-1)  

where 𝓍𝓍 and X are the homogenous coordinates of the corresponding 2D points on the 

projector plane and the projection target, respectively. Warping the projector buffer by H, 

we can get the geometrically correct projection result on the target plane. The second 

scenario is when the shape of the projection surface is unknown. In this case, we need to 
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perform 3D reconstruction to estimate the geometry of the projection surface X’, and also 

estimate the intrinsic matrix K and extrinsic matrix [R | t] of the projector that satisfies: 

𝒙𝒙~𝑲𝑲[𝑹𝑹|𝒕𝒕]𝑿𝑿′ (2-2)  

where X’ is the homogenous coordinate of the corresponding 3D point of 𝓍𝓍 on the 

projection surface, R and t are the 3×3 rotation matrix and the 3×1 translate vector, 

respectively.   

In either scenario, the acquisition of correspondences between the projector and 

the projection target is essential, and it requires the assistance of a camera. Therefore, 

camera calibration is also necessary. 

2.2 Related Works 

2.2.1 Offline Calibration 

There are many methods to calibrate the projector-camera system in a separated 

manner, such as [5] [6] and [7]. They first calibrate the camera intrinsics parameters 

offline via a checkerboard-based method. Then use the calibrated cameras to estimate the 

projector intrinsics and extrinsics. The most commonly used one for camera calibration 

is Zhang’s method [8]. This method requires a set of images of a checkerboard pattern 

captured from several different views. Its accuracy highly depends on the number of 

samples, and the checkerboard orientations in the images thus require expert knowledge 

to achieve accurate calibration results. In [9], A. Richardson et al. proposed a method to 
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assist users in selecting the next checkerboard pose. It iteratively estimates the most 

valuable pose that improves the calibration accuracy and shows the pose to the user. 

2.2.2 Online Calibration 

To simplify the PROCAMS calibration process, researchers proposed several 

methods to calibrate the projector and camera simultaneously by projecting some pattern 

images onto a planar checkerboard [10] [11]. As the pattern images encoded the 

coordinate information of projector pixels, their corresponding positions on the 

checkerboard plane can be detected from camera images. With these correspondences, a 

projector can also be calibrated using the same manner as Zhang’s camera calibration 

method. In [10] , pixel coordinates are encoded via Gray code patterns [12]. In [11], for 

each checkerboard orientation, after capturing the real checkerboard, a sheet is covered 

on top of the checkerboard, changing it into a projection screen, and then project a 

checkerboard image onto it. 

2.2.3 Self-Calibration 

Yamazaki et al. [13] proposed a fully automatic calibration method for a generic 

projector-camera pair. The method is based on the decomposition of a radial fundamental 

matrix into intrinsics and extrinsics of the two devices. Deglint et al. [14] tried to improve 

the self-calibration method by using a modified cost function and optimization strategy. 

These methods use (2-3), also known as Bougnoux’s formula [15], to calculate the focal 
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lengths of the projector and camera from their principle points 𝑝𝑝𝑝𝑝  and 𝑝𝑝𝑐𝑐 , and an 

estimation of the fundamental matrix F. 

𝑓𝑓𝑝𝑝2 = −
𝑝𝑝𝑐𝑐𝑇𝑇[𝑒𝑒𝑐𝑐]×𝐼𝐼3𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝐹𝐹𝑇𝑇𝑝𝑝𝑐𝑐
𝑝𝑝𝑐𝑐𝑇𝑇[𝑒𝑒𝑐𝑐]×𝐼𝐼3𝐹𝐹𝐼𝐼3𝐹𝐹𝑇𝑇𝑝𝑝𝑐𝑐

 

𝑓𝑓𝑐𝑐2 = −
𝑝𝑝𝑝𝑝𝑇𝑇�𝑒𝑒𝑝𝑝�×

𝐼𝐼3𝐹𝐹𝑇𝑇𝑝𝑝𝑐𝑐𝑝𝑝𝑐𝑐𝑇𝑇𝐹𝐹𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑇𝑇�𝑒𝑒𝑝𝑝�×

𝐼𝐼3𝐹𝐹𝑇𝑇𝐼𝐼3𝐹𝐹𝑝𝑝𝑝𝑝
 

(2-3) 

[𝑒𝑒𝑐𝑐]× and �𝑒𝑒𝑝𝑝�× are the skew-matrix of the left and right null-vector of F, respectively, 

and 𝐼𝐼3 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1,1,0). It is known that (2-3) is very sensitive to the assumed position of 

principle points and even small errors in F. In the worst cases, the right side of (2-3) can 

become negative, which makes the solution impossible [16]. In such a case, the 

calibration completely fails. Therefore, these methods require a relatively accurate initial 

guess for the principal point. However, this is very difficult to achieve because, unlike the 

camera, the principal point of a projector is usually not close to the image center, and its 

position is affected by the projector’s lens shift function. S. Will and A. Grundhofer 

proposed a generic self-calibration method for multi-projector-camera systems [17]. It 

automatically selects a pair of cameras that produce the most reliable calibration result, 

and then iteratively integrate the rest cameras and projectors. It makes sure that only 

camera pairs that give reasonable results in (2-3) are considered as candidates of the initial 

pair. This method requires at least two stationary cameras for the initial pair selection. It 

also requires expert knowledge to choose the appropriate number and locations of camera 

views to calibrate the system successfully. 
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2.3 Unsolved Issues of Projector Calibration for SAR 

in Large-Scale Space 

2.3.1 Working Distance 

Checkerboard based online and offline calibration methods are viable only when 

the projection target is relatively close to the projector and camera. It is because the 

calibration is usually required to be performed on the working distance. As the working 

distance increases, the projection area also increases, resulting in an increase in the size 

of the checkerboard to be used. The calibration distance is therefore limited by the 

available size of the checkerboard in practical. In a large-scale space, the working distance 

is usually considerable, which makes it impossible to use a regular size checkerboard for 

calibration. Furthermore, zoom, focus, and offset may be adjusted after installation, 

making offline calibration method more impractical in large-scale spaces. 

2.3.2 Lens Distortion 

Lens distortion correction is essential, especially in multiple projector applications 

where projector stitching is involved. Some calibration methods like [5] treat the 

projector’s lens distortion as ignorable parameters. It is acceptable if the projectors are in 

close range to the screen. However, when the distance between the projector and screen 

increases to achieve a larger projection area, lens distortion significantly affects the 

alignment accuracy, and the misalignment becomes more obvious to users as they are 

relatively close to the screen. Therefore, it should be corrected by calibration. 
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Checkerboard-based online and offline calibration method can estimate the lens 

distortion accurately if enough checkerboard poses are given. However, they are not 

feasible in large-scale space due to the reasons given in section 2.3.1. Self-calibration 

methods can estimate the lens distortion parameters by non-linear optimization that 

minimize reprojection error [13] [14] [17]. However, the projection results are not 

guaranteed to be visually correct to the users, so new approaches are needed to address 

this problem. 
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2.3.3 Tradeoff Between Depth Accuracy and Scene 

Completeness 

A PROCAMS is an active stereo system; therefore, it suffers from the problem of 

the tradeoff between occlusion and depth error like other stereo systems. Consider a 

simple scene as being shown in Figure 2-1: the point q, which is the projection of projector 

feature p on the camera image, is known inexactly: x+δx, x-δx. The depth accuracy δZ 

can be expressed as: 

𝛿𝛿𝛿𝛿 =
𝛿𝛿2

𝐵𝐵𝑓𝑓 𝛿𝛿𝛿𝛿 
(2-4)  

 

Figure 2-1. The relationships between depth uncertainty range and depth (Z), 
baseline length (B), and uncertainty of the corresponding point on the 
camera image (δx). 
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where B is the baseline, f is the focal length, and Z is the depth. It expresses how much 

depth Z can change given a change in x, and that the uncertainty of Z is proportional to 

the square of Z and inversely proportional to the length of baseline B. In other words, 

given an uncertainty range of x, the uncertainty range of depth becomes larger as B 

deceases and Z increases. On the other hand, as demonstrated in Figure 2-2, increasing 

the baseline can cause larger occlusion; therefore, lower the completeness of the scene. 

Moreover, it causes difficulties in finding correspondences between the projector and 

camera due to the large distortion and the change of intensity [18]. Due to the tradeoff 

described above, in a large-scale space where the distance between the projector and 

screen is long (i.e., the depth Z is large), finding an appropriate position to set the camera 

 

Figure 2-2. The tradeoff between the baseline length and occlusion area. The 
occlusion area is covered by the projection but not be able to be captured 
by the camera. It shows that as the baseline between the projector and 
camera becomes longer, the occlusion area becomes larger. 
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for the projector calibration can be tricky. Setting the camera close to the projector ensures 

that the whole projection area is visible to the camera; however, it results in a short 

baseline, thus potentially causes large depth error. Conversely, moving the camera away 

from the projector such that the angle is sufficiently large will cause occlusions and also 

lower the number of their correspondences.  
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Chapter 3  
An Accurate Projector Calibration 
Method for Large Planar Surface 
Using Camera and Laser-Line Pointer 

In this chapter, we consider a real-world, large-scale SAR system, as shown in 

Figure 3-1: a floor projection system consists of four sets of projector-camera systems 

with each camera mounted on top of a projector. This system is installed on the ceiling of 

a school gym, and the projections are displayed on the floor. The resolutions of the 

projector and the camera are 1024 pixels × 768 pixels and 1920 pixels × 1200 pixels, 

respectively. The angles of view of the projector and the camera are 60° and 70°, 

respectively. The projection area covered by four projectors is about 90.2 m2 (11 m × 8.2 

m). The distance from the projectors to the floor is about 6m. 

 

Figure 3-1. A real-word, large-scale SAR application: The floor projection system 
for learning aid in a school gym. 
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By analyzing the projection results using the cameras attached to each projector, 

the lens distortion of the projectors, and the 2D homography between the floor surface 

and each projector’s image plane, can be estimated. The proposed calibration method is 

based on the following assumptions: 

 The floor is approximately planar. 

 The projectors are coarsely aligned in advance. 

 The coordinate system of the floor is defined and can be identified in the 

cameras. 

 Laser lines projected onto the floor can be captured by the cameras. 

A projected image captured by the camera includes the following four kinds of 

distortion: 

 projector lens distortion;  

 projective distortion between the projector image plane and the projection 

plane;  

 camera lens distortion;  

 projective distortion between the camera image plane and the projection plane. 

The lens distortions are caused by the optical design of the lenses of the camera and the 

projector. The projective distortions are caused by the non-parallel positioning among the 

projector plane, the camera plane, and the projection plane. 

As has been discussed in Chapter 2, it is impossible to apply any calibration 

method that requires moving a checkerboard to the system. Therefore, it is difficult to 

estimate the above distortions simultaneously. In the proposed method, these distortions 
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are estimated separately. The ideal estimation of projective distortion parameters is based 

on the assumption that the projected and captured images satisfy a perspective 

transformation, but due to the presence of the lens distortion, they cannot be estimated 

accurately. On the other hand, the lens distortion parameters can be estimated 

independently by measuring and correcting the straightness of lines that are supposed to 

be straight in an image. This method is also known as “straight lines have to be straight” 

[19]. With this method, it is possible to first correct the lens distortions, and next perform 

projective distortion correction. 

For estimating the lens distortion parameters of the projector, the projection results 

must be captured by the camera. In that case, the camera lens distortion must have been 

corrected. Therefore, in the proposed method, it is necessary to correct the camera lens 

distortion first and then the projector’s lens distortion and finally estimate the projection 

distortion parameters without suffering any effects from the lens distortions. 

3.1 Camera Lens Distortion Correction 

In order to apply “straight lines have to be straight”, the peaks (i.e., center 

positions) of a set of straight lines in the camera images need to be extracted. Since there 

is no guarantee that enough straight lines exist in the camera’s view field to ensure a 

reliable result, a laser line pointer (Figure 3-2) is used to project several straight lines onto 

the projection plane and generate a series of sample points for each line with sub-pixel 

accuracy. The sample points are the peak positions across the width of a line. A laser line 
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detection method proposed by A. Molder et al. [20] are applied to detect the line peaks. 

It first upsamples the image by an existing algorithm [21]. Then it uses the Laplacian of 

Gaussian (LoG) as a kernel to convolve the gray level profile of the image and detects the 

peaks in pixel accuracy. Finally, a parabola fitting procedure is applied to refine the peaks 

to subpixel accuracy by finding the extreme value of the parabola curve. In practice, the 

image can have many noises; thus, not all the detected peaks belong to a laser line. To 

solve the problem, a 2-D line fitting with the random sample consensus (RANSAC) 

algorithm [22] is applied in our method. The peaks that not fit the line model are 

considered outliers and removed. Figure 3-3 shows an example of the combined detection 

results of multiple laser lines. 

A model of the camera lens distortion is expressed by (3-1) where (x,y) is the 

original distorted coordinate, (x̂,ŷ) is the undistorted coordinate, r is the distance between 

(x,y) and the center of camera distortion model (xc,yc), (xc,yc) is usually the center of the 

image, and κ1, κ2 are distortion parameters. 

�
(𝛿𝛿� − 𝛿𝛿𝑐𝑐) = (1 + 𝜅𝜅1𝑟𝑟2 + 𝜅𝜅2𝑟𝑟4)(𝛿𝛿 − 𝛿𝛿𝑐𝑐)
(𝑦𝑦� − 𝑦𝑦𝑐𝑐) = (1 + 𝜅𝜅1𝑟𝑟2 + 𝜅𝜅2𝑟𝑟4)(𝑦𝑦 − 𝑦𝑦𝑐𝑐) (3-1)  

Let {(xl,i, yl,i)} with l = 1,…, N and i = 1,…, Nl be the projection of the N sets of the 3D 

aligned points in the 2D image, where {(x̂l,i, ŷl,i)} are the corresponding corrected points 
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using the distortion model (3-1). The covariance matrix for each point set l is given by 

(3-2), where x̅̂l,i, y̅̂l,i are the average of the variables taken over i.   

�̂�𝑆𝑙𝑙(𝜅𝜅1, 𝜅𝜅2, 𝛿𝛿𝑐𝑐 ,𝑦𝑦𝑐𝑐) = �
�̂�𝑆𝑥𝑥𝑥𝑥𝑙𝑙 �̂�𝑆𝑥𝑥𝑥𝑥𝑙𝑙

�̂�𝑆𝑥𝑥𝑥𝑥𝑙𝑙 �̂�𝑆𝑥𝑥𝑥𝑥𝑙𝑙
�

=
1
𝑁𝑁𝑙𝑙
⎝

⎛
� �𝛿𝛿�𝑙𝑙,𝑖𝑖 − 𝛿𝛿�𝑙𝑙,𝚤𝚤�����2

𝑁𝑁𝑙𝑙

𝑖𝑖=1
� �𝛿𝛿�𝑙𝑙,𝑖𝑖 − 𝛿𝛿�𝑙𝑙,𝚤𝚤������𝑦𝑦�𝑙𝑙,𝑖𝑖 − 𝑦𝑦�𝑙𝑙,𝚤𝚤�����

𝑁𝑁𝑙𝑙

𝑖𝑖=1

� �𝛿𝛿�𝑙𝑙,𝑖𝑖 − 𝛿𝛿�𝑙𝑙,𝚤𝚤������𝑦𝑦�𝑙𝑙,𝑖𝑖 − 𝑦𝑦�𝑙𝑙,𝚤𝚤�����
𝑁𝑁𝑙𝑙

𝑖𝑖=1
� �𝑦𝑦�𝑙𝑙,𝑖𝑖 − 𝑦𝑦�𝑙𝑙,𝚤𝚤�����2

𝑁𝑁𝑙𝑙

𝑖𝑖=1 ⎠

⎞ 

(3-2)  

The energy of the N sets of the aligned points is given by (3-3). According to 

Cauchy-Schwarz inequality, E decreases as the lines becoming more straight, and E=0 if 

and only if the points {(x̂l,i, ŷl,i)} are perfectly aligned linearly for every line l. Distortion 

parameters κ1, κ2 can then be estimated by solving a minimization problem of E using the 

algebraic approach proposed by L. Alvarez et al. [23]. 

𝐸𝐸(𝜅𝜅1, 𝜅𝜅2, 𝛿𝛿𝑐𝑐 ,𝑦𝑦𝑐𝑐) =
1
𝑁𝑁� ��̂�𝑆𝑥𝑥𝑥𝑥𝑙𝑙 �̂�𝑆𝑥𝑥𝑥𝑥𝑙𝑙 − �̂�𝑆𝑥𝑥𝑥𝑥𝑙𝑙

2�
𝑁𝑁

𝑙𝑙=1
 (3-3)  
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Figure 3-3. An example of the extracted laser lines. 

 

Figure 3-2. Laser line projection on the floor. 
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3.2 Projector Lens Distortion Correction 

The projector’s optical system can be seen as an inverted model of a camera. Thus, 

the lens distortion model is given by the following expression: 

�
𝛿𝛿� − 𝛿𝛿𝑐𝑐 = (1 + 𝜅𝜅1𝑟𝑟2 + 𝜅𝜅2𝑟𝑟4)(𝛿𝛿0 − 𝛿𝛿𝑐𝑐)
𝑦𝑦� − 𝑦𝑦𝑐𝑐 = (1 + 𝜅𝜅1𝑟𝑟2 + 𝜅𝜅2𝑟𝑟4)(𝑦𝑦0 − 𝑦𝑦𝑐𝑐)

 (3-4)  

Eq.(3-4) is similar to (3-1) but where (x0,y0) is the undistorted coordinate in the projector’s 

original image buffer, (x̂,ŷ) is the distorted coordinate, and r is the distance between (x0,y0) 

and (xc,yc). (x̂,ŷ) can be corrected to undistorted coordinate (x0,y0) by pre-warping (x0,y0) 

to (x',y') using (3-5) where κ1' and κ2' are the distortion parameters for pre-warping: 

�
𝛿𝛿′ − 𝛿𝛿𝑐𝑐 =

𝛿𝛿0 − 𝛿𝛿𝑐𝑐
1 + 𝜅𝜅1′ 𝑟𝑟2 + 𝜅𝜅2′ 𝑟𝑟4

𝑦𝑦′ − 𝑦𝑦𝑐𝑐 =
𝑦𝑦0 − 𝑦𝑦𝑐𝑐

1 + 𝜅𝜅1′ 𝑟𝑟2 + 𝜅𝜅2′ 𝑟𝑟4
 

(3-5)  

The projector lens distortion is estimated by evaluating the straightness of 

projected straight lines. Since the projector cannot “see” its projection result, instead of 

the actual (x̂,ŷ), only the coordinate of its projection on the camera plane is known. To 

efficiently project a projector pixel directly to the camera plane, a projector-to-camera 

correspondence map P2C, which maps projector pixels to camera coordinates with sub-

pixel accuracy, is used. P2C can be easily generated by SL like line-shifting [24] 

beforehand. Using P2C, the optimal parameters can be found by first projecting several 

straight lines and capturing the results virtually, and then evaluating their straightness on 

the camera plane using (3-2) and (3-3).  
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From the lens distortion model given by (3-4), the image lines passing distortion 

center (xc,yc) are not bent by the distortion regardless of the values of κ1, κ2 and r. Using 

this property, the distortion center can be estimated by finding the intersection of the 

straightest row and column. This procedure is demonstrated in Figure 3-4. Although the 

result provided by this estimation only has pixel precision and may contain errors of 

several pixels caused by noise, it is nonetheless a good initial estimate for further 

optimization. 

The lens distortion parameters κ1', κ2', xc, and yc are estimated by solving the 

objective function (3-6) using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. 

E here represents the average energy (i.e., a straightness evaluator) of the lines extracted 

from the camera image. These lines can be produced by projecting straight lines from the 

projector image directly to the camera image using P2C. 

{�̃�𝜅1′ , �̃�𝜅2′ , 𝛿𝛿�𝑐𝑐 ,𝑦𝑦�𝑐𝑐} = 𝑑𝑑𝑟𝑟𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 𝐸𝐸(𝜅𝜅1′ , 𝜅𝜅2′ , 𝛿𝛿𝑐𝑐 ,𝑦𝑦𝑐𝑐) (3-6)  

 

Figure 3-4. The initial estimation of projector principle point. 
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3.3 Projective Distortions Correction 

After all the lens distortions are corrected, projective distortion correction is 

straightforward. First, points on the projector plane are pre-warped by (3-5), then mapped 

to the corresponding camera coordinates through P2C. Then, from the correspondences 

between the projector image and camera image, the homography matrix between the 

undistorted projector and camera plane Hpc can be estimated. 

Similarly, with the coordinate system that is already defined on the floor, 

correspondences between the floor and the camera can be found and from which the 

homography matrix Hcf is estimated. 

 Finally, from the two homography Hpc and Hcf, the third homography Hpf, which 

transforms the projector coordinates to a floor coordinate, can be calculated by (3-7). 

𝐻𝐻𝑝𝑝𝑓𝑓 = 𝐻𝐻𝑝𝑝𝑐𝑐𝐻𝐻𝑐𝑐𝑓𝑓  (3-7)  

By pre-warping a projector buffer with H-1pf, the projection distortion can be corrected 

for each projector. As the coordinate system defined on the floor is global to all the 

projector cameras, Hpf maps the projector pixels to the absolute coordinates of the floor. 
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3.4 Evaluation 

3.4.1 Effectiveness of the Method 

A quantitative experiment was conducted by simulation. Three P2C maps with 

white noise [-0.1,0.1], [-0.3,0.3] and [-0.5,0.5] (unit: pixel) were used. Based on these 

three maps, the ground truth of lens distortion and the calibration results are shown in 

Table 3-1. It can be seen that the estimation results of κ1’, κ2’, and distortion center (xc, yc), 

all converged to the ground truth. The estimations of κ2’ had larger variance as its effect 

on the lens distortion is much weaker than κ1’. 

Table 3-1. Estimations of projector lens distortion  

Variables κ1’ (10-7) κ2’ (10-14) Distortion center (xc,yc) 

Ground truth -1.023 4.387 (512, 384) 

Noise = ±0.1 -1.025 4.428 (512.104, 383.858) 

Noise = ±0.3 -1.024 4.404 (511.214, 383.966) 

Noise = ±0.5 -1.012 4.138 (512.726, 384.681) 
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3.4.2 Accuracy Evaluation 

In order to numerically evaluate the misalignment occurring in the vicinity of the 

seam of two aligned projections, the max edge misalignment D is defined as being shown 

in Figure 3-5. D is calculated as twice the maximum of the distance between the 

corresponding sides of the circumscribed rectangle and the inscribed rectangle of the 

projection result. Its value represents the maximum error of the most deviated place when 

aligning two projections having the same degree of distortion with minimum overlapping 

and no gap. 

The desired calibration accuracy was defined and calculated based on human 

visual acuity (VA), which is a measure of the spatial resolution of the visual processing 

system. Figure 3-6 demonstrates the concept of an international standard VA test method 

named Landolt ring [25] [26]: if at m meters, a human eye is able to separate contours 

 

Figure 3-5. The defination of max edge misalgnment D. 
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that are g mm apart, then the numerical representation of its performance VA is calculated 

via (3-8) and (3-9) where u is the visual angle (in arc minute) at the eye under which the 

gap appears. Conversely, given VA and m, the minimum gap size gmin that a human can 

see can be calculated by (3-10). For example, the minimum gap that a human has VA of 

1.0 can see from 5 meters away is approximately 1.45 mm. 

𝑢𝑢 = 2 arctan(
𝑑𝑑

2 𝑎𝑎
) × 60 (3-8)  

𝑉𝑉𝑉𝑉 =
1
𝑢𝑢

 (3-9)  

𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 = 2𝑎𝑎 × tan
1

120𝑉𝑉𝑉𝑉
 (3-10)  

 Furthermore, as it is assumed that the sizes of projector pixels in the projection 

result are almost the same, gmin can be convert to pixel unit via (3-10), and then compared 

to the max edge misalignment D. In (3-11), w and h are the width and height of the 

 

Figure 3-6. The parameters involved in the Landolt ring VA test. 
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projector image’s dimension and W, H are the width and height of the projection area 

respectively. 

𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚_𝑖𝑖𝑚𝑚_𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑙𝑙 = 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 × �𝑤𝑤 × ℎ
𝑊𝑊 × 𝐻𝐻 

(3-11)  

In the use case of the floor projection system described at the beginning of this 

chapter, which is the learning aid activities conducted at a school gym, the users are not 

staring at some particular locations. Instead, their viewpoints are moving all the time to 

observe the various parts of the visual information projected on the floor. As a result, the 

misalignment that happens at the seam between two projections is observed outside a 

user’s central visual field most of the time. It is also known that the VA outside the central 

visual field decreases to 0.1, even for a person who has a VA of 1.0 [27]. Therefore, the 

calibration accuracy needs to be achieved is that the misalignment is hardly noticed when 

it happens outside the user’s central visual field. As a general situation, when users 

(children) with a height of 1.4 meters look at the floor at an oblique angle of 45 degrees, 

they observe the projected images at a distance m of about 2 meters. In such a situation, 

the acceptance range of projection misalignment calculated from (3-10) is 5.82 mm or 

less. Since the dimension of the projector image is 1024×768 pixels, and the projection 

area of each projector is about 25m2, calculated from (3-11), the acceptance range of 

projection misalignment of this system is 1.03 pixels or less. 

The accuracy of the proposed method was evaluated by comparing it with the 

desired accuracy, and the results of the self-calibration method proposed by Yamazaki et 

al. [13]. As the prior knowledge of the distortion center of the projector required by 
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Yamazaki’s method is not available, two initial distortion centers were used in the 

experiment. One was an empirical position suggested in their work, which is somewhere 

below the image center; in the experiment, (projector_width×0.5, projector_height×0.8) 

was used. The other one was the initial guess of the distortion center estimated by the 

method described in section 3.2. 

The result is shown in Figure 3-7. The dotted line with rhombus marks in the graph 

is the calibration accuracy (1.16 pixels) desired for this system. The dotted line with circle 

marks is the misalignment level before calibration. From this result, it can be confirmed 

that the proposed method achieves the target calibration accuracy. On the other hand, the 

results of the calibration method proposed by Yamazaki et al. did not reach the target 

accuracy, and the estimation result was unstable, depending on the degree of distortion. 

 

Figure 3-7. A comparison of max edge misalignment after calibration. κ1 
increases along x-axis and κ2 is constant. 
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In higher distortion level, the results were even worse than the uncalibrated case. The 

reasons are as follows: First, their method uses Bougnoux’s formula, which is known to 

be sensitive to even small errors of the fundamental matrix, while the corresponding 

points that are used to estimate the fundamental matrix, are unfortunately co-planar, 

which usually gives bad result. Second, the lens distortion parameter, together with other 

intrinsic and extrinsic parameters, are estimated by optimizing the reprojection error of 

the correspondences between projector and camera. The actual appearance of projection 

on the screen, however, is not taken into consideration. Our method corrects the projection 

by trying to keep all straight lines on the screen straight, and therefore gives better 

projection results. Moreover, by correcting the straight lines before estimating the 

homography, the nonlinear term can be estimated separately. This is considered to be 

another reason why the proposed method achieved higher calibration accuracy. 

3.4.3 Projection Results 

In this experiment, four projectors were used to project images on the floor. Their 

projections were approximately aligned before calibration. Two kinds of images are used 

to evaluate the appearance of the projection result: a grid pattern that only consists of 

one-pixel lines and a color block pattern. Figure 3-8(a) shows that for the line grid image, 

some lines are bent, and noticeable line misalignments occurred around adjacent edges 

between the projections. Figure 3-8 (b) shows that for the color block images, the gap 

between the projections is much more obvious than line bending and misalignment. Note 

that since adjacent edges are curved, the gaps cannot be solved by linear transformations. 

Figure 3-8 (c) gives a corrected result of the line grid generated by our method. In this 
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result, distorted lines are straightened, and misalignment and gaps around adjacent edges 

can barely be observed. Figure 3-8 (d)’s result is similar to that of Figure 3-8 (c). Although 

it is not seamless since there is a very narrow overlapping between two adjacent 

projections where the projection intensity is higher than the surrounding areas, the 

problem can be solved by additional intensity normalization.  
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Figure 3-8. The projection results before(a,c) and after(b,d) calibration. 
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Chapter 4  
A Projector Calibration Method for 
Arbitrary Shaped Surface Using a 
Mobile Camera 

Building a PROCAMS requires the camera being installed and configured such 

that the projected patterns can be observed, and the pose of the camera and the projector 

must remain unchanged during the calibration process. Fulfilling these requirements can 

be difficult in some scenarios, as described in Section 2.3.3. In some real-world cases, 

installing cameras just for system deployment is considered costly and inefficient as they 

are usually not used in the actual SAR application. 

In this chapter, a new projector calibration method is proposed to solve those 

problems. The significant difference between the proposed method and conventional 

methods is that a mobile camera instead of one or several static cameras is used. The 

characteristics of the proposed method are summarized as follows: 

 It allows the users to use any mobile camera such as a built-in camera of a 

smartphone to carry out projector calibration. 

 It uses multiview images to improve triangulation angles while keeps scene 

completeness. 
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 Two sets of features - the local image features and the pattern features are 

used complementarily to achieve a robust calibration result. 

 The method uses a single-shot SL pattern. The coding and decoding scheme 

of the SL is improved to achieve robust decoding result without knowing the 

calibration data in advance. 

4.1 Structured Light Patterns 

According to the coding domain, SL techniques can be classified into two 

categories: temporal coding SL and spatial coding SL. Temporal coding SL [12] [13] [24] 

[28] - [32] can achieve dense projector-camera correspondences and dense 3D 

reconstruction since the depth map is generated pixel by pixel. However, due to the strict 

static requirement of the time-domain coding, it requires that the PROCAMS must be 

stationary. Therefore, it is not viable for a PROCAMS whose camera pose is dynamic. In 

contrast, spatial coding SL [33] - [40] allows recovery of depth map with only one pattern 

coded in the space domain, for which reason it is also referred as single-shot SL. Although 

most of spatial coding SL originally assume a calibrated and static PROCAMS to achieve 

accurate and robust acquisition of correspondences, they potentially allow the decoding 

of SL pattern without knowing the intrinsic and extrinsic parameters of the camera and 

the projector, as long as the rotation and distortion are reasonably small. However, as a 

group of pixels needs to be used as a codeword, the resolution of spatial coding SL is 
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usually lower than that of temporal coding SL, and the accuracy is limited, due to the 

errors caused by depth discontinuities, distortions, intensity changes, and noises. 

A spatial coding SL which is based on the pattern proposed by H. Lin et al. [41] 

is used in the implementation to generate the projector-camera correspondences. It is a 

variant of the rhombus pattern proposed by Z. Song et al. [42]. To improve the robustness 

of the SL for an uncalibrated PROCAMS, the coding scheme and decoding algorithm are 

modified, and fail-safe features are added so that a feature has higher chance to be 

decoded correctly. A codeword correction step is also added to recover the wrongly 

decoded pattern features.  

The rhombus pattern is generated from an eight-element pseudorandom array. The 

pseudorandom array has the unique window property which assigns a unique code word 

to each pattern feature. It is constructed by folding a pseudorandom sequence which is 

generated by a Galois Field with eight basics or 𝐺𝐺𝐹𝐹(8) = {0,1,𝑑𝑑,𝑑𝑑2, … ,𝑑𝑑6} with 𝑑𝑑3 +

𝑑𝑑 + 1 = 0,𝑑𝑑7 = 1  [43]. The size of the array is 65 × 63, and the window size of its 

unique window property is 2 × 2, which means for any 2 × 2 subarrays, the permutation 

of the four elements in it is unique alone the whole array. Replacing the basics of GF(8) 

with the corresponding geometrical elements, as shown in Table 4-1, the projection 

pattern can be generated. An example of the pattern image is shown in Figure 4-1. The 

pattern feature points are defined as the intersection points between adjacent pattern 

elements. In the proposed method, it is assumed that the four colors R, G, B, and K used 

in the pattern can be correctly distinguished in general. 
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The significant advantages of the rhombus pattern over other spatial coding 

patterns, such as [38], [39], and [40], are that it has a smaller unique window size and 

greater coding capacity. Additionally, the colors, as well as the arrangement and geometry 

of rhombus elements, provide richer and more discriminable local image features. It is 

considered an advantage because not only pattern features but also local image features 

are used in the proposed method. 

 

Table 4-1. Elements of the pseudorandom array 

Basic 0 1 𝑑𝑑 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6 

Pattern 

Element 

R G B K R’ G’ B’ K’ 
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Figure 4-1. An example of the spatial coding SL pattern used in the proposed 
calibration method. 
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4.2 Fail-Safe Design of Rhombus Pattern 

Introducing fail-safe features to SL can improve the robustness of decoding results 

as the correct information has a higher chance of being included in the codewords. This 

is important in real-world cases where the error rate of decoding is high. Unlike 

conventional methods that assume calibrated PROCAMS, the calibration information is 

not available to filter the incorrect features. However, they can be removed later by 

geometry guided feature matching among multiview camera images or revised by a 

codewords correction step. 

4.2.1 Fail-Safe Coding Scheme 

As shown in Figure 4-2, there are two types of pattern feature points called P1 and 

P2. P1 type points have two elements on the left and right, while P2 type points have two 

elements on the top and bottom. Originally, the codeword of both P1 and P2 are defined 

by four elements as c1-c2-c3-c4, which means a feature point is only encoded by its two 

neighbor elements and the two elements below for P1 or the two elements at the right side 

for P2. Take P1 as an example; if the decoding of either c3 or c4 failed, P1 would also 

fail. However, due to the unique window property, c5-c6-c1-c2 can also determine P1. In 

order to improve the robustness, the fail-safe feature is implemented by modifying the 

coding scheme so that the codeword also includes the two elements above P1. The 

modified codeword has six elements: c5-c6-c1-c2-c3-c4. A pair of pattern features are 

considered as matching if the type, as well as the first or last four digits of their codewords, 
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are the same. For P2 type features, the left two elements c7 and c8 are included, and the 

new codeword of P2 is c7-c8-c1-c3-c2-c4. 

4.2.2 Fail-Safe Decoding Algorithm 

Since the unique window size is 2×2, and each feature point is associated with 

two rhombus elements, two adjacent feature points of the same type, referred to as pair-

point, can determine a unique window and the corresponding codeword. The original 

rhombus pattern uses four-element-codeword, so it only searches the bottom pair-point 

for P1 and the right pair-point for P2. In the improved six-element-codeword design, P1’s 

top pair-point and P2’s left pair-point are also searched for, because the top or left 

codewords can also be used to identify a feature point. Ideally, the first and the last four 

digits of the codeword should refer to the same feature point. In practice, as the extraction 

of some feature points may fail, pair point searching can give wrong results. Moreover, 

element recognition may also fail due to some factors like distortions or intensity changes. 

 

Figure 4-2. The two feature types and their codewords. 
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Consequently, the first and the last four digits may refer to different feature points. 

However, thanks to the fail-safe coding, a pattern feature can be preserved as long as one 

of them is correct. 

Figure 4-3 demonstrates the searching strategy of pair-point. The two feature 

types are shown in red and green dots, respectively. In [41], in order to make the searching 

more robust to local distortions, the position of the right pair-point of A is not searched 

by finding the nearest red neighbor. Instead, it is determined by firstly finding the upper-

right and lower-right green feature points, which are point C and D, and then finding the 

lower-right red dot of C and the upper right red dot of D. Ideally, the two searching results 

refer to the same dot B. In case they refer to different dots, the position of B is estimated 

by 𝑃𝑃�𝐵𝐵 = 𝑃𝑃𝐶𝐶 + 𝑃𝑃𝐷𝐷 − 𝑃𝑃𝐴𝐴, where 𝑃𝑃𝐶𝐶, 𝑃𝑃𝐷𝐷 and 𝑃𝑃𝐴𝐴 are the coordinates of point C, D and A, 

and  𝑃𝑃�𝐵𝐵 is the expected position of B. Then the actual position of B is determined by 

finding the nearest red point to 𝑃𝑃�𝐵𝐵.  

 

Figure 4-3. The pair-point searching strategy and a failure example. 
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Obviously, this searching strategy only works in an ideal situation where both C 

and D have been correctly extracted. In practice, if the extraction of C failed, the upper-

right green point of A will be E. In this case, 𝑃𝑃�𝐵𝐵 will be the position of B’ whose nearest 

red dot is G instead of B. Following this strategy, the searching of A’s pair-point fails 

although it could have succeeded by finding the upper-right green point of D.  

To solve the problem, both B and G are kept as the pair-point of A and two 

codewords are found and decoded accordingly. It is another fail-safe mechanism in the 

modified decoding algorithm. A pair-point can be found as long as one of the searching 

routes gives the correct result. 

4.3 Robust Projector Calibration Using a Mobile 

Camera 

Unlike the conventional PROCAMS, where the pose of both the projector and the 

camera are constant during calibration, the camera pose changes from frame to frame 

when using a mobile camera. Also, it is assumed that the users have no prior knowledge 

about the geometry of the projection surface. In the proposed method, a reliable point 

cloud of the projection surface is first generated using a set of multiview images captured 

by the mobile camera. Then a 3D-2D matching is performed between the point cloud and 

the projector image, from which the intrinsics and extrinsics of the projector were 

estimated. 
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4.3.1 Point Cloud Generation 

The reconstruction of 3D objects from multiview images is known as Structure 

from Motion (SfM). Many software and libraries like VisualSfM [44], COLMAP [45], 

and openMVG [46] provided robust SfM pipelines that generate reliable reconstruction 

results. Usually, SfM relies on the detection and matching of local image features such as 

SIFT [47], SURF [48] and AKAZE [49] to build correspondences among different views. 

However, the object may lack textures, which makes it difficult to extract sufficient 

features for 3D reconstruction. This problem can be solved by projecting the rhombus SL 

pattern introduced in section 4.2 onto the object to adds rich textures to its surface. 

From the projected pattern, two sets of features are extracted for reconstruction: 

the local image features and the pattern features. The local image features are used to 

build correspondences between the camera images, while the pattern features are used to 

build correspondences between projector and camera images. Although the rhombus 

pattern has its pattern features encoded, feature extraction and decoding accuracy can be 

significantly affected by factors like distortion, depth discontinuity, and illumination, and 

therefore the correspondences usually contain many outliers. Conventionally, an 

epipolar-geometry-based method can be used to remove the outliers. However, it requires 

that at least the fundamental matrix between the camera and the projector is known in 

advance. It is not the case in the proposed method at this point. Therefore, more robust 

and reliable local image features, rather than the pattern features, are used when 

generating the initial point cloud. In the implementation, SIFT is used as local image 

feature. In contrast, pattern features produce more reliable correspondences than local 
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image features between the projector and camera because the appearance of the pattern 

in their images usually differs significantly due to the influence of many factors like 

brightness, contrast, blur, and white balance. 

An incremental Structure from Motion pipeline [50] is used to generate the initial 

point cloud as well as the intrinsic and extrinsic parameters of camera views. Although 

the rhombus pattern projection can provide relatively dense and discriminable SIFT 

features thanks to the four-color-element and a large number of corners, the similarity of 

features is not completely ignorable. In order to reduce the number of false-positive 

matchings, the Nearest Neighbor Distance Ratio (NNDR) test is performed, where a 

rather restrictive threshold value (0.6) is used. Furthermore, it can be assumed that images 

captured by the same mobile camera with the same zoom ratio share the intrinsic 

parameters. It helps the SfM pipeline to produces more stable results but is not essential. 

Then, the point cloud is regenerated using a structure estimation from known 

poses algorithm [46]. As the intrinsics and extrinsics of the camera views have been 

estimated in the previous step, geometry guided feature matching can be applied alone 

with NNDR test. As a result, many features that were removed due to false-positive 

matching during the initial point cloud generation can be restored in the new point cloud. 

A feature filtering step is also applied to remove unreliable features by checking their 

visibility (i.e., the number of views that observed the feature), the angles among the views 

containing the feature, as well as the reprojection error and chirality of the triangulated 

3D points. The newly generated model is further optimized in a bundle adjustment (BA) 

step [51]. 
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Next, the optimized camera intrinsics and extrinsics are used to generate the point 

cloud for pattern features. The algorithm is similar to before. The difference is that the 

NNDR test is not needed as the feature similarity is not a problem here; instead, a pair of 

feature points is considered as matching if their fail-safe codewords match. The 

codewords are also bound to the corresponding 3D points. Using the camera intrinsics 

and extrinsics estimated previously, most of the outliers of pattern features caused by 

decoding error can be removed during the geometry guided feature matching. The point 

cloud is further refined by applying BA. This time the calibration data of all camera views 

are set to constant, and only the 3D points are refined. 

4.3.2 Codeword Correction 

Distortions and intensity changes can cause decoding error of pattern feature; 

therefore, a feature may be decoded to the same but wrong codeword in several views 

that are close to each other. In such a case, these feature points will build valid 

correspondences between camera images and be triangulated to a 3D point with an 

approximately correct coordinate. Discard these points will lose information and cause 

biased view selection for 3D reconstruction. In order to solve this problem, a simple 

method is introduced below to correct their codewords.  

The codewords bound to the 3D points of pattern features can help to generate the 

3D-2D correspondences between the point cloud and the projector image. From these 

correspondences, a 3 × 4 projection matrix P can be estimated robustly using A-Contrario 

RANSAC (AC-RANSAC) [52] and direct linear transform (DLT) [53]. The 

correspondences involving 3D points that hold wrong codewords are not supported by P 
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and can be detected as outliers. To correct the codewords, the projection coordinate of the 

3D point on the projector image plane is calculated with the following equation: 

𝜆𝜆𝛿𝛿 = 𝑃𝑃𝑃𝑃 (4-1)  

where 𝓍𝓍 and X are the homogenous coordinates of the 2D and 3D points, respectively. 

Next, the codeword can be found by searching for the pattern feature that is closest to 𝓍𝓍 

and has the same feature type as the 3D point on the projector image plane. After that, the 

codewords of 2D points on the corresponding camera views are corrected. Finally, the 

point cloud of pattern features is regenerated, and the projection matrix P is estimated 

again. 

4.3.3 Projector Calibration 

As shown in (4-2), the projection matrix P is a composition of the projector’s 

intrinsic matrix K, the rotation matrix R, and the translation vector t. According to [54], 

P can be decomposed to K, R, and t by RQ decomposition. Assuming that the projector 

pixels are square and there is no axis skew, K can be revised to K’ by (4-3). Then K’, R 

and t are refined, and a lens distortion parameter is estimated through a non-linear 

optimization step which minimizes the reprojection error from the 3D point cloud to the 

projector image. 
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𝑃𝑃 = 𝐾𝐾[𝑅𝑅|𝑡𝑡], 𝐾𝐾 = �
𝑓𝑓𝑥𝑥 𝑠𝑠 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑥𝑥 𝑐𝑐𝑥𝑥
0 0 1

� 
(4-2)  

𝐾𝐾′: = �
(𝑓𝑓𝑥𝑥 + 𝑓𝑓𝑥𝑥)/2 0 𝑐𝑐𝑥𝑥

0 (𝑓𝑓𝑥𝑥 + 𝑓𝑓𝑥𝑥)/2 𝑐𝑐𝑥𝑥
0 0 1

� 
(4-3)  

Adding the pattern features and the optimized calibration data of the projector 

image, the point cloud of pattern features is regenerated in the same fashion as described 

in the previous section. Finally, the point clouds of pattern features and local image 

features are combined, and a full BA optimization is applied to optimize all 3D points and 

views followed by an outlier removal step similar to [17]. The overall process flow is 

shown in Figure 4-4. 
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Figure 4-4. The flow diagram of the proposed calibration algorithm 
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4.4 Evaluation of Local Image Features 

This experiment evaluated the quality of the image local features extracted from 

different single-shot SL projections in terms of quantity and discriminability. Four 

representative patterns were compared: the four-color rhombus pattern [41] that is used 

in the proposed calibration method, a monochrome geometrical primitives pattern 

proposed by C. Albitar et al. [38], a six-color line pattern proposed by J. Salvi et al. [39], 

and a three-color square pattern proposed by D. Desjardins and P. Payeur [40]. The 

patterns were projected on to a white paper, and a pair of images were captured from two 

constant views for each pattern. The captured images of one view are shown in Figure 

4-5. A standard SIFT feature extraction and matching algorithm with NNDR test was then 

applied on each pair. After that, the number of matches, and the average NNDR were 

compared. The results are shown in Table 4-2. The 4-color rhombus pattern gave the most 

total matches, the highest percentage of valid matches after NNDR tests. It also gave the 

smallest average NNDR, indicating that its SIFT features are more discriminable than 

those of the other three patterns. 
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Table 4-2. A comparison of the quality of SIFT features extracted from four 
spatial coding structured light patterns in terms of quantity and discriminability 

 #Matches 
total 

#Matches (%) 
NNDR < 0.8  

#Matches (%) 
NNDR < 0.6 Avg. NNDR 

 
4-color rhombus 

41494 18345 (44.2) 10004 (24.1) 0.764 

 
Monochrome 

primitive 

11751 4154 (35.4) 1763 (15.0) 0.809 

 
6-color line 

7468 1081 (14.5) 240 (3.2) 0.895 

 
3-color square 

26619 4419 (16.6) 1335 (5.0) 0.886 

 

 

Figure 4-5. The images that are used to evaluate the local image features. 
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4.5 Evaluation in Close-Range Scenes 

4.5.1 Datasets 

The proposed method was evaluated on three close-range datasets. Dataset #1 is 

a plaster sphere. The projection suffers from perspective distortion at areas near to the 

projection edge, and it makes the pattern feature decoding very difficult. Dataset #2 is a 

plaster prism. Although the perspective distortion does not affect the pattern feature 

significantly, decoding failures occur on the surfaces orienting upward due to the 

reflection. Dataset #3 is a foam face. The rough surface introduces many noises which 

significantly affect pattern feature detection and decoding. Figure 4-6 shows the 

experiment setup of dataset #1, #2, and #3. Some images from these datasets are shown 

in Figure 4-7. A summary of the datasets and their calibration results is shown in Table 

4-3. 

Table 4-3. Summary of the close-range datasets and calibration results 

Dataset 
#Cam 
views 

Surface shape 
Surface 
material 

Reproj. err. 
(all views) 

Reproj. err. 
(projector) 

#1 18 sphere plaster 0.51309 0.07966 

#2 24 prism plaster 0.71076 0.12370 

#3 25 face foam 0.72443 0.16634 
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Figure 4-7. Sample images of the close-range experiment datasets. 

 

Figure 4-6. Experiment setup of dataset #1, #2 and #3. 
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4.5.2 Comparison to Checkerboard-based Calibration 

Another calibration experiment was conducted on the same projector as being 

used in dataset #1, #2, and #3 using a checkerboard-based method proposed by D. Moreno 

and G. Taubin [10]. The reprojection error was calculated from the images that were used 

for calibration (i.e., Gray code patterns projected onto a checkerboard). A comparison of 

the results is shown in Table 4-4. The results of focal length and principal point are close 

to each other, and the differences are reasonable, indicating that both methods comparable 

in terms of accuracy. The proposed method also produced less reprojection error of 

projector comparing to [10]. 

Table 4-4. Comparison of the estimations of focal length and principle point of the 
projector made by the proposed method (on datasets #1, #2 and #3) and a 
checkerboard (CB) method. 

Dataset Focal length Principle point 
Reprojection error 

of projector 

#1 2064.052 654.654, 718.195 0.07966 

#2 2113.417 650.388, 754.812 0.12370 

#3 2066.189 650.526, 744.187 0.16634 

CB 2097.734 639.026, 736.925 0.38304 
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4.5.3 Projection Surface Reconstruction Results 

The 3D models generated from the reconstructed point cloud of the datasets are 

shown in Figure 4-8. It can be seen that almost all the area covered by projection is 

reconstructed regardless of the occlusions in some of the camera images. In all datasets, 

the reconstructed models reproduced the objects well, indicating that the calibration 

results are reliable.  

4.5.4 Reconstruction Precision 

This experiment evaluated the reconstruction precision of dataset #1 via least-

square sphere fitting. Because the result of the proposed method is up-to-scale, the point 

cloud must be recovered to the absolute scale. The procedure is as follows: first, a least 

square sphere fitting was first applied to the point cloud of dataset #1; then the point cloud 

was scaled together with the sphere such that the sphere has the same size as the real 

object, which is 130mm; finally, the root mean square error (RMSE) of sphere fitting was 

calculated. The result RMSE was 0.109 mm in the absolute scale. 



 

53 

 

 

#1 

 

#2 

#3 

Figure 4-8. Reconstruction results of dataset #1, #2 and #3. 
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4.6 Evaluation in Large-Scale Scenes 

4.6.1 Datasets 

The scenes of dataset #4 and #5 are in a large-scale indoor space designed for 

immersive SAR [4] where the height of projectors is 7.7m away from the ground. Dataset 

#4 is a rounded wall corner with a height of 7.7m. Dataset #5 contains four objects of 

different shapes placed on the ground. The projection area is about 8m × 8m. Figure 4-9 

illustrates the scenes of dataset #5 and #6. Some images from these datasets are shown in 

Figure 4-10. A summary of the datasets and their calibration results is shown in Table 4-5. 

  

 

Figure 4-9. Side views of the scene in dataset #4 (left) and #5 (right). The position 
of the camera is an example to show its approximate height and relative 
position to the projection target(s). 
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Figure 4-10. Sample images of the large-scale experiment datasets. 

Table 4-5. Summary of the large-scale datasets and calibration results 

Dataset 
#Cam 
views 

Surface shape 
Surface 
material 

Reproj. err. 
(all views) 

Reproj. err. 
(projector) 

#4 43 
curved wall 

corner 
 (large scale) 

mixed 1.09439 0.23287 

#5 146 
mixed objects 
(large scale) 

mixed 1.13155 0.22849 
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 SIFT + pattern Pattern only 

#4 

 

#5 

Figure 4-11. A comparison of reconstruction results using both SIFT and pattern 
features, and only pattern features for dataset #4 and #5. 
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4.6.2 Surface Reconstruction Result 

Figure 4-11 shows a comparison between the reconstruction results of using both 

features (SIFT and pattern features), and only pattern features for reconstruction. As can 

be seen, using only pattern features lower the scene completeness as some areas in the 

scene are difficult to decode. 

4.6.3 Comparison to Self-Calibration using Stationary Camera 

This section compares the calibration results between the proposed method and 

the self-calibration method [13], which uses a stationary camera as typical, at the same 

scene as dataset #5. The datasets stationary cameras were mounted at two different 

locations. The first one is on the ground (lower view) and the second one is next to the 

projector (higher view). A sample image captured from each of the locations is shown in 

Figure 4-12. As it is known that the method is sensitive to the initial value of projector’s 

principal point, two initial values on each dataset of the two camera locations were tried: 

one is an empirical value (projector_width×0.5, projector_height×0.8), and the other one 

is the value estimated by the proposed method.  

It was expected that the lower view (Figure 4-12 (a)) would produce occlusion, 

while the higher view (Figure 4-12 (b)) would produce larger depth errors in the 

reconstruction result. However, their method failed at estimating the focal length using 

Bougnoux’s formula regardless of the camera location and the initial value of principle 

point. In contrast, the proposed method calibrated the projector and reconstructed the 

scene on dataset #5 successfully without any occlusion.  
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The self-calibration method failed because Bougnoux’s formula requires the 

position of the principal point to be known. Furthermore, the computation of the focal 

lengths can be very sensitive to the assumed positions of the principal points. Unlike 

cameras whose principal point can be assumed as the image center in most cases, a 

projector’s principal point can be affected by its offset and lens shift setup, which makes 

it very difficult to have a pixel-accuracy assumption. Additionally, the self-calibration 

method uses a conventional PROCAMS that only has two views (one projector and one 

camera). Therefore, the calibration fails completely once the focal length estimation of 

the projector-camera pair fails. In contrast, the proposed method uses multiple camera 

views. If the EXIF data or the camera spec is available, we can have an approximate 

calibration on camera intrinsic parameters, and then estimate the essential matrix from 

camera correspondences. The camera poses can then be estimated from the essential 

matrix, and after that, the scene can be reconstructed. Finally, the calibration data of the 

 
(a) Lower view 

 
(b) Higher view 

Figure 4-12. The camera views of the stationary camera used for self-
calibration [13]. 
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projector can be estimated from the 3D-2D correspondences between the reconstructed 

points and the projector image, as described in previous sections. This approach has been 

proven effective by R. Hartley and C. Silpa-Anan [16]. In case approximate camera 

calibration is not possible, one can still assume the principal point of the camera as the 

image center can choose two camera views that give the most reliable result of 

Bougnoux’s formula as the initial pair of reconstruction. This strategy is similar to [17]. 
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Chapter 5  
Conclusion 

In this work, new methods were proposed to solve the problems of using 

PROCAMS to do projector geometric calibration for large-scale SAR systems.  

It was first pointed out that most of the existing PROCAMS calibration 

approaches are difficult to be applied to large-scale space setup due to the large working 

distance, significant effect of lens distortion as well as the tradeoff between the baseline 

length and the quality of reconstruction. Two solutions were then proposed to address 

these problems in two different SAR scenarios. 

For a planar projection surface, a solution was proposed to estimate the camera 

and projector lens distortion as well as projective distortion separately online. It uses laser 

line projection and “straight lines have to be straight” to achieve geometrically correct 

projection results. The calibration accuracy was evaluated under a real-world condition, 

which is a floor projection system in a school gym. An evaluation criterion was designed 

based on the max edge misalignment, the user's visual acuity, the viewing distance, the 

projector resolution, and the size of the projection area. The experiment results showed 

that the proposed method is effective. It produced less projection misalignment than a 

typical self-calibration method [13] and achieved the accuracy required in a real-world 

scenario. The proposed method registers each projector directly to the coordinate system 
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of the projection surface via the corresponding camera mounted on it. This approach 

requires the reliable acquisition of the correspondences between each camera and the 

projection surface, which may be difficult in some cases. An alternate approach is to 

register the projectors to one root projector, through a projector-camera and camera-

camera homography tree, and then register the root projector to the projection surface. It 

requires the acquisition of correspondences between the projection surface and only the 

camera corresponding to the root projector. As a cost, it needs to obtain the 

correspondences between each camera and the neighboring projectors. 

To further deal with more complex scenes where the geometry of the projection 

targets is unknown, an innovative method that allows a user to calibrate a projector via a 

mobile camera instead of a stationary one was proposed. It uses spatial coding SL 

projection to obtain the correspondences between the projector and the frames of a 

moving camera. Using the multiview images captured by the mobile camera, it achieved 

robust 3D reconstruction of the projection surface as well as a reliable estimation of the 

projector’s intrinsic and extrinsic parameters. Comparing to conventional methods that 

use one or more stationary cameras, this method successfully solved the problem of the 

tradeoff between baseline length and reconstruction accuracy, and between baseline 

length and scene completeness. In the experiments, the proposed method produced 

comparable results with a checkerboard-based approach [10] in close-range scenes. For 

large-scale scenes, it successfully reconstructed the geometry of the projection surface 

and the estimated intrinsic and extrinsic parameters of the projector. At the same time, the 

self-calibration method [13] failed at estimating the focal length and thereby did not able 

to reconstruct the projection surface at all. A limitation of the proposed method is that it 
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works only when the color-coded SL pattern can be correctly recognized to some extent. 

If the projection surface is highly textured or saturated, the feature extraction and 

decoding will be difficult. As future work, the color-coded SL can be replaced by a shape-

coded SL that can be accurately and robustly decoded without pre-calibration to deal with 

textured and saturated surface. Moreover, view planning method such as [55] can be 

applied in the future to assist a non-experienced user to move the camera. 

The comparison of the self-calibration method and the two proposed methods are 

summarized as follows. Self-calibration method failed to produce satisfying result in 

large-scale SAR scenes because the camera position in the PROCAMS significantly 

affects the output of Bougnoux’s formula (2-3) and the following estimation of intrinsic 

and extrinsic parameters. As has been shown in section 2.3, the depth uncertainty increase 

as the distance between camera and projector decrease, therefore results in an unstable 

estimation of the fundamental matrix F. On the contrary, larger projector-camera distance 

introduce larger chance of occlusion which lowers the scene completeness and biases the 

distribution of observable 3D points, thus affects the stability of F. Moreover, the 

principle point of projector 𝑝𝑝𝑝𝑝 is usually unknown thus an empirical guess has to be 

made to use Bougnoux’s formula which make its output more unreliable. The method 

introduced in Chapter 4 first performs a robust 3D reconstruction of the scene using multi-

view images and SfM, then matches the 3D points to 2D points on the projector image, 

and finally estimates the projector’s intrinsic and extrinsic parameter through RQ 

decomposition of the projection matrix P. As has been discussed in section 4.6.3, this 

method produces more robust calibration result because it requires no prior value of 𝑝𝑝𝑝𝑝, 

and the Bougnoux’s formula is only used to estimate the focal length for a pair of camera 
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views (if EXIF is not available), instead of the projector-camera pair in the self-calibration 

method. Additionally, the result of this method relies on the accuracy of SfM, therefore, 

although the reprojection error is minimized, the lens distortions are not always been 

correctly estimated. The method introduced in Chapter 3 estimates the lens distortions 

correctly when the projection surface is planar. The straight laser lines projected on the 

plane provide direct ground truth for optimization of lens distortion parameters. Using 

“straight lines have to be straight” method, it is guaranteed that the projector lens 

distortion is corrected accurately so that the projected straight lines appear straight on the 

screen. 
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